JP2001135631A - 半導体装置及びその製造方法 - Google Patents

半導体装置及びその製造方法

Info

Publication number
JP2001135631A
JP2001135631A JP31909299A JP31909299A JP2001135631A JP 2001135631 A JP2001135631 A JP 2001135631A JP 31909299 A JP31909299 A JP 31909299A JP 31909299 A JP31909299 A JP 31909299A JP 2001135631 A JP2001135631 A JP 2001135631A
Authority
JP
Japan
Prior art keywords
fluorine
gas
organic film
containing organic
depositing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP31909299A
Other languages
English (en)
Inventor
Nobuhiro Jiwari
信浩 地割
Shinichi Imai
伸一 今井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electronics Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electronics Corp, Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electronics Corp
Priority to JP31909299A priority Critical patent/JP2001135631A/ja
Priority to US09/708,082 priority patent/US6518169B1/en
Publication of JP2001135631A publication Critical patent/JP2001135631A/ja
Priority to US10/255,597 priority patent/US6856020B2/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/312Organic layers, e.g. photoresist
    • H01L21/3127Layers comprising fluoro (hydro)carbon compounds, e.g. polytetrafluoroethylene
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02118Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer carbon based polymeric organic or inorganic material, e.g. polyimides, poly cyclobutene or PVC
    • H01L21/0212Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer carbon based polymeric organic or inorganic material, e.g. polyimides, poly cyclobutene or PVC the material being fluoro carbon compounds, e.g.(CFx) n, (CHxFy) n or polytetrafluoroethylene
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/022Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being a laminate, i.e. composed of sublayers, e.g. stacks of alternating high-k metal oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02203Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being porous
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/0226Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
    • H01L21/02263Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase
    • H01L21/02271Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition
    • H01L21/02274Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition in the presence of a plasma [PECVD]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02296Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer
    • H01L21/02318Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment
    • H01L21/02337Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment treatment by exposure to a gas or vapour
    • H01L21/0234Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment treatment by exposure to a gas or vapour treatment by exposure to a plasma
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76801Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing
    • H01L21/7682Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing the dielectric comprising air gaps
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/30Capture or disposal of greenhouse gases of perfluorocarbons [PFC], hydrofluorocarbons [HFC] or sulfur hexafluoride [SF6]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Plasma & Fusion (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Formation Of Insulating Films (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

(57)【要約】 【課題】 金属配線同士の間に、下地膜との密着性及び
膜の緻密性に優れていると共に金属配線間に空孔を有す
るフッ素含有有機膜を地球の温暖化を招くことなく堆積
できるようにする。 【解決手段】 半導体基板100の上に第1のシリコン
酸化膜101を介して複数の金属配線106を形成す
る。次に、C58ガスを主成分とする原料ガスを用い
て、複数の金属配線106同士の間及びその上面に、金
属配線106同士の間に空孔107aを有する第1のフ
ッ素含有有機膜107を堆積する。次に、C 58ガスを
主成分とする原料ガスを用いて、第1のフッ素含有有機
膜107の上に、空孔を有しない第2のフッ素含有有機
膜108を堆積する。

