FR2954130A1 - Composition cosmetique comprenant un compose supramoleculaire capable d'etablir des liaisons hydrogene, et un ingredient additionnel particulier - Google Patents

Composition cosmetique comprenant un compose supramoleculaire capable d'etablir des liaisons hydrogene, et un ingredient additionnel particulier Download PDF

Info

Publication number
FR2954130A1
FR2954130A1 FR0959202A FR0959202A FR2954130A1 FR 2954130 A1 FR2954130 A1 FR 2954130A1 FR 0959202 A FR0959202 A FR 0959202A FR 0959202 A FR0959202 A FR 0959202A FR 2954130 A1 FR2954130 A1 FR 2954130A1
Authority
FR
France
Prior art keywords
group
groups
acid
polymer
carbon atoms
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
FR0959202A
Other languages
English (en)
Other versions
FR2954130B1 (fr
Inventor
Claudia Barba
Roberto Cavazzuti
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
LOreal SA
Original Assignee
LOreal SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by LOreal SA filed Critical LOreal SA
Priority to FR0959202A priority Critical patent/FR2954130B1/fr
Priority to US13/516,920 priority patent/US9017648B2/en
Priority to ES10792919.2T priority patent/ES2443848T3/es
Priority to EP10792919.2A priority patent/EP2512427B1/fr
Priority to PCT/EP2010/069840 priority patent/WO2011073294A1/fr
Publication of FR2954130A1 publication Critical patent/FR2954130A1/fr
Application granted granted Critical
Publication of FR2954130B1 publication Critical patent/FR2954130B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q1/00Make-up preparations; Body powders; Preparations for removing make-up
    • A61Q1/02Preparations containing skin colorants, e.g. pigments
    • A61Q1/04Preparations containing skin colorants, e.g. pigments for lips
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/30Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds
    • A61K8/49Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds containing heterocyclic compounds
    • A61K8/494Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds containing heterocyclic compounds with more than one nitrogen as the only hetero atom
    • A61K8/4953Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds containing heterocyclic compounds with more than one nitrogen as the only hetero atom containing pyrimidine ring derivatives, e.g. minoxidil
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/72Cosmetics or similar toiletry preparations characterised by the composition containing organic macromolecular compounds
    • A61K8/84Cosmetics or similar toiletry preparations characterised by the composition containing organic macromolecular compounds obtained by reactions otherwise than those involving only carbon-carbon unsaturated bonds
    • A61K8/89Polysiloxanes
    • A61K8/891Polysiloxanes saturated, e.g. dimethicone, phenyl trimethicone, C24-C28 methicone or stearyl dimethicone
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/72Cosmetics or similar toiletry preparations characterised by the composition containing organic macromolecular compounds
    • A61K8/90Block copolymers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q1/00Make-up preparations; Body powders; Preparations for removing make-up
    • A61Q1/02Preparations containing skin colorants, e.g. pigments
    • A61Q1/04Preparations containing skin colorants, e.g. pigments for lips
    • A61Q1/06Lipsticks

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Birds (AREA)
  • Epidemiology (AREA)
  • Cosmetics (AREA)

Abstract

La présente invention concerne une composition cosmétique comprenant, dans un milieu cosmétiquement acceptable, (i) un composé supramoléculaire susceptible d'être obtenu par réaction entre : - au moins une huile portant au moins une fonction réactive nucléophile choisie parmi OH et NH2, et - au moins un groupe de jonction capable d'établir des liaisons hydrogène avec un ou plusieurs groupes de jonction partenaires, chaque appariement d'un groupe de jonction faisant intervenir au moins 3 liaisons hydrogène, ledit groupe de jonction portant au moins une fonction réactive isocyanate ou imidazole susceptible de réagir avec la fonction réactive portée par l'huile, ledit groupe de jonction comprenant en outre au moins un motif de formule (I) ou (II) : (ii) et au moins un ingrédient additionnel choisi de préférence parmi : - les élastomères siliconés, - les résines siliconées, - les polycondensats susceptible d'être obtenu par réaction: • d'un tétraol ayant de 4 à 10 atomes de carbone ; • d'un acide saturé monocarboxylique, linéaire ou ramifié, ayant de 9 à 23 atomes de carbone ; • d'un diacide carboxylique cyclique ayant de 6 à 12 atomes de carbone ; et • d'un acide monocarboxylique aromatique ayant de 7 à 11 atomes de carbone, - les polymères filmogènes, de préférence choisi parmi le groupe comprenant : • un copolymère éthylénique séquencé filmogène, • un polymère vinylique comprenant au moins un motif dérivé de dendrimère carbo-siloxane , • une dispersion de particules de d'homopolymère ou de copolymère radicalaire, acrylique ou vinylique dispersées dans ladite phase grasse liquide, - les polymères semi-cristallins, - les agents épaississants comprenant au moins un groupe, de préférence au moins deux groupes, capable d'établir des interactions hydrogène choisi parmi •les agents épaississants polymèriques et •les organogélateurs. L'invention concerne également un procédé de traitement cosmétique comprenant l'application de ladite composition.

Description

La présente invention concerne une composition cosmétique, notamment de soin et/ou de maquillage des matières kératiniques, en particulier la peau ou les lèvres, comprenant de nouveaux composés A (appelés, dans le cadre de cette demande, composés supramoléculaires) susceptibles d'établir des liaisons hydrogène avec des groupes de jonction par- tenaires, associés à un ingrédient additionnel choisi de préférence parmi : - les élastomères siliconés, - les polymères filmogènes, - les résines siliconées, - les polycondensats, - les polymères semi-cristallins, - les agents épaississants comprenant au moins un groupe, de préférence au moins deux groupes, capable d'établir des interactions hydrogène choisi parmi les agents épaississants polymériques et les organogélateurs.
Il existe de nombreuses compositions cosmétiques pour lesquelles des propriétés de brillance du film déposé, après application sur les matières kératiniques, sont souhaitées. On peut citer par exemple les rouges à lèvres ou les vernis à ongles. Afin d'obtenir un tel résultat, il est possible d'associer des matières premières particulières, notamment des lanolines, avec des huiles dites brillantes telles que les polybutènes, ou des esters d'acide ou d'alcool gras dont le nombre de carbone est élevé; ou bien certaines huiles végétales; ou encore des esters résultants de l'estérification partielle ou totale d'un composé aliphatique hydroxylé avec un acide aromatique, comme décrit dans la demande de brevet EP1097699. Cependant, l'obtention des propriétés de brillance du dépôt d'une composition cosmétique est parfois parfois associée à un caractère collant des compositions. Ce caractère collant conduit ces formules à laisser des traces sur les supports comme les verres, les tasses à café. Le formulateur est donc à la recherche de matières premières et/ou de systèmes permet-tant d'obtenir des compositions dont le dépôt se caractérise par la brillance (en particulier dans le cas de compostions de maquillage des lèvres) et de préférence un effet non collant et qui soit agréable à porter.(absence de sensation de tiraillement). La présente invention a pour but de proposer des compositions cosmétiques qui permettent d'obtenir un tel dépôt filmogène uniforme sur les matières kératiniques, ledit film al- liant de bonnes propriétés de brillance (en particulier dans le cas de rouges à lèvres), de tenue de la brillance dans le temps (en particulier 1 heure après l'application), qui soit dé préférence non collant, tout en étant non collant et particulièrement confortable à porter.
La présente invention a donc pour objet une composition cosmétique de maquillage et/ou de soin des matières kératiniques (notamment de la peau ou des lèvres) comprenant, dans un milieu cosmétiquement acceptable, (i) un composé A (appelé, dans le cadre de cette demande, composé supramoléculaire) susceptible d'être obtenu par réaction entre : - au moins une huile portant au moins une fonction réactive nucléophile choisie parmi OH et NH2, et - au moins un groupe de jonction capable d'établir des liaisons hydrogène avec un ou plu-sieurs groupes de jonction partenaires, chaque appariement d'un groupe de jonction faisant intervenir au moins 3 liaisons hydrogène, ledit groupe de jonction portant au moins une fonction réactive isocyanate ou imidazole susceptible de réagir avec la fonction réactive portée par l'huile, ledit groupe de jonction comprenant en outre au moins un motif de formule (I) ou (Il) : 0 *ù R3 N I R2~ 'NNHùCùNHùR1ù* H O (I) (II) dans lesquelles : - R1 et R3, identiques ou différents, représentent un radical carboné divalent choisi parmi (i) un groupe alkyle linéaire ou ramifié en C1-C32, (ii) un groupe cycloalkyle en C4-C16 et (iii) un groupe aryle en C4-C16; comprenant éventuellement 1 à 8 hétéroatomes choisis parmi O, N, S, F, Si et P; et/ou éventuellement substitué par une fonction ester, amide ou par un radical alkyle en C,-C12; ou un mélange de ces groupes; - R2 représente un atome d'hydrogène ou un radical carboné, notamment hydrocarboné, linéaire, ramifié ou cyclique, saturé ou insaturé, éventuellement aromatique, en C1-C32, pouvant comprendre un ou plusieurs hétéroatomes choisis parmi O, N, S, F, Si et P ;
(ii) associés à au moins un ingrédient additionnel choisi de préférence parmi : - les élastomères siliconés, - les résines siliconées, - les polycondensats susceptible d'être obtenu par réaction: • d'un tétraol ayant de 4 à 10 atomes de carbone ; • d'un acide saturé monocarboxylique, linéaire ou ramifié, ayant de 9 à 23 atomes de carbone ; • d'un diacide carboxylique cyclique ayant de 6 à 12 atomes de carbone ; et • d'un acide monocarboxylique aromatique ayant de 7 à 11 atomes de carbone, - les polymères filmogènes, de préférence choisi parmi le groupe comprenant : • un copolymère éthylénique séquencé filmogène, • un polymère vinylique comprenant au moins un motif dérivé de dendrimère carbosiloxane, • une dispersion de particules de d'homopolymère ou de copolymère radicalaire, acrylique ou vinylique dispersées dans ladite phase grasse liquide, - les polymères semi-cristallins, - les agents épaississants comprenant au moins un groupe, de préférence au moins deux groupes, capable d'établir des interactions hydrogène choisi parmi •les agents épaississants polymèriques et •les organogélateurs.
Composés supramoléculaires : Les composés A (également appelés composés supramoléculaires) fonctionnalisées selon la présente invention se présentent sous forme d'un solide; ceci permet notamment de former un matériau non collant, qui ne transfère pas au doigt une fois appliqué sur les matières kératiniques; ceci n'est pas le cas avec les composés fonctionnalisées de l'art anté- rieur, notamment telles que décrites dans US5707612, qui se présentent sous forme d'un liquide, plus ou moins visqueux, et qui forment un matériau collant, qui transfère au doigt après application sur les matières kératiniques. Par ailleurs, on a constaté que la réticulation à travers quatre liaisons hydrogène, par l'intermédiaire des groupes uréïdopyrimidone, pouvait permettre d'augmenter la force de cette réticulation, et donc améliorer la tenue de l'effet cosmétique recherché, tout particulièrement la tenue du dépôt ou de la brillance. 0 R2~\HNHùCùNHùR1ù* O De plus, les composés, ou huiles fonctionnalisées, selon l'invention sont aisément véhiculables dans les milieux cosmétiques usuels, notamment les milieux huileux cosmétiques usuels. Ils sont avantageusement compatibles avec les huiles présentes habituellement dans les compositions cosmétiques, et possèdent également de bonnes propriétés de dispersion des pigments ou des charges.
Ils sont aisément véhiculables dans les milieux solvants ou huileux cosmétiques, notamment les huiles, les alcools gras et/ou les esters gras, ce qui facilite leur mise en oeuvre dans le domaine cosmétique, notamment dans les rouges à lèvres. Ils présentent une solubilité convenable dans des milieux huileux cosmétiques variés, tels que les huiles végétales, les alcanes, les esters qu'ils soient courts de type acétate de butyle ou d'éthyle, ou gras, les alcools gras et tout particulièrement dans les milieux comprenant de l'isododécane, du Parléam, de l'isononanoate d'isononyle, de l'octyldodécanol, et/ou un benzoate d'alkyle en C12-C15.
Les compositions cosmétiques selon l'invention présentent par ailleurs une bonne applicabilité et une bonne couvrance; une bonne adhérence sur le support, que cela soit sur l'ongle, les cils, la peau ou les lèvres; une flexibilité et une résistance du film adéquates, ainsi qu'un excellent niveau de brillance durable. Les propriétés de confort et de glissant sont également très satisfaisantes.
D'une façon générale, dans le cadre de la présente demande, les composés A pourront indifféremment être appelés « composés supramoléculaires » par commodité et pour plus de clarté.
