JP2008166884A - Manufacturing method of piezoelectric vibration device and piezoelectric vibration device by the manufacturing method - Google Patents

Manufacturing method of piezoelectric vibration device and piezoelectric vibration device by the manufacturing method Download PDF

Info

Publication number
JP2008166884A
JP2008166884A JP2006350815A JP2006350815A JP2008166884A JP 2008166884 A JP2008166884 A JP 2008166884A JP 2006350815 A JP2006350815 A JP 2006350815A JP 2006350815 A JP2006350815 A JP 2006350815A JP 2008166884 A JP2008166884 A JP 2008166884A
Authority
JP
Japan
Prior art keywords
vibrating piece
electrode
metal bump
base
piezoelectric vibration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006350815A
Other languages
Japanese (ja)
Inventor
Shinichi Koyama
伸一 小山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daishinku Corp
Original Assignee
Daishinku Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daishinku Corp filed Critical Daishinku Corp
Priority to JP2006350815A priority Critical patent/JP2008166884A/en
Publication of JP2008166884A publication Critical patent/JP2008166884A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a manufacturing method of a piezoelectric vibration device which is suitable for miniaturization and does not easily generate the bonding strength dispersion of a metal bump and a piezoelectric vibration piece, and to provide the piezoelectric vibration device. <P>SOLUTION: In the manufacturing method of the piezoelectric vibration device for which a package is constituted by bonding a base 3 and a lid 4, the piezoelectric vibration piece 2 is held on the base inside the package, and the inside of the package is airtightly sealed, the piezoelectric vibration piece for which an excitation electrode and a pull-out electrode are formed on both main surfaces of the piezoelectric vibration piece and a through-hole passing through the pull-out electrode and both main surfaces of the piezoelectric vibration piece is formed is used, the through-hole of the piezoelectric vibration piece is inserted to an integrated type metal bump formed at the upper part of the base and provided with a wide bottom part and a narrow body part, and the body part of the metal bump projected from the through-hole of the piezoelectric vibration piece is electromechanically bonded while impressing ultrasonic waves by a bonding tool. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、圧電振動デバイスの製造方法、及び圧電振動デバイスに関する。   The present invention relates to a method for manufacturing a piezoelectric vibration device and a piezoelectric vibration device.

現在、圧電振動デバイスとして、例えば、水晶発振器や水晶振動子などが挙げられる。この種の圧電振動デバイスでは、その筐体が直方体のパッケージで構成されている。このパッケージはベースと蓋とから構成され、このパッケージ内部には圧電振動片が導電性接着剤によりベースに保持接合されている。そして、ベースと蓋とが接合されることで、パッケージの内部の圧電振動片が気密封止されている(例えば、下記する特許文献1ご参照。)。   Currently, examples of the piezoelectric vibration device include a crystal oscillator and a crystal resonator. In this type of piezoelectric vibration device, the casing is formed of a rectangular parallelepiped package. This package includes a base and a lid, and a piezoelectric vibrating piece is held and joined to the base by a conductive adhesive inside the package. And the piezoelectric vibration piece inside a package is airtightly sealed by joining a base and a lid | cover (for example, refer patent document 1 mentioned below).

特開2005−191709号公報JP 2005-191709 A

ところで、上記した特許文献1では、ベース上に圧電振動片を保持する際、圧電振動片は導電性接着剤によりベースに接合される。また、ベース上には、異極となる電極が配されており、それぞれの電極上に導電性接着剤が塗布される。そのため、上記した特許文献1に開示の圧電振動デバイスの場合、異極となる電極間のショートを避けるために、パッケージ内部のベース上における導電性接着剤の塗布領域(接合領域)を確保し、かつ、この塗布領域に応じて導電性接着剤の塗布量(使用量)を設定する必要があり、この特許文献1に開示の圧電振動デバイスは、小型化に適していない。このような理由から、金等の金属バンプを用いたFCB工法によりベース上に圧電振動片を接合する構成が注目されている。   By the way, in Patent Document 1 described above, when the piezoelectric vibrating piece is held on the base, the piezoelectric vibrating piece is bonded to the base with a conductive adhesive. In addition, electrodes having different polarities are arranged on the base, and a conductive adhesive is applied on each electrode. Therefore, in the case of the piezoelectric vibration device disclosed in Patent Document 1 described above, in order to avoid a short circuit between electrodes having different polarities, an application region (joining region) of the conductive adhesive on the base inside the package is secured, And it is necessary to set the application amount (use amount) of a conductive adhesive according to this application | coating area | region, and the piezoelectric vibration device disclosed by this patent document 1 is not suitable for size reduction. For these reasons, attention has been focused on a structure in which a piezoelectric vibrating piece is bonded onto a base by an FCB method using metal bumps such as gold.

しかしながら、このような金属バンプを用いたFCB工法では、金属バンプの形状ばらつきや金属バンプの配置位置のばらつき、およびボンディングツールで金属バンプを超音波印加する際の圧電振動片とベースの配置平行度のずれ等により超音波印加条件が異なり、接合された複数の金属バンプ間で強度ばらつきが生じることがあった。このように接合強度のばらつきが生じると、金属バンプから圧電振動片に対する応力の状態が異なったり、一部の金属バンプで接合強度不足となったりするので、金属バンプが圧電振動片の電極膜から剥がれるなどの状態を招くことがあった。その結果、圧電振動片の周波数ばらつきやエージング特性の劣化などを生じる原因となっていた。   However, in the FCB method using such metal bumps, the metal bump shape variation and the metal bump arrangement position variation, and the placement parallelism of the piezoelectric vibrating piece and the base when the metal bump is ultrasonically applied by a bonding tool are used. The ultrasonic wave application conditions differed due to deviations in the intensity, and intensity variations sometimes occurred between the plurality of bonded metal bumps. If variations in bonding strength occur in this way, the state of stress from the metal bumps to the piezoelectric vibrating piece is different, or the bonding strength is insufficient for some metal bumps. In some cases, such as peeling off. As a result, this has caused a variation in frequency of the piezoelectric vibrating piece and deterioration of aging characteristics.

そこで、上記課題を解決するために、本発明は、小型化に適し、金属バンプと圧電振動片の接合強度ばらつきが生じにくいより信頼の高い圧電振動デバイスの製造方法及び圧電振動デバイスを提供することを目的とする。   Accordingly, in order to solve the above problems, the present invention provides a more reliable method of manufacturing a piezoelectric vibrating device and a piezoelectric vibrating device that are suitable for miniaturization and are less likely to cause variations in bonding strength between a metal bump and a piezoelectric vibrating piece. With the goal.

上記の目的を達成するため、本発明にかかる圧電振動デバイスの製造方法は、ベースと蓋とが接合されてパッケージが構成され、前記パッケージの内部の前記ベース上に外部接続電極が形成され、当該外部接続電極に圧電振動片が保持されるとともに、前記パッケージの内部が気密封止された圧電振動デバイスの製造方法において、
圧電振動片の両主面それぞれに少なくとも1つの励振電極が形成され、かつ、これらの前記励振電極を前記ベースの外部接続電極と電気機械的に接合させるために前記励振電極からそれぞれ引き出された引き出し電極が形成されており、前記引き出し電極の少なくとも1つには当該引き出し電極と前記圧電振動片の両主面を貫通する貫通孔または切り欠きが形成され、前記引き出し電極の対向面の貫通孔または切り欠きの周囲には引き出し補助電極が形成された圧電振動片を準備する工程と、
下側に幅広の底部と上側に幅狭の胴部を具備した一体型の金属バンプを前記ベースの外部接続電極の上部に形成する工程とを有し、
その後、前記金属バンプの胴部を前記圧電振動片の貫通孔または切り欠きに挿入して位置決めするとともに、圧電振動片の貫通孔または切り欠きから突出した前記金属バンプの胴部をボンディングツールにより超音波印加しながら、前記金属バンプの胴部の一部を押し潰すことで金属バンプの頭部を形成し、
前記金属バンプの底部と金属バンプの頭部により、前記圧電振動片の引き出し電極と引き出し補助電極とが電気的機械的に接合することを特徴とする。
In order to achieve the above object, a method for manufacturing a piezoelectric vibration device according to the present invention includes a base and a lid joined to form a package, and an external connection electrode is formed on the base inside the package. In the method of manufacturing a piezoelectric vibrating device in which the piezoelectric vibrating piece is held on the external connection electrode and the inside of the package is hermetically sealed,
At least one excitation electrode is formed on each of the two main surfaces of the piezoelectric vibrating reed, and each of the excitation electrodes is drawn out from the excitation electrode to electromechanically join the excitation electrode with the external connection electrode of the base An electrode is formed, and at least one of the extraction electrodes is formed with a through-hole or a notch that penetrates both main surfaces of the extraction electrode and the piezoelectric vibrating piece, and a through-hole on the opposite surface of the extraction electrode or A step of preparing a piezoelectric vibrating piece in which an extraction auxiliary electrode is formed around the notch;
Forming an integrated metal bump having a wide bottom portion on the lower side and a narrow body portion on the upper side on the external connection electrode of the base, and
Thereafter, the body portion of the metal bump is inserted into the through hole or notch of the piezoelectric vibrating piece and positioned, and the body portion of the metal bump protruding from the through hole or notch of the piezoelectric vibrating piece is superposed by a bonding tool. While applying a sound wave, crush part of the body of the metal bump to form the head of the metal bump,
The lead electrode and lead auxiliary electrode of the piezoelectric vibrating piece are electrically and mechanically joined by the bottom of the metal bump and the top of the metal bump.

