JP2000232332A - Surface mounted piezoelectric resonator - Google Patents

Surface mounted piezoelectric resonator

Info

Publication number
JP2000232332A
JP2000232332A JP11031829A JP3182999A JP2000232332A JP 2000232332 A JP2000232332 A JP 2000232332A JP 11031829 A JP11031829 A JP 11031829A JP 3182999 A JP3182999 A JP 3182999A JP 2000232332 A JP2000232332 A JP 2000232332A
Authority
JP
Japan
Prior art keywords
piezoelectric
package
crystal
vibrating element
quartz
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11031829A
Other languages
Japanese (ja)
Inventor
Koichi Iwata
浩一 岩田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Communication Equipment Co Ltd
Original Assignee
Toyo Communication Equipment Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Communication Equipment Co Ltd filed Critical Toyo Communication Equipment Co Ltd
Priority to JP11031829A priority Critical patent/JP2000232332A/en
Publication of JP2000232332A publication Critical patent/JP2000232332A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/161Cap
    • H01L2924/1615Shape
    • H01L2924/16195Flat cap [not enclosing an internal cavity]

Abstract

PROBLEM TO BE SOLVED: To eliminate defects such as generation of internal stress due to thermal distortion at a crystal blank plate constituting a crystal vibrating element by excessive heating, the fluctuation of a resonance frequency by the oxidation of an Ag layer constituting a pad electrode and the generation of stress inside of a crystal blank plate by the generation of the camber of a package at the time of thermo-compression bonding and fixing Au bumps formed on Ag pad electrodes provided at a crystal vibrating element to Au internal terminals within a ceramic package. SOLUTION: In this piezoelectric resonator which electrically and mechanically connects a piezoelectric vibrating element 1 to the inside of a surface mounted package 2 in a cantilevered state and connects Ag pad electrodes 16, 17 on one surface of the element 1 and Au metallized internal terminals 24, 25 on a bottom surface in the surface mounted package by the Au bumps 40, connection of the Au motallized internal terminals and the Au bumps is executed by a thermo-compression bonding method by low-temperature heating.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、振動子やフィルタ
等として使用される表面実装型圧電共振子に関し、特に
圧電振動素子をパッケージ内に接続する手段として金バ
ンプを用いた場合に従来問題となった種々の不具合を解
決した表面実装型圧電共振子に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a surface mount type piezoelectric resonator used as a vibrator, a filter, and the like. In particular, the present invention has a problem when a gold bump is used as a means for connecting a piezoelectric vibrating element in a package. The present invention relates to a surface-mount type piezoelectric resonator which has solved various problems.

【0002】[0002]

【従来の技術】近年、携帯電話等の移動体通信機器は、
小型化、軽量化が進む一方で、高機能化に対する要求も
高くなっている。高機能化に伴う部品点数の増加と小型
化の要求を満たす為に、電装部を構成するプリント基板
の小面積化と、搭載部品等の高密度化による基板面積の
有効利用化が重要視されるようになっている。移動体通
信機器や伝送通信機器に用いる周波数制御デバイスであ
る水晶共振子(振動子、フィルタ)もその例外ではな
く、高密度実装対応のため表面実装型が主流となってお
り、併せて高周波化の要求が強くなっている。図6は高
周波化を目的とした超薄肉部を有するATカット水晶振
動素子の斜視図であり、この水晶振動素子1はATカッ
ト水晶素板の基本波厚みすべり振動波を利用した振動子
であって、その共振周波数が板厚と反比例することか
ら、機械的強度を保ちつつ高周波化を図る為に、水晶振
動子1を構成する水晶素板の一方の主面をエッチングに
よって凹陥せしめ、該凹陥部13の底面を超薄肉の振動
部13aとするとともに、振動部13aの外周を全周に
亙って支持する厚肉の環状囲繞部14を一体化してい
る。更に、金のマスク蒸着、又はフォトリソグラフィに
より水晶素板の一方の主面上には主面電極11と、これ
より延出するリード電極15及びパッド電極16に加え
て、パッド電極17を形成する。なお、パッド電極17
は、他方の主面上に同様に形成した裏面電極12から延
出したリード電極18に対して水晶素板の側面を介して
導通している場合もある。
2. Description of the Related Art In recent years, mobile communication devices such as mobile phones have
While miniaturization and weight reduction are progressing, demands for higher functionality are increasing. In order to meet the demand for the increase in the number of components and the miniaturization due to the sophistication, it is important to reduce the area of the printed circuit board that composes the electrical components and to effectively use the board area by increasing the density of mounted components. It has become so. Quartz resonators (vibrators and filters), which are frequency control devices used in mobile communication equipment and transmission communication equipment, are no exception, and surface-mount types are the mainstream for high-density mounting. Demands are growing. FIG. 6 is a perspective view of an AT-cut crystal vibrating element having an ultra-thin portion for the purpose of increasing the frequency. This quartz-crystal vibrating element 1 is a vibrator utilizing a fundamental wave thickness shear vibration wave of an AT-cut crystal element plate. Since the resonance frequency is inversely proportional to the plate thickness, in order to increase the frequency while maintaining the mechanical strength, one main surface of the quartz crystal plate constituting the crystal unit 1 is recessed by etching. The bottom surface of the concave portion 13 is an ultra-thin vibrating portion 13a, and a thick annular surrounding portion 14 that supports the entire outer periphery of the vibrating portion 13a is integrated. Further, a pad electrode 17 is formed by gold mask evaporation or photolithography on one main surface of the quartz crystal plate in addition to the main surface electrode 11 and the lead electrode 15 and the pad electrode 16 extending therefrom. . The pad electrode 17
May be electrically connected to the lead electrode 18 extending from the back electrode 12 similarly formed on the other main surface via the side surface of the quartz crystal plate.