Les composés A (ou dits supramoléculaires) des compositions selon l'invention sont susceptibles d'être obtenus par réaction entre : - au moins une huile portant au moins une fonction réactive nucléophile choisie parmi OH et NH2, et - au moins un groupe de jonction capable d'établir des liaisons hydrogène avec un ou plu-sieurs groupes de jonction partenaires, chaque appariement d'un groupe de jonction faisant intervenir au moins 3 liaisons hydrogène, ledit groupe de jonction portant au moins une fonction réactive isocyanate ou imidazole susceptible de réagir avec la fonction réac- tive portée par l'huile, ledit groupe de jonction comprenant en outre au moins un motif de formule (I) ou (Il) : O IN R2~\N~\NHùCùNHùR1ù* H I I oO *ù R3 N I R2~ 'NNHùCùNHùR1ù* H 0 (I) (II) dans lesquelles : - R1 et R3, identiques ou différents, représentent un radical carboné divalent choisi parmi (i) un groupe alkyle linéaire ou ramifié en C1-C32, (ii) un groupe cycloalkyle en C4-C16 et (iii) un groupe aryle en C4-C16; comprenant éventuellement 1 à 8 hétéroatomes choisis parmi O, N, S, F, Si et P; et/ou éventuellement substitué par une fonction ester, amide ou par un radical alkyle en C,-C12; ou un mélange de ces groupes; - R2 représente un atome d'hydrogène ou un radical carboné, notamment hydrocarboné, linéaire, ramifié ou cyclique, saturé ou insaturé, éventuellement aromatique, en C1-C32, pouvant comprendre un ou plusieurs hétéroatomes choisis parmi O, N, S, F, Si et P.
Au final, les composés supramoléculaires des compositions selon l'invention comportent donc au moins une partie (HB) provenant de l'huile et au moins une partie (G) provenant du groupe de jonction, ladite partie (G) comprenant au moins un motif de formule (I) ou (Il). Notamment, lesdites parties (HB) et (G) sont reliées par une liaison covalente, notamment peuvent être reliées par une liaison covalente formée lors de la réaction entre les fonctions réactives OH et/ou NH2 portées par l'huile et les fonctions isocyanate portées par le groupe de jonction; ou bien entre les fonctions réactives NH2 portées par l'huile et les fonctions isocyanate ou imidazole portées par le groupe de jonction .
On peut donc notamment schématiser l'obtention préférentielle des composés selon l'invention par la réaction chimique entre les entités suivantes : (HB)-(OH)m(NH2)n + (G)-(NCO)p ou bien (HB)-(OH)m(NH2)n + (G)-(imidazole)p avec m, n et p étant des entiers non nuls.
L'huile susceptible d'être employée pour préparer le composé supramoléculaire selon l'invention, qui de préférence peut être schématisée (HB)-(OH)m(NH2)n, est un corps gras ou un mélange de corps gras, non cristallin à 25°C, liquide à température ambiante et sous pression atmosphérique (25°C, 1 atm.); de préférence apolaire, voire de préférence non soluble à l'eau.
De façon préférée, l'huile susceptible d'être employée pour préparer le composé supra-moléculaire selon l'invention est non polymérique.
Par liquide, on entend que la viscosité du composé est inférieure ou égale à 2500 centipoises, à 110°C, 1 atm., mesurée avec un rhéomètre Brookfield DV-1 ou Brookfield Cap 1000+, l'homme de l'art choisissant l'appareil adapté à la mesure de viscosité. Par apolaire, on entend un compose dont la valeur de HLB (hydrophile lipophile balance) est faible; notamment inférieure ou égale à 8, de préférence inférieure ou égale à 4, et encore mieux inférieure ou égale à 2; préférentiellement, la valeur de HLB doit être suffisamment peu élevée pour permettre d'obtenir un matériau supramoléculaire qui n'est pas, ou pas trop, hygroscopique. Par non soluble, on entend que la fraction d'huile qui peut se dissoudre dans l'eau, à 25°C, 1 atm., est inférieure à 5% en poids (soit 5 g d'huile dans 100 ml d'eau); de préférence inférieure à 3%. Par corps gras, on entend notamment mais pas exclusivement, un composé hydrocarboné comportant une ou plusieurs chaînes alkyle, linéaires, cycliques, ramifiées, saturées ou non, ayant au moins 6 atomes de carbone et pouvant comporter des groupes polaires comme un groupe acide, un hydroxyle ou polyol, amine, amide, acide phosphorique, phosphate, ester, éther, urée, carbamate, thiol, thioéther, thioester, cette chaîne pouvant comporter jusqu'à 100 atomes de carbone.
De préférence, l'huile susceptible d'être employée pour préparer le composé supramolé- culaire selon l'invention est une huile brillante, c'est-à-dire ayant un indice de réfraction supérieur ou égal à 1,46 à 25°C, en particulier compris entre 1,46 à 1,55 (l'indice de ré-fraction étant défini par rapport à la raie D du sodium, à 25°C).
De préférence, l'huile susceptible d'être employée pour préparer le composé supramolé- culaire selon l'invention est une huile non volatile. Par "huile non volatile", on entend une huile susceptible de rester sur les matières kératiniques à température ambiante et pression atmosphérique au moins plusieurs heures, et notamment ayant une pression de va-peur inférieure à 10-3mm de Hg (0,13 Pa). De préférence, l'huile a une masse molaire (Mw) comprise entre 150 et 6000, notamment entre 170 et 4000, voire entre 180 et 2000, préférentiellement entre 200 et 1500, et en- core mieux entre 220 et 800 g/mol.
L'huile susceptible d'être utilisée dans le cadre de la présente invention pour préparer le composé supramoléculaire porte au moins une fonction réactive susceptible de réagir avec la fonction réactive portée sur le groupe de jonction, notamment susceptible de ré-agir chimiquement avec les groupes isocyanates ou imidazole portés par le groupe de jonction; de préférence, cette fonction est une fonction OH ou NH2. De préférence, l'huile ne comporte que des fonctions OH, en particulier 1 à 3 fonctions OH, préférentiellement des fonctions OH primaire ou secondaires, et encore mieux uniquement primaires.
L'huile selon la présente invention est de préférence une huile carbonée, notamment hydrocarbonée, qui, outre la fonction réactive susceptible de réagir avec le groupe de jonction, peut comporter des atomes d'oxygène, d'azote, de soufre et/ou de phosphore. L'huile est très préférentiellement choisie parmi les huiles cosmétiquement acceptables.
L'huile susceptible d'être employée dans le cadre de la présente invention pour préparer le composé supramoléculaire peut être choisie parmi :
(i) les alcools gras, comprenant 6 à 50 atomes de carbone, linéaires, ramifiés ou cycliques, saturés ou insaturés, comprenant 1 ou plusieurs OH; éventuellement comprenant un ou plusieurs NH2. On peut en particulier citer : - les monoalcools linéaires ou ramifiés en C6-050, notamment en C6-C32, en particulier en C8-C28, saturés ou insaturés, et notamment l'alcool isostéarylique, l'alcool cétylique, l'alcool oléique, l'alcool oléylique, l'alcool isopalmitoylique, le butyl-2 octanol, l'hexyl-2 dé- canot, l'octyl-2 décanol, l'octyl-2 dodécanol, l'octyl-2 tétradécanol, le décyl-2 tétradécanol, le dodécyl-2 hexadécanol, et notamment les alcools vendus sous la dénomination Jarcol par la société Jarchem Industries, tels que le Jarcol 1-12, le Jarcol 1-16, le Jarcol 1-20 et le Jarcol 1-24; - les diols linéaires ou ramifiés en C6-050, notamment en C6-C40, en particulier en C8- C38, saturés ou insaturés, et notamment ramifié en C32-36, et en particulier le produit commercial Pripol 2033 d'Uniqema; - les triols linéaires ou ramifiés en C6-050, notamment en C6-C32, en particulier en C8-C28, saturés ou insaturés, et notamment le phytantriol; (ii) les esters et les éthers portant au moins un groupe OH libre, et notamment les esters et éthers partiels de polyol, et les esters d'acide carboxylique hydroxylé.
Par ester partiel de polyol, on entend les esters préparés par estérification d'un polyol avec un acide carboxylique, substitué ou non, la réaction n'étant pas totale, c'est-à-dire pas effectuée sur la totalité des OH libres du polyol; au final, l'ester comporte donc encore au moins un OH libre. De préférence, l'acide carboxylique est un monoacide. On peut également employer un mélange d'acides carboxyliques, notamment monocarboxyliques.
Par éther partiel de polyol, on entend les éthers préparés par éthérification d'un polyol, sur lui-même ou avec au moins un autre alcool, mono ou polyhydroxylé, de préférence monoalcool, la réaction d'éthérification n'étant pas totale, c'est-à-dire pas effectuée sur la totalité des OH libres du polyol; au final, l'éther comporte encore au moins un OH libre.
Par ester d'acide carboxylique hydroxylé, on entend les esters (mono et poly) préparés par réaction entre un acide carboxylique portant au moins une fonction OH, et un ou plu-sieurs alcools (mono ou poly), de préférence monoalcool, la réaction pouvant être totale ou partielle (effectuée sur tout ou partie des OH libres de l'alcool).
Parmi les polyols susceptibles d'être utilisés pour préparer les esters ou éthers ci-dessus, 5 on peut citer le propylène glycol, le glycérol, le néopentylglycol, le triméthylolpropane, le triméthyloléthane, les polyglycérols et notamment polyglycérol-2, polyglycérol-3 et polyglycérol-10; l'érythritol, le dipentaérythritol, le pentaérythritol, le di-triméthylolpropane, le phytantriol, le saccharose, le glucose, le méthylglucose, le sorbitol, le fructose, le xylose, le mannitol, la glucosamine; ainsi que les dimères diols notamment obtenus à partir d'acides gras dimères, notamment les diols ramifiés en C32-C38, notamment C36, aliphatiques et/ou alycycliques, tels que ceux définis dans l'article Hofer et al. European Coating Journal (mars 2000), pages 26-37; et leurs mélanges.
Parmi les monoalcools susceptibles d'être utilisés pour préparer les esters ou éthers ci-dessus, on peut citer les alcools en C3-050, linéaires ou ramifiés, de préférence ramifiés, et notamment le 2-éthylhexanol, l'octanol, l'alcool isostéarylique, et leurs mélanges.
Parmi les acides carboxyliques susceptibles d'être utilisés pour préparer les esters ou éthers ci-dessus, on peut citer les monoacides ayant 6 à 50 atomes de carbone et les diacides ayant 3 à 12 atomes de carbone, linéaires ou ramifiés, saturés ou insaturés, parmi lesquels on peut citer l'acide octyldodécylique, l'acide hexyldécylique, l'acide éthylhexylique, l'acide isostéarique, l'acide nonanoïque, l'acide isononanoïque, l'acide arachidique, l'acide stéarique, l'acide palmitique, l'acide oléique, l'acide oxalique, l'acide adipi- que, l'acide succinique, l'acide fumarique, l'acide maléique, l'acide caprique, l'acide hexanedioïque, l'acide décylique, l'acide décanoïque, et leurs mélanges.
Parmi les acides carboxyliques hydroxylés susceptibles d'être utilisés pour préparer les esters ou éthers ci-dessus, on peut citer les acides monohydroxylés ou polyhydroxylés, de préférence monohydroxylés; ayant 4 à 28 atomes de carbone par exemple, et notamment l'acide 12-hydroxystéarique, l'acide ricinoléïque, l'acide malique, l'acide lactique, l'acide citrique; et leurs mélanges.