本発明の製造法によれば、超音波接合による工法であるFCB(Flip Chip Bonding)工法で金属バンプと圧電振動片とベースとを接合する場合に、前記ベースの外部接続電極上部に設けられた金属バンプの胴部に対して、前記圧電振動片の貫通孔または切り欠きを挿入して位置決めすることで、搭載ずれが一切なくなる。つまり、金属バンプの配置位置のばらつき、およびボンディングツールで金属バンプを超音波印加する際の圧電振動片とベースの配置がずれることを抑制して、超音波印加条件のばらつきをなくし、結果として、接合された複数の金属バンプ間で強度ばらつきをなくすことが可能となる。   According to the manufacturing method of the present invention, when the metal bump, the piezoelectric vibrating piece, and the base are bonded by the FCB (Flip Chip Bonding) method, which is a method using ultrasonic bonding, the upper portion of the base is provided on the external connection electrode. By inserting and positioning the through hole or notch of the piezoelectric vibrating piece with respect to the body portion of the metal bump, there is no mounting displacement. In other words, the variation in the placement position of the metal bumps, and the displacement of the piezoelectric vibrating piece and the base when the metal bumps are ultrasonically applied with the bonding tool are suppressed, thereby eliminating the variation in the ultrasonic application conditions. It is possible to eliminate variations in strength among the plurality of bonded metal bumps.

また、前記金属バンプの胴部の一部を潰すことで金属バンプの頭部を形成しており、各引き出し電極に対して、複数の金属バンプを積層して用いることなく、1つの一体型の断面略I字形状の金属バンプのみで、ベースの外部接続電極と圧電振動片の引き出し電極、引き出し補助電極との電気的機械的接合が行える。   In addition, the head portion of the metal bump is formed by crushing a part of the body portion of the metal bump, and a single integrated type is used without stacking a plurality of metal bumps for each extraction electrode. Electromechanical joining of the external connection electrode of the base, the extraction electrode of the piezoelectric vibrating piece, and the extraction auxiliary electrode can be performed only with a metal bump having a substantially I-shaped cross section.

つまり、貫通孔または切り欠きを含み引き出し電極と引き出し補助電極との間で電気的機械的な接合領域を拡大させることができるので、ベースと圧電振動片の接合強度が飛躍的に向上し、金属バンプが圧電振動片の電極膜から剥がれることが一切なくなる。そのため、経時的な電気的機械的接続性が極めて安定化するので、圧電振動片の周波数ばらつきやエージング特性の劣化を招くことがなくなる。   In other words, since the electromechanical joining region can be enlarged between the extraction electrode and the extraction auxiliary electrode including the through hole or notch, the bonding strength between the base and the piezoelectric vibrating piece is greatly improved, and the metal The bumps are never peeled off from the electrode film of the piezoelectric vibrating piece. Therefore, the electromechanical connectivity over time is extremely stabilized, so that the frequency variation of the piezoelectric vibrating piece and the deterioration of the aging characteristics are not caused.

また、複数の金属バンプを積層して形成されている場合と比較して、一度だけのFCBのみで、ベースの外部接続電極と圧電振動片の電極との電気的機械的接合が行えるので、FCBの際に、最適な状態で行うことができ、金属バンプの接合状態が変化せず、結果として接合強度の低下を防止することが可能となる。さらに、金属バンプが外部から受ける機械的歪みや熱歪みが一度だけで済み、結果として、圧電振動片に歪みが何度も加わって圧電振動デバイスの電気的特性が低下(直列共振抵抗値の低下、周波数シフト、周波数温度特性の傾きが生じる等)するのを抑制することが可能となる。   In addition, compared to the case where a plurality of metal bumps are laminated, the FCB can be electrically and mechanically connected to the external connection electrode of the base and the electrode of the piezoelectric vibrating piece with only one FCB. At this time, it can be performed in an optimum state, and the bonding state of the metal bumps does not change, and as a result, it is possible to prevent a decrease in bonding strength. In addition, the mechanical and thermal strain that the metal bump receives from the outside only needs to be applied once. As a result, the piezoelectric vibrating piece is repeatedly subjected to distortion, resulting in a decrease in the electrical characteristics of the piezoelectric vibrating device (lowering of the series resonance resistance value). , Frequency shift, inclination of frequency temperature characteristics, etc.) can be suppressed.

また、前記貫通孔または切り欠きが形成される引き出し電極が上側主面の励振電極と接続される場合、圧電振動片の上側主面の励振電極は、貫通孔または切り欠きに配置された金属バンプの胴部により、圧電振動片の下側のベースの外部接続電極へ確実に引き回すことができる。結果として、圧電振動デバイスの低背化に貢献することができるとともに、引き出し電極を圧電振動片の側端面を介して引き回すことによって生じる圧電振動片の稜部での断線の問題も一切なくなる。   When the lead-out electrode in which the through hole or notch is formed is connected to the excitation electrode on the upper main surface, the excitation electrode on the upper main surface of the piezoelectric vibrating piece is a metal bump disposed in the through hole or notch The body portion of the piezoelectric vibrator can be reliably routed to the external connection electrode on the lower base of the piezoelectric vibrating piece. As a result, it is possible to contribute to a reduction in the height of the piezoelectric vibrating device, and there is no problem of disconnection at the ridge portion of the piezoelectric vibrating piece caused by drawing the extraction electrode through the side end surface of the piezoelectric vibrating piece.

上記製造方法により得られる圧電振動デバイスであって、前記金属バンプの頭部は、前記金属バンプの底部と同一の体積、もしくは前記金属バンプの底部より小さい体積で形成されたことを特徴とする。   The piezoelectric vibration device obtained by the above manufacturing method is characterized in that the top of the metal bump is formed with the same volume as the bottom of the metal bump or a smaller volume than the bottom of the metal bump.

この場合、上記製造方法と同様の作用効果が得られるとともに、次のような作用効果も得られる。すなわち、金属バンプによって圧電振動片へ加わる熱的機械的な応力も軽減されるので、圧電振動片の振動を阻害しない保持形態となり、結果として圧電振動デバイスの電気的特性がより安定したものとなる。特に、前記金属バンプの頭部は、前記金属バンプの底部と同一の体積であれば、金属バンプから圧電振動片の上下主面に対する対称性が維持されるので、それぞれに対して加わる応力も均一となり、圧電振動片が金属バンプから受ける機械的歪みや熱歪みも均一なものとなり、エージング特性の非常に優れた圧電振動デバイスが得られる。   In this case, the same operational effects as the above manufacturing method can be obtained, and the following operational effects can also be obtained. That is, since the thermal mechanical stress applied to the piezoelectric vibrating piece by the metal bump is also reduced, the holding form does not hinder the vibration of the piezoelectric vibrating piece, and as a result, the electrical characteristics of the piezoelectric vibrating device become more stable. . In particular, if the head of the metal bump has the same volume as the bottom of the metal bump, the symmetry from the metal bump to the upper and lower main surfaces of the piezoelectric vibrating piece is maintained, so the stress applied to each is uniform. Thus, the mechanical strain and thermal strain that the piezoelectric vibrating piece receives from the metal bumps become uniform, and a piezoelectric vibrating device having excellent aging characteristics can be obtained.

本発明によれば、小型化に適し、金属バンプと圧電振動片の接合強度ばらつきが生じにくいより信頼の高い圧電振動デバイスの製造方法及び圧電振動デバイスを提供することができる。結果として圧電振動片の周波数ばらつきやエージング特性の劣化などが抑制することができる。   According to the present invention, it is possible to provide a more reliable method of manufacturing a piezoelectric vibrating device and a piezoelectric vibrating device that are suitable for miniaturization and are less likely to cause variations in bonding strength between a metal bump and a piezoelectric vibrating piece. As a result, the frequency variation of the piezoelectric vibrating piece and the deterioration of the aging characteristics can be suppressed.

以下、本発明の実施の形態について図面を参照して説明する。なお、以下に示す実施例では、圧電振動デバイスとして水晶振動子に本発明を適用した場合を示す。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. In the following embodiments, a case where the present invention is applied to a crystal resonator as a piezoelectric vibration device is shown.