【0003】図7は上記水晶振動素子1を用いた表面実
装型水晶振動子の構造を示す断面図である。図6に示し
た水晶振動素子1をセラミックパッケージ2内に収納し
てから、セラミックパッケージ2の上面開口を金属の上
蓋により気密封止した構造を備える。このようなタイプ
の水晶振動子の構造においては、水晶振動素子をセラミ
ックパッケージに対して電気的機械的に接続する為の手
法を如何に選択するかが、周波数の安定化を図る上で重
要であり、従来は導電性接着剤を用いてセラミックパッ
ケージ2内底面の内部端子24、25と、水晶振動素子
側のパッド電極16、17とを接続していた。しかし、
導電性接着剤は加熱硬化させる必要がある為、加熱硬化
時に接着剤の堆積収縮により歪みが発生し、この歪みに
起因した応力が水晶振動素子に加わり、片持ち支持構造
では緩和できない程度の残留応力が水晶振動子内に蓄積
し、周波数が変動してその安定化が損なわれる。また、
水晶振動素子を構成する水晶素板とセラミックパッケー
ジの熱膨張係数の差によって生じる歪みにより水晶振動
素子に応力が加わり、周波数が変動して安定化が損なわ
れる。
FIG. 7 is a sectional view showing the structure of a surface-mount type crystal unit using the crystal unit 1 described above. After the crystal resonator element 1 shown in FIG. 6 is housed in the ceramic package 2, the upper opening of the ceramic package 2 is hermetically sealed with a metal top cover. In the structure of this type of crystal resonator, it is important to select a method for electrically and mechanically connecting the crystal resonator to the ceramic package in order to stabilize the frequency. Conventionally, the internal terminals 24 and 25 on the inner bottom surface of the ceramic package 2 and the pad electrodes 16 and 17 on the quartz-crystal vibrating element side were conventionally connected using a conductive adhesive. But,
Since the conductive adhesive needs to be cured by heating, distortion occurs due to the shrinkage of the adhesive during the heating and curing, and the stress caused by this distortion is applied to the quartz crystal vibrating element. Stress accumulates in the quartz resonator, causing its frequency to fluctuate and its stabilization to be impaired. Also,
Stress is applied to the crystal vibrating element due to the distortion caused by the difference in the coefficient of thermal expansion between the crystal element plate constituting the crystal vibrating element and the ceramic package.

【0004】また、パッケージ内の気密空間内において
接着剤から放出されるアウトガスの成分が水晶振動素子
表面、特に振動部を構成する電極に付着して振動部の膜
厚が厚くなり、振動周波数を変動させてその安定化を損
なわせる(質量負荷効果)。上記のごとき原因による水
晶振動素子の共振周波数の変動は、諸特性、例えば周波
数温度特性の劣化、信頼性、例えばエージング特性やリ
フロー特性(水晶振動子をプリント基板上にリフロー実
装した時の加熱により水晶振動素子内の残留応力が開放
されて周波数変動を起こす特定)等を著しく損ねる結果
をもたらす。ATカット水晶振動素子は水晶素板の厚み
が薄くなるほど周波数が高くなるが、上記応力やガス付
着による影響は高周波の水晶振動素子ほど深刻に現れ
る。従って、図6に示したタイプの超薄肉振動部を有す
る水晶振動素子にあっては、導電性接着剤を用いること
による不具合は更に深刻である。導電性接着剤を用いる
ことによる上記不具合を解消する為に最近では半導体チ
ップの表面実装方法として広く用いられているフリップ
チップ方式による接合方法が水晶振動子等の圧電振動子
の表面実装においても応用されつつある。図7はフリッ
プチップ方式を適用してバンプにより水晶振動素子をセ
ラミックパッケージ内底面に接続する従来方法を示して
いる。セラミックパッケージ2は、セラミック基板21
と、セラミック基板21の上面外周に一体化されたセラ
ミック製の環状枠体22と、上蓋3をシーム溶接するた
めに枠体22上に環状に固定されたシームリング23
と、から成り、全体として中央に水晶振動素子1を収納
するための凹所を有し、外周に環状部を有した箱形状を
呈している。セラミック基板21の上面には金メタライ
ズにより形成された内部端子24、25が露出してお
り、それぞれパッケージ底面等に設けた図示しない外部
端子と接続されている。
In addition, outgas components released from the adhesive in the hermetically sealed space in the package adhere to the surface of the quartz vibrating element, particularly to the electrodes constituting the vibrating section, and the thickness of the vibrating section becomes thicker. It fluctuates and impairs its stabilization (mass loading effect). Variations in the resonance frequency of the crystal unit due to the above factors are caused by various characteristics, such as deterioration and reliability of the frequency temperature characteristics, such as aging characteristics and reflow characteristics (heating caused by reflow mounting the crystal unit on a printed circuit board. The result is that the residual stress in the quartz vibrating element is released to cause frequency fluctuation, etc.). The frequency of the AT-cut quartz-crystal vibrating element becomes higher as the thickness of the quartz plate becomes thinner. However, the influence of the above-mentioned stress and gas adhesion becomes more serious in a high-frequency quartz vibrating element. Therefore, in the case of the crystal vibrating element having the ultra-thin vibrating portion of the type shown in FIG. 6, the problem caused by using the conductive adhesive is more serious. In order to solve the above problems caused by the use of conductive adhesive, the flip chip bonding method, which has been widely used recently as a surface mounting method for semiconductor chips, is also applied to the surface mounting of piezoelectric vibrators such as quartz vibrators. Is being done. FIG. 7 shows a conventional method of connecting a crystal resonator element to the bottom surface of a ceramic package by bumps by applying a flip-chip method. The ceramic package 2 includes a ceramic substrate 21
An annular frame 22 made of ceramic integrated on the outer periphery of the upper surface of the ceramic substrate 21; and a seam ring 23 fixed annularly on the frame 22 for seam welding the upper lid 3.
And has a concave portion for accommodating the crystal resonator element 1 in the center as a whole, and has a box shape having an annular portion on the outer periphery. Internal terminals 24 and 25 formed by gold metallization are exposed on the upper surface of the ceramic substrate 21, and are respectively connected to external terminals (not shown) provided on the package bottom surface and the like.