Ainsi, l'huile susceptible d'être employée pour préparer le composé supramoléculaire dans la présente invention peut être choisie parmi, seuls ou en mélange: - les esters partiels de pentaérythritol, et notamment l'adipate de pentaérythrityle, le caprate de pentaérythrityle, le succinate de pentaérythrityle, le tétraisononanoate de pentaérythrityle, le triisononanoate de pentaérythrityle, le tétraisostéarate de pentaérythrityle, le triisostéarate de pentaérythrityle, le tétradécyl-2 tétradécanoate de pentaérythrityle, le té- traéthyl hexanoate de pentaérythrityle, le tétraoctyl dodécanoate de pentaérythrityle. - les diesters, triesters, tetraesters ou pentaesters de dipentaérythritol, et notamment le dipentaérythrityle pentaisononanoate, le dipentaérythrityle pentaisostéarate, le dipentaérythrityle tétraisostéarate, le di pentaérythrityle tri(polyhydroxystéarate); - les mono et di-esters de triméthylolpropane comme le triméthylolpropane mono- isostéarate, le triméthylolpropane di-isostearate, le triméthylolpropane monoethyl-2 hexylate, le triméthylolpropane diethyl-2 hexylate; - les mono-, di- et tri-esters de di-triméthylolpropane comme le di-triméthylolpropane diisostearate, le di-triméthylolpropane tri-isostearate, le di-triméthylolpropane tri-ethyl hexanoate; - les mono-esters ou poly-esters partiels de glycérol ou de polyglycérols, et notamment : - le di-isostearate de glycérol, le di-isononanoate de glycérol, - les mono-, di- et tri-esters de polyglycérol-2; par exemple avec l'acide isostéarique, l'acide ethyl-2 hexylique et/ou l'acide isononanoïque; et notamment le polyglycéryl-2-isostéarate; le polyglycéryl-2-diisostéarate; le triisostéarate de polyglycéryl-2; le polyglycé- ryl-2-nonaisostearate; le polyglycéryl-2-nonanoate; - les mono-, di-, tri- ou tétra-esters de polyglycérol-3; par exemple avec soit l'acide isostéarique, l'acide ethyl-2 hexylique et/ou l'acide isononanoïque; et notamment le polyglycéryl-3-isostéarate, le polyglycéryl-3-diisostéarate; le triisostéarate de polyglycéryl-3; le polyglycéryl-3-nonaisostearate; le polyglycéryl-3-nonanoate; - les esters partiels de polyglycérol-10 et en particulier le polyglycéryl-10 nonaisos- tearate; le polyglycéryl-10-nonanoate; le polyglycéryl-10-isostéarate, le polyglycéryl-10-diisostéarate, le triisostéarate de polyglycéryl-10; - les monoesters de propylène glycol comme le monoisostearate de propylène glycol, le néopentanoate de propylène glycol, le monooctanoate de propylène glycol; - les monoesters de dimères-diols comme l'isostéaryl dimer dilinoleate et l'octyl dodecyl dimer dilinoleate - les éthers de glycérol, tels que le polyglycéryl-2 oleyléther, le polyglycéryl-3 cétyléther, le polyglycéryl-3 décyltétradécyléther et le polyglycéryl-2 stéaryléther; - les esters entre acide mono-, di- ou tri-carboxylique hydroxylé et monoalcools, et en par- ticulier: - les esters, notamment monoesters, d'acide 12-hydroxystéarique; tels que l'hydroxystéarate d'octyle, et l'octyl-2 dodecyl hydroxystearate; on peut également citer les polyhydroxystéarates oligomères correspondants, notamment ayant un degré de polymérisation de 1 à 10, possédant au moins un OH résiduel; - les esters d'acide lactique, et notamment les lactates d'alkyles en C4-40, tels que le lactate de 2-éthylhexyle, le lactate de diisostéaryle, le lactate d'isostéaryle, le lactate d'isononyle, le lactate d'octyl-2 dodécyle; - les esters d'acide malique, et notamment les malates d'alkyles en C4-40, tels que le malate de diéthyl-2 hexyle, le malate de diisostéaryle, le malate de dioctyl-2 dodécyle; - les esters d'acide citrique, et notamment les citrates d'alkyles en C4-40, tels que le citrate de triisostéaryle, le citrate de triisocétyle et le citrate de tri-isoarachidyle.
(iii) les huiles naturelles, naturelles modifiées, végétales, hydroxylées et notamment : - les esters triglycériques portant un ou plusieurs OH, - l'huile de ricin, hydrogénée ou non, ainsi que ses dérivés notamment issus de la transesterification de l'huile de ricin; comme les produits Polycin M-365 ou Polycin 2525 vendus par Vertellus; - les huiles époxydées modifiées, la modification consistant à ouvrir la fonction époxy pour obtenir un diol, et notamment l'huile de soja modifiée hydroxylée; les huiles de soja hy- droxylées (directement hydroxylées ou d'abord époxydées); et notamment les huiles Agrol 2.0, Agrol 3.0 ou Agrol 7.0 commercialisées par BioBased Technologies, LLC; l'huile Soyol R2-052 de la société Urethane Soy System; les huiles Renuva commercialisées par Dow Chemical; les huiles BioH Polyol 210 et 500 commercialisées par Cargill.
Selon un premier mode de réalisation particulièrement préféré, l'huile susceptible d'être employée pour préparer le composé supramoléculaire dans le cadre de la présente invention est choisie parmi les alcools gras, comprenant 6 à 50 atomes de carbone, linéaires, ramifiés ou cycliques, saturés ou insaturés, comprenant 1 ou plusieurs OH; éventuelle-ment comprenant un ou plusieurs NH2, tels que : - les monoalcools linéaires ou ramifiés en C6-050, notamment en C6-C32, en particulier en C8-C28, saturés ou insaturés, et notamment l'alcool isostéarylique, l'alcool cétylique, l'alcool oléique, l'alcool oléylique, l'alcool isopalmitoylique, le butyl-2 octanol, l'hexyl-2 décanol, l'octyl-2 décanol, l'octyl-2 dodécanol, l'octyl-2 tétradécanol, le décyl-2 tétradécanol, le dodécyl-2 hexadécanol, et notamment les alcools vendus sous la dénomination Jarcol par la société Jarchem Industries, tels que le Jarcol 1-12, le Jarcol 1-16, le Jarcol 1-20 et le Jarcol 1-24; - les diols linéaires ou ramifiés en C6-050, notamment en C6-C40, en particulier en C8-C38, saturés ou insaturés, et notamment ramifié en C32-36, et en particulier le produit commercial Pripol 2033 d'Uniqema; - les triols linéaires ou ramifiés en C6-050, notamment en C6-C32, en particulier en C8- C28, saturés ou insaturés, et notamment le phytantriol;
Selon ce premier mode de réalisation préféré, l'huile susceptible d'être employée pour préparer le composé supramoléculaire dans le cadre de la présente invention est de pré- férence choisie parmi les monoalcools linéaires ou ramifiés en C6-050, notamment en C6-C32, en particulier en C8-C28, saturés ou insaturés, et notamment l'alcool isostéarylique, l'alcool cétylique, l'alcool oléique, l'alcool oléylique, l'alcool isopalmitoylique, le butyl-2 octanol, l'hexyl-2 décanol, l'octyl-2 décanol, l'octyl-2 dodécanol, l'octyl-2 tétradécanol, le décyl-2 tétradécanol, le dodécyl-2 hexadécanol, et notamment les alcools vendus sous la dénomination Jarcol par la société Jarchem Industries, tels que le Jarcol 1-12, le Jarcol I-16, le Jarcol 1-20 et le Jarcol 1-24.
Selon un second mode de réalisation particulièrement préféré, l'huile susceptible d'être employée pour préparer le composé supramoléculaire dans le cadre de la présente inven- tion est choisie parmi les esters entre acide mono-, di- ou tri-carboxylique hydroxylé et monoalcools, et en particulier : - les esters, notamment monoesters, d'acide 12-hydroxystéarique; tels que l'hydroxystéarate d'octyle, et l'octyl-2 dodecyl hydroxystearate; on peut également citer les polyhydroxystéarates oligomères correspondants, notamment ayant un degré de polymé- risation de 1 à 10, possédant au moins un OH résiduel; - les esters d'acide lactique, et notamment les lactates d'alkyles en C4-40, tels que le lactate de 2-éthylhexyle, le lactate de diisostéaryle, le lactate d'isostéaryle, le lactate d'isononyle, le lactate d'octyl-2 dodécyle; - les esters d'acide malique, et notamment les malates d'alkyles en C4-40, tels que le malate de diéthyl-2 hexyle, le malate de diisostéaryle, le malate de dioctyl-2 dodécyle; - les esters d'acide citrique, et notamment les citrates d'alkyles en C4-40, tels que le citrate de triisostéaryle, le citrate de triisocétyle et le citrate de tri-isoarachidyle.
Selon ce second mode de réalisation préféré, l'huile susceptible d'être employée dans le cadre de la présente invention est de préférence choisie parmi les esters entre acide di-carboxylique hydroxylé et monoalcools, et en particulier d'acide malique, et notamment les malates d'alkyles en C4-40, tels que le malate de diéthyl-2 hexyle, le malate de diisostéaryle, le malate de dioctyl-2 dodécyle.
En particulier, lorsque l'on utilise des huiles brillantes, on peut employer les huiles brillantes suivantes, pour lesquelles l'indice de réfraction à 25°C est indiqué entre parenthèses: le polyglycéryl-3-diisostéarate (1,472), le phytantriol (1,467), l'huile de ricin (1,475), l'octyl-2-dodécanol (1,46), l'alcool oléylique (1,461), l'hydroxystéarate d'octyle (1,46), le polyglyceryl-2-isostéarate (1,468), le polyglyceryl-2-diisostearate (1,464), le malate de diisostéa- ryle (1,462), le butyl-2 octanol, l'hexyl-2 décanol (1,45), le décyl-2 tétradécanol (1,457), ainsi que leurs mélanges.
De préférence, les huiles susceptibles d'être employées dans la présente invention pour préparer le composé supramoléculaire sont choisies parmi l'octyl-2-dodécanol, le malate de diisostéaryle, le butyl-2 octanol, l'hexyl-2 décanol, le décyl-2 tétradécanol; l'huile de ricin hydrogénée ou non, ainsi que ses dérivés; l'huile de soja modifiée hydroxylée, et leurs mélanges.
Groupe de Jonction Le groupe de jonction susceptible d'être utilisé pour former le composé supramoléculaire des compositions selon l'invention porte au moins un groupe réactive, notamment isocyanate ou imidazole, susceptible de réagir avec les fonctions réactives, notamment OH et/ou NH2 (NH2 uniquement pour l'imidazole), de l'huile, afin de former une liaison cova- lente, notamment de type uréthanne, entre ladite huile et ledit groupe de jonction.
De façon préférée, le groupe de jonction susceptible d'être utilisé pour former le composé supramoléculaire des compositions selon l'invention porte au moins un groupe réactive, notamment isocyanate.55 Ledit groupe de jonction est capable d'établir des liaisons H avec un ou plusieurs groupes de jonction partenaires, de nature chimique identique ou différente, chaque appariement d'un groupe de jonction faisant intervenir au moins 3 liaisons H (hydrogène), de préférence au moins 4 liaisons H, préférentiellement 4 liaisons H.
Par "groupe de jonction", on entend au sens de l'invention, tout groupe fonctionnel comportant des groupes donneurs ou accepteurs de liaisons H, et capable d'établir au moins trois liaisons H, de préférence au moins 4 liaisons H, préférentiellement 4 liaisons H, avec un groupe de jonction partenaire, identique ou non. Par " groupe de jonction partenaire", on entend au sens de l'invention, tout groupe de jonction pouvant établir des liaisons H avec un ou plusieurs groupes de jonction d'un même ou d'un autre polymère selon l'invention. Les groupes de jonction peuvent être de nature chimique identique ou différente. S'ils sont identiques, ils peuvent alors établir des liaisons H entre eux et sont alors appelés groupes de jonction auto-complémentaires. S'ils sont différents, ils sont choisis de telle façon qu'ils soient complémentaires vis à vis des interactions H.
Ledit groupe de jonction, porteur de groupes isocyanates, peut donc être schématisé (G)-(NCO)p, p étant un entier non nul, de préférence égal à 1 ou 2. I R2N NHùCùNHùR1ù* R2N ''NHùCùNHùR1ù* O O
(I) (II) dans lesquelles : - R1 et R3, identiques ou différents, représentent un radical carboné divalent choisi parmi 25 (i) un groupe alkyle linéaire ou ramifié en C1-C32, (ii) un groupe cycloalkyle en C4-C16 et (iii) un groupe aryle en C4-C16; comprenant éventuellement 1 à 8 hétéroatomes choisis parmi O, N, S, F, Si et P; et/ou éventuellement substitué par une fonction ester, amide ou par un radical alkyle en C,-C12; ou un mélange de ces groupes; - R2 représente un atome d'hydrogène ou un radical carboné, notamment hydrocarboné 30 (alkyle), linéaire, ramifié ou cyclique, saturé ou insaturé, éventuellement aromatique, en C1-C32, pouvant comprendre un ou plusieurs hétéroatomes choisis parmi O, N, S, F, Si et P.
De façon préférée, le groupe de jonction comprend par ailleurs au moins un motif mono-35 valent de formule (I).
Notamment, le radical R1 peut notamment être : - un groupe alkylène divalent, linéaire ou ramifié, en C2-C12, notamment un groupe 1,2-éthylène, 1,6-hexylène, 1,4-butylène, 1,6-(2,4,4-triméthylhexylène), 1,4-(4- 40 méthylpentylène), 1,5-(5-méthylhexylène), 1,6-(6-méthylheptylène), 1,5-(2,2,5- triméthylhexylène), 1,7-(3,7-diméthyloctylène). - un groupe cycloalkylène ou arylène, divalent, en C4-C12, notamment choisi parmi les radicaux suivants ûisophorone-, tolylène, 2-méthyl-1,3-phénylène, 4-méthyl-1,3-phénylène; 4,4'-méthylènebiscyclohexylène; 4,4-bisphénylèneméthylène; ou de structure : Le groupe de jonction comprend par ailleurs au moins un motif monovalent de formule (I) et/ou au moins un motif divalent de formule (Il), telles que ci-dessous définies: O O *ù R3 N * CH2 * Préférentiellement, R1 représente -isophorone-, -(CH2)6- ou 4,4'- méthylènebiscyclohexylène.