Description

【発明の詳細な説明】
【0001】
【発明の属する技術分野】本発明は、金属配線同士の間
に空孔を有する半導体装置及びその製造方法に関する。
【0002】
【従来の技術】近年めざましく進歩した半導体プロセス
技術により半導体素子及び金属配線の微細化及び高集積
化が図られているが、これに伴って、金属配線における
信号の遅延が半導体集積回路の動作速度に大きな影響を
及ぼすようになってきている。
【0003】そこで、特開平10−233448号公報
に示されるように、金属配線における信号遅延を低減す
るために、金属配線同士の間に堆積された絶縁膜に空孔
(ε=1.0)を設けたり又は金属配線同士の間に有機
膜からなる絶縁膜を堆積したりすることにより、絶縁膜
の比誘電率を低減する方法が提案されている。
【0004】
【発明が解決しようとする課題】ところが、前記従来の
半導体装置によると、比誘電率を或る程度まで低減する
ことはできるが、半導体素子及び金属配線の一層の微細
化及び高集積化に伴って、金属配線同士の間隔がより小
さくなってくるため、金属配線間における静電容量が増
大し、これによって、金属配線における信号遅延が避け
られないという問題が発生してくる。
【0005】そこで、本件発明者らは、CF4 ガス、C
26ガス、C38ガス、C48ガス等のパーフルオロカ
ーボンガスを用いて金属配線同士の間にフッ素含有有機
膜からなる絶縁膜を堆積すると共に、該絶縁膜に空孔を
形成することにより、絶縁膜における金属配線間の比誘
電率を低減する方法を考慮した。
【0006】ところが、前記のパーフルオロカーボンガ
スは地球温暖化係数(GWP100 )が大きいので、工業
的に多量に使用すると、温室効果によって地球の温暖化
を招くという問題があることに気がついた。
【0007】また、前記のパーフルオロカーボンガスを
用いて堆積したフッ素含有有機膜は、膜中に遊離フッ素
が多数存在するために、下地膜との密着性が良くないと
いう問題がある。
【0008】さらに、前記のパーフルオロカーボンガス
を用いて堆積したフッ素含有有機膜は、膜中に遊離フッ
素が多数存在するため緻密性に欠けるので、機械的強
度、耐熱性及び耐薬品性に劣るという問題もある。
【0009】前記に鑑み、本発明は、金属配線同士の間
に、下地膜との密着性及び膜の緻密性に優れていると共
に金属配線間に空孔を有するフッ素含有有機膜を、地球
の温暖化を招くことなく堆積できるようにすることを目
的とする。
【0010】
【課題を解決するための手段】前記の目的を達成するた
め、本発明に係る半導体装置の製造方法は、半導体基板
上に複数の金属配線を形成する工程と、プラズマ処理装
置の反応室内に設けられた試料台に半導体基板を保持す
ると共に、反応室内に、C58、C36又はC 46を主
成分とする原料ガスを導入することにより、複数の金属
配線同士の間及びその上面に、複数の金属配線同士の間
に空孔を有する第1のフッ素含有有機膜を堆積する工程
とを備えている。
【0011】本発明に係る半導体装置の製造方法による
と、大気寿命が短いと共にGWP10 0 が小さい、C
58、C36又はC46を主成分とする原料ガスを用い
て第1のフッ素含有有機膜を堆積するため、工業的に大
量生産しても、地球の温暖化を招き難い。
【0012】また、原料ガスの主成分であるC58
ス、C36ガス又はC46ガスはいずれも炭素の二重結
合を有しているため、成膜時に炭素の二重結合が切れて
各炭素原子が遊離フッ素と結合し、第1のフッ素含有有
機膜における遊離フッ素の数が減少するので、第1のフ
ッ素含有有機膜は、膜質が緻密になると共に下地との密
着性が向上する。
【0013】さらに、第1のフッ素含有有機膜は、金属
配線同士の間に空孔を有しているため、金属配線間の比
誘電率が低くなるので、金属配線における信号遅延を低
減することができる。
【0014】本発明の半導体装置の製造方法は、反応室
内にC58、C36又はC46を主成分とする原料ガス
を導入することにより、第1のフッ素含有有機膜の上
に、空孔を有しない第2のフッ素含有有機膜を堆積する
工程をさらに備えていることが好ましい。
【0015】このようにすると、第1のフッ素含有有機
膜は空孔を有しているため機械的強度に劣る懸念がある
が、第1のフッ素含有有機膜の上には空孔を有しない第
2のフッ素含有有機膜を堆積するため、第2のフッ素含
有有機膜が第1のフッ素含有有機膜の機械的強度の劣化
を補うことができる。従って、第1のフッ素含有有機膜
と第2のフッ素含有有機膜とからなる層間絶縁膜におい
ては、比誘電率の低減と機械的強度の確保との両立を図
ることができる。
【0016】第1のフッ素含有有機膜の上に、空孔を有
しない第2のフッ素含有有機膜を堆積する工程を備えて
いる場合には、第1のフッ素含有有機膜を堆積する工程
は、試料台にバイアス電圧を印加しないか又は相対的に
低いバイアス電圧を印加する工程を含み、第2のフッ素
含有有機膜を堆積する工程は、試料台に相対的に高いバ
イアス電圧を印加する工程を含むことが好ましい。
【0017】このようにすると、同一の原料ガスを用い
て、第1のフッ素含有有機膜には空孔を形成される一
方、第2のフッ素含有有機膜には空孔が形成されないよ
うにすることが可能になる。
【0018】また、第2のフッ素含有有機膜を堆積する
工程を備えている場合には、第2のフッ素含有有機膜を
堆積する工程における原料ガスには、フッ素原子をスカ
ベンジするスカベンジ用ガスが混合されていることが好
ましい。