本実施例にかかる水晶振動子1では、図1(図1(a),図1(b))に示すように、厚みすべり振動系の水晶振動片2(本発明でいう圧電振動片)と、この水晶振動片2を保持するベース3と、ベース3に保持した水晶振動片2を気密封止するための蓋4とが設けられている。   In the crystal resonator 1 according to the present embodiment, as shown in FIG. 1 (FIGS. 1A and 1B), a thickness-shear vibration type crystal vibrating piece 2 (piezoelectric vibrating piece referred to in the present invention) and A base 3 for holding the crystal vibrating piece 2 and a lid 4 for hermetically sealing the crystal vibrating piece 2 held on the base 3 are provided.

この水晶振動子1では、ベース3と蓋4とからパッケージが構成され、ベース3と蓋4とが接合されてパッケージの内部空間が形成され、このパッケージの内部空間内のベース3上に金属バンプ5を介して水晶振動片2が保持されるとともに、パッケージの内部空間が気密封止される。なお、本実施例の金属バンプ5の接合方法や金属バンプ5の形状作成法などについて後述するが、ベース3と水晶振動片2と金属バンプ5とは、FCB(Flip Chip Bonding)法により超音波接合されるとともに電気機械的に接合されている。また、本実施例で用いる金属バンプ5は、金などの金属材料からなり、最終形態として下側に幅広の底部51と中央に幅狭の胴部52上側に幅広の頭部53を具備した断面形状が略I字形状の一体型の金属バンプが用いられている。次に、この水晶振動子1の各構成について説明する。   In this crystal unit 1, a package is constituted by a base 3 and a lid 4, and the base 3 and the lid 4 are joined to form an internal space of the package, and metal bumps are formed on the base 3 in the internal space of the package. The crystal vibrating piece 2 is held via 5 and the internal space of the package is hermetically sealed. In addition, although the joining method of the metal bump 5 of this embodiment, the shape creation method of the metal bump 5, and the like will be described later, the base 3, the crystal vibrating piece 2, and the metal bump 5 are ultrasonically formed by FCB (Flip Chip Bonding) method. Bonded and electromechanically bonded. Further, the metal bump 5 used in this embodiment is made of a metal material such as gold, and has a cross section including a wide bottom portion 51 on the lower side and a wide head portion 53 on the upper side of the narrow body portion 52 in the center. An integral metal bump having a substantially I shape is used. Next, each configuration of the crystal resonator 1 will be described.

ベース3は、図1に示すように、底部31と、この底部31から上方に延出した壁部32とから構成される箱状体に形成されている。このベース3は、セラミック材料からなる平面視矩形状の一枚板上に、セラミック材料の直方体が積層して凹状に一体的に焼成されている。また、壁部32は、底部31の表面外周に沿って成形されている。この壁部32の上面は、蓋4との接合領域であり、この接合領域には、蓋4と接合するための接合層33(例えば、タングステンメタライズ層上にニッケル,金の順でメッキした構成、または錫と金、錫と銀とからなる構成、またはガラス層)が設けられている。このベース3には、水晶振動片2の励振電極231,232それぞれと電気機械的に接合する複数の外部接続電極33,34が形成されている。これら外部接続電極33,34は、ベース3の外周裏面に形成される端子電極(図示省略)にそれぞれ電気機械的に接合されている。これら端子電極から外部部品や外部機器と接続される。なお、これらの端子電極および外部接続電極33,34は、タングステン、モリブデン等のメタライズ材料を印刷した後にベース3と一体的に焼成して形成される。そして、これらの端子電極および外部接続電極のうち一部のものについては、メタライズ上部にニッケルメッキが形成され、その上部に金メッキが形成されて構成される。   As shown in FIG. 1, the base 3 is formed in a box-like body including a bottom portion 31 and a wall portion 32 extending upward from the bottom portion 31. The base 3 is formed by laminating a rectangular parallelepiped of a ceramic material on a single plate having a rectangular shape in a plan view made of a ceramic material, and integrally firing in a concave shape. The wall portion 32 is formed along the outer periphery of the surface of the bottom portion 31. The upper surface of the wall portion 32 is a bonding area with the lid 4, and the bonding area 33 (for example, a structure in which nickel and gold are plated on the tungsten metallized layer in this order) is bonded to the lid 4. Or a structure made of tin and gold, tin and silver, or a glass layer). The base 3 is formed with a plurality of external connection electrodes 33 and 34 that are electromechanically joined to the excitation electrodes 231 and 232 of the crystal vibrating piece 2. These external connection electrodes 33 and 34 are each electromechanically joined to terminal electrodes (not shown) formed on the outer peripheral back surface of the base 3. These terminal electrodes are connected to external parts and external devices. The terminal electrodes and the external connection electrodes 33 and 34 are formed by integrally baking with the base 3 after printing a metallized material such as tungsten or molybdenum. Some of these terminal electrodes and external connection electrodes are formed by forming nickel plating on the upper portion of the metallization and forming gold plating on the upper portion thereof.

蓋4は、金属材料やセラミック材料等からなり、図1(b)に示すように、平面視矩形状の一枚板に成形されている。この蓋4は、下面に封止用接合材(図示省略)が形成されており、シーム溶接やビーム溶接、ろう材やガラス等を雰囲気加熱する手法によりベース3に接合されて、蓋4とベース3とによる水晶振動子1のパッケージ6が構成される。なお、本実施例では、平面視矩形上の一枚板の直方体に成形された蓋4と、凹状に成形されたベース3とを用いているが、これに限定されるものではない。ベース3と蓋4とにより水晶振動片2を気密封止できれば、ベースと蓋の形状は任意に設定してもよい。   The lid 4 is made of a metal material, a ceramic material, or the like, and is formed into a single plate having a rectangular shape in plan view, as shown in FIG. The lid 4 is formed with a sealing bonding material (not shown) on the lower surface, and is joined to the base 3 by seam welding, beam welding, brazing filler metal, glass or the like by a method of heating the atmosphere. 3 constitutes a package 6 of the crystal unit 1. In the present embodiment, the lid 4 formed into a rectangular parallelepiped on a single plate on a rectangular plan view and the base 3 formed into a concave shape are used, but the present invention is not limited to this. If the crystal vibrating piece 2 can be hermetically sealed by the base 3 and the lid 4, the shapes of the base and the lid may be arbitrarily set.

水晶振動片2は、図1,2に示すように、ATカット水晶片の基板21からなり、平面視矩形状の一枚板の直方体に成形されている。すなわち、基板21の外周形は、直方体形状からなる。この基板21の両主面221,222(221を底面側、222を上面側とする)には、水晶振動片2の高周波化に対応するため凹部201が形成され(逆メサ形状)、これら凹部201内部にはそれぞれ励振電極231,232が形成され、これらの励振電極231,232を外部電極(本実施例では、ベース3の外部接続電極パッド33,34)と電気機械的に接合するために励振電極231,232から引き出された引き出し電極241,242が形成されている。また、水晶振動片2は、その基板21の一領域26においてベース3の外部接続電極パッド33,34と金属バンプ5により接合されている。なお、本実施例でいう基板21の一領域26は、基板21の一側部27近傍である。   As shown in FIGS. 1 and 2, the crystal vibrating piece 2 includes an AT-cut crystal piece substrate 21 and is formed into a rectangular parallelepiped having a rectangular shape in plan view. That is, the outer peripheral shape of the substrate 21 is a rectangular parallelepiped shape. On both main surfaces 221 and 222 of this substrate 21 (221 is the bottom surface side and 222 is the top surface side), a recess 201 is formed (reverse mesa shape) to cope with the higher frequency of the crystal vibrating piece 2. Excitation electrodes 231 and 232 are formed inside 201, respectively, in order to electromechanically join these excitation electrodes 231 and 232 with external electrodes (in this embodiment, external connection electrode pads 33 and 34 of the base 3). Extraction electrodes 241 and 242 extracted from the excitation electrodes 231 and 232 are formed. Further, the quartz crystal vibrating piece 2 is bonded to the external connection electrode pads 33 and 34 of the base 3 by the metal bumps 5 in one region 26 of the substrate 21. Note that one region 26 of the substrate 21 in this embodiment is in the vicinity of one side portion 27 of the substrate 21.

具体的に、図1,2に示すように、これらの引き出し電極241,242の引き出し先端部251,252が各主面221,222の一側部27近傍に引き出され、当該引き出し先端部251,252には引き出し電極241,242と水晶振動片としての基板21の両主面を貫通する貫通孔261,262が形成されている。上記引き出し電極の先端部251,252の対向面で上記貫通孔261,262の周囲には、引き出し補助電極271,272が形成されている。なお、これらの励振電極231,232、引き出し電極241,242、及び引き出し補助電極271,272は、フォトリソグラフィ法により形成され、例えば、基板21側からクロム、金(Cr−Au)の順に、あるいはニッケル、金(Ni−Au)の順に積層して形成されている。   Specifically, as shown in FIGS. 1 and 2, the leading end portions 251 and 252 of the leading electrodes 241 and 242 are pulled out in the vicinity of the one side portion 27 of each of the main surfaces 221 and 222. Through holes 261 and 262 are formed in the 252 so as to penetrate both the main surfaces of the extraction electrodes 241 and 242 and the substrate 21 as a quartz crystal vibrating piece. Leading auxiliary electrodes 271 and 272 are formed around the through-holes 261 and 262 on the opposing surfaces of the leading ends 251 and 252 of the leading electrode. The excitation electrodes 231 and 232, the extraction electrodes 241 and 242 and the extraction auxiliary electrodes 271 and 272 are formed by photolithography, for example, in order of chromium and gold (Cr—Au) from the substrate 21 side, or It is formed by stacking nickel and gold (Ni—Au) in this order.