Notamment, le radical R2 peut notamment être H, ou bien : - un groupe alkyle en C1-C32, en particulier en C1-C16, voire en C1-C10; - un groupe cycloalkyle en C4-C12 ; - un groupe aryle en C4-C12 ; - un groupe aryl(C4-C12) alkyle en C1-C13 - un groupe alcoxy en C,_C4 ; - un groupe arylalcoxy, en particulier un groupe aryle (C1-C4) alcoxy ; - un hétérocycle en C4-C12 ou une combinaison de ces radicaux, qui peuvent éventuellement être substitués par une fonction amino, ester et/ou hydroxy. De préférence R2 représente H, CH3, éthyle, C13H27, C7H15, phényle, isopropyle, isobutyle, n-butyle, tert-butyle, n-propyle, ou encore -CH(C2H5)(C4H9). De préférence, R3 représente un radical divalent ùR'3-O-C(0)-NH-R'4- dans lequel R'3 et R'4, identiques ou différents, représentent un radical carboné divalent choisi parmi un groupe alkyle linéaire ou ramifié en C1-C32 ou un groupe cycloalkyle en C4-C16 ou un groupe aryle en C4-C16; ou leur mélange. En particulier, R'3 et R'4 peuvent représenter méthylène, 1,2-éthylène, 1,6-hexylène, 1,4- butylène, 1,6-(2,4,4-triméthylhexylène), 1,4-(4-méthylpentylène), 1,5-(5-méthylhexylène); 1,6-(6-méthylheptylène); 1,5-(2,2,5-triméthylhexylène), 1,7-(3,7-diméthyloctylène); 4,4'- méthylènebiscyclohexylène; 2-méthyl-1,3-phénylène; 4-méthyl-1,3-phénylène; 4,41- bisphénylèneméthylène; 1,2-tolylène, 2,4-tolylène, 2,6-tolylène; 1,5- 1,4-tolylène, naphtylène; tétraméthylxylylène; peut isophorone. en C1-C4, notamment 1,2- Tout particulièrement, R'3 représenter un alkylène éthylène. peut être le radical divalent dérivé de l'isophorone. De préférence, R'4 peut représenter de structure : Tout particulièrement, R3 H33H3 * CH3 * O De façon particulièrement préférée, dans la formule (I), on peut avoir : - R1 = -isophorone-, R2 = méthyl, ce qui conduit au motif de formule : Par ùisophorone-, on entend le radical divalent de structure : CH3 5 10 15 NH 0 H3C CH3 - R, = -(CH2)6-, R2 = méthyl, ce qui conduit au motif de formule : H H 1 ONN NH O CH3 - R, = -(CH2)6-, R2 = isopropyl, ce qui conduit au motif de formule : H H 1 ONN NH O H3C CH3 - R, = 4,4'-méthylènebiscyclohexylène et R2 = méthyle, ce qui conduit au motif de for-mule : CH3 De façon particulièrement préférée, dans la formule (Il), R1 représente le radical - isophorone-, R2= méthyle et R3=-(CH2)2000-NH-isophorone-, ce qui conduit au motif divalent de formule : NrH O ONN I H H x * O N O O Les groupes de jonction porteurs d'une seule fonction isocyanate peuvent être de for-mule : O IN R2NNHùCùNHùR1ù NCO H I I 0
dans laquelle R1 et R2 sont tels que définis ci-dessus; et en particulier : - R1 représente -isophorone-, -(CH2)6-, -CH2CH(CH3)-CH2-C(CH3)2-CH2-CH2, 4,4'-10 méthylènebiscyclohexylène, 2-méthyl-1,3-phénylène; et/ou - R2 représente H, CH3, éthyle, C13H27, C7H15, phényle, isopropyle, isobutyle, n-butyle, tert-butyle, n-propyle, ou encore -CH(C2H5)(C4H9). De manière préférée, les groupes de jonction peuvent être choisis parmi les groupes sui-15 vants : X H H H H 1 1 O N NH O CH3 NCO NH O H3C CH3 H H 1 I O NN NH O H3C CH3 NCO CH3 H H Les groupes de jonction porteurs de deux fonctions isocyanate peuvent être de formule : O OCN ù R3\~\ 1 IN R2N H N H /NHùR1ùNCO C I I o dans laquelle R1, R2 et R3 sont tels que définis ci-dessus, et en particulier : - R1 représente -isophorone-, -(CH2)2-, -(CH2)6-, -CH2CH(CH3)-CH2-C(CH3)2-CH2-CH2, 4,4'-méthylènebiscyclohexylène, 2-méthyl-1,3-phénylène; et/ou - R2 représente H, CH3, éthyle, C13H27, C7H15, phényle, isopropyle, isobutyle, n-butyle, tert-butyle, n-propyle, ou encore -CH(C2H5)(C4H9); et/ou - R3 représente un radical divalent ûR'3-O-C(0)-NH-R'4- dans lequel R'3 et R'4, identiques ou différents, représentent un radical carboné divalent choisi parmi un groupe alkyle linéaire ou ramifié en C1-C3o ou un groupe cycloalkyle en C4-C12 ou un groupe aryle en C4-C12; ou leur mélanges; et notamment R'3 représente un alkylène en C1-C4, notamment 1,2-éthylène et R'4 représente le radical divalent dérivé de l'isophorone.
Un groupe de jonction tout particulièrement préféré est celui de formule : x O N O N NCO N H O 13 O OCN X ^, N N'0 H H Parmi les groupes de jonction portant un groupe imidazole, on peut citer le composé sui-20 vant : CH3 H N O H Selon un mode particulier de réalisation de l'invention, les groupes de jonction peuvent être fixés sur l'huile via la fonctionnalisation du groupe de jonction par un isocyanate ou ONNNN I imidazole. Selon un autre mode de réalisation, il est possible de faire la réaction inverse en préfonctionnalisant l'huile par un diisocyanate.
Ainsi que mentionné ci-dessus (1er mode), le composé selon l'invention peut donc résulter de la réaction chimique entre une huile (HB)-(OH)m(NH2)n et un groupe de jonction (G)-(NCO)p ou (G)-(imidazole)p. De préférence, l'huile ne comprend que des fonctions hydroxyles et le groupe de jonction comprend 1 ou 2 fonctions isocyanate, ce qui conduit aux réactions suivantes : (HB)-(OH)m + OCN-(G)-NCO (HB)-OC(0)NH-(G)-NHC(0)-(HB) (HB)-(OH)m + (G)-NCO (HB)-OC(0)NH-(G) avec m = entier supérieur ou égal à 1.
De préférence, le taux de greffage des OH libres de l'huile est compris entre 1 et 100%, notamment entre 20 et 99%, et mieux entre 50 et 95%; de préférence, ce taux est de 100% (la totalité des OH libres est fonctionnalisé par un groupe de jonction), notamment lorsque l'huile ne comporte initialement qu'un fonction OH.
Le composé supramoléculaire selon l'invention peut être préparé par les procédés usuel- lement employés par l'homme du métier pour former une liaison uréthanne, entre les fonctions OH libres de l'huile et les fonctions isocyanates portées par le groupe de jonction. A titre d'illustration, un procédé général de préparation consiste à : - s'assurer que l'huile à fonctionnaliser ne comporte pas d'eau résiduelle, - chauffer l'huile comportant au moins une fonction réactive, notamment OH, à une tempé- rature pouvant être comprise entre 60°C et 140°C; - ajouter le groupe de jonction portant les fonctions réactives, notamment isocyanate; - éventuellement agiter le mélange, sous atmosphère contrôlée, à une température de l'ordre de 100-130°C; pendant 1 à 24 heures; - suivre par spectroscopie infrarouge, la disparition de la bande caractéristique des iso- cyanates (compris entre 2500 et 2800 cm-1) de manière à arrêter la réaction à la disparition totale du pic, puis à laisser revenir à température ambiante le produit final. La réaction peut être effectuée en présence d'un solvant, notamment la méthyltétrahydrofurane, le tétrahydrofurane, le toluène ou l'acétate de butyle; la réaction peut aussi être effectuée sans solvant, l'huile pouvant alors servir de solvant.
Il est également possible d'ajouter un catalyseur conventionnel de la formation de liaison uréthane. A titre d'exemple, on peut citer le dilaurate dibutyle étain. Le composé supramoléculaire peut au final être lavé et séché, voire purifié, selon les connaissances générales de l'homme du métier.
Selon le 2eme mode de réalisation, la réaction peut comporter les étapes suivantes: (i) fonctionnalisation de l'huile par un diisocyanate selon le schéma réactionnel : (HB)-OH (1 éq.) + NCO-X-NCO (1 éq.) ù (HB)-OC(0)-NH-X-NCO puis (iia) soit réaction avec la 6-méthylisocytosine : Me Me (HB)-O-C(0)-N-X-NCO + N NH^NO O N (HB)-O-C(0)NùXNN~\N~~O ou (iib) soit réaction avec la 5-hydroxyéthyl-6-méthyl isocytosine : 5 10 Me (HB)-O-C(0)-N-X-NCO + N\OH NH2 NO Me \v v O\ N,x,N(0)C-O-(HB) O N (HB)-O-C(0)NùX, O NNNO Une illustration d'une telle réaction est donnée dans FOLMER et al., Adv. Mater, 12, 874-78 (2000). Les composés supramoléculaire des compositions selon l'invention peuvent notamment répondre aux structures suivantes : - l'octyldodécanol fonctionnalisé uréidopyrimidone de structure : Ou bien de structure : 15 O N N N N O 1 1 H H 15 - le malate de diisostéaryle fonctionnalisé uréidopyrimidone de structure : O IOI NOUN
isostéaryl ùO` IOI 000 H H 1 isostéaryl Ou bien de structure : O O N' isostéarylùO O1N NÂN/N/O I I O x H H - l'huile de ricin fonctionnalisée uréidopyrimidone de structure : O O isostéaryl isostéaryl X 00, ,0 0 'N)O Oùisostéaryl Ou bien de structure : OH - l'hexyl-2 décanol fonctionnalisé uréidopyrimidone de structure : Ou bien de structure : o N - le décyl-2 tétradécanol fonctionnalisé uréidopyrimidone de structure : Ou bien de structure : O Nid NNÂN)NO .K H H On a constaté que l'utilisation des composés selon l'invention peut conduire, après application de la composition sur les matières kératiniques, à la formation d'un polymère su- 10 pramoléculaire sous forme de réseau réticulé physiquement, notamment à travers des liaisons hydrogène, se présentant généralement sous forme de film, et ayant une très bonne résistance mécanique. Par "polymère supramoléculaire", on entend au sens de l'invention, une chaîne ou un ré-seau polymérique formé de l'assemblage de composés non polymères selon l'invention 15 avec au moins un autre composé non polymère selon l'invention, identique ou différent, chaque assemblage comprenant au moins une paire de groupes de jonction appariés, identiques ou différents. Par "paire de groupes de jonction appariés", on entend au sens de l'invention, deux groupes de jonction dont chacun peut être porté ou non par un même composé selon l'inven-20 tion, les deux groupes étant reliés ensemble via 4 liaisons H. Ainsi le polymère supramoléculaire présentera des points de réticulation physique assurés par les liaisons H entre ces paires de groupes de jonction. La réticulation physique assurera le maintien et la persistance de l'effet cosmétique de manière analogue à la réticulation chimique, tout en permettant la réversibilité, c'est-à-dire la possibilité d'éliminer 25 totalement le dépôt.
De préférence, le composé supramoléculaire selon l'invention présente une viscosité, mesurée à 125°C, comprise entre 30 et 6000 mPa.s, notamment entre 150 et 4000 mPa.s, voire entre 500 et 3500 mPa.s et encore mieux entre 750 et 3000 mPa.s. 30 La masse moléculaire moyenne en nombre (Mn) du composé supramoléculaire selon l'in- vention est de préférence comprise entre 180 à 8000, de préférence 200 à 6000, voire de 300 à 4000, et encore mieux de 400 à 3000, préférentiellement de 500 à 1500.