【0019】このようにすると、プラズマ中のフッ素イ
オンの数が減少するため、第2のフッ素含有有機膜にお
いては、フッ素原子の割合が減少する一方、炭素原子の
割合が増加するので、比誘電率は高くなるが機械的強度
に優れた第2のフッ素含有有機膜を得ることができる。
【0020】この場合、スカベンジ用ガスはCOガスで
あることが好ましい。このようにすると、C58、C3
6又はC46がプラズマ化する際に発生するフッ素を
確実にスカベンジすることができる。
【0021】また、第2のフッ素含有有機膜を堆積する
工程を備えている場合には、反応室内において、第2の
フッ素含有有機膜を希ガスからなるプラズマに曝すこと
により、第2のフッ素含有有機膜を緻密化する工程をさ
らに備えていることが好ましい。このようにすると、第
2のフッ素含有有機膜は、膜質が緻密になるので、機械
的強度、耐熱性及び耐薬品性が向上する。
【0022】この場合、希ガスはアルゴンガスであるこ
とが好ましい。その理由は以下のとおりである。
【0023】アルゴンガスを成膜用の原料ガスに添加す
ると、堆積レートが向上するので、成膜用の原料ガスに
はアルゴンガスを添加することが多い。従って、アルゴ
ンガスからなるプラズマを用いて緻密化を行なうと、成
膜工程と緻密化工程とで同じ希ガス(アルゴンガス)を
使えるので、成膜工程と緻密化工程とを同一の反応室で
且つ連続的に行なうことが容易になる。
【0024】また、第2のフッ素含有有機膜を緻密化す
る場合には、半導体基板を反応室内のプラズマ発生領域
の方に移動した状態で、第2のフッ素含有有機膜を希ガ
スからなるプラズマに曝すことが好ましい。このように
すると、フッ素含有有機膜の緻密化が促進される。
【0025】本発明に係る半導体装置の製造方法におい
て、第1のフッ素含有有機膜を堆積する工程は、原料ガ
スの主成分となるガスの種類に応じて該ガスの滞在時間
を制御することにより、空孔が形成されるようにする工
程を含むことが好ましい。
【0026】このようにすると、金属配線同士の間に空
孔を有する第1のフッ素含有有機膜を確実に堆積するこ
とができる。
【0027】本発明に係る半導体装置は、半導体基板上
に形成された複数の金属配線と、複数の金属配線同士の
間及びその上面に堆積されており、空孔を有する第1の
フッ素含有有機膜と、第1のフッ素含有有機膜の上に堆
積されており、空孔を有しない第2のフッ素含有有機膜
とを備えている。
【0028】本発明に係る半導体装置によると、第1の
フッ素含有有機膜の上に堆積されており空孔を有しない
第2のフッ素含有有機膜が第1のフッ素含有有機膜の機
械的強度の劣化を補うため、第1のフッ素含有有機膜と
第2のフッ素含有有機膜とからなる層間絶縁膜において
は、比誘電率の低減と機械的強度の確保との両立を図る
ことができる。
【0029】
【発明の実施の形態】以下、本発明の一実施形態に係る
半導体製造装置の製造方法について説明するが、その前
提として、該製造方法に用いるプラズマ処理装置につい
て図1を参照しながら説明する。
【0030】図1は誘導結合型のプラズマ処理装置の概
略断面構造を示しており、反応室10の底部には試料台
となる下部電極11が配置され、該下部電極11は半導
体基板12を保持している。
【0031】反応室10には、C58ガスを供給する第
1のガスボンベ13A、Arガスを供給する第2のガス
ボンベ13B、及びCOガスを供給する第3のガスボン
ベ13Cが接続されており、反応室10には第1、第2
及び第3のガスボンベ13A、13B、13Cから、流
量が制御されたC58ガス、Arガス及びCOガスがそ
れぞれ導入される。また、反応室10には、流路開閉弁
14、ターボ分子ポンプ(TMP)15及びドライポン
プ(DP)16からなるガス排気手段が設けられてい
る。
【0032】反応室10の側壁の外部には柱状コイル1
7が設けられており、柱状コイル17の一端は第1のマ
ッチング回路18を介して第1の高周波電源19に接続
されていると共に、柱状コイル17の他端は反応室10
の側壁に接続されることにより接地されている。第1の
高周波電源19から柱状コイル17に高周波電力を印加
すると、反応室10に高周波誘導電磁場が発生し、これ
によって、反応室10内に供給されるC58ガス、Ar
ガス及びO2 ガスはプラズマ化される。また、下部電極
11には、コンデンサ21、第2のマッチング回路22
及び第2の高周波電源23が接続されており、第2の高
周波電源23から下部電極11に高周波電力を印加する
と、反応室10内に発生した粒子は下部電極11ひいて
は半導体基板12に向かって照射される。
【0033】以下、前記の誘導結合型のプラズマ処理装
置を用いて行なう、一実施形態に係る半導体装置の製造
方法について、図1及び図2(a)〜(d)を参照しな
がら説明する。
【0034】まず、図2(a)に示すように、シリコン
からなる半導体基板100の上に、例えば熱酸化膜から
なる第1のシリコン酸化膜101、例えばアルミニウム
又は銅からなる金属膜102、及び例えばTEOSから
なる第2のシリコン酸化膜を順次形成した後、該第2の
シリコン酸化膜をパターニングしてハードマスク105
を形成する。
【0035】次に、ハードマスク105を用いて金属膜
102に対してドライエッチングを行なって、図2
(b)に示すように、金属膜102からなる複数の金属
配線106を形成する。
【0036】次に、第1の第1のガスボンベ13Aから
58ガスを、第2のガスボンベ13BからArガスを
それぞれ供給して、C58ガスとArガスとが混合され