そして、これらの各電極と貫通孔、および最終形態として下側に幅広の底部51と中央に幅狭の胴部52上側に幅広の頭部53を具備した断面形状が略I字形状の一体型の金属バンプ5の接合状態は次の通りとなる。上記金属バンプ5,5の底部51,51が上記ベースの外部接続電極33,34と水晶振動片の引き出し電極241(引き出し先端部251)、引き出し補助電極272との電気的機械的接合を行い、上記金属バンプ5,5の胴部52,52が上記水晶振動片の貫通孔261,262に挿入され、当該胴部の一部が貫通孔内部に形成された引き出し電極と電気的機械的接合しており、上記金属バンプ5,5の頭部53,53が上記水晶振動片の引き出し電極242(引き出し先端部252)、引き出し補助電極271との電気的機械的接合を行っている。   Each of these electrodes and through-holes, and as a final form, an integrated type having a substantially I-shaped cross section including a wide bottom portion 51 on the lower side and a wide head portion 53 on the upper side of the narrow body portion 52 in the center. The bonding state of the metal bumps 5 is as follows. The bottom portions 51 and 51 of the metal bumps 5 and 5 perform electromechanical joining between the external connection electrodes 33 and 34 of the base, the extraction electrode 241 (extraction tip portion 251) of the quartz crystal vibrating piece, and the extraction auxiliary electrode 272, The body parts 52 and 52 of the metal bumps 5 and 5 are inserted into the through holes 261 and 262 of the crystal vibrating piece, and a part of the body part is electrically and mechanically joined to a lead electrode formed inside the through hole. The heads 53 and 53 of the metal bumps 5 and 5 are electrically and mechanically connected to the extraction electrode 242 (extraction leading end portion 252) and the extraction auxiliary electrode 271 of the crystal vibrating piece.

次に、上記圧電振動デバイスの製造方法について図3とともに説明する。   Next, a method for manufacturing the piezoelectric vibration device will be described with reference to FIG.

第1工程
上述のような基板21の両主面に励振電極231,232と、引き出し電極241,242と、当該引き出し電極の引き出し先端部251,252に貫通孔261,262が形成され、当該貫通孔の周囲には、引き出し補助電極271,272が形成された水晶振動片2を準備する。
First Step Excitation electrodes 231 and 232, extraction electrodes 241 and 242 and through-holes 261 and 262 are formed in the leading ends 251 and 252 of the extraction electrodes on both main surfaces of the substrate 21 as described above. Around the hole, a crystal vibrating piece 2 in which extraction auxiliary electrodes 271 and 272 are formed is prepared.

第2工程
次に、図3(a)に示すように、ベース3の外部接続電極33,34の上部に対して、金などからなる金属バンプであり、かつ下側に幅広の底部51,51と上側に幅狭の胴部52,52を具備した一体型の金属バンプ5,5が、熱圧着等のワイヤボンディング技術を用いたバンプボンダによりボンディングツールT1(キャピラリ等)から連続して形成される。上記胴部52の形成は、金属バンプを上記外部接続電極33,34に形成した後、少なくとも水晶振動片の厚み寸法以上のワイヤを引き出した後溶断することにより形成されている。なお、上記第1工程と第2工程は順番が入れ替わってもよい。
Second Step Next, as shown in FIG. 3A, the upper portions of the external connection electrodes 33 and 34 of the base 3 are metal bumps made of gold or the like and have wide bottom portions 51 and 51 on the lower side. And integrated metal bumps 5 and 5 having narrow body portions 52 and 52 on the upper side are continuously formed from a bonding tool T1 (capillary or the like) by a bump bonder using a wire bonding technique such as thermocompression bonding. . The body 52 is formed by forming metal bumps on the external connection electrodes 33 and 34, then drawing a wire at least as thick as the crystal vibrating piece and then fusing. The order of the first step and the second step may be switched.

第3工程
次に、図3(b)、図3(c)に示すように、上記第1工程で準備した水晶振動片2を吸着ノズル付のボンディングツールT2(超音波ウェルダ等)で移動させ、上記第2工程で形成されたベースの外部接続電極上の金属バンプ5,5に搭載した後、水晶振動片2を金属バンプ5,5上に押しつけ、静圧力を印加する。そして、ボンディングツールT2を所定の周波数で振動させることにより、ベース3と水晶振動片2と金属バンプ5,5とがFCB(Flip Chip Bonding)法により上記ボンディングツールT2により超音波接合され、お互いに電気機械的に接合する。
Third Step Next, as shown in FIGS. 3B and 3C, the quartz crystal vibrating piece 2 prepared in the first step is moved by a bonding tool T2 with an adsorption nozzle (such as an ultrasonic welder). After mounting on the metal bumps 5 and 5 on the base external connection electrodes formed in the second step, the crystal vibrating piece 2 is pressed onto the metal bumps 5 and 5 and a static pressure is applied. Then, by vibrating the bonding tool T2 at a predetermined frequency, the base 3, the crystal vibrating piece 2, and the metal bumps 5 and 5 are ultrasonically bonded by the bonding tool T2 by the FCB (Flip Chip Bonding) method, and are mutually connected. Electromechanically joined.

より具体的には、図3(b)に示すように、上記各金属バンプの胴部52,52に対して、上記水晶振動片の貫通孔261,262を挿入して位置決めするとともに、図3(c)に示すように、水晶振動片の貫通孔261,262から突出した上記金属バンプの胴部52,52をボンディングツールT2により超音波印加しながら、上記金属バンプの胴部の一部を潰すことで金属バンプの頭部53,53を形成し、最終形態として下側に幅広の底部51と中央に幅狭の胴部52上側に幅広の頭部53を具備した断面形状が略I字形状の一体型の金属バンプ5が得られる。このとき、上記貫通孔261,262の直径に対して上記金属バンプの胴部の幅寸法は上記超音波印加による振動を妨げないようするとともに、挿入性を妨げないように小さく形成することが好ましい。例えば、本形態のように相似形状の貫通孔に限らず、超音波印加方向に細長く形成された長円形状や長方形状に形成してもよく、貫通孔に限らず切り欠き形状としてもよい。なお、上記ボンディングツールT2では水晶振動片2の金属バンプ5への移送と接合を一度に行うツールとして形成しているが、移送と接合を別々のツールを用いて行ってもよい。また、本形態のボンディングツールT2では、金属バンプの頭部を形成するための凹部T21,T22を具備しており、最終的に形成される金属バンプの頭部形状と体積等はこの凹部T21,T22の形状に依存させて容易に形成することができる。   More specifically, as shown in FIG. 3B, the through holes 261 and 262 of the crystal vibrating piece are inserted and positioned with respect to the body portions 52 and 52 of the metal bumps. As shown in (c), while applying ultrasonic waves to the body portions 52, 52 of the metal bumps protruding from the through holes 261, 262 of the quartz crystal vibrating piece with the bonding tool T2, a part of the body portion of the metal bumps is applied. By crushing, metal bump heads 53 and 53 are formed, and as a final form, a cross-sectional shape having a wide bottom 51 on the lower side and a wide head 53 on the upper side of the narrow body 52 is substantially I-shaped. An integrated metal bump 5 having a shape is obtained. At this time, it is preferable that the width of the body portion of the metal bump is made small with respect to the diameter of the through-holes 261 and 262 so as not to prevent the vibration caused by the application of the ultrasonic wave and not to prevent the insertion property. . For example, the present invention is not limited to a through hole having a similar shape, and may be formed in an oval shape or a rectangular shape that is elongated in the ultrasonic wave application direction, or may be a notch shape without being limited to a through hole. Although the bonding tool T2 is formed as a tool for transferring and bonding the crystal vibrating piece 2 to the metal bump 5 at one time, the transfer and bonding may be performed using separate tools. Further, the bonding tool T2 of this embodiment includes the recesses T21 and T22 for forming the heads of the metal bumps, and the head shape and volume of the metal bumps finally formed are the recesses T21, T22. It can be easily formed depending on the shape of T22.