Le composé supramoléculaire selon l'invention est avantageusement soluble dans les mi- lieux huileux cosmétiques usuellement employés, et notamment dans les huiles végétales, les alcanes en C6-C32, les esters gras en C8-C32, les esters courts en C2-C7, les alcools gras en C8-C32, et plus particulièrement dans les milieux comprenant au moins de l'isododécane, du Parléam, de l'isononanoate d'isononyle, de l'octyldodécanol, du benzoate d'alkyle en C12-C15, de l'acétate de butyle, de l'acétate d'éthyle, seul ou en mé- lange. Par soluble, on entend que le composé forme une solution limpide dans au moins un solvant choisi parmi l'isododécane, le Parléam, l'isononanoate d'isononyle, l'octyldodécanol, le benzoate d'alkyle en C12-C15, l'acétate de butyle, l'acétate d'éthyle, à raison d'au moins 50% en poids, à 25°C.
Les composés supramoléculaires selon l'invention peuvent être utilisés avantageusement dans une composition cosmétique, qui comprend par ailleurs un milieu cosmétiquement acceptable, c'est-à-dire compatible avec les matières kératiniques telles que la peau du visage ou du corps, les cils, les sourcils, les lèvres et les ongles.
De façon préférée, la composition selon l'invention comprend une teneur en composé supramoléculaire comprise entre 5 % et 95 % en poids, de préférence entre 10 % et 95 % en poids, et mieux de préférence entre 20 % et 90 % en poids par rapport au poids total de la composition.
A titre d'exemple de composés supramoléculaires pouvant être utilisés dans les compositions selon l'invention on peut citer les composés suivants :
Composé 1 : Octvldodécanol fonctionnalisé uréidopvrimidone On met en solution 70 g d'uréidopyrimidone diisocyanate dans la méthyl tétrahydrofurane, sous argon. On ajoute 80,3 g d'octyldodécanol dans 100 ml de dichlorométhane, sous argon, puis 15 microlitre de dilaurate dibutyl étain (catalyseur). Le mélange réactionnel est chauffé à reflux jusqu'à disparition du pic de l'isocyanate (2250-2265 cm-1) en spectromé- 35 trie I R. L'octyldodécanol en excès est éliminé par lavage successif du milieu réactionnel avec du méthanol, suivi de trois extractions et séchage sur MgSO4. Après évaporation de la phase organique, on obtient 103 g d'une poudre légèrement jaune, caractérisée par RMN 1H (structure conforme). 40 On peut véhiculer cette poudre dans l'isododécane, par exemple à une concentration de 10% en poids; cette concentration peut aller notamment jusqu'à 60% en poids dans l'isododécane, qui conduit alors à une solution visqueuse mais toujours manipulable. On constate donc que par fonctionnalisation par une uréidopyrimidone, on passe d'une huile 45 liquide à un solide, véhiculable dans l'isododécane à des concentrations supérieures à 25 30 %.
Lorsque l'on applique une solution comprenant 50% en poids de composé dans l'isododécane, après évaporation du solvant, on obtient un film transparent et brillant, qui présente une bonne adhérence par fragmentation, et une faible résistance aux frottements.
Composé 2 : Malate de diisostéarvle fonctionnalisé par une uréidopvrimidone On sèche sous pression réduite 15 g (0.0234 mole) de malate de diisostéaryle, à 80°C pendant 4 heures. On ajoute 7,21 g (0.0117 mole) d'uréidopyrimidone diisocyanate en solution dans 60 ml de méthyltétrahydrofurane, et 12 µl de catalyseur dilaurate dibutyle d'étain. Le mélange est chauffé à 95°C, sous argon, pendant 26 heures (disparition de la bande caractéristique des isocyanates par spectroscopie IR). On ajoute 20 ml de méthyltétrahydrofurane au mélange réactionnel, puis on filtre sur célite. Après évaporation du solvant et séchage sous pression réduite, on obtient un solide jaune pâle.
Composé 3 : Huile de ricin fonctionnalisée par une uréidopvrimidone On sèche sous pression réduite 15 g d'huile de ricin (0.016 mole), à 80°C pendant 4 heures. On ajoute une solution de 4,9 g d'uréidopyrimidone diisocyanate (0.008 mole) dans 60 ml de méthyltétrahydrofurane, et 12 µl de catalyseur dilaurate dibutyle d'étain. Le mé- lange est chauffé à 90°C pendant 19 heures (disparition complète de la bande caractéristique des isocyanate par spectroscopie IR). A la fin de la réaction, le solvant est évaporé et le produit résultant est séché sous pression réduite, à 35°C pendant une nuit. On obtient une gomme solide jaune pâle.
Composé 4 (comparatif à l'exemple 1): Octvldodécanol fonctionnalisé par l'isophorone 19 OH+ 1 H On sèche sous pression réduite 10 g d'octyldodécanol, à 80°C pendant 2 heures, puis on ajoute 3,72 g d'isophorone diisocyanate et 25 microlitre de catalyseur dilaurate dibutyl étain. Le mélange est chauffé à 95°C, sous argon. La disparition de l'isocyanate est suivie par spectroscopie IR (disparition de la bande entre 2250 et 2265cm-', après 12 heures de chauffage). On obtient une huile visqueuse, ne formant pas un matériau cohésif.
Composé 5 (comparatif à l'exemple 2): Malate de diisostéarvle fonctionnalisé par l'isophorone On sèche sous pression réduite 10 g (0.0159 mole) de malate de diisostéaryle, à 80°C pendant 3 heures. On ajoute sous argon 1,77 g (0.079 moles) d'isophorone diisocyanate et 2,5 µl de catalyseur (dilaurate dibutyle d'étain), et le mélange réactionnel est chauffé à 95°C pendant 16 heures. Au cours de la réaction, la viscosité du milieu réactionnel augmente. La réaction est arrêtée après disparition du pic caractéristique des isocyanates par spectroscopie I R.
Composé 6 (comparatif à l'exemple 3): Huile de ricin fonctionnalisée par l'isophorone On sèche sous pression réduite 15 g (0.016 mole) d'huile de ricin, à 80°C pendant 6 heures. On ajoute 1,78 g(0.008 mole) d'isophorone diisocyanate et 12 pl de catalyseur dilaurate dibutyle d'étain, et le mélange est chauffé à 90°C pendant 16 heures. La réaction est arrêtée après disparition du pic caractéristique des isocyanates par spectroscopie IR.
Exemple 7 Les composés préparés aux exemples 1 à 6 sont observés, visuellement et au toucher, et les résultats sont récapitulés dans le tableau suivant : Aspect physique Aspect du film * du composé Indice de réfraction** (Indice réfraction huile non fonctionnalisée) Composé 1 Solide jaune Film brillant et collant, qui ne démouille pas; dé- pôt homogène. Sans transfert au doigt. 1,488 (1,46) Composé 4 Huile visqueuse Film qui démouille; dépôt non homogène. Trans- transparente fert au doigt. 1,474 (1,46) (comparatif) Composé 2 Solide jaune Film brillant peu collant, qui ne démouille pas; dépôt homogène. Sans transfert au doigt. 1,478 (1,462) Composé 5 Huile visqueuse Film brillant collant qui démouille; dépôt non ho- transparente mogène. Sans transfert au doigt. 1,4598 (1,462) (comparatif) Composé 3 Solide jaune Film brillant légèrement collant; comportement (gomme solide) d'un solide fragile, qui ne démouille pas; dépôt homogène. Sans transfert au doigt. 1,4852 (1,48) Composé 6 Huile visqueuse Film brillant très collant, qui démouille; dépôt non transparente homogène. Transfert au doigt. 1,4813 (1,48) (comparatif) * Les films sont formés à partir d'une solution à 40% en poids du composé, soit dans l'isododécane pour les exemples 1-2 et 4-5, soit dans le tétrahydrofurane pour les composés 3 et 6. ** Pour les mesures d'indices de réfraction, tous les films sont formés à partir d'une solution à 40% en poids du composé dans le tétrahydrofurane; l'indice de réfraction est mesu-20 ré après évaporation du solvant.
Le film qui ne démouille pas signifie qu'après dépôt et évaporation du solvant, on obtint un 'vrai' film continu homogène. Le film démouille signifie qu'après dépôt et évaporation du solvant, on obtient un film 'à 25 trous', non homogène, non continu.
On effectue sur ces dépôts/films un test au tribomètre : les films sont formés à partir d'une solution à 40% en poids dans le tétrahydrofurane, par dépôt sur un élastomère nitrile, puis séchage pendant 24 heures à 25°C. 30 Les essais sont réalisés à l'aide d'un tribomètre CSEM muni d'une bille de diamètre 6mm. Cette bille soumise à une charge de 0,15N frotte de manière répétée sur un film (de 10 à 20 pm d'épaisseur). La vitesse de rotation du disque est fixée à 6,3 cm/s ce qui corres-20 pond à une fréquence d'un tour par seconde. L'essai est terminé lorsque l'usure est totale, ou bien stoppé après 1000 tours de sollicitation. Observations Composé 1 Le film reste inchangé (homogène) pendant 300 tours (pas d'usure ni de casse); le matériau est donc cohésif; comportement d'un solide. Composé 4 Pas de mesure possible : le matériau est sans cohésion, il se com- porte comme une huile (comparatif) Composé 2 Le film reste inchangé (homogène) pendant 1000 tours (pas d'usure ni de casse); le matériau est donc très cohésif et ne s'use pas. Composé 5 Le matériau se comporte comme une huile, avec un effet de beurrage quand il est soumis au test d'usure. (comparatif) Exemple 3 Le film est un peu cassant mais reste inchangé pendant 10 tours; après 10 tours, l'usure est plus nette; ceci traduit le comportement d'un solide Composé 6 Pas de mesure possible car pas de film formé ab initio : comporte- ment d'une huile (comparatif) On constate donc qu'il n'y a pas de diminution de l'indice de réfraction après fonctionnalisation. L'huile garde son caractère brillant, même fonctionnalisée. On constate également que la fonctionnalisation par des ureïdopyrimidones conduit à des films plus ou moins collants, mais qui ne transfèrent pas au doigt, contrairement aux films comparatifs. De plus, et principalement, dans le cas des huiles fonctionnalisés par de l'isophorone (comparatives), les films démouillent et ne forment pas un dépôt homogène. A l'opposé, les films obtenus à partir des composés selon l'invention ne démouillent pas et sont homogènes et cohésifs. Les résultats au tribomètre confirment les propriétés de cohésion obtenues avec les composés de l'invention La fonctionnalisation par des ureïdopyrimidones conduit donc à des matériaux suffisam- ment cohésifs pour pouvoir assurer une rémanence du dépôt, par ailleurs brillant, supérieure à l'état de l'art (isophorone). En résumé: la brillance est constante, le cohésif du dépôt amélioré et donc sa tenue améliorée.
Composé 8: Malate de diisostéarvle fonctionnalisé par une uréidopvrimidone
Protocole de préparation Préparation de l'huile supramoléculaire : Malate de diisostéaryle fonctionnalisé par une uréidopyrimidone 150g de malate de diisostéaryle ont été coulés pendant 1 h20 à 50°C dans une solution de 57.4g isophorone diisocyanate et de 38.18g de méthyl isocytosine, en présence du catalyseur dibutyletain dilaurate avec contrôle de l'exothermie et sous atmosphère inerte. L'agitation a été maintenue 55 minutes à 50°C après la coulée, puis 50m1 propylène carbonate ont été ajoutés. La température du milieu réactionnel a ensuite été montée à 140 °C avec un temps de contact de 2 heures, sous agitation. La température du milieu réactionnel a ensuite été abaissée à 70°C et neutralisée par ajout de 30 ml d'éthanol et l'agitation a été poursuivie pendant une heure. Après ajout de 780m1 d'acétate d'éthyle, le milieu a été filtré sur célite. Après évaporation de l'acétate d'éthyle, 400m1 de cyclohexane ont été ajoutés au milieu réactionnel, et le mélange a été lavé 2 fois avec un mélange H2O/EtOH (2v/1v) saturé en NaCl. La phase organique a ensuite été strippée à l'isododécane, jusqu'à un liquide visqueux, correspondant à la molécule désirée à 50% d'extrait sec. Pour les besoins de la formulation cet ex-trait sec peut éventuellement être modifiée en rajoutant de l'isododécane au milieu.40 Composé 9 : 2-hexyl décanol fonctionnalisé uréidopyrimidone O O Nom\ N NÂNO l' lC I I H H On chauffe 126,4 g de 2-hexyl décanol à 60°C sous pression réduite pendant 2 heures pour le sécher. Après 2 heures, l'huile est laissée revenir à 20°C sous argon, puis addi- tionnée lentement, en 5 heures, à un mélange de 116 g d'isophorone diisocyanate et 55 mg de catalyseur DBTL à 50°C. A la fin de l'addition, la température du mélange réactionnel est portée à 110°C, puis on ajoute 90 ml de propylène carbonate, et 78,4 g de 6-méthyl isocytosine, ce qui conduit à une suspension blanche et homogène. L'agitation est maintenue à 110°C pendant deux heures et la disparition de l'isocyanate est suivie par spectroscopie Infrarouge. On observe la disparition du pic à 2250cm-'. En parallèle, la disparition de l'amine provenant de l'isocytosine est suivie par un dosage d'amines. A la fin de la réaction, on ajoute 500 g d'isododécane, à 100°C, et on obtient une solution jaune pâle légèrement turbide. On ajoute 300 ml d'éthanol et l'agitation est maintenue pendant 2 heures. Après filtration sur célite, le mélange réactionnel est strippé à l'isododécane à 80°C afin d'éliminer l'alcool et le propylène carbonate. On obtient au final le produit désiré véhiculé dans l'isododécane à 50% d'extrait sec. Le produit est notamment caractérisé par HPLC et GPC (structure confirmée).