てなる第1の原料ガスを反応室10内に導入すると共
に、第1の高周波電源19から柱状コイル17に、例え
ば2.0MHzの周波数を持つ第1の高周波電力を40
0〜3000Wのパワーで印加して、反応室10内にC
58/Arプラズマを発生させる。この場合、C58
スとArガスとの混合割合は体積流量比で1:1から
1:10までの範囲内が好ましい。
【0037】このようにすると、図2(c)に示すよう
に、複数の金属配線106同士の間及びその上面に、金
属配線106同士の間に空孔107aを有する第1のフ
ッ素含有有機膜107が堆積される。
【0038】第1のフッ素含有有機膜107を堆積する
工程においては、下部電極12には第2の高周波電力
(バイアス電圧)を印加しないことが好ましい。このよ
うにすると、プラズマ中のイオン種を半導体基板100
の方に引き込む力が弱くなるので、第1のフッ素含有有
機膜107には空孔107aが形成される。
【0039】尚、第1のフッ素含有有機膜107に形成
される空孔107aが大きくなり過ぎて、第1のフッ素
ガン有機膜107を平坦化したときに空孔107aの上
部が露出する恐れがある場合には、第1のフッ素含有有
機膜107を堆積する工程における初期段階では第2の
高周波電源23から下部電極12に第2の高周波電力を
印加すると共に、第1のフッ素含有有機膜107を堆積
する工程における初期段階が終わった後には下部電極1
2に第2の高周波電力を印加しないようにすることが好
ましい。
【0040】また、第1のフッ素含有有機膜107を堆
積する工程においては、第1の原料ガスの主成分となる
ガス(ここではC58ガス)の種類に応じて該ガスの滞
在時間を制御すると、第1のフッ素含有有機膜107に
空孔107aを確実に形成することができる。以下、そ
の理由について説明する。
【0041】分子量が大きい分子(高次の分子)又は分
子量が大きいラジカル(高次のラジカル)は、トレンチ
又はホールの側壁であるパターン側壁への付着率が小さ
いため、トレンチ又はホールの底部に堆積し易いので、
堆積膜には空孔が形成され難い。これに対して、分子量
が小さい分子(低次の分子)又は分子量が小さいラジカ
ル(低次のラジカル)は、パターン側壁への付着率が大
きいため、トレンチ又はホールの側壁に付着し易いの
で、堆積膜には空孔が形成され易い。
【0042】従って、プラズマ中の高次の分子又は高次
のラジカルの解離を促進して、低次の分子又は低次のラ
ジカルを生成すると、堆積膜には空孔が形成され易いこ
とになる。
【0043】ところで、プラズマ中における高次の分子
又は高次のラジカルの解離は、導入するガスの種類に応
じて該ガスの滞在時間を制御することに促進される。ガ
スの滞在時間τは、τ(sec)=P(Pa)×V(m3)/
Q(Pa・m3/sec )で表わすことができる。ここで、P
はガスの圧力であり、Vは反応室の容積であり、Qはガ
スの流量である。
【0044】原料ガスの主成分がC58ガスである場合
には、C58ガスのプラズマ中における滞在時間τを長
くすると、高次の分子が解離して低次の分子が生成され
るための時間を十分に確保できるため、イオン種のパタ
ーン側壁への付着率が大きくなるので、堆積膜に空孔を
確実に形成することができる。
【0045】C58ガスの滞在時間τを長くするために
は、前記の式から、ガスの圧力Pを大きくしたり、ガス
の流量Qを小さくしたりすればよい。反応室の容積Vは
制御できないが、容積の大きい反応室を用いるとよい。
【0046】原料ガスの主成分がC58ガスである場合
には、前述のように、滞在時間を長くすると低次の分子
が増加するが、原料ガスの主成分がC26ガスである場
合には、滞在時間を短くすると低次の分子が増加する。
原料ガスの主成分がC36ガスである場合には、C58
ガスのときの最適な滞在時間とC26ガスのときの最適
な滞在時間との中間程度の滞在時間にすると、低次の分
子が増加する。
【0047】以上のように、第1のフッ素含有有機膜1
07に空孔107aを形成するためには、下部電極12
にバイアス電圧を印加しない方法、及び、主成分となる
ガスの滞在時間をガスの種類に応じて最適化する方法が
挙げられるが、これ以外に、ガス圧力を大きくしたり又
は柱状コイルに印加する高周波電力のパワーを大きくし
たりして、プラズマ密度(電子密度を意味する)を大き
くすると、イオン種のパターン側壁への付着率が大きく
なる。
【0048】次に、第1の第1のガスボンベ13Aから
58ガスを、第2のガスボンベ13BからArガス
を、第3のガスボンベ13CからCOガスをそれぞれ供
給して、C58ガスとArガスとCOガスとが混合され
てなる第2の原料ガスを反応室10内に導入すると共
に、第1の高周波電源19から柱状コイル17に、例え
ば2.0MHzの周波数を持つ第1の高周波電力を40
0〜3000Wのパワーで印加して、反応室10内にC
58/Ar/COプラズマを発生させる。この場合、C
58ガスとArガスとの混合割合は体積流量比で1:1
から1:10までの範囲内が好ましい。COガスは、プ
ラズマ中のフッ素をスカベンジ(scaveng:物理
吸着と共に化学反応を起こす作用)するスカベンジ用ガ
スとして機能する。尚、COガスの混合割合については
後述する。
【0049】また、第2の高周波電源23から下部電極
12に、例えば1.8MHzの周波数を持つ第2の高周
波電力を0〜7.0W/cm2 のパワーで印加して、図
2(d)に示すように、第1のフッ素含有有機膜107