【0005】水晶振動素子1をパッケージ2内に接続す
る作業は、水晶振動素子1のパッド電極16、17と、
セラミックパッケージ2の入出力用の内部端子24、2
5とを、夫々バンプ4を用いて熱圧着により接続するこ
とにより行われる。ところで、水晶振動素子上の励振電
極11、12及びリード電極15、18及びパッド電極
16、17は、通常Au蒸着膜を用いて形成されてお
り、Auの特性を利用することにより良好な導電率と、
腐食されにくいという経時特性を確保している。このよ
うなAu蒸着膜からなるパッド電極16、17上にAu
バンプ4を形成しようとすると種々の不具合が発生す
る。即ち、Au膜としてのパッド電極16、17は、水
晶振動素子の共振周波数やエネルギー閉じ込め等の特性
に応じて設計上薄くせざるを得ず、しかもその膜厚は水
晶振動素子の特性に応じて所要の薄さに規定されるが、
このように薄いAu膜上にバンプを形成したとしてもA
u膜は荷重と加熱により溶融してバンプを支持し切れ
ず、バンプが脱落し易くなる。つまり、Auワイヤの先
端をトーチで加熱溶融させることにより球状化したAu
を、パッド電極上に接触させながら超音波による加熱を
行うことにより熱圧着させる際に、固着時の荷重により
Au膜が溶融してバンプが脱落しやすくなる。このよう
な不具合を解消する為、Au膜の膜厚を増大しようとし
ても水晶振動子の特性に応じて膜厚の厚肉化には限度が
ある。そこで、図8に示すように銀Agを最上層に有し
た積層構造のパッド電極16、17が、Au膜の代わり
に用いられるようになった。このパッド電極16、17
は水晶素板上にNi薄膜、Au薄膜、Ni薄膜、Ag薄
膜を順次積層一体化した構造を備えており、この積層構
造のパッド電極によれば、水晶振動素子の特性に応じて
予め決定されているパッド電極の膜厚を所要の薄さに維
持しながらも、バンプ接合時の荷重と熱による溶融とそ
れに起因したバンプの脱落を防止することができる。
[0005] The operation of connecting the crystal vibrating element 1 in the package 2 is performed by connecting the pad electrodes 16 and 17 of the crystal vibrating element 1 to the package.
Internal terminals 24, 2 for input / output of the ceramic package 2
5 are connected by thermocompression bonding using the bumps 4 respectively. By the way, the excitation electrodes 11 and 12, the lead electrodes 15 and 18, and the pad electrodes 16 and 17 on the quartz crystal vibrating element are usually formed using an Au vapor-deposited film, and have good conductivity by utilizing the characteristics of Au. When,
The aging property that it is hard to corrode is secured. Au is formed on the pad electrodes 16 and 17 made of such an Au deposited film.
Various problems occur when the bumps 4 are formed. That is, the pad electrodes 16 and 17 as the Au film must be designed to be thin in accordance with the characteristics such as the resonance frequency and the energy confinement of the crystal vibrating element, and the film thickness thereof depends on the characteristics of the crystal vibrating element. It is regulated to the required thickness,
Even if bumps are formed on such a thin Au film, A
The u film is melted by the load and the heat and cannot support the bump completely, so that the bump easily falls off. In other words, Au wire that has been made spherical by heating and melting the tip of the Au wire with a torch is used.
When the thermocompression bonding is performed by applying ultrasonic waves while being in contact with the pad electrode, the Au film is melted by the load at the time of fixing and the bumps are likely to fall off. In order to solve such a problem, even if an attempt is made to increase the thickness of the Au film, there is a limit in increasing the thickness of the Au film in accordance with the characteristics of the crystal unit. Therefore, as shown in FIG. 8, pad electrodes 16 and 17 having a laminated structure having silver Ag as the uppermost layer have come to be used instead of the Au film. These pad electrodes 16 and 17
Has a structure in which a Ni thin film, an Au thin film, a Ni thin film, and an Ag thin film are sequentially laminated and integrated on a quartz crystal plate. According to the pad electrode having the laminated structure, the thin film is determined in advance according to the characteristics of the crystal resonator element. While maintaining the required thickness of the pad electrode at the required thickness, it is possible to prevent melting due to the load and heat at the time of joining the bumps and to prevent the bumps from falling off due to the melting.

【0006】また、パッド電極表層のAg層とAuバン
プとの接合は、異種金属間の固相拡散による接合であ
り、しかもAgは金属拡散速度が速い為、Auバンプと
の結合力が強固であり、耐荷重性、耐熱性も高くなる。
なお、パッド電極16、17をAg層を表層に有した積
層電極膜にて構成する場合には、一括形成される励振電
極11、12、リード電極15、18についても同様に
積層構造の電極膜となる。一方、Au膜、或は表層にA
g層を有した積層薄膜から成るパッド電極16、17上
にバンプ4を形成した水晶振動素子1を、セラミックパ
ッケージ2内に搭載する方法としては、熱圧着接合が知
られているが、熱圧着時の加熱により水晶振動子内に熱
歪みが発生し、特性を悪化させるという不具合がある。
そこで、本出願人は、図8(a) (b) に示した如きパルス
ヒート式の熱圧着接合方法を提案し、先に特許出願を行
った。この熱圧着方法は、パッド電極16、17にAu
バンプ4を固着した水晶振動素子1を図8(a) に示すよ
うに250〜350℃程度に予備加熱した真空コレット
等のツール30により吸着保持し、ホットプレート31
上にて250〜350℃程度に予備加熱されたセラミッ
クパッケージ2の内底面上の内部端子(Auメッキパッ
ド)24、25上に各Auバンプ4が着座するようにツ
ール30を下降させて所定の荷重にて加圧する。この
際、ツール30とホットプレート31の双方から水晶振
動素子1とセラミックパッケージ2に対してパルス熱を
供給することにより内部端子24、25とAuバンプ4
とを瞬時に熱圧着する。
Also, the bonding between the Ag layer on the pad electrode surface layer and the Au bump is based on solid-phase diffusion between different metals, and Ag has a high metal diffusion rate, so that the bonding force with the Au bump is strong. Yes, load resistance and heat resistance also increase.
When the pad electrodes 16 and 17 are formed of a laminated electrode film having an Ag layer as a surface layer, the excitation electrodes 11 and 12 and the lead electrodes 15 and 18 which are collectively formed are similarly formed in a laminated electrode film. Becomes On the other hand, Au film or A
Thermo-compression bonding is known as a method of mounting the crystal resonator element 1 in which the bumps 4 are formed on the pad electrodes 16 and 17 made of a laminated thin film having a g layer in the ceramic package 2. There is a problem that thermal distortion occurs in the quartz resonator due to heating at the time, and the characteristics are deteriorated.
Therefore, the present applicant has proposed a pulse heat type thermocompression bonding method as shown in FIGS. 8 (a) and 8 (b), and has previously filed a patent application. In this thermocompression bonding method, Au is applied to the pad electrodes 16 and 17.
As shown in FIG. 8A, the quartz vibrating element 1 to which the bumps 4 are fixed is sucked and held by a tool 30 such as a vacuum collet preheated to about 250 to 350.degree.
The tool 30 is lowered so that the Au bumps 4 are seated on the internal terminals (Au plating pads) 24 and 25 on the inner bottom surface of the ceramic package 2 preheated to about 250 to 350 ° C. Press with a load. At this time, pulse heat is supplied from both the tool 30 and the hot plate 31 to the crystal vibrating element 1 and the ceramic package 2 so that the internal terminals 24 and 25 and the Au bump 4
And thermocompression bonding instantly.