Composé 10 : 2-hexyl décanol fonctionnalisé uréidopyrimidone On chauffe 173,1 g de 2-hexyl décanol à 60°C sous pression réduite pendant 2 heures pour le sécher. Après 2 heures, l'huile est laissée revenir à 50°C sous argon, puis additionnée lentement, en 5 heures, à un mélange de 158,7 g d'isophorone diisocyanate et 77 mg de catalyseur DBTL à 50°C. A la fin de l'addition, la température du mélange réaction- 25 nel est portée à 110°C, puis on ajoute 150 ml de propylène carbonate, et 60,3 g de 5-hydroxyéthyl-6-méthyl isocytosine, ce qui conduit à une suspension blanche et homogène. L'agitation est maintenue à 110°C pendant cinq heures et la disparition de l'isocyanate est suivie par spectroscopie Infrarouge. On observe la disparition du pic à 2250cm-'. A la fin de la réaction, on diminue la température du milieu réactionnel à 100°C, et on ajoute 780 30 g d'isododécane; on obtient un mélange turbide légèrement jaune. On ajoute 100 ml d'éthanol et l'agitation est maintenue pendant 2 heures. Après filtration sur célite, le mélange réactionnel est strippé à l'isododécane à 80°C afin d'éliminer l'alcool et le propylène carbonate. On obtient au final le produit désiré véhiculé dans l'isododécane à 50% d'extrait sec. Le 35 produit est notamment caractérisé par HPLC et GPC (structure confirmée).
Composé 11 : 2-décyl tétradécanol fonctionnalisé uréidopyrimidone On chauffe 126 g de 2-décyl tétradécanol à 100°C sous pression réduite pendant 4 heures pour le sécher. Après 2 heures, l'huile est additionnée, en 4 heures, à 50°C et sous 40 argon, à un mélange de 94,7 g d'isophorone diisocyanate et de catalyseur DBTL (qs). Un suivi par dosage d'isocyanate permet de suivre la réaction; à la demi-équivalence, on ajoute 126 g de propylène carbonate et 53,3 g de 6-méthyl isocytosine. L'agitation et le chauffage sont maintenus à 100°C pendant 16 heures et la disparition de l'isocyanate est20 suivie par spectroscopie Infrarouge. On observe la disparition du pic à 2250cm-'. En parallèle, la disparition de l'amine provenant de l'isocytosine est suivie par un dosage d'amines. A la fin de la réaction, on ramène la température à 50°C, on ajoute 100 ml d'éthanol et on maintient l'agitation pendant 5 h. Après filtration sur célite et stripping à l'isododécane, on obtient le produit désiré véhiculé dans l'isododécane à 50% d'extrait sec. Le produit est notamment caractérisé par GPC et HPLC couplée à un spectre de masse.
Composé 12 : Jarcol 24 (J24) fonctionnalisé uréidopyrimidone 200g de Jarcol 1-24 sont coulés à 50°C dans l'IPDI (1,1eq. IPDI) en présence du catalyseur, avec contrôle de l'exothermie et sous atmosphère inerte. L'agitation est maintenue après coulée, 30 minutes à 50°C.1.3 équivalent de Méthylisocytosine (MIC) sont ensuite ajouté au mélange, suivi de l'ajout de 100 ml de propylène carbonate. La température du milieu réactionnel est ensuite montée à 140 °C, avec un temps de contact de 1h à 140°C. La disparition des fonctions isocyanates est suivi par spectroscopie infra rouge, puis la température du milieu est descendu à 70°Csuivi de l'ajout de 30m1 d'éthanol et une agitation pendant 1h. Après addition d'acétate d'éthyl, le milieu est filtré sur papier filtre. Après évaporation de l'acétate d'éthyle, du cyclohexane est additionné, suivi de 5 lavages avec un mélange eau saturée en NaCl/éthanol 2V/1V). La phase organique est ensuite séchée sur Na2SO4, filtrée et strippée à l'isododécane. On obtient alors une solution à 50% d'ex-trait sec d'huile fonctionnalisée par une uréidopyrimidone.
Composé 13 : Jarcol 20 (J20) fonctionnalisé uréidopyrimidone 180g de Jarcol 1-20 sont coulés à 50°C dans l'IPDI (1,leq. IPDI) en présence du catalyseur) avec contrôle de l'exothermie et sous atmosphère inerte. L'agitation est maintenue 30 minutes à 50°C. 1.3équivalent de MIC sont additionnés au milieu réactionnel suivi de l'ajout de 100m1 de propylène carbonate La température du milieu réactionnel est ensuite montée à 140 °C, et l'agitation est main-tenue 1 heure à 140°C.Le suivi de la réaction se faite par spectroscopie infra-rouge, avec suivi de la diminution du pic caractéristique de la fonction isocyanate. Diminution de la température à 70°C puis ajout de 30m1 d'éthanol etagitation pendant 1h. Après addition d'acétate d'éthyl, le milieu est filtré sur papier filtre. Après évaporation de l'acétate d'éthyle, du cyclohexane est additionné, suivi de 5 lavages avec un mélange eau saturée en NaCl/éthanol 2V/1V). La phase organique est ensuite séchée surNa2SO4, filtrée et strippée à l'isododécane. On obtient alors une solution à 50% d'extrait sec d'huile fonctionnalisée par une uréidopyrimidone.
De façon préférée, la composition selon l'invention comprend une teneur en composé supramoléculaire comprise entre 5 % et 95 % en poids, de préférence entre 10 % et 95 0/0 en poids, et mieux de préférence entre 20 % et 90 % en poids par rapport au poids total de la composition .
Ingrédient additionnel
La composition selon lin'vention comprend au moins un ingrédient additionnel choisi de préférence parmi : - les élastomères siliconés, - les résines siliconées, - les polycondensats susceptible d'être obtenu par réaction: • d'un tétraol ayant de 4 à 10 atomes de carbone ; • d'un acide saturé monocarboxylique, linéaire ou ramifié, ayant de 9 à 23 atomes de carbone ; • d'un diacide carboxylique cyclique ayant de 6 à 12 atomes de carbone ; et • d'un acide monocarboxylique aromatique ayant de 7 à 11 atomes de carbone, - les polymères filmogènes, de préférence choisi parmi le groupe comprenant : • un copolymère éthylénique séquencé filmogène, • un polymère vinylique comprenant au moins un motif dérivé de dendrimère carbo- siloxane, • une dispersion de particules de d'homopolymère ou de copolymère radicalaire, acrylique ou vinylique dispersées dans ladite phase grasse liquide, - les polymères semi-cristallins, - les agents épaississants comprenant au moins un groupe, de préférence au moins deux groupes, capable d'établir des interactions hydrogène choisi parmi •les agents épaississants polymèriques et •les organogélateurs.
Elastomères Siliconés : Selon un mode de réalisation ; la composition selon l'invention comprend en tant qu'ingrédient additionnel au moins un élastomère siliconé (également appelé élastomère d'organopolysiloxane) associé audit composé A décrit précédemment. Ces élastomères particuliers, lorsqu'ils sont en association avec les résines selon l'invention, peuvent permettre d'obtenir des propriétés de non collant et de confort (souplesse du dépôt) des dépôts des compositions les comprenant.
Par « élastomère d'organopolysiloxane » on entend un organopolysiloxane souple, déformable ayant des propriétés viscoélastiques et notamment la consistance d'une éponge ou d'une sphère souple. Son module d'élasticité est tel que ce matériau résiste à la dé-formation et possède une capacité limitée à l'extension et à la contraction. Ce matériau est capable de retrouver sa forme originelle suite à un étirement. L'organopolysiloxane réticulé élastomère peut être obtenu par réaction d'addition réticulation de diorganopolysiloxane contenant au moins un hydrogène lié au silicium et de dior- ganopolysiloxane ayant des groupements à insaturation éthylénique liés au silicium, notamment en présence de catalyseur platine ; ou par réaction de condensation réticulation déhydrogénation entre un diorganopolysiloxane à terminaisons hydroxyle et un diorganopolysiloxane contenant au moins un hydrogène lié au silicium, notamment en présence d'un organoétain ; ou par réaction de condensation réticulation d'un diorganopolysiloxane à terminaisons hydroxyle et d'un organopolysilane hydrolysable ; ou par réticulation thermique d'organopolysiloxane, notamment en présence de catalyseur organopéroxyde ; ou par réticulation d'organopolysiloxane par radiations de haute énergie telles que rayons gamma, rayons ultraviolet, faisceau électronique. De préférence, l'élastomère d'organopolysiloxane réticulé est obtenu par réaction d'addi- tion réticulation (A) de diorganopolysiloxane contenant au moins deux hydrogènes liés chacun à un silicium, et (B) de diorganopolysiloxane ayant au moins deux groupements à insaturation éthylénique liés au silicium, notamment en présence (C) de catalyseur platine, comme par exemple décrit dans la demande EP-A-295886. En particulier, l'elastomère d'organopolysiloxane peut être obtenu par réaction de dimé- thylpolysiloxane à terminaisons diméthylvinylsiloxy et de méthylhydrogénopolysiloxane à terminaisons triméthylsiloxy, en présence de catalyseur platine. Le composé (A) est le réactif de base pour la formation d'organopolysiloxane élastomère et la réticulation s'effectue par réaction d'addition du composé (A) avec le composé (B) en présence du catalyseur (C).
Le composé (A) est en particulier un organopolysiloxane ayant au moins deux atomes d'hydrogène liés à des atomes de silicium distincts dans chaque molécule. Le composé (A) peut présenter toute structure moléculaire, notamment une structure chaîne linéaire ou chaîne ramifiée ou une structure cyclique. Le composé (A) peut avoir une viscosité à 25 °C allant de 1 à 50 000 centistokes, notam- ment pour être bien miscible avec le composé (B).
Les groupes organiques liés aux atomes de silicium du composé (A) peuvent être des groupes alkyles tels que méthyle, éthyle, propyle, butyle, octyle ; des groupes alkyles substitués tels que 2-phényléthyl, 2-phénylpropyl, 3,3,3-trifluoropropyl ; des groupes aryles tels que phényle, tolyle, xylyle ; des groupes aryles substitués tels que phényléthyl ; et des groupes hydrocarbonés monovalents substitués tels qu'un groupe époxy, un groupe ester carboxylate, ou un groupe mercapto. Le composé (A) peut ainsi être choisi parmi les méthylhydrogénopolysiloxanes à terminai-sons triméthylsiloxy, les copolymères diméthylsiloxane-méthylhydrogénosiloxane à terminaisons triméthylsiloxy, les copolymères cycliques diméthylsiloxane- méthylhydrogénosiloxane. Le composé (B) est avantageusement un diorganopolysiloxane ayant au moins deux groupes alkényles inférieurs (par exemple en C2-C4) ; le groupe alkényle inférieur peut être choisi parmi les groupes vinyle, allyle, et propényle. Ces groupements alkényles inférieurs peuvent être situés en toute position de la molécule organopolysiloxane mais sont de préférence situés aux extrémités de la molécule organopolysiloxane. L'organopolysiloxane (B) peut avoir une structure à chaîne ramifiée, à chaîne linéaire, cyclique ou en réseau mais la structure en chaîne linéaire est préférée. Le composé (B) peut avoir une viscosité allant de l'état liquide à l'état de gomme. De préférence, le composé (B) a une viscosité d'au moins 100 centistokes à 25 °C.