の上に全面に亘って、空孔を有しない第2のフッ素含有
有機膜108を堆積する。
【0050】第2のフッ素含有有機膜108を堆積する
工程においては、第2の高周波電源23から下部電極1
2に第2の高周波電力を印加すると、プラズマ中のイオ
ン種を半導体基板100の方に引き込む力が強くなるの
で、空孔を有しない第2のフッ素含有有機膜108を確
実に堆積することができる。もっとも、第2のフッ素含
有有機膜108を堆積する際の他の条件によっては、下
部電極12に第2の高周波電力を印加しなくても、空孔
を有しない第2のフッ素含有有機膜108を堆積するこ
とができる。
【0051】第2の原料ガスには、プラズマ中のフッ素
をスカベンジするスカベンジ用ガスとしてのCOガスが
添加されているため、C58/Ar/COプラズマ中に
おいて、COイオンとC58が分解してなるF(フッ
素)とが反応してCOFが形成されるので、第2の原料
ガスからなるプラズマ中のフッ素の数は、第1の原料ガ
スからなるプラズマ中のフッ素の数よりも少ない。この
ため、第2の原料ガスを用いて堆積された第2のフッ素
含有有機膜108は、第1の原料ガスを用いて堆積され
た第1のフッ素含有有機膜107に比べて、比誘電率は
高いが、機械的強度は優れている。
【0052】図3は、C58ガスとCOガスとの合計量
に対するCOガスの混合割合と、比誘電率との関係を示
している。図3から分かるように、COガスの混合割合
を大きくすると、スカベンジされるフッ素の数が増加し
て、フッ素含有有機膜中に取り込まれるフッ素原子の数
が減少するので、フッ素含有有機膜の比誘電率は大きく
なる。フッ素含有絶縁膜におけるフッ素原子の含有量と
機械的強度とはトレードオフの関係にあり、膜中のフッ
素原子の割合が低減するに伴って炭素原子の割合が増加
するので、機械的強度は増加する。
【0053】尚、本実施形態においては、第2の原料ガ
スには、スカベンジ用ガスとしてのCOガスを混合した
が、COガスは混合しなくてもよいと共に、COガスに
代えて、H2 ガス等を用いてもよい。
【0054】次に、第1のガスボンベ13AからのC5
8ガスの導入及び第3のガスボンベ13CからのCO
ガスの導入をそれぞれ停止する一方、第2のガスボンベ
13BからのArガスの導入を継続する。また、第1の
高周波電源19から柱状コイル17に例えば2.0MH
zの周波数を持つ第1の高周波電力を400〜3000
Wのパワーで印加し且つ第2の高周波電源23から下部
電極12に例えば1.8MHzの周波数を持つ第2の高
周波電力を0〜7.0W/cm2 のパワーで印加して、
第2のフッ素含有有機膜108をArプラズマに曝す。
尚、Arガスの導入量は、特に限定されないが、標準状
態における1分間の体積流量として180mL/min
程度が好ましい。
【0055】このようにして、第2のフッ素含有有機膜
108をArプラズマに曝すと、第2のフッ素含有有機
膜108はプラズマの輻射熱によって加熱され、その温
度は300℃程度まで上昇する。第2のフッ素含有有機
膜108を300℃程度の温度下で30分間程度保持す
ると、該第2のフッ素含有有機膜108は緻密化される
ので、機械的強度、耐熱性及び耐薬品性等が向上する。
尚、第2のフッ素含有有機膜108の緻密化に用いるプ
ラズマとしては、Arプラズマに代えて、Heガス等の
他の希ガスからなるプラズマを用いてもよい。
【0056】図4(a)はArプラズマに曝す前のフッ
素含有有機膜のポリマー構造を示し、図4(b)はAr
プラズマに曝した後のフッ素含有有機膜のポリマー構造
を示している。図4(a)と図4(b)との対比から明
らかなように、フッ素含有有機膜をArプラズマに曝す
と、フッ素含有有機膜の温度が上昇して、ポリマー構造
中に存在していた遊離フッ素が炭素原子と結合する。こ
のため、遊離フッ素の数が減少するので、第2のフッ素
含有有機膜108は緻密化する。
【0057】本実施形態においては、第1及び第2のフ
ッ素含有有機膜107、108を堆積する際の原料ガス
としては、C58ガスに代えて、C36ガス又はC46
ガスを用いてもよい。
【0058】以下、第1及び第2のフッ素含有有機膜1
07、108を堆積する際の原料ガスとしては、C58
ガス、C36ガス又はC46ガスが好ましい理由につい
て説明する。
【0059】まず、第1の理由は、他のパーフルオロカ
ーボンガスに比べて、地球の温暖化を招き難いからであ
る。[表1]は、ガスの種類と、大気寿命及びGWP
100 (二酸化炭素の100年間の温暖化能力を1とした
ときの各ガスの温暖化能力を定量化した値)との関係を
示している。
【0060】
【表1】
【0061】[表1]から分かるように、C58ガス、
36ガス及びC46ガスは、大気寿命が短いと共にG
WP100 が小さいため、他のパーフルオロカーボンガス
に比べて地球の温暖化を招き難い。
【0062】第2の理由は、C58、C36及びC46
はいずれも炭素の二重結合を有しているため、成膜時に
炭素の二重結合が切れて各炭素原子が遊離フッ素と結合
する。このため、第1及び第2のフッ素含有有機膜10
7、108における遊離フッ素の数が減少するので、堆
積された第1及び第2のフッ素含有有機膜107、10
8は、膜質が緻密になると共に下地との密着性が向上す
る。
【0063】また、第1及び第2のフッ素含有有機膜1
07を堆積するための原料ガスとしては、C58ガス
は、他のパーフルオロカーボンガス例えばC26ガス又
はC48ガスよりも好ましい。その理由は、C58ガス