【0007】このパルスヒート式の熱圧着接合方法によ
れば、従来の熱圧着接合方法に比して、加熱時間を大幅
に短くすることができ、その分だけ特性の悪化を防止す
ることができる。しかしながら、瞬間的とはいえ、水晶
振動子が高温に加熱される為、熱歪みによる素板内残留
応力が発生し、共振周波数に悪影響を及ぼす。また、水
晶振動子上のパッド電極16、17の表層部にAg層を
使用した場合、拡散速度の速いAg層上にAuバンプ4
を熱圧着することにより接合を促進することができ、低
負荷にて熱圧着を行うことが可能となる一方で、加熱に
よりAg層が変質(酸化)して電極膜の重量が増大する
ことによる共振周波数の変動や、パッケージが反りを起
こして水晶素板の内部に応力が発生するという不具合を
もたらす。
According to the thermocompression bonding method of the pulse heating type, the heating time can be greatly shortened as compared with the conventional thermocompression bonding method, and the deterioration of the characteristics can be prevented accordingly. . However, although momentary, the quartz resonator is heated to a high temperature, so that residual stress in the base plate is generated due to thermal strain, which adversely affects the resonance frequency. When an Ag layer is used for the surface layer of the pad electrodes 16 and 17 on the quartz oscillator, the Au bump 4 is formed on the Ag layer having a high diffusion speed.
Bonding can be promoted by thermocompression bonding, and it becomes possible to perform thermocompression bonding with a low load, but the heating deteriorates (oxidizes) the Ag layer and increases the weight of the electrode film. This causes a problem that the resonance frequency fluctuates and the package is warped to generate stress inside the quartz crystal plate.

【0008】[0008]

【発明が解決しようとする課題】本発明が解決しようと
する課題は、水晶振動素子に設けたAgパッド電極上に
形成したAuバンプを、セラミックパッケージ内のAu
内部端子に熱圧着して固定する際に、過剰な加熱により
水晶振動素子を構成する水晶素板に熱歪みによる内部応
力が発生したり、パッド電極を構成するAg層が酸化す
ることにより共振周波数が変動したり、パッケージが反
りを起こして水晶素板内部に応力が発生するといった不
具合を一挙に解決する表面実装型圧電共振子を提供する
ことにある。
The problem to be solved by the present invention is that an Au bump formed on an Ag pad electrode provided on a crystal vibrating element is replaced with an Au bump in a ceramic package.
When fixing by thermocompression bonding to the internal terminals, internal stress due to thermal strain is generated in the quartz crystal plate constituting the crystal vibrating element due to excessive heating, and the resonance frequency is caused by oxidation of the Ag layer constituting the pad electrode. SUMMARY OF THE INVENTION It is an object of the present invention to provide a surface-mount type piezoelectric resonator that can solve problems such as fluctuations of the package and warpage of the package to generate stress inside the quartz crystal plate.

【0009】[0009]

【課題を解決するための手段】上記課題を解決するた
め、請求項1の発明は、圧電振動素子を表面実装型パッ
ケージ内に片持ち保持にて電気的機械的に接続する圧電
共振子であって、上記圧電振動素子の片面上のAgパッ
ド電極と上記表面実装型パッケージ内底面上のAuメタ
ライズ内部端子との接続をAuバンプにて行ったものに
おいて、上記Auメタライズ内部端子とAuバンプとの
接続を、超音波を併用した低温加熱による熱圧着接合方
法にて実施したことを特徴とする。請求項2の発明は、
上記圧電振動素子を構成する圧電素板として、超薄肉の
振動部と、該振動部の外周を支持する厚肉の環状囲繞部
とを一体的に構成した圧電素板を用いたことを特徴とす
る。請求項3の発明は、上記圧電振動素子を構成する圧
電素板として、300MHz以上の共振周波数にて動作
する圧電素板を用いたことを特徴とする。
According to a first aspect of the present invention, there is provided a piezoelectric resonator for electrically and mechanically connecting a piezoelectric vibrating element to a surface mount type package by cantilever holding. The connection between the Ag pad electrode on one surface of the piezoelectric vibrating element and the Au metallized internal terminal on the inner bottom surface of the surface mount type package is made by an Au bump, and the connection between the Au metallized internal terminal and the Au bump is made. The connection is performed by a thermocompression bonding method using low-temperature heating in combination with ultrasonic waves. The invention of claim 2 is
As the piezoelectric element constituting the piezoelectric element, a piezoelectric element integrally formed with an ultra-thin vibrating part and a thick annular surrounding part supporting the outer periphery of the vibrating part is used. And The invention according to claim 3 is characterized in that a piezoelectric element that operates at a resonance frequency of 300 MHz or more is used as the piezoelectric element constituting the piezoelectric vibration element.

【0010】[0010]