Outre les groupes alkényle précités, les autres groupes organiques liés aux atomes de silicium dans le composé (B) peuvent être des groupes alkyles tels que méthyle, éthyle, propyle, butyle ou octyle ; des groupes alkyles substitués tels que 2-phényléthyle, 2-phénylpropyle ou 3,3,3-trifluoropropyle ; des groupes aryles tels que phényl, tolyl ou xylyl ; des groupes aryles substitués tels que phényléthyle ; et des groupes hydrocarbonés mo- novalents substitués tels qu'un groupe époxy, un groupe ester carboxylate, ou un groupe mercapto. Les organopolysiloxanes (B) peuvent être choisis parmi les méthylvinylpolysiloxanes, les copolymères méthylvinylsiloxane-diméthylsiloxane, les diméthylpolysiloxanes à terminai-sons diméthylvinylsiloxy, les copolymères diméthylsiloxane-méthylphénylsiloxane à termi- naisons diméthylvinylsiloxy, les copolymères diméthylsiloxane-diphénylsiloxaneméthylvinylsiloxane à terminaisons diméthylvinylsiloxy, les copolymères diméthylsiloxaneméthylvinylsiloxane à terminaisons triméthylsiloxy, les copolymères diméthylsiloxaneméthylphénylsiloxane-méthylvinylsiloxane à terminaisons triméthylsiloxy, les méthyl(3,3,3-trifluoropropyl)polysiloxane à terminaisons diméthylvinylsiloxy, et les copolymères dimé- thylsiloxane-méthyl(3,3,3-trifluoropropyl)siloxane à terminaisons diméthylvinylsiloxy. En particulier, l'organopolysiloxane élastomère peut être obtenu par réaction de diméthylpolysiloxane à terminaisons diméthylvinylsiloxy et de méthylhydrogénopolysiloxane à terminaisons triméthylsiloxy, en présence de catalyseur platine. Avantageusement, la somme du nombre de groupements éthyléniques par molécule du composé (B) et du nombre d'atomes d'hydrogène liés à des atomes de silicium par molécule du composé (A) est d'au moins 5. Il est avantageux que le composé (A) soit ajouté en une quantité telle que le rapport moléculaire entre la quantité totale d'atomes d'hydrogène liés à des atomes de silicium dans le composé (A) et la quantité totale de tous les groupements à insaturation éthylénique dans le composé (B) soit compris dans la gamme de 1,5/1 à 20/1. Le composé (C) est le catalyseur de la réaction de réticulation, et est notamment l'acide chloroplatinique, les complexes acide chloroplatinique-oléfine, les complexes acide chloroplatinique-alkenylsiloxane, les complexes acide chloroplatinique-dicétone, le platine noir, et le platine sur support.
Le catalyseur (C) est de préférence ajouté de 0,1 à 1000 parts en poids, mieux de 1 à 100 parts en poids, en tant que métal platine propre pour 1000 parts en poids de la quantité totale des composés (A) et (B). L'élastomère est avantageusement un élastomère non émulsionnant. Le terme « non émulsionnant » définit des élastomères organopolysiloxane ne contenant pas de chaîne hydrophile, et en particulier ne contenant pas de motifs polyoxyalkylène (notamment polyoxyéthylène ou polyoxypropylène), ni de motif polyglycéryle. Les particules d'organopolysiloxane réticulés élastomères sont véhiculées sous forme de gel constitué d'un organopolysiloxane élastomérique inclus dans au moins une huile hydrocarbonée et/ou une huile siliconée. Dans ces gels, les particules d'organopolysiloxa- nes sont souvent des particules non-sphériques. Des élastomères non émulsionnants sont notamment décrits dans les brevets EP 242 219, EP 285 886, EP 765 656 et dans la demande JP A-61-194009. Comme élastomères non-émulsionnants sphériques, on peut utiliser ceux vendus sous les dénominations "DC 9040", "DC9041", "DC 9509", "DC9505", "DC 9506" par la société Dow Corning.
L'élastomère de silicone non émulsionnant sphérique peut se présenter également sous forme de poudre d'organopolysiloxane réticulé élastomère enrobée de résine de silicone, notamment de résine silsesquioxane, comme décrit par exemple dans le brevet US5538793. De tels élastomères sont vendus sous les dénominations "KSP-100", "KSP-101", "KSP-102", "KSP-103", KSP-104", "KSP-105" par la société Shin Etsu.
D'autres organopolysiloxane réticulé élastomère sous forme de poudres sphériques peu- vent être des poudres de silicone hybride fonctionnalisé par des groupes fluoroalkyle, notamment vendues sous la dénomination "KSP-200" par la société Shin Etsu ; des poudres de silicones hybride fonctionnalisé par des groupes phényl, notamment vendues sous la dénomination "KSP-300" par la société Shin Etsu.
On peut également utiliser dans les compositions selon l'invention des élastomères de silicones avec groupement MQ, tels que ceux vendus par la Société Wacker sous les dé-nominations Belsil RG100, Belsil RPG33 et préférentiellement RG80. Ces élastomères particuliers, lorsqu'ils sont en association avec les résines selon l'invention, peuvent per-mettre d'améliorer les propriétés de non transfert des compositions les comprenant.
L'élastomère peut également être un élastomère émulsionnant. Par « élastomère d'organopolysiloxane émulsionnant », on entend un élastomère d'organopolysiloxane comprenant au moins une chaîne hydrophile, tels que les élastomères d'organopolysiloxane polyoxyalkylénés et les élastomères de silicone polyglycérolés.
L'élastomère d'organopolysiloxane émulsionnant peut être choisi parmi les élastomères d'organopolysiloxane polyoxyalkylénés. L'élastomère d'organopolysiloxane polyoxyalkyléné est un elastomère d'organopolysiloxane réticulé pouvant être obtenu par réaction d'addition réticulation de diorganopolysiloxane contenant au moins un hydrogène lié au silicium et d'un polyoxyal- kylène ayant au moins deux groupements à insaturation éthylénique. De préférence, l'organopolysiloxane réticulé polyoxyalkyléné est obtenu par réaction d'addition réticulation (Al) de diorganopolysiloxane contenant au moins deux hydrogènes liés chacun à un silicium, et (B1) de polyoxyalkylène ayant au moins deux groupements à insaturation éthylénique, notamment en présence (Cl) de catalyseur platine, comme par exemple décrit dans les brevets US 5 236 986 et US 5 412 004. En particulier, l'organopolysiloxane peut être obtenu par réaction de polyoxyalkylène (notamment polyoxyéthylène et/ou polyoxypropylène) à terminaisons di méthylvinylsiloxy et de méthylhydrogénopolysiloxane à terminaisons trimétylsiloxy, en présence de catalyseur platine.
Les groupes organiques liés aux atomes de silicium du composé (Al) peuvent être des groupes alkyles ayant de 1 à 18 atomes de carbone, tels que méthyle, éthyle, propyle, butyle, octyle, décyle, dodécyle (ou lauryle), myristyle, cétyle, stéaryle ; des groupes alkyles substitués tels que 2-phényléthyle, 2-phénylpropyle, 3,3,3-trifluoropropyle ; des grou- pes aryles tels que phényléthyle ; et des groupes hydrocarbonés monovalents substitués tels qu'un groupe époxy, un groupe ester carboxylate, ou un groupe mercapto. Le composé (Al) peut ainsi être choisi parmi les méthylhydrogénopolysiloxanes à terminaisons triméthylsiloxy, les copolymères diméthylsiloxane-méthylhydrogénosiloxane à terminaisons triméthylsiloxy, les copolymères cycliques diméthylsiloxane- méthylhydrogénosiloxane, les copolymères diméthylsiloxane-méthylhydrogénosiloxanelaurylméthylsiloxane à terminaisons triméthylsiloxy. Le composé (Cl) est le catalyseur de la réaction de réticulation, et est notamment l'acide chloroplatinique, les complexes acide chloroplatinique-oléfine, les complexes acide chlcroplatinique-alkenylsiloxane, les complexes acide chloroplatinique-dicétone, le platine noir, IO et le platine sur support. Avantageusement, les élastomères de silicone polyoxyalkylénés peuvent être formés à partir de composés divinyliques, en particulier des polyoxyalkylènes ayant au moins deux groupes vinyliques, réagissant avec des liaisons Si-H d'un polysiloxane. Des élastomères polyoxyalkylénés sont notamment décrits dans les brevets US5236986, 15 US5412004, US5837793, US5811487a Comme élastomère de silicone polyoxyalkyléné, on peut utiliser ceux commercialisés sous les dénominations « KSG-21 », « KSG-20 », « KSG-30 », « KSG-31 », « KSG-32 », « KSG-33 », « KSG-210 », « KSG-310 », « KSG-320 », « KSG-330 », « KSG-340 » par la société Shin Etsu, « DC9010 », « DC9011 » par la société Dow Corning. 20 L'élastomère de silicone émulsionnant peut être également choisi parmi les élastomères de silicone polyglycérolés. L'élastomère de silicone polyglycérolé selon l'invention est un organopolysiloxane réticulé élastomère pouvant être obtenu par réaction d'addition réticulation de diorganopolysiloxane contenant au moins un hydrogène lié au silicium et de composés polyglycérolés 25 ayant des groupements à insaturation éthylénique, notamment en présence de catalyseur platine. De préférence, l'organopolysiloxane réticulé élastomère est obtenu par réaction d'addition réticulation (A2) de diorganopolysiloxane contenant au moins deux hydrogènes liés chacun à un silicium, et (B2) de composés glycérolés ayant au moins deux groupements à 30 insaturation éthylénique, notamment en présence (C2) de catalyseur platine. En particulier, l'organopolysiloxane peut être obtenu par réaction de composé polyglycérolé à terminaisons diméthylvinylsiloxy et de méthylhydrogénopolysiloxane à terminaisons triméthylsiloxy, en présence de catalyseur platine. Le composé (A2) est le réactif de base pour la formation d'organopolysiloxane élastomère 35 et la réticulation s'effectue par réaction d'addition du composé (A2) avec le composé (B2) en présence du catalyseur (C2). Le composé (A2) est en particulier un organopolysiloxane ayant au moins 2 atomes d'hydrogène liés à des atomes de silicium distincts dans chaque molécule. Le composé (A2) peut présenter toute structure moléculaire, notamment une structure 40 chaîne linéaire ou chaîne ramifiée ou une structure cyclique. Le composé (A2) peut avoir une viscosité à 25 °C allant de 1 à 50 000 centistokes, notamment pour être bien miscible avec le composé (B2). Les groupes organiques liés aux atomes de silicium du composé (A2) peuvent être des groupes alkyles ayant de 1 à 18 atomes de carbone, tels que méthyle, éthyle, propyle, 45 butyle, octyle, décyle, dodécyle (ou lauryle), myristyle, cétyle, stéaryle ; des groupes alky- les substitués tels que 2-phényléthyle, 2-phénylpropyle, 3,3,3-trifluoropropyle ; des groupes aryles tels que phényle, tolyle, xylyle ; des groupes aryles substitués tels que phényléthyle ; et des groupes hydrocarbonés monovalents substitués tels qu'un groupe époxy, un groupe ester carboxylate, ou un groupe mercapto. 50 De préférence, ledit groupe organique est choisi parmi les groupes méthyle, phényle et lauryle. Le composé (A2) peut ainsi être choisi parmi les méthylhydrogénopolysiloxanes à terminaisons triméthylsiloxy, les copolymères diméthylsiloxane-méthylhydrogénosiloxane à terminaisons triméthylsiloxy, les copolymères cycliques diméthylsiloxane- 55 méthylhydrogénosiloxane, les copolymères diméthylsiloxane-méthylhydrogénosiloxane- laurylméthylsiloxane à terminaisons triméthylsiloxy. Le composé (B2) peut être un composé polyglycérolé répondant à la formule (B') sui-vante : CmH2m-1 -O-[ Gly ]n-CmH2m-1 (B') dans laquelle m est un entier allant de 2 à 6, n est un entier allant de 2 à 200, de préférence allant de 2 à 100, de préférence allant de 2 à 50, de préférence allant de 2 à 20, de préférence allant de 2 à 10, et préférentiellement allant de 2 à 5, et en particulier égal à 3 ; Gly désigne : -CH2-CH(OH)-CH2-O- ou -CH2-CH(CH2OH)-O-
Avantageusement, la somme du nombre de groupements éthyléniques par molécule du composé (B2) et du nombre d'atomes d'hydrogène liés à des atomes de silicium par molécule du composé (A2) est d'au moins 4.
Il est avantageux que le composé (A2) soit ajouté en une quantité telle que le rapport moléculaire entre la quantité totale d'atomes d'hydrogène liés à des atomes de silicium dans le composé (A2) et la quantité totale de tous les groupements à insaturation éthylénique dans le composé (B2) soit compris dans la gamme de 1/1 à 20/1. Le composé (C2) est le catalyseur de la réaction de réticulation, et est notamment l'acide chloroplatinique, les complexes acide chloroplatinique-oléfine, les complexes acide chloroplatinique-alkenylsiloxane, les complexes acide chloroplatinique-dicétone, le platine noir, et le platine sur support. Le catalyseur (C2) est de préférence ajouté de 0,1 à 1000 parts en poids, mieux de 1 à 100 parts en poids, en tant que métal platine propre pour 1000 parts en poids de la quan-25 tité totale des composés (A2) et (B2). L'élastomère de silicone polyglycérolé selon l'invention est véhiculé sous forme de gel dans au moins une huile hydrocarbonée et/ou une huile siliconée. Dans ces gels, l'élastomère polyglycérolé est souvent sous forme de particules non sphériques. Comme élastomères de silicone polyglycérolés, on peut utiliser ceux vendus sous les dé-30 nominations « KSG-710 », « KSG-810 », « KSG-820 », « KSG-830 », « KSG-840 » par la société Shin Etsu. Comme élastomères non émulsionnants, on peut plus particulièrement utiliser ceux vendus sous les dénominations « KSG-6 », « KSG-15 », « KSG-16 », « KSG-18 », « KSG-41 », « KSG-42 », « KSG-43 », « KSG-44 »,par la société Shin Etsu, « DC9040 », 35 « DC9041 », par la société Dow Corning, « SFE 839 » par la société General Electric. Comme élastomères émulsionnants, on peut plus particulièrement utiliser ceux vendus sous les dénominations « KSG-31 », « KSG-32 », « KSG-33 », « KSG-210», « KSG-710 » par la société Shin Etsu.