を用いて堆積されたフッ素含有有機膜の比誘電率は、他
のパーフルオロカーボンガスを用いて堆積されたフッ素
含有有機膜の比誘電率に比べて小さいからである。以
下、この点について詳細に説明する。
【0064】図5は、C58ガス、C26ガス及びC4
8ガスを用いて堆積したフッ素含有有機膜のXPS測
定結果を示している。図5から分かるように、C58
スを用いて堆積したフッ素含有有機膜は、C26ガス又
はC48ガスを用いて堆積したフッ素含有有機膜に比べ
て、膜中に含まれるフッ素原子の量が多いことが確認で
きる。
【0065】膜中に含まれるフッ素原子の量が多い理由
は、ガス分子量の大きいC58ガスを用いてプラズマを
生成するため、有機膜を構成するCxy分子におけるフ
ッ素原子の数が多くなるからである。
【0066】例えば、C26ガスとC58ガスとを比較
すると、C26及びC58は、 C26→C25↓+F↑ C58→C57↓+F↑ のように解離する。有機膜となるのはC25又はC57
であるから、C57が堆積してできた膜は、C25が堆
積してできた膜に比べて、膜中のフッ素は当然多くな
る。
【0067】従って、C58ガスを用いて堆積した第1
のフッ素含有有機膜107からなる線間絶縁膜における
配線間容量は、他のパーフルオロカーボンガスを用いて
堆積したフッ素含有有機膜からなる線間絶縁膜の配線間
容量よりも小さくなるので、金属配線106における配
線遅延は低減する。
【0068】ところで、前記の実施形態においては、下
部電極11の温度については、特に説明しなかったが、
膜を堆積する際には、下部電極11を低温にして半導体
基板100の温度を低くすると、堆積レートが速くなる
ため、第1又は第2のフッ素含有有機膜107、107
を効率良く得られる。従って、第1又は第2のフッ素含
有有機膜107、108を堆積する工程においては、下
部電極11を冷却して半導体基板100の温度を低くし
ておくことが好ましい。
【0069】ところが、半導体基板100の温度を低く
しておくと、第2のフッ素含有有機膜108をArプラ
ズマに曝して緻密化する際の効率が悪くなる。
【0070】そこで、緻密化工程においては、下部電極
11に通常設けられている突き上げピン(図示は省略し
ている。)を押し上げて、下部電極11に保持されてい
る半導体基板100を下部電極11から数cm程度持ち
上げることにより、半導体基板100を、冷却されてい
る下部電極11から離すと共にプラズマ発生領域に接近
させることが好ましい。このようにすると、低温で堆積
することにより効率良く第2のフッ素含有有機膜108
が得られると共に、第2のフッ素含有有機膜108をプ
ラズマ発生領域に接近させることにより緻密にすること
ができる。
【0071】
【発明の効果】本発明に係る半導体装置の製造方法によ
ると、大気寿命が短いと共にGWPが小さいC58、C
36又はC46を主成分とする原料ガスを用いて第1の
フッ素含有有機膜を堆積するので、工業的に大量生産し
ても地球の温暖化を招き難いと共に、第1のフッ素含有
有機膜における遊離フッ素の数が減少するので、第1の
フッ素含有有機膜は、膜質が緻密になると共に下地との
密着性が向上する。
【0072】本発明に係る半導体装置によると、第1の
フッ素含有有機膜の上に堆積されており空孔を有しない
第2のフッ素含有有機膜が第1のフッ素含有有機膜の機
械的強度の劣化を補うので、第1のフッ素含有有機膜と
第2のフッ素含有有機膜とからなる層間絶縁膜において
は、比誘電率の低減と機械的強度の確保との両立を図る
ことができる。
【図面の簡単な説明】
【図1】図1は本発明の一実施形態に係る半導体装置の
製造方法に用いられる誘導結合型のプラズマ処理装置の
全体構成を示す断面図である。
【図2】(a)〜(d)は、本発明の一実施形態に係る
半導体装置の製造方法の各工程を示す断面図である。
【図3】フッ素含有有機膜を堆積するための原料ガスに
おける、C58ガスとCOガスとの合計量に対するCO
ガスの混合割合と、比誘電率との関係を示す図である。
【図4】(a)はプラズマに曝す前のフッ素含有有機膜
のポリマー構造を示す図であり、(b)はプラズマに曝
した後のフッ素含有有機膜のポリマー構造を示す図であ
る。
【図5】C58ガス、C26ガス及びC48ガスを用い
て堆積したフッ素含有有機膜のXPS測定結果を示す図
である。
【符号の説明】
10 反応室 11 下部電極 12 半導体基板 13A 第1のガスボンベ 13B 第2のガスボンベ 13C 第3のガスボンベ 14 流路開閉弁 15 ターボ分子ポンプ 16 ドライポンプ 17 柱状コイル 18 第1のマッチングコイル 19 第1の高周波電源 21 コンデンサ 22 第2のマッチング回路 23 第2の高周波電源 100 半導体基板 101 第1のシリコン酸化膜 102 金属膜 103 第2のシリコン酸化膜 104 レジストパターン 105 ハードマスク 106 金属配線 107 第1のフッ素含有有機膜 108 第2のフッ素含有有機膜
フロントページの続き Fターム(参考) 5F033 HH11 QQ00 QQ08 QQ11 QQ28 QQ74 RR04 RR21 RR24 RR26 RR29 SS01 SS04 SS15 SS19 TT03 XX12 XX25 5F045 AA08 AB39 AC16 AC17 BB16 BB17 CB05 DC55 DC63 DP04 EB02 EH14 HA23 5F058 AA08 AA10 AC05 AD01 AD06 AF02 AG07 AH01 AH02