そして、引き続いてボンディングツールT2により超音波印加することで、上記金属バンプ5,5、上記水晶振動片の引き出し電極、および引き出し補助電極が電気的機械的に接合している。つまり、上記金属バンプ5により最終的な接合状態は次の通りとなる。上記金属バンプ5,5の底部51,51が上記ベースの外部接続電極33,34と水晶振動片の引き出し電極241(引き出し先端部251)、引き出し補助電極272との電気的機械的接合を行い、上記金属バンプ5,5の胴部52,52が上記水晶振動片の貫通孔261,262に挿入され、当該胴部の一部が貫通孔内部に形成された引き出し電極と電気的機械的接合しており、上記金属バンプ5,5の頭部53,53が上記水晶振動片の引き出し電極242(引き出し先端部252)、引き出し補助電極271との電気的機械的接合を行っている。   Subsequently, by applying ultrasonic waves with the bonding tool T2, the metal bumps 5 and 5, the extraction electrode of the crystal vibrating piece, and the extraction auxiliary electrode are electrically and mechanically joined. That is, the final bonding state by the metal bump 5 is as follows. The bottom portions 51 and 51 of the metal bumps 5 and 5 perform electromechanical joining between the external connection electrodes 33 and 34 of the base, the extraction electrode 241 (extraction tip portion 251) of the quartz crystal vibrating piece, and the extraction auxiliary electrode 272, The body parts 52 and 52 of the metal bumps 5 and 5 are inserted into the through holes 261 and 262 of the crystal vibrating piece, and a part of the body part is electrically and mechanically joined to a lead electrode formed inside the through hole. The heads 53 and 53 of the metal bumps 5 and 5 are electrically and mechanically connected to the extraction electrode 242 (extraction leading end portion 252) and the extraction auxiliary electrode 271 of the crystal vibrating piece.

第4工程
その後、周波数調整工程やアニーリング工程などの必要な処理を行い、図3(d)に示すように、ベース3の外部接続電極33,34上に超音波接合された水晶振動片2は、蓋4により気密封止される。蓋4の下面には封止用接合材(図示省略)が形成されており、シーム溶接やビーム溶接、ろう材やガラス等を雰囲気加熱する手法によりベース3に接合されて、蓋4とベース3とによる水晶振動子1のパッケージ6が構成される。以上により本発明にかかる圧電振動デバイスが得られる。
Fourth Step After that, necessary processing such as a frequency adjustment step and an annealing step is performed, and the crystal vibrating piece 2 ultrasonically bonded onto the external connection electrodes 33 and 34 of the base 3 is shown in FIG. The lid 4 is hermetically sealed. A sealing bonding material (not shown) is formed on the lower surface of the lid 4, and the lid 4 and the base 3 are bonded to the base 3 by a method of seam welding, beam welding, brazing filler metal, glass, or the like by atmospheric heating. A package 6 of the crystal unit 1 is configured. Thus, the piezoelectric vibration device according to the present invention is obtained.

本発明によれば、超音波接合による工法であるFCB(Flip Chip Bonding)工法で金属バンプ5と水晶振動片2とベース3とを接合する場合に、上記ベースの外部接続電極33,34上部に設けられた金属バンプ5,5の胴部52,52に対して、上記水晶振動片の貫通孔261,262を挿入して位置決めすることで、搭載ずれが一切なくなる。つまり、金属バンプ5,5の配置位置のばらつき、およびボンディングツールT2で金属バンプ5,5を超音波印加する際の水晶振動片2とベース3の配置がずれることを抑制して、超音波印加条件のばらつきをなくし、結果として、接合された金属バンプ5,5の間で強度ばらつきをなくすことが可能となる。   According to the present invention, when the metal bump 5, the crystal vibrating piece 2 and the base 3 are joined by the FCB (Flip Chip Bonding) method, which is a method using ultrasonic bonding, the upper part of the base external connection electrodes 33 and 34 is provided. By inserting and positioning the through holes 261 and 262 of the crystal vibrating piece with respect to the body portions 52 and 52 of the metal bumps 5 and 5 provided, there is no mounting displacement at all. That is, it is possible to suppress ultrasonic wave application by suppressing variations in the arrangement positions of the metal bumps 5 and 5 and displacement of the crystal vibrating piece 2 and the base 3 when the metal bumps 5 and 5 are ultrasonically applied by the bonding tool T2. It is possible to eliminate variations in conditions, and as a result, it is possible to eliminate variations in strength between the bonded metal bumps 5 and 5.

また、上記金属バンプの胴部52,52の一部を潰すことで金属バンプの頭部53,53を形成しており、各引き出し電極241,242に対して、複数の金属バンプを積層して用いることなく、1つの一体型の断面略I字形状の金属バンプ5,5のみで、ベース3の外部接続電極33,34と水晶振動片の引き出し電極241,242、引き出し補助電極271,272との電気的機械的接合が行える。   Further, the metal bump head portions 53 and 53 are formed by crushing part of the body portions 52 and 52 of the metal bump, and a plurality of metal bumps are laminated on the lead electrodes 241 and 242. Without use, only one metal bump 5, 5 having a substantially I-shaped cross section, the external connection electrodes 33, 34 of the base 3, the extraction electrodes 241, 242 of the quartz crystal vibrating piece, the extraction auxiliary electrodes 271, 272, Electromechanical joining can be performed.

つまり、貫通孔261,262を含み引き出し電極241,242と引き出し補助電極271,272との間で電気的機械的な接合領域を拡大させることができるので、ベース3と水晶振動片2の接合強度が飛躍的に向上し、金属バンプ5,5が水晶振動片2の電極膜から剥がれることが一切なくなる。そのため、経時的な電気的機械的接続性が極めて安定化するので、水晶振動片2の周波数ばらつきやエージング特性の劣化を招くことがなくなる。   That is, since the electromechanical joining region including the through holes 261 and 262 and between the lead electrodes 241 and 242 and the lead auxiliary electrodes 271 and 272 can be enlarged, the joint strength between the base 3 and the quartz crystal vibrating piece 2 is increased. Is greatly improved, and the metal bumps 5 and 5 are not peeled off from the electrode film of the crystal vibrating piece 2 at all. For this reason, the electrical and mechanical connectivity over time is extremely stabilized, so that the frequency variation of the crystal vibrating piece 2 and the deterioration of the aging characteristics are not caused.

また、複数の金属バンプを積層して形成されている場合と比較して、一度だけのFCBのみで、ベースの外部接続電極33,34と水晶振動片2の引き出し電極241,242、引き出し補助電極271,272との電気的機械的接合が行えるので、FCBの際に、最適な状態で行うことができ、金属バンプ5,5の接合状態が変化せず、結果として接合強度の低下を防止することが可能となる。さらに、金属バンプ5,5が外部から受ける機械的歪みや熱歪みが一度だけで済み、結果として、水晶振動片に歪みが何度も加わって水晶振動子(圧電振動デバイス)の電気的特性が低下(直列共振抵抗値の低下、周波数シフト、周波数温度特性の傾きが生じる等)するのを抑制することが可能となる。   Further, as compared with the case where a plurality of metal bumps are laminated, the base external connection electrodes 33 and 34, the extraction electrodes 241 and 242 of the quartz crystal resonator element 2, and the extraction auxiliary electrode can be performed only by one FCB. Since the electromechanical bonding with the 271 and 272 can be performed, the FCB can be performed in an optimum state, the bonding state of the metal bumps 5 and 5 does not change, and as a result, the bonding strength is prevented from being lowered. It becomes possible. Furthermore, the mechanical and thermal strains that the metal bumps 5 and 5 receive from the outside are only required once. As a result, the crystal resonator piece (piezoelectric vibration device) has electrical characteristics that are repeatedly applied with strain. It is possible to suppress a decrease (such as a decrease in series resonance resistance value, a frequency shift, or a gradient of frequency temperature characteristics).

また、水晶振動片の上側主面の励振電極232は、貫通孔262に配置された金属バンプの胴部52により、水晶振動片の下側のベースの外部接続電極34へ確実に引き回すことができる。結果として、水晶振動子(圧電振動デバイス)の低背化に貢献することができるとともに、引き出し電極を水晶振動片の側端面を介して引き回すことによって生じる水晶振動片の稜部での断線の問題も一切なくなる。   Further, the excitation electrode 232 on the upper main surface of the quartz crystal vibrating piece can be reliably routed to the external connection electrode 34 on the lower side of the quartz crystal vibrating piece by the body portion 52 of the metal bump disposed in the through hole 262. . As a result, it is possible to contribute to a reduction in the height of the crystal resonator (piezoelectric vibration device), and the problem of disconnection at the ridge portion of the crystal resonator element caused by drawing the extraction electrode through the side end surface of the crystal resonator element. Will disappear.