【発明の実施の形態】以下、本発明を図面に示した形態
例に基づいて詳細に説明する。図1は高周波化を目的と
した超薄肉部を有するATカット水晶振動素子の斜視図
であり、この水晶振動素子1はATカット水晶素板の基
本波厚みすべり振動波を利用した振動子であって、その
共振周波数が板厚と反比例することから、機械的強度を
保ちつつ高周波化を図る為に、水晶振動素子1を構成す
る水晶素板の一方の主面をエッチングによって凹陥せし
め、該凹陥部13の底面を超薄肉の振動部13aとする
とともに、振動部13aの外周を全周に亙って支持する
厚肉の環状囲繞部14を一体化している。更に、導電性
の良好な金属のマスク蒸着、又はフォトリソグラフィに
より水晶素板の一方の主面上には主面電極(励振電極)
11と、これより延出するリード電極15及びパッド電
極(Agパッド電極)16に加えて、パッド電極(Ag
パッド電極)17を形成する。なお、パッド電極17
は、他方の主面上に同様に形成した裏面電極(励振電
極)12から延出したリード電極18に対して水晶素板
の側面を介して導通している。なお、主面電極11、裏
面電極12、リード電極15、パッド電極(Agパッド
電極)16、17、リード電極18は、いずれも蒸着に
より異種金属を積層した構造となっており、少なくとも
表層には銀Ag膜が位置している。この積層構造を有し
た電極膜の構成としては、例えば図8に示したNi膜−
Au膜−Ni膜−Ag膜を順次積層したものを使用する
ことができる。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, the present invention will be described in detail based on an embodiment shown in the drawings. FIG. 1 is a perspective view of an AT-cut quartz-crystal vibrating element having an ultra-thin portion for the purpose of increasing the frequency, and this quartz-crystal vibrating element 1 is a vibrator utilizing a fundamental thickness-shear vibration wave of an AT-cut quartz crystal plate. Since the resonance frequency is inversely proportional to the plate thickness, in order to increase the frequency while maintaining the mechanical strength, one main surface of the quartz crystal plate constituting the quartz vibrating element 1 is recessed by etching. The bottom surface of the concave portion 13 is an ultra-thin vibrating portion 13a, and a thick annular surrounding portion 14 that supports the entire outer periphery of the vibrating portion 13a is integrated. Furthermore, a main surface electrode (excitation electrode) is formed on one main surface of the quartz crystal plate by mask deposition of a metal having good conductivity or photolithography.
11 and a lead electrode 15 and a pad electrode (Ag pad electrode) 16 extending therefrom, and a pad electrode (Ag
A pad electrode 17 is formed. The pad electrode 17
Is electrically connected to a lead electrode 18 extending from a back electrode (excitation electrode) 12 similarly formed on the other main surface via a side surface of the quartz crystal plate. Each of the main surface electrode 11, the back surface electrode 12, the lead electrode 15, the pad electrodes (Ag pad electrodes) 16, 17 and the lead electrode 18 has a structure in which dissimilar metals are laminated by vapor deposition. A silver Ag film is located. As a configuration of the electrode film having the laminated structure, for example, the Ni film shown in FIG.
What laminated | stacked Au film-Ni film-Ag film in order can be used.

【0011】図2は上記水晶振動素子1を用いた表面実
装型水晶振動子の構造を示す断面図である。図1に示し
た水晶振動素子1をセラミックパッケージ2内に収納し
てから、セラミックパッケージ2の上面開口を金属の上
蓋により気密封止した構造を備える。セラミックパッケ
ージ2は、セラミック基板21と、セラミック基板21
の上面外周に一体化されたセラミック製の環状枠体22
と、上蓋3をシーム溶接するために枠体22上に環状に
固定されたシームリング23と、から成り、全体として
中央に水晶振動素子1を収納するための凹所を有し、外
周に環状部を有した箱形状を呈している。セラミック基
板21の上面にはメッキ等のAuメタライズにより形成
されたAu内部端子24、25が露出しており、それぞ
れパッケージ底面等に設けた図示しない外部端子と接続
されている。水晶振動素子1をパッケージ2内に接続す
る作業は、水晶振動素子1のパッド電極16、17と、
セラミックパッケージ2の入出力用のAu内部端子2
4、25とを、夫々所要数のAuバンプ40を用いて比
較的低温、かつ低加圧力により接合することにより行わ
れる。
FIG. 2 is a sectional view showing the structure of a surface-mount type crystal unit using the crystal unit 1 described above. A structure is provided in which the quartz resonator element 1 shown in FIG. 1 is housed in a ceramic package 2 and the upper opening of the ceramic package 2 is hermetically sealed with a metal top cover. The ceramic package 2 includes a ceramic substrate 21 and a ceramic substrate 21.
Ceramic annular frame 22 integrated on the outer periphery of the upper surface of
And a seam ring 23 fixed in an annular shape on a frame 22 for seam welding the upper lid 3. As a whole, a concave portion for accommodating the crystal resonator element 1 is provided at the center, and an annular It has a box shape having a portion. Au internal terminals 24 and 25 formed by Au metallization such as plating are exposed on the upper surface of the ceramic substrate 21 and are respectively connected to external terminals (not shown) provided on the package bottom surface or the like. The operation of connecting the crystal vibrating element 1 into the package 2 includes the pad electrodes 16 and 17 of the crystal vibrating element 1 and
Au internal terminal 2 for input / output of ceramic package 2
4 and 25 are bonded by using a required number of Au bumps 40 at a relatively low temperature and a low pressure.