Claims (10)

    【特許請求の範囲】
  1. 【請求項1】 半導体基板上に複数の金属配線を形成す
    る工程と、 プラズマ処理装置の反応室内に設けられた試料台に前記
    半導体基板を保持すると共に、前記反応室内にC58
    36又はC46を主成分とする原料ガスを導入するこ
    とにより、前記複数の金属配線同士の間及びその上面
    に、前記複数の金属配線同士の間に空孔を有する第1の
    フッ素含有有機膜を堆積する工程とを備えていることを
    特徴とする半導体装置の製造方法。
  2. 【請求項2】 前記反応室内にC58、C36又はC4
    6を主成分とする原料ガスを導入することにより、前
    記第1のフッ素含有有機膜の上に、空孔を有しない第2
    のフッ素含有有機膜を堆積する工程をさらに備えている
    ことを特徴とする請求項1に記載の半導体装置の製造方
    法。
  3. 【請求項3】 前記第1のフッ素含有有機膜を堆積する
    工程は、前記試料台にバイアス電圧を印加しないか又は
    相対的に低いバイアス電圧を印加する工程を含み、 前記第2のフッ素含有有機膜を堆積する工程は、前記試
    料台に相対的に高いバイアス電圧を印加する工程を含む
    ことを特徴とする請求項2に記載の半導体装置の製造方
    法。
  4. 【請求項4】 前記第2のフッ素含有有機膜を堆積する
    工程における前記原料ガスには、フッ素原子をスカベン
    ジするスカベンジ用ガスが混合されていることを特徴と
    する請求項2に記載の半導体装置の製造方法。
  5. 【請求項5】 前記スカベンジ用ガスはCOガスである
    ことを特徴とする請求項4に記載の半導体装置の製造方
    法。
  6. 【請求項6】 前記反応室内において、前記第2のフッ
    素含有有機膜を希ガスからなるプラズマに曝すことによ
    り、前記第2のフッ素含有有機膜を緻密化する工程をさ
    らに備えていることを特徴とする請求項2に記載の半導
    体装置の製造方法。
  7. 【請求項7】 前記希ガスはアルゴンガスであることを
    特徴とする請求項6に記載の半導体装置の製造方法。
  8. 【請求項8】 前記第2のフッ素含有有機膜を緻密化す
    る工程は、前記半導体基板を前記反応室内のプラズマ発
    生領域の方に移動した状態で、前記第2のフッ素含有有
    機膜を前記希ガスからなるプラズマに曝す工程を含むこ
    とを特徴とする請求項6に記載の半導体装置の製造方
    法。
  9. 【請求項9】 前記第1のフッ素含有有機膜を堆積する
    工程は、前記原料ガスの主成分となるガスの種類に応じ
    て該ガスの滞在時間を制御することにより、前記複数の
    金属配線同士の間に空孔が形成されるようにする工程を
    含むことを特徴とする請求項1に記載の半導体装置の製
    造方法。
  10. 【請求項10】 半導体基板上に形成された複数の金属
    配線と、 前記複数の金属配線同士の間及びその上面に堆積されて
    おり、前記複数の金属配線同士の間に空孔を有する第1
    のフッ素含有有機膜と、 前記第1のフッ素含有有機膜の上に堆積されており、空
    孔を有しない第2のフッ素含有有機膜とを備えているこ
    とを特徴とする半導体装置。
JP31909299A 1999-11-10 1999-11-10 半導体装置及びその製造方法 Pending JP2001135631A (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP31909299A JP2001135631A (ja) 1999-11-10 1999-11-10 半導体装置及びその製造方法
US09/708,082 US6518169B1 (en) 1999-11-10 2000-11-08 Semiconductor device and method for fabricating the same
US10/255,597 US6856020B2 (en) 1999-11-10 2002-09-27 Semiconductor device and method for fabricating the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31909299A JP2001135631A (ja) 1999-11-10 1999-11-10 半導体装置及びその製造方法