本実施例では、上記金属バンプ5の最終形態をとして、頭部53は底部51より小さい体積で形成しているので、金属バンプ5によって水晶振動片2へ加わる熱的機械的な応力も軽減されるので、水晶振動片2の振動を阻害しない保持形態となる。このような最終形態に限らず、図4(上記実施形態と同様の部分については同番号付し説明の一部を割愛する)に示すように、上記金属バンプ5の頭部53は底部51とほぼ同一の体積してもよい。このように構成することで、金属バンプ5から水晶振動片2の両主面221,222に対する対称性が維持されるので、それぞれに対して加わる応力も均一となり、水晶振動片2が金属バンプ5から受ける機械的歪みや熱歪みも均一なものとなり、エージング特性の非常に優れた圧電振動デバイスが得られる。   In the present embodiment, since the head 53 is formed with a volume smaller than the bottom 51 as the final form of the metal bump 5, the thermal mechanical stress applied to the crystal vibrating piece 2 by the metal bump 5 is also reduced. Therefore, it becomes a holding form which does not inhibit the vibration of the crystal vibrating piece 2. Not only in such a final form, but as shown in FIG. 4 (the same parts as in the above embodiment are given the same numbers and a part of the description is omitted), the head 53 of the metal bump 5 is connected to the bottom 51. Almost the same volume may be used. With this configuration, the symmetry of the metal bump 5 with respect to both the main surfaces 221 and 222 of the crystal vibrating piece 2 is maintained, so that the stress applied to each of them is uniform, and the crystal vibrating piece 2 is attached to the metal bump 5. As a result, the mechanical strain and thermal strain received from the substrate become uniform, and a piezoelectric vibration device having excellent aging characteristics can be obtained.

また、本実施例にかかる水晶振動片2では、図1,2に示すように、引き出し電極241,242の引き出し先端部251,252に1つの貫通孔を形成し、この各貫通孔に挿入される1つの一体型の断面略I字形状の金属バンプ5,5を用いてベース3の外部接続電極パッド33,34との電気的機械的に接合しているが、これに限定されるものではない。例えば、上側主面の励振電極232に接続される引き出し電極242に対してのみ貫通孔を形成して一体型の断面略I字形状の金属バンプにより電気的機械的に接合する一方で、下側主面の励振電極231に接続される引き出し電極241に対しては貫通孔を形成せずに通常の金属バンプを用いて水晶振動片とベースの外部接続電極の間に介在させて電気的機械的に接合してもよい。また、1つの引き出し電極につき複数の貫通孔を形成し、これら各貫通孔に挿入される複数の一体型の断面略I字形状の金属バンプが用いられてもよい。具体的に、図5(上記実施形態と同様の部分については同番号付し説明の一部を割愛する)に示すように、引き出し先端部それぞれにつき2つの貫通孔を形成するとともに、2つの金属バンプ5が各貫通孔に挿入された状態で水晶振動片2の短手方向に沿って引き出し先端部(引き出し補助電極)で接合されてもよい。この場合、1つの引き出し電極241(242)につき複数の金属バンプ5が用いられているので、水晶振動片2の基板21上における外部接続電極との接続位置をその一主面221の一側部27近傍、すなわち一領域26にまとめることができ水晶振動片2の小型化を図るのに好適であり、水晶振動片2と外部接続電極との接合強度を高めることができる。この効果は、特に水晶振動片2が小型化するにつれて顕著になる。   Further, in the quartz crystal resonator element 2 according to the present embodiment, as shown in FIGS. 1 and 2, one through hole is formed in the leading end portions 251 and 252 of the leading electrodes 241 and 242 and is inserted into each through hole. The metal bumps 5 and 5 having a single I-shaped cross section are electrically and mechanically joined to the external connection electrode pads 33 and 34 of the base 3. Absent. For example, a through hole is formed only with respect to the extraction electrode 242 connected to the excitation electrode 232 on the upper main surface, and is electrically and mechanically joined by a metal bump having a substantially I-shaped cross section on the lower side. For the lead-out electrode 241 connected to the excitation electrode 231 on the main surface, a mechanical bump is formed between the crystal resonator element and the external connection electrode of the base using a normal metal bump without forming a through hole. You may join to. Alternatively, a plurality of integral-type metal bumps having a substantially I-shaped cross section inserted into the respective through holes may be used. Specifically, as shown in FIG. 5 (the same parts as in the above embodiment are given the same numbers and a part of the description is omitted), two through holes are formed for each leading end of the drawer, and two metals are formed. The bump 5 may be joined at the leading end portion (leading auxiliary electrode) along the short direction of the crystal vibrating piece 2 in a state where the bump 5 is inserted into each through hole. In this case, since the plurality of metal bumps 5 are used for one lead electrode 241 (242), the connection position of the crystal vibrating piece 2 on the substrate 21 with the external connection electrode is set to one side portion of the main surface 221. 27, which is suitable for reducing the size of the crystal vibrating piece 2, and can increase the bonding strength between the crystal vibrating piece 2 and the external connection electrode. This effect becomes particularly prominent as the quartz crystal resonator element 2 is downsized.

また、上記した本実施例では、水晶振動片2の両主面221,222それぞれに凹部201が形成され、高周波化に対応したものを例にしているが、これに限定されるものではなく、単なる板状の水晶振動片であってもよい。さらに、上記した本実施例では、水晶振動片2の両主面221,222それぞれに1つの励振電極231,232を形成しているが、これに限定されるものではなく、使用用途に合わせて両主面221,222それぞれに形成される励振電極の数を任意に設定してもよい。例えば、両主面それぞれに2つの励振電極が形成されてもよく、または、一主面に1つの励振電極が形成されるとともに他主面に2つの励振電極が形成されたフィルタ素子構成としてもよい。   Further, in the above-described embodiment, the concave portions 201 are formed on both the main surfaces 221 and 222 of the quartz crystal vibrating piece 2 and the one corresponding to high frequency is taken as an example, but the present invention is not limited to this. A simple plate-shaped crystal vibrating piece may be used. Furthermore, in the present embodiment described above, one excitation electrode 231, 232 is formed on each of the two main surfaces 221, 222 of the quartz crystal vibrating piece 2, but the present invention is not limited to this. The number of excitation electrodes formed on both main surfaces 221 and 222 may be arbitrarily set. For example, two excitation electrodes may be formed on both main surfaces, or a filter element configuration in which one excitation electrode is formed on one main surface and two excitation electrodes are formed on the other main surface. Good.

さらに、図2に示すようにATカット水晶片からなる水晶振動片2を用いているが、これに限定されるものではなく、他の圧電振動片であってもよい。具体的に、図6(上記実施形態と同様の部分については同番号付し説明の一部を割愛する)に示すような音叉型水晶振動片(以下、水晶振動片8とする)であってもよい。この図6に示す水晶振動片8は、異方性材料の水晶片からエッチング形成される。水晶振動片8の基板81は、2本の脚部821,822と基部83とから構成されてその外周形が略直方体形状からなり、2本の脚部821,822が基部83から突出して形成されている。また、2本の脚部821,822の両主面841,842(841については図示せず)には、水晶振動片8の小型化により劣化する直列共振抵抗値を改善させるために、凹部85が形成されている。この水晶振動片8の両主面841,842には、異電位で構成された2つの励振電極861,862と、これらの励振電極861,862をベース3の電極パッド(図示省略)に電気機械的に接合させるための引き出し電極871,872が形成され、引き出し電極871,872は励振電極861,862から基部83に引き出されている。そして、基部83に形成された引き出し電極871,872の引き出し先端部881,882には切り欠き891,892が設けられており、金属バンプ5が各きり欠きに挿入された状態での引き出し先端部881,882とベース3の外部接続電極とが電気機械的に接合される。   Furthermore, as shown in FIG. 2, the crystal vibrating piece 2 made of an AT-cut crystal piece is used, but the present invention is not limited to this, and another piezoelectric vibrating piece may be used. Specifically, it is a tuning fork type crystal vibrating piece (hereinafter referred to as a crystal vibrating piece 8) as shown in FIG. 6 (the same parts as in the above embodiment are given the same numbers and a part of the description is omitted). Also good. The crystal vibrating piece 8 shown in FIG. 6 is formed by etching from a crystal piece made of anisotropic material. The substrate 81 of the quartz crystal resonator element 8 is composed of two leg portions 821 and 822 and a base portion 83, and the outer peripheral shape thereof is a substantially rectangular parallelepiped shape, and the two leg portions 821 and 822 project from the base portion 83. Has been. Further, in order to improve the series resonance resistance value that deteriorates due to the miniaturization of the crystal vibrating piece 8, the concave portions 85 are formed on both main surfaces 841 and 842 (841 not shown) of the two leg portions 821 and 822. Is formed. The two main surfaces 841 and 842 of the quartz crystal vibrating piece 8 are provided with two excitation electrodes 861 and 862 having different potentials, and these excitation electrodes 861 and 862 are used as electrode pads (not shown) of the base 3 as an electric machine. Lead electrodes 871 and 872 are formed to be joined to each other, and the lead electrodes 871 and 872 are drawn from the excitation electrodes 861 and 862 to the base 83. The leading end portions 881 and 882 of the leading electrodes 871 and 872 formed on the base 83 are provided with notches 891 and 892, and the leading end portions of the leading ends in the state in which the metal bumps 5 are inserted into the respective notches. 881, 882 and the external connection electrode of the base 3 are joined electromechanically.