【0012】これを図3(a) (b) に示した本発明の超音
波併用熱圧着接合方法に基づいて説明すると、この熱圧
着方法においては、表層がAg層から成るパッド電極1
6、17に夫々3個づつのAuバンプ40を固着した水
晶振動素子1を図3(a) に示すように格別な予備加熱を
施さない真空コレット等のツール45により吸着保持す
る一方、150〜200℃程度の低温に設定されたホッ
トプレート46上にてセラミックパッケージ2をコンス
タントに予備加熱しておく。セラミックパッケージが所
要の温度まで昇温した状態で、ツール45をセラミック
パッケージ2の上方に移動し、更に下降させることによ
りパッケージ内底面上の内部端子(Auメッキパッド)
24、25上に各Auバンプ40を着座させるとともに
ツール45により所要の荷重にて水晶振動素子1を加圧
しつつ超音波を所要時間印加する。具体的には、例えば
ツール45により、水晶振動素子1を下方へ向けて15
0g/bump程度の力により加圧しつつ、水晶振動素
子1に対して60kHz程度の周波数の超音波を1〜2
秒程度印加する。この際、水晶振動素子1を水平な姿勢
に維持したまま、バンプ40とパッド電極24、25と
の間のみに荷重が加わるようにツール45による加圧方
向を予め設定しておく。このような超音波併用熱圧着接
合方法を用いてAuメタライズ内部端子24、25上に
Auバンプ40を用いて水晶振動素子1を接合すること
により、接合時の加熱温度を大幅に低減できるので水晶
素板内に残留応力が発生しない。また、水晶振動素子を
格別に加熱する訳ではないので、水晶素板内に残留応力
が発生する可能性が更に低減する。また、同様の理由か
ら水晶振動素子上のAg膜が変質(酸化)して電極膜の
質量が増大し、共振周波数に変動をもたらすという不具
合がなくなる。また、パッケージ2を150〜200℃
程度の低温で加熱するだけである為、パッケージが反り
を起こすことがなくなり、パッケージ内に支持された水
晶振動素子内に内部応力が発生することがない。なお、
Auバンプ40とAuメッキパッド24、25との接続
は同種間金属拡散による接続である為、AuとAgとの
接続よりも接合強度が多少は低いが、Auメッキパッド
24、25の膜厚は、Au蒸着により形成される膜の膜
厚よりも十分に厚く(1μm)なり、熱圧着に耐えられ
るので、接合強度としては十分な値を確保することがで
きる。
This will be described with reference to the thermocompression bonding method using ultrasonic waves according to the present invention shown in FIGS. 3A and 3B. In this thermocompression bonding method, the pad electrode 1 whose surface layer is made of an Ag layer is used.
As shown in FIG. 3 (a), the quartz vibrating element 1 having three Au bumps 40 fixed to 6 and 17 is attracted and held by a tool 45 such as a vacuum collet which is not preliminarily heated as shown in FIG. The ceramic package 2 is constantly preheated on a hot plate 46 set at a low temperature of about 200 ° C. With the temperature of the ceramic package raised to a required temperature, the tool 45 is moved above the ceramic package 2 and further lowered, so that the internal terminals (Au plating pads) on the inner bottom surface of the package are moved.
The Au bumps 40 are seated on the 24 and 25, and the ultrasonic wave is applied for a required time while the tool 45 presses the quartz resonator element 1 with a required load. Specifically, for example, the quartz resonator element 1 is
While applying a pressure of about 0 g / bump, ultrasonic waves having a frequency of about 60 kHz
Apply for about a second. At this time, the pressing direction of the tool 45 is set in advance so that a load is applied only between the bump 40 and the pad electrodes 24 and 25 while the crystal resonator element 1 is maintained in a horizontal posture. By bonding the crystal vibrating element 1 using the Au bumps 40 on the Au metallized internal terminals 24 and 25 using such a thermocompression bonding method combined with ultrasonic waves, the heating temperature at the time of bonding can be greatly reduced. No residual stress occurs in the base plate. Further, since the quartz vibrating element is not particularly heated, the possibility that residual stress is generated in the quartz crystal plate is further reduced. Further, for the same reason, the problem that the Ag film on the quartz crystal vibrating element is altered (oxidized) and the mass of the electrode film is increased, thereby causing fluctuation in the resonance frequency is eliminated. Also, package 2 is placed at 150 to 200 ° C.
Since heating is performed only at a low temperature, the package does not warp, and no internal stress is generated in the crystal resonator element supported in the package. In addition,
Since the connection between the Au bumps 40 and the Au plating pads 24 and 25 is a connection by the same kind of metal diffusion, the bonding strength is slightly lower than the connection between Au and Ag, but the thickness of the Au plating pads 24 and 25 is , Is sufficiently thicker (1 μm) than the film formed by Au vapor deposition, and can withstand thermocompression bonding, so that a sufficient value can be secured as the bonding strength.

【0013】図4は本発明の実施の形態例を用いた場合
の改善効果を示す図であり、共振周波数が155MHz
の基本波振動を確保すべく製作した水晶振動子の加速エ
ージング実測特性を示している。このように水晶振動素
子に固定したAuバンプをAuメタライズ内部端子に対
して超音波併用熱圧着接合方法により接合することによ
り水晶振動素子を構成した場合には、周波数変化は±1
ppm以下であり、導電性接着剤の場合に比して約5倍
の周波数安定度を示した。また、図5は本発明の実施の
形態例を用いた場合の改善効果を示す図であり、共振周
波数が155MHzの基本波振動を確保すべく製作した
水晶振動子のリフロー実測特性を示している。なお、リ
フロー実測特性とは、この水晶振動子をプリント基板上
にリフロー方式により実装した時にリフロー時に加わる
熱によって水晶振動素子内の残留応力が開放されて周波
数が変動する特性を示す。本発明によった場合、周波数
変化は±3ppmであり、導電性接着剤による場合に比
して約3倍の周波数安定度を有することが判明した。な
お、上記形態例では、圧電共振子に使用する圧電振動素
子として水晶振動素子を示したが、これは一例に過ぎ
ず、本発明はあらゆる種類の圧電振動素子を使用した圧
電共振子に対して適用することができる。また、使用す
る圧電振動素子として、超薄肉の振動部の外周を厚肉の
環状囲繞部により包囲一体化した構成を示したが、これ
も一例であり、本発明はあらゆるタイプの圧電素板を用
いた圧電振動素子について適用することができる。特
に、圧電振動素子を構成する圧電素板として、300M
Hz以上の共振周波数にて動作する圧電素板を用いた場
合に、本発明は有効である。
FIG. 4 is a diagram showing an improvement effect when the embodiment of the present invention is used, wherein the resonance frequency is 155 MHz.
Fig. 5 shows the measured characteristics of accelerated aging of a quartz resonator manufactured to secure the fundamental vibration of the above. In the case where the quartz vibrating element is formed by bonding the Au bump fixed to the quartz vibrating element to the Au metallized internal terminal by the thermocompression bonding method using ultrasonic waves, the frequency change is ± 1.
ppm or less, and showed about five times the frequency stability as compared with the case of the conductive adhesive. FIG. 5 is a diagram showing the improvement effect when the embodiment of the present invention is used, and shows the reflow measurement characteristics of a quartz resonator manufactured to secure a fundamental wave vibration having a resonance frequency of 155 MHz. . Note that the measured reflow characteristic indicates a characteristic in which, when this crystal resonator is mounted on a printed circuit board by a reflow method, residual stress in the crystal resonator is released by heat applied at the time of reflow, and the frequency fluctuates. According to the present invention, the frequency change was ± 3 ppm, which was found to have about three times the frequency stability as compared with the case using the conductive adhesive. Note that, in the above embodiment, a quartz vibrating element is shown as the piezoelectric vibrating element used for the piezoelectric resonator. However, this is merely an example, and the present invention is applicable to a piezoelectric resonator using all kinds of piezoelectric vibrating elements. Can be applied. Also, as the piezoelectric vibration element to be used, a configuration was shown in which the outer periphery of the ultra-thin vibrating portion was surrounded and integrated by a thick annular surrounding portion, but this is also an example, and the present invention is applicable to any type of piezoelectric plate. The present invention can be applied to a piezoelectric vibrating element using. In particular, as a piezoelectric element constituting a piezoelectric vibration element, 300M
The present invention is effective when a piezoelectric element that operates at a resonance frequency of not less than Hz is used.