Publications (1)

Publication Number Publication Date
JP2001135631A true JP2001135631A (ja) 2001-05-18

Family

ID=18106403

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31909299A Pending JP2001135631A (ja) 1999-11-10 1999-11-10 半導体装置及びその製造方法

Country Status (2)

Country Link
US (2) US6518169B1 (ja)
JP (1) JP2001135631A (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6602434B1 (en) * 1998-03-27 2003-08-05 Applied Materials, Inc. Process for etching oxide using hexafluorobutadiene or related fluorocarbons and manifesting a wide process window
WO2005017990A1 (ja) * 2003-08-15 2005-02-24 Tokyo Electron Limited 成膜方法、半導体装置の製造方法、半導体装置、基板処理システム
JP2006165129A (ja) * 2004-12-03 2006-06-22 Fujitsu Ltd 半導体装置及びその製造方法
JP2008021768A (ja) * 2006-07-12 2008-01-31 Renesas Technology Corp 半導体装置およびその製造方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6784123B2 (en) * 1998-02-05 2004-08-31 Asm Japan K.K. Insulation film on semiconductor substrate and method for forming same
JP2001135631A (ja) * 1999-11-10 2001-05-18 Matsushita Electronics Industry Corp 半導体装置及びその製造方法
JP5009527B2 (ja) * 2003-08-15 2012-08-22 東京エレクトロン株式会社 半導体装置、半導体装置の製造方法及びプラズマcvd用ガス

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100188298B1 (ko) * 1995-01-30 1999-06-01 모리시따요오이찌 단열발포체 및 그 제조방법
US6157083A (en) * 1996-06-03 2000-12-05 Nec Corporation Fluorine doping concentrations in a multi-structure semiconductor device
JP3085231B2 (ja) 1997-02-20 2000-09-04 日本電気株式会社 半導体装置の製造方法
EP0933814A1 (en) * 1998-01-28 1999-08-04 Interuniversitair Micro-Elektronica Centrum Vzw A metallization structure on a fluorine-containing dielectric and a method for fabrication thereof
JP4776747B2 (ja) * 1998-11-12 2011-09-21 株式会社ハイニックスセミコンダクター 半導体素子のコンタクト形成方法
JP2001135631A (ja) * 1999-11-10 2001-05-18 Matsushita Electronics Industry Corp 半導体装置及びその製造方法

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6602434B1 (en) * 1998-03-27 2003-08-05 Applied Materials, Inc. Process for etching oxide using hexafluorobutadiene or related fluorocarbons and manifesting a wide process window
WO2005017990A1 (ja) * 2003-08-15 2005-02-24 Tokyo Electron Limited 成膜方法、半導体装置の製造方法、半導体装置、基板処理システム
US7875549B2 (en) 2003-08-15 2011-01-25 Tokyo Electron Limited Fluorine doped carbon films produced by modification by radicals
US8119518B2 (en) 2003-08-15 2012-02-21 Tokyo Electron Limited Noble metal barrier for fluorine-doped carbon films
JP2006165129A (ja) * 2004-12-03 2006-06-22 Fujitsu Ltd 半導体装置及びその製造方法
JP2008021768A (ja) * 2006-07-12 2008-01-31 Renesas Technology Corp 半導体装置およびその製造方法

Also Published As

Publication number Publication date
US6856020B2 (en) 2005-02-15
US20030025209A1 (en) 2003-02-06
US6518169B1 (en) 2003-02-11

Similar Documents

Publication Publication Date Title
US6348421B1 (en) Dielectric gap fill process that effectively reduces capacitance between narrow metal lines using HDP-CVD
US6919270B2 (en) Method of manufacturing silicon carbide film
JP4049214B2 (ja) 絶縁膜の形成方法及び絶縁膜の形成装置
EP1983554A2 (en) Hydrogen ashing enhanced with water vapor and diluent gas
KR20010075566A (ko) 반도체 장치 및 그 제조 방법
JP2005117052A (ja) シリコンカーバイド膜を製造する方法
KR100441836B1 (ko) 성막 방법
JPH07335559A (ja) 半導体装置の製造方法
WO2003019645A1 (fr) Procede et appareil de formation d'un film
JP4743470B2 (ja) 半導体基板上にCu層と接触する膜を形成するための方法
JPH098032A (ja) 絶縁膜形成方法
JPH10163192A (ja) 半導体装置およびその製造方法
JP2001135631A (ja) 半導体装置及びその製造方法
JP3967253B2 (ja) 多孔質絶縁膜の形成方法及び多孔質絶縁膜の形成装置
JP4758938B2 (ja) 絶縁膜の形成方法及び絶縁膜の形成装置
US7655570B2 (en) Etching method, program, computer readable storage medium and plasma processing apparatus
JP2001135630A (ja) 半導体装置の製造方法
WO2000054328A1 (fr) Systeme de fabrication de dispositif semi-conducteur
JP3838614B2 (ja) 半導体装置の製造方法
JPH08222557A (ja) フッ素化非晶質炭素膜の製造方法
US6787445B1 (en) Method for fabricating semiconductor device
JPH08213378A (ja) プラズマcvd装置及び酸化膜の成膜方法
JPH0969518A (ja) シリコン化合物系絶縁膜の成膜方法
JPH11233500A (ja) 絶縁膜の形成方法及びそれを用いた半導体装置と半導体装置製造方法
JPS62274082A (ja) ドライエツチング方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060725

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070730

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070918

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071112

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080205

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080603