また、上記した本実施例では、水晶振動片の引き出し電極とベースの外部接続電極とが金属バンプ5により直接的に電気機械的に接合されているが、これに限定されるものではなく、図7(上記実施形態と同様の部分については同番号付し説明の一部を割愛する)に示すように、サポート7を介して接合してもよい。具体的に、サポート材7は、例えばZ板水晶片やATカット水晶片、ガラスなどの脆性材からなり、外形は水晶振動片2の保持領域と略同等に設定され(水晶振動片全体と略同一でもよい)、平面視矩形状の一枚板の直方体に成形されている。また、このサポート材7は、上下各主面にベースの外部接続電極と電気的機械的に接合されるベース接続電極71,72と、上記水晶振動片の引き出し電極251および引き出し電極補助電極272と電気的機械的に接合される水晶振動片接続電極73,74と、当該各接続電極を含めたサポート材の両主面を貫通する貫通孔75,76が形成されている。   Further, in the above-described embodiment, the extraction electrode of the crystal vibrating piece and the external connection electrode of the base are directly electromechanically joined by the metal bump 5, but the present invention is not limited to this. 7 (the same parts as those in the above embodiment are given the same numbers and a part of the description is omitted). Specifically, the support material 7 is made of, for example, a brittle material such as a Z-plate crystal piece, an AT-cut crystal piece, or glass, and the outer shape is set to be substantially equal to the holding region of the crystal vibration piece 2 (substantially the same as the whole crystal vibration piece). It may be the same), and is formed into a rectangular parallelepiped having a rectangular shape in plan view. The support member 7 includes base connection electrodes 71 and 72 that are electrically and mechanically joined to the base external connection electrodes on the upper and lower main surfaces, the extraction electrode 251 and the extraction electrode auxiliary electrode 272 of the crystal vibrating piece. Crystal vibrating piece connection electrodes 73 and 74 that are electrically and mechanically joined, and through holes 75 and 76 that penetrate both main surfaces of the support material including the connection electrodes are formed.

このようなサポート材7と上記金属バンプ5A,5Bを用いた水晶振動片2とベースの外部接続電極33,34との具体的な接合状態は次の通りとなる。下側に配置された金属バンプ5A,5Aの底部51A,51Aが上記ベースの外部接続電極33,34とサポート材7のベース接続電極71,72との電気的機械的接合を行い、下側に配置された金属バンプ5A,5Aの胴部52A,52Aが上記サポート材の貫通孔75,76に挿入され、当該胴部の一部が貫通孔内部に形成された引き出し電極と電気的機械的接合しており、下側に配置された金属バンプ5A,5Aの頭部53A,53Aが上記サポート材の水晶振動片接続電極73,74との電気的機械的接合を行っている。本形態ではこのように取り付けられたサポート材7の上部に水晶振動片2が配置されている。また、上側に配置された金属バンプ5B,5Bの底部51B,51Bが前記下側の金属バンプの頭部上部に配置されるとともに上記水晶振動片の引き出し電極241の引き出し先端部251、引き出し補助電極272との電気的機械的接合を行い、上側に配置された金属バンプ5B,5Bの胴部52B,52Bが上記水晶振動片の貫通孔261,262に挿入され、当該胴部の一部が貫通孔内部に形成された引き出し電極と電気的機械的接合しており、上側に配置された金属バンプ5B,5Bの頭部53B,53Bが上記水晶振動片の引き出し電極242の引き出し先端部252、引き出し補助電極271との電気的機械的接合を行っている。   A specific bonding state between the crystal vibrating piece 2 using the support material 7 and the metal bumps 5A and 5B and the base external connection electrodes 33 and 34 is as follows. The bottom portions 51A and 51A of the metal bumps 5A and 5A arranged on the lower side perform electromechanical joining between the external connection electrodes 33 and 34 of the base and the base connection electrodes 71 and 72 of the support material 7, and on the lower side. The body portions 52A and 52A of the disposed metal bumps 5A and 5A are inserted into the through holes 75 and 76 of the support material, and a part of the body portion is electrically and mechanically joined to the extraction electrode formed inside the through hole. The heads 53A and 53A of the metal bumps 5A and 5A arranged on the lower side are electrically and mechanically joined to the crystal vibrating piece connecting electrodes 73 and 74 of the support material. In this embodiment, the crystal vibrating piece 2 is disposed on the support member 7 attached in this way. Further, the bottom portions 51B and 51B of the metal bumps 5B and 5B arranged on the upper side are arranged on the top of the head of the lower metal bump, and the leading end portion 251 of the lead electrode 241 of the quartz crystal vibrating piece and the lead auxiliary electrode The body portions 52B and 52B of the metal bumps 5B and 5B arranged on the upper side are inserted into the through holes 261 and 262 of the quartz crystal vibrating piece, and a part of the body portion penetrates. The heads 53B and 53B of the metal bumps 5B and 5B arranged on the upper side are electrically and mechanically joined to the lead electrode formed inside the hole, the lead tip 252 of the lead electrode 242 of the crystal vibrating piece, the lead Electromechanical joining with the auxiliary electrode 271 is performed.

このような接合は、ベース3の外部接続電極33,34の上部に対して、金などからなる上記下側の金属バンプ5A,5Aをバンプボンダすることで取り付けた後、サポート材7を搭載位置決めし、FCB(Flip Chip Bonding)法により上記ボンディングツールにより超音波接合してお互いに電気的機械的に接合する。サポート材7の下側の金属バンプの頭部53A,53Aの上部に対して、金などからなる上記上側の金属バンプ5B,5Bをバンプボンダすることで取り付けた後、水晶振動片2を搭載位置決めし、FCB(Flip Chip Bonding)法により上記ボンディングツールにより超音波接合してお互いに電気的機械的に接合する。その結果、最終形態として下側に幅広の底部51(51A、51B)と中央に幅狭の胴部52(52A,52B)上側に幅広の頭部53(53A,53B)を具備した断面形状が略I字形状の一体型の金属バンプ5(5A,5B)が、サポート材7とベース3の間(下側の金属バンプ)と、サポート材7と水晶振動片2の間(上側の金属バンプ)にそれぞれ形成される。   For such bonding, the lower metal bumps 5A and 5A made of gold or the like are attached to the upper portions of the external connection electrodes 33 and 34 of the base 3 by bump bonding, and then the support material 7 is mounted and positioned. Then, they are ultrasonically bonded by the above bonding tool by the FCB (Flip Chip Bonding) method and are electrically and mechanically bonded to each other. After the upper metal bumps 5B, 5B made of gold or the like are attached to the upper parts of the heads 53A, 53A of the lower metal bumps of the support material 7 by bump bonding, the crystal vibrating piece 2 is mounted and positioned. Then, they are ultrasonically bonded by the above bonding tool by the FCB (Flip Chip Bonding) method and are electrically and mechanically bonded to each other. As a result, as a final form, a cross-sectional shape having a wide bottom portion 51 (51A, 51B) on the lower side and a wide head portion 53 (53A, 53B) on the upper side of the narrow body portion 52 (52A, 52B) at the center. A substantially I-shaped integrated metal bump 5 (5A, 5B) is provided between the support material 7 and the base 3 (lower metal bump), and between the support material 7 and the crystal vibrating piece 2 (upper metal bump). ) Respectively.

なお、本発明は、その精神や主旨または主要な特徴から逸脱することなく、他のいろいろな形で実施することができる。そのため、上述の実施例はあらゆる点で単なる例示にすぎず、限定的に解釈してはならない。本発明の範囲は特許請求の範囲によって示すものであって、明細書本文には、なんら拘束されない。さらに、特許請求の範囲の均等範囲に属する変形や変更は、全て本発明の範囲内のものである。   It should be noted that the present invention can be implemented in various other forms without departing from the spirit, gist, or main features. For this reason, the above-described embodiment is merely an example in all respects and should not be interpreted in a limited manner. The scope of the present invention is indicated by the claims, and is not restricted by the text of the specification. Further, all modifications and changes belonging to the equivalent scope of the claims are within the scope of the present invention.

本発明は、水晶振動子などの圧電振動子に適用できる   The present invention can be applied to a piezoelectric vibrator such as a crystal vibrator.