【0014】[0014]

【発明の効果】以上のように本発明によれば、水晶振動
素子に設けたAgパッド電極上に形成したAuバンプ
を、セラミックパッケージ内のAu内部端子に熱圧着し
て固定する際に、過剰な加熱により水晶振動素子を構成
する水晶素板に熱歪みによる内部応力が発生したり、パ
ッド電極を構成するAg層が酸化することにより共振周
波数が変動したり、パッケージが反りを起こして水晶素
板内部に応力が発生するといった不具合を一挙に解決す
ることができる。
As described above, according to the present invention, when an Au bump formed on an Ag pad electrode provided on a crystal resonator element is thermocompression-bonded and fixed to an Au internal terminal in a ceramic package, an excessive amount of metal is used. Heating causes internal stress due to thermal strain on the quartz crystal plate constituting the crystal vibrating element, oxidizes the Ag layer constituting the pad electrode, fluctuates the resonance frequency, and causes the package to warp, causing the crystal element to warp. Problems such as generation of stress inside the plate can be solved at once.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施の形態例としてのATカット水
晶振動素子の斜視図。
FIG. 1 is a perspective view of an AT-cut quartz-crystal vibrating element as one embodiment of the present invention.

【図2】本発明の一実施の形態例としての圧電共振子の
パッケージ構造を示す断面図。
FIG. 2 is a sectional view showing a package structure of a piezoelectric resonator as one embodiment of the present invention.

【図3】(a) 及び(b) は本発明による超音波併用熱圧着
接合方法を説明する為の図。
3 (a) and 3 (b) are views for explaining a thermocompression bonding method using ultrasonic waves according to the present invention.

【図4】本発明の実施の形態例を用いた場合の改善効果
を示す図。
FIG. 4 is a diagram showing an improvement effect when the embodiment of the present invention is used.

【図5】本発明の実施の形態例を用いた場合の改善効果
を示す図。
FIG. 5 is a diagram showing an improvement effect when the embodiment of the present invention is used.

【図6】従来の圧電振動素子の例を示す斜視図。FIG. 6 is a perspective view showing an example of a conventional piezoelectric vibration element.

【図7】従来の圧電共振子のパッケージ構造を示す断面
図。
FIG. 7 is a cross-sectional view showing a package structure of a conventional piezoelectric resonator.

【図8】(a) 及び(b) は従来のパルスヒート式熱圧着接
合方法(未公知)を示す図。
8 (a) and (b) are views showing a conventional pulse heating type thermocompression bonding method (unknown).

【符号の説明】[Explanation of symbols]

1 水晶振動素子、2 セラミックパッケージ、3 上
蓋、4 導電性接着剤、11 主面電極、12 裏面電
極、13 凹陥部、13a 振動部、14 環状囲繞
部、15 リード電極、16、17 パッド電極(Ag
パッド電極)、18リード電極、21 セラミック基
板、22 環状枠体、23 シームリング、24、25
Au内部端子、40 Auバンプ、45 ツール。
DESCRIPTION OF SYMBOLS 1 Quartz crystal vibrating element, 2 ceramic package, 3 top lid, 4 conductive adhesives, 11 main surface electrode, 12 back surface electrode, 13 concave portion, 13a vibrating portion, 14 annular surrounding portion, 15 lead electrode, 16, 17 pad electrode ( Ag
Pad electrode), 18 lead electrode, 21 ceramic substrate, 22 annular frame, 23 seam ring, 24, 25
Au internal terminals, 40 Au bumps, 45 tools.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 圧電振動素子を表面実装型パッケージ内
に片持ち保持にて電気的機械的に接続する圧電共振子で
あって、上記圧電振動素子の片面上のAgパッド電極と
上記表面実装型パッケージ内底面上のAuメタライズ内
部端子との接続をAuバンプにて行ったものにおいて、 上記Auメタライズ内部端子とAuバンプとの接続を、
超音波を併用した低温加熱による熱圧着接合方法にて実
施したことを特徴とする表面実装型圧電共振子。
1. A piezoelectric resonator for electrically and mechanically connecting a piezoelectric vibrating element to a surface-mounted package in a cantilevered manner, comprising an Ag pad electrode on one side of the piezoelectric vibrating element and the surface-mounted package. The connection between the Au metallized internal terminal on the bottom surface of the package and the Au metallized internal terminal is made by an Au bump.
A surface-mount type piezoelectric resonator which is implemented by a thermocompression bonding method using low-temperature heating in combination with ultrasonic waves.
【請求項2】 上記圧電振動素子を構成する圧電素板と
して、超薄肉の振動部と、該振動部の外周を支持する厚
肉の環状囲繞部とを一体的に構成した圧電素板を用いた
ことを特徴とする請求項1記載の表面実装型圧電共振
子。
2. A piezoelectric element plate comprising an ultra-thin vibrating part and a thick annular surrounding part supporting an outer periphery of the vibrating part as a piezoelectric element plate constituting the piezoelectric vibrating element. The surface mount type piezoelectric resonator according to claim 1, wherein the piezoelectric resonator is used.
【請求項3】 上記圧電振動素子を構成する圧電素板と
して、300MHz以上の共振周波数にて動作する圧電
素板を用いたことを特徴とする請求項1又は2記載の表
面実装型圧電共振子。
3. The surface mount type piezoelectric resonator according to claim 1, wherein a piezoelectric element that operates at a resonance frequency of 300 MHz or more is used as the piezoelectric element constituting the piezoelectric vibration element. .
JP11031829A 1999-02-09 1999-02-09 Surface mounted piezoelectric resonator Pending JP2000232332A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11031829A JP2000232332A (en) 1999-02-09 1999-02-09 Surface mounted piezoelectric resonator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11031829A JP2000232332A (en) 1999-02-09 1999-02-09 Surface mounted piezoelectric resonator

Publications (1)

Publication Number Publication Date
JP2000232332A true JP2000232332A (en) 2000-08-22

Family

ID=12341973

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11031829A Pending JP2000232332A (en) 1999-02-09 1999-02-09 Surface mounted piezoelectric resonator

Country Status (1)

Country Link
JP (1) JP2000232332A (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002198772A (en) * 2000-12-27 2002-07-12 Toyo Commun Equip Co Ltd High frequency piezoelectric device
GB2375885A (en) * 2001-05-24 2002-11-27 Samsung Electro Mech Quartz crystal resonator housing
JP2003017977A (en) * 2001-06-29 2003-01-17 Toyo Commun Equip Co Ltd Ultrahigh frequency piezoelectric vibrating element and surface mounted piezoelectric vibrator
US6538208B2 (en) 2001-03-06 2003-03-25 Citizen Watch Co., Ltd. Package base for mounting electronic element, electronic device and method of producing the same
WO2004084429A1 (en) * 2003-03-19 2004-09-30 Nihon Dempa Kogyo Co., Ltd. High frequency radio apparatus
JP2006190777A (en) * 2005-01-05 2006-07-20 Pioneer Electronic Corp Bump forming method
US7583162B2 (en) 2005-10-12 2009-09-01 Epson Toyocom Corporation Piezoelectric device and method for manufacturing the piezoelectric device
JP2009296115A (en) * 2008-06-03 2009-12-17 Daishinku Corp Tuning fork type piezoelectric vibration piece, tuning fork type piezoelectric vibration device, and manufacturing method of tuning fork piezoelectric vibration piece
JP2010213289A (en) * 2010-04-01 2010-09-24 Epson Toyocom Corp Method of manufacturing piezoelectric device
WO2012052267A1 (en) * 2010-10-21 2012-04-26 Micro Crystal Ag Method for mounting a piezoelectric resonator in a case and packaged piezoelectric resonator
JP5162675B2 (en) * 2008-11-28 2013-03-13 セイコーインスツル株式会社 Piezoelectric vibrator manufacturing method, piezoelectric vibrator, oscillator, electronic device, and radio timepiece
JP5184648B2 (en) * 2008-11-28 2013-04-17 セイコーインスツル株式会社 Method for manufacturing piezoelectric vibrator
WO2017022504A1 (en) * 2015-07-31 2017-02-09 株式会社村田製作所 Electronic component and method for producing same
US10090223B2 (en) 2016-04-27 2018-10-02 Fuji Electric Co., Ltd. Semiconductor device and method of manufacturing same

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4524916B2 (en) * 2000-12-27 2010-08-18 エプソントヨコム株式会社 High frequency piezoelectric device
JP2002198772A (en) * 2000-12-27 2002-07-12 Toyo Commun Equip Co Ltd High frequency piezoelectric device
US6538208B2 (en) 2001-03-06 2003-03-25 Citizen Watch Co., Ltd. Package base for mounting electronic element, electronic device and method of producing the same
GB2375885A (en) * 2001-05-24 2002-11-27 Samsung Electro Mech Quartz crystal resonator housing
JP2003017977A (en) * 2001-06-29 2003-01-17 Toyo Commun Equip Co Ltd Ultrahigh frequency piezoelectric vibrating element and surface mounted piezoelectric vibrator
WO2004084429A1 (en) * 2003-03-19 2004-09-30 Nihon Dempa Kogyo Co., Ltd. High frequency radio apparatus
US7603100B2 (en) 2003-03-19 2009-10-13 Nihon Dempa Kogyo Co., Ltd. High-frequency radio apparatus
JP2006190777A (en) * 2005-01-05 2006-07-20 Pioneer Electronic Corp Bump forming method
US7583162B2 (en) 2005-10-12 2009-09-01 Epson Toyocom Corporation Piezoelectric device and method for manufacturing the piezoelectric device
JP2009296115A (en) * 2008-06-03 2009-12-17 Daishinku Corp Tuning fork type piezoelectric vibration piece, tuning fork type piezoelectric vibration device, and manufacturing method of tuning fork piezoelectric vibration piece
JP5162675B2 (en) * 2008-11-28 2013-03-13 セイコーインスツル株式会社 Piezoelectric vibrator manufacturing method, piezoelectric vibrator, oscillator, electronic device, and radio timepiece
JP5184648B2 (en) * 2008-11-28 2013-04-17 セイコーインスツル株式会社 Method for manufacturing piezoelectric vibrator
US8638180B2 (en) 2008-11-28 2014-01-28 Sii Crystal Technology Inc. Piezoelectric vibrator manufacturing method, piezoelectric vibrator, oscillator, electronic device, and radio-controlled timepiece
JP2010213289A (en) * 2010-04-01 2010-09-24 Epson Toyocom Corp Method of manufacturing piezoelectric device
WO2012052267A1 (en) * 2010-10-21 2012-04-26 Micro Crystal Ag Method for mounting a piezoelectric resonator in a case and packaged piezoelectric resonator
WO2017022504A1 (en) * 2015-07-31 2017-02-09 株式会社村田製作所 Electronic component and method for producing same
US11196405B2 (en) 2015-07-31 2021-12-07 Murata Manufacturing Co., Ltd. Electronic component and method of manufacturing the same
US10090223B2 (en) 2016-04-27 2018-10-02 Fuji Electric Co., Ltd. Semiconductor device and method of manufacturing same

Similar Documents

Publication Publication Date Title
JP3678148B2 (en) Piezoelectric device
JP2000232332A (en) Surface mounted piezoelectric resonator
KR100699586B1 (en) Crystal Oscillator
JP4815976B2 (en) Method for manufacturing crystal vibrating device
JP2008131549A (en) Quartz oscillation device
JP2007274339A (en) Surface mounting type piezoelectric vibration device
JP5152012B2 (en) Piezoelectric vibration device and method for manufacturing piezoelectric vibration device
JP2000049560A (en) Crystal oscillator
JP2006211089A (en) Piezoelectric vibration device
JP2006054602A (en) Package for electronic part and piezo-electric oscillation device using the same
JP2008166884A (en) Manufacturing method of piezoelectric vibration device and piezoelectric vibration device by the manufacturing method
JP2002084160A (en) Piezoelectric device
JP2011035660A (en) Piezoelectric device
JP2009239475A (en) Surface mounting piezoelectric oscillator
JP2017130827A (en) Piezoelectric device and method of manufacturing the same
JP2010130123A (en) Piezoelectric vibration device
JP2009038533A (en) Piezoelectric oscillator
KR100501194B1 (en) crystal oscillator
JP2007166435A (en) Crystal oscillation device
JP4085549B2 (en) Piezoelectric device and manufacturing method thereof
JP4075301B2 (en) Piezoelectric device, package of piezoelectric device, and manufacturing method thereof
JPH11274889A (en) Holding mechanism for crystal piece
JP2011055033A (en) Piezoelectric oscillator
JP2018142888A (en) Piezoelectric oscillator
JPH11274892A (en) Piezoelectric vibrator and production thereof