図1は、本実施例にかかる水晶振動子の概略構成図である。図1(a)は、その水晶振動子の内部を公開した概略平面図である。図1(b)は、図1(a)のX−X線断面図である。FIG. 1 is a schematic configuration diagram of a crystal resonator according to the present embodiment. FIG. 1A is a schematic plan view showing the inside of the crystal resonator. FIG.1 (b) is XX sectional drawing of Fig.1 (a). 図2は、本実施例にかかる水晶振動片の概略構成図である。図2(a)は、その水晶振動片の概略平面図である。図2(b)は、その水晶振動片の概略裏面図である。FIG. 2 is a schematic configuration diagram of the quartz crystal vibrating piece according to the present embodiment. FIG. 2A is a schematic plan view of the crystal vibrating piece. FIG. 2B is a schematic back view of the crystal vibrating piece. 図3は、本実施例にかかる水晶振動子の製造工程を模式的に示した図である。FIG. 3 is a diagram schematically showing a manufacturing process of the crystal resonator according to the present embodiment. 図4は、本実施の他の例にかかる水晶振動子の内部を公開した概略断面図である。FIG. 4 is a schematic cross-sectional view showing the inside of a crystal resonator according to another example of the present embodiment. 図5は、本実施の他の例にかかる水晶振動子の内部を公開した概略平面図である。FIG. 5 is a schematic plan view showing the inside of a crystal resonator according to another example of the present embodiment. 図6は、本実施の他の例にかかる水晶振動子の内部を公開した概略平面図である。FIG. 6 is a schematic plan view showing the inside of a crystal resonator according to another example of the present embodiment. 図7は、本実施の他の例にかかる水晶振動子の内部を公開した概略断面図である。FIG. 7 is a schematic cross-sectional view showing the inside of a crystal resonator according to another example of the present embodiment.

符号の説明Explanation of symbols

1 水晶振動子(圧電振動デバイス)
2 水晶振動片(圧電振動片)
3 ベース
4 蓋
5 金属バンプ
6 パッケージ
7 サポート部材
8 音叉型水晶振動片(圧電振動片)
1 Crystal resonator (piezoelectric vibration device)
2 Quartz vibrating piece (piezoelectric vibrating piece)
3 Base 4 Lid 5 Metal bump 6 Package 7 Support member 8 Tuning fork type crystal vibrating piece (piezoelectric vibrating piece)

Claims (2)

ベースと蓋とが接合されてパッケージが構成され、前記パッケージの内部の前記ベース上に外部接続電極が形成され、当該外部接続電極に圧電振動片が保持されるとともに、前記パッケージの内部が気密封止された圧電振動デバイスの製造方法において、
圧電振動片の両主面それぞれに少なくとも1つの励振電極が形成され、かつ、これらの前記励振電極を前記ベースの外部接続電極と電気機械的に接合させるために前記励振電極からそれぞれ引き出された引き出し電極が形成されており、前記引き出し電極の少なくとも1つには当該引き出し電極と前記圧電振動片の両主面を貫通する貫通孔または切り欠きが形成され、前記引き出し電極の対向面の貫通孔または切り欠きの周囲には引き出し補助電極が形成された圧電振動片を準備する工程と、
下側に幅広の底部と上側に幅狭の胴部を具備した一体型の金属バンプを前記ベースの外部接続電極の上部に形成する工程とを有し、
その後、前記金属バンプの胴部を前記圧電振動片の貫通孔または切り欠きに挿入して位置決めするとともに、圧電振動片の貫通孔または切り欠きから突出した前記金属バンプの胴部をボンディングツールにより超音波印加しながら、前記金属バンプの胴部の一部を押し潰すことで金属バンプの頭部を形成し、
前記金属バンプの底部と金属バンプの頭部により、前記圧電振動片の引き出し電極と引き出し補助電極とが電気的機械的に接合することを特徴とする圧電振動デバイスの製造方法。
A base and a lid are joined to form a package, an external connection electrode is formed on the base inside the package, a piezoelectric vibrating piece is held on the external connection electrode, and the inside of the package is hermetically sealed In the manufacturing method of the stopped piezoelectric vibration device,
At least one excitation electrode is formed on each of the two main surfaces of the piezoelectric vibrating reed, and each of the excitation electrodes is drawn out from the excitation electrode to electromechanically join the excitation electrode with the external connection electrode of the base An electrode is formed, and at least one of the extraction electrodes is formed with a through-hole or a notch that penetrates both main surfaces of the extraction electrode and the piezoelectric vibrating piece, and a through-hole on the opposite surface of the extraction electrode or A step of preparing a piezoelectric vibrating piece in which an extraction auxiliary electrode is formed around the notch;
Forming an integrated metal bump having a wide bottom portion on the lower side and a narrow body portion on the upper side on the external connection electrode of the base, and
Thereafter, the body portion of the metal bump is inserted into the through hole or notch of the piezoelectric vibrating piece and positioned, and the body portion of the metal bump protruding from the through hole or notch of the piezoelectric vibrating piece is superposed by a bonding tool. While applying a sound wave, crush part of the body of the metal bump to form the head of the metal bump,
A method for manufacturing a piezoelectric vibration device, wherein an extraction electrode and an extraction auxiliary electrode of the piezoelectric vibrating piece are electrically and mechanically bonded to each other by a bottom portion of the metal bump and a head portion of the metal bump.
特許請求項1記載の製造方法により得られる圧電振動デバイスであって、前記金属バンプの頭部は、前記金属バンプの底部と同一の体積、もしくは前記金属バンプの底部より小さい体積で形成されたことを特徴とする圧電振動デバイス。 The piezoelectric vibration device obtained by the manufacturing method according to claim 1, wherein the head of the metal bump is formed with the same volume as the bottom of the metal bump or a volume smaller than the bottom of the metal bump. A piezoelectric vibration device characterized by the above.
JP2006350815A 2006-12-27 2006-12-27 Manufacturing method of piezoelectric vibration device and piezoelectric vibration device by the manufacturing method Pending JP2008166884A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006350815A JP2008166884A (en) 2006-12-27 2006-12-27 Manufacturing method of piezoelectric vibration device and piezoelectric vibration device by the manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006350815A JP2008166884A (en) 2006-12-27 2006-12-27 Manufacturing method of piezoelectric vibration device and piezoelectric vibration device by the manufacturing method

Publications (1)

Publication Number Publication Date
JP2008166884A true JP2008166884A (en) 2008-07-17

Family

ID=39695786

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006350815A Pending JP2008166884A (en) 2006-12-27 2006-12-27 Manufacturing method of piezoelectric vibration device and piezoelectric vibration device by the manufacturing method

Country Status (1)

Country Link
JP (1) JP2008166884A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010178064A (en) * 2009-01-29 2010-08-12 Daishinku Corp Tuning fork piezoelectric vibrator, and tuning fork piezoelectric vibration device
JP2010252051A (en) * 2009-04-15 2010-11-04 Seiko Epson Corp Piezoelectric device, and method of manufacturing the same
JP2013141313A (en) * 2013-03-29 2013-07-18 Seiko Epson Corp Transducer
US9054311B2 (en) 2012-12-28 2015-06-09 Fujitsu Limited Electronic device and method of manufacturing the same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010178064A (en) * 2009-01-29 2010-08-12 Daishinku Corp Tuning fork piezoelectric vibrator, and tuning fork piezoelectric vibration device
JP2010252051A (en) * 2009-04-15 2010-11-04 Seiko Epson Corp Piezoelectric device, and method of manufacturing the same
US9054311B2 (en) 2012-12-28 2015-06-09 Fujitsu Limited Electronic device and method of manufacturing the same
JP2013141313A (en) * 2013-03-29 2013-07-18 Seiko Epson Corp Transducer

Similar Documents

Publication Publication Date Title
JP4552916B2 (en) Piezoelectric vibration device
JP5880538B2 (en) Piezoelectric vibrating piece, piezoelectric vibrator, method for manufacturing piezoelectric vibrating piece, and method for manufacturing piezoelectric vibrator
JPWO2007004348A1 (en) Piezoelectric vibrating piece and piezoelectric vibrating device
JP2008131549A (en) Quartz oscillation device
JP2008131167A (en) Package structure of piezoelectric device, and piezoelectric device
JP2007013444A (en) Piezo-electric oscillating device and method for manufacturing the same
JP6616138B2 (en) Electronic component mounting package and electronic device
JP4992420B2 (en) Crystal oscillator
JP2008166884A (en) Manufacturing method of piezoelectric vibration device and piezoelectric vibration device by the manufacturing method
JP2009296115A (en) Tuning fork type piezoelectric vibration piece, tuning fork type piezoelectric vibration device, and manufacturing method of tuning fork piezoelectric vibration piece
JP2009055354A (en) Package for piezoelectric vibration device and piezoelectric vibration device
JP5239782B2 (en) Piezoelectric vibration device
WO2011034104A1 (en) Piezoelectric vibration piece and manufacturing method of piezoelectric vibration piece
JP2012134792A (en) Surface mounted piezoelectric oscillator
JP4595913B2 (en) Tuning fork type piezoelectric vibration device
JP5062139B2 (en) Piezoelectric vibration device
JP2009239475A (en) Surface mounting piezoelectric oscillator
JP4529894B2 (en) Piezoelectric vibrating piece and piezoelectric vibrating device
JP2002084159A (en) Surface-mounted piezoelectric vibrator
JP2008060910A (en) Piezoelectric vibration device
JP4784685B2 (en) Piezoelectric vibrating piece
JP6168949B2 (en) Piezoelectric vibrating piece and piezoelectric vibrator
JP4720933B2 (en) Piezoelectric vibrating piece
JP2011055033A (en) Piezoelectric oscillator
JP2009081670A (en) Piezoelectric vibration device and its manufacturing method