40 La composition selon l'invention peut comprendre un tel élastomère d'organopolysiloxane, seul ou en mélange, dans une teneur allant de 0,1 à 20 % en poids, de préférence de 0,2 à 15 % en poids, et de façon encore plus préférée de 0,5 à 12 % en poids.
L'association d'un composé supramoléculaire tel que décrit précédemment avec un elas- 45 tomère siliconé, permet notamment, en particulier dans les compositions de maquillage ou de soin des matières kératiniques, et particulièrement de la peau ou des lèvres, d'obtenir mélange homogène et un dépôt sur les matières kératiniques non collant et souple (flexible).
50 Il est entendu que dans le cadre de la présente invention, les pourcentages pondéraux d'un composé, sont toujours exprimés en poids de matière active du composé en question.
Résines siliconées 55 La composition selon l'invention peut comprendre en tant qu'ingrédient additionnel au moins une résine siliconée associée audit composé A décrit précédemment.
L'association d'un composé supramoléculaire tel que décrit précédemment avec une ré- sine siliconée permet notamment, en particulier dans les compositions de maquillage ou de soin des matières kératiniques, et particulirement de la peau ou des lèvres, d'obtenir mélange homogène et un dépôt sur les matières kératiniques brillant et non collant.
De manière plus générale, par le terme « résine », on entend un composé dont la struc- ture est tridimensionnelle. On appelle les « résines siliconées » également des « résines de silicone» ou « résines de siloxane ». Ainsi, au sens de la présente invention, une polydiméthylsiloxane n'est pas une résine de silicone.
La nomenclature des résines de silicone (également appelées résines de siloxanes ou résine siliconées) est connue sous le nom de "MDTQ", la résine étant décrite en fonction des différentes unités monomériques siloxane qu'elle comprend, chacune des lettres "MDTQ" caractérisant un type d'unité.
La lettre « M » représente l'unité Monofonctionnelle de formule R1 R2R3SiO1,2, l'atome de silicium étant relié à un seul atome d'oxygène dans le polymère comprenant cette unité.
La lettre « D » signifie une unité Difonctionnelle R1 R2SiO2,2 dans laquelle l'atome de silicium est relié à deux atomes d'oxygène La lettre « T » représente une unité Trifonctionnelle de formule R1 SiO3,2.
De telles résines sont décrites par exemple dans « Encyclopedia of Polymer Science and Enginnering, vol. 15, John et Wiley and Sons, New York, (1989), p. 265-270, et US 2,676,182, US 3,627,851, US 3,772,247, US 5,248,739 ou encore US 5,082,706, US 5,319,040, US 5,302, 685 et US 4,935,484. Dans les motifs M, D, T définis précédemment, R, à savoir R1 et R2, représente un radical hydrocarboné (notamment alkyle) ayant de 1 à 10 atomes de carbone, un groupe phényl, un groupe phénylalkyl ou bien encore un groupe hydroxyle.
Enfin, la lettre « Q » signifie une unité tétrafonctionnelle SiO412 dans laquelle l'atome de silicium est lié à quatre atomes d'oxygènes eux mêmes liés au reste du polymère.
Diverses résines siliconées de propriétés différentes peuvent être obtenues à partir de ces différentes unités, les propriétés de ces polymères variant en fonction du type de mo- nomères (ou unités), de la nature et du nombre du radical R, de la longueur de la chaîne polymérique, du degré de ramification et de la taille des chaînes pendantes.
A titre de résines siliconées pouvant être utilisées dans les compositions selon l'invention on peut utiliser par exemple des résines siliconées de type MQ, de type T ou de type 45 MQT.
Résines MQ : A titre d'exemple de résines siliconées de type MQ, on peut citer les alkylsiloxysilicates de formule [(R1)3SiOä2]X(SiO412)y (unités MQ) dans laquelle x et y sont des entiers allant de 50 50 à 80, et tel que le groupement R1 représente un radical tel que défini précédemment, et de préférence est un groupement alkyle ayant de 1 à 8 atomes de carbone ou un groupe hydroxyle, de préférence, un groupe méthyl.
- Comme exemple de résines siliconées solides de type MQ de type triméthylsiloxy- 55 silicate on peut citer celles commercialisées sous la référence SR1000 par la société Ge- neral Electric, sous la référence TMS 803 par la société Wacker, sous la dénomination "KF-7312J" par la société Shin-Etsu, "DC 749", "DC 593" par la société Dow Corning.
- Comme résines siliconées comprenant des motifs MQ siloxysilicates, on peut éga- lement citer les résines phénylalkylesiloxysilicate, telle que la phénylpropyldiméthylsiloxysilicate (Silshine 151 commercialisée par la société General Electric). La préparation de telles résines est décrite notamment dans le brevet US5817302.
Résines T : A titre d'exemple de résines siliconées de type T, on peut citer les polysilsesquioxanes de formule (RSiO3/2)X (unités T) dans laquelle x est supérieur à 100 et tel que le groupement R est un groupement alkyle ayant de 1 à 10 atomes de carbone, lesdites polysilsesquioxanes pouvant en outre comprendre des groupes terminaux Si-OH. De préférence, on peut utiliser les résines polyméthylsilsesquioxanes dans lesquelles R représente un groupe méthyl, comme par exemple celles commercialisées : - par la société Wacker sous la référence Resin MK tels que la Belsil PMS MK : polymère comprenant des unités répétitives CH3SiO3/2 (unités T), pouvant aussi comprendre jusqu'à 1% en poids d'unités (CH3)2SiO2/2 (unités D) et présentant un poids moléculaire moyen d'environ 10000 g/mol, ou - par la société SHIN-ETSU sous les références KR-220L qui sont composées d'unités T de formule CH3SiO3/2 et ont des groupes terminaux Si-OH (silanol), sous la référence KR-242A qui comprennent 98% d'unités T et 2% d'unités diméthyle D et ont des groupes terminaux Si-OH ou encore sous la référence KR-251 comprenant 88% d'unités T et 12% d'unités diméthyl D et ont des groupes terminaux Si-OH.
Résines MQT : A titre de résine comprenant des motifs MQT, on connaît notamment celles citées dans le document US 5 110 890. Une forme préférée de résines de type MQT sont les résines MQT-propyl (également ap- pelée MQTPr). De telles résines utilisables dans les compositions selon l'invention sont notamment celles décrites et préparées dans la demande WO 2005/075542.
La résine MQ-T-propyl comprend de préférence les unités : 35 R1, R2 et R3 représentant indépendamment un radical hydrocarboné (notamment alkyle) 40 ayant de 1 à 10 atomes de carbone, un groupe phényl, un groupe phénylaikyl ou bien encore un groupe hydroxyle et de préférence un radical alkyle ayant de 1 à 8 atomes de carbone ou un groupement phényl, a étant compris entre 0,05 et 0,5, b étant compris entre zéro et 0,3, 45 c étant supérieur à zéro, d étant compris entre 0,05 et 0,6, a + b + c + d _ 1, et a, b, c et d étant des fractions molaires, à condition que plus de 40 % en moles des groupements R3 de la résine de siloxane soient des groupements propyle. 50 (i) (R13SIO3/2)a (iii) (R3SiO3/2), et (iv) (SiOa/2)d avec (i) (R13SIO1/2)a (ii) (R22SiO2,2)b (iii) (R3SiO3/2)c et (iv) (SiO4/2)d avec De façon préférée la résine de siloxane comprend les unités : 55 R1 et R3 représentant indépendamment un groupement alkyle ayant de 1 à 8 atomes de carbone, R1 étant de préférence un groupement méthyle et R3 étant de préférence un groupement propyle, a étant compris entre 0,05 et 0,5, de préférence entre 0,15 et 0,4, c étant supérieur à zéro, de préférence entre 0,15 et 0,4, d étant compris entre 0,05 et 0,6, de préférence entre 0,2 et 0,6, ou encore entre 0,2 et 0,55, a + b + c + d = 1 et a, b, c et d étant des fractions molaires, à condition que plus de 40 % en moles des groupements R3 de la résine de siloxane soient des groupements propyle.
Les résines de siloxane utilisables selon l'invention peuvent être obtenues par un procédé comprenant la réaction de : A) une résine MQ comprenant au moins 80 % en moles d'unités (R13SiO,/2)a et (SiO4/2)d R1 représentant un groupement alkyle ayant de 1 à 8 atomes de carbone, un groupement aryle, un groupement carbinol ou un groupement amino, a et d étant supérieurs à zéro, le rapport a/d étant compris entre 0,5 et 1,5 ; et de B) une résine de propyle T comprenant au moins 80 % en moles d'unités (R3SiO3/2)c, R3 représentant un groupement alkyle ayant de 1 à 8 atomes de carbone, un groupement aryle, un groupement carbinol ou un groupement amino, c étant supérieur à zéro, à condition qu'au moins 40 % en moles des groupements R3 soient des groupements propyle, où le ratio massique NB est compris entre 95:5 et 15:85, de préférence le ratio massique NB est de 30:70.
Avantageusement, le rapport massique A/B est compris entre 95:5 et 15:85. De préfé- rence, le rapport NB est inférieur ou égal à 70:30. Ces rapports préférés se sont avérés permettre des dépôts confortables du fait de l'absence de percolation des particules rigides de résine MQ dans le dépôt.
Ainsi façon préférée, la résine siliconée est choisie parmi le groupe comprenant : a) une résine de type MQ, notamment choisie parmi (i) les alkylsiloxysilicates, qui peuvent être des triméthylsiloxysilicates, de formule [(Ri )3SiO1/2]X(SiO4/2)y, dans laquelle x et y sont des entiers allant de 50 à 80, et tel que le groupement R1 représente un radical hydrocarboné ayant de 1 à 10 atomes de carbone, un groupe phényl, un groupe phénylalkyle ou bien un groupe hydroxyle, et de préférence est un groupement alkyle ayant de 1 à 8 ato- mes de carbone, de préférence, un groupe méthyl, et (ii) les résines phénylalkylesiloxysilicate, telle que la phénylpropyldiméthylsiloxysilicate, et/ou b) une résine de type T, notamment choisie parmi les polysilsesquixanes de formule (RSiO3/2)X, dans laquelle x est supérieur à 100 et le groupement R est un groupement alkyle ayant de 1 à 10 atomes de carbone, par exemple un groupe méthyle, lesdites polysil- sesquioxanes pouvant en outre comprendre des groupes terminaux Si-OH, et/ou c) une résine de type MQT, notamment de type MQT-propyl, pouvant comprendre les uni-tés (i) (R13SiOi/2)a, (ii) (R22SiO2/2)b, (iii) (R3SiO3/2)c et (iv) SiO4/2)d , avec R1, R2 et R3 représentant indépendamment un radical hydrocarboné, notamment alkyle, ayant de 1 à 10 atomes de carbone, un groupe phényl, un groupe phénylalkyl ou bien encore un groupe hydroxyle et de préférence un radical alkyle ayant de 1 à 8 atomes de carbone ou un groupement phényl, a étant compris entre 0,05 et 0,5, b étant compris entre zéro et 0,3, c étant supérieur à zéro, d étant compris entre 0,05 et 0,6, a + b + c + d = 1, a, b, c et d étant des fractions molaires, à condition que plus de 40 % en moles des groupements R3 de la résine de siloxane soient des groupements propyle.
De façon préférée, la résine siliconée est présente dans la composition selon l'invention en une teneur totale en matière sèche de résine allant de 1 % à 40 % en poids par rapport au poids total de la composition, de préférence allant de 2 % à 30 % en poids, et mieux allant de 3 % à 25 % en poids.
POLYESTERS ou POLYCONDENSATS
Selon un mode de réalisation, la composition selon l'invention comprend en tant qu'ingrédient additionnelau moins un polyester (appelé également polycondensat) associé audit composé A décrit précédemment.
L'association d'un composé supramoléculaire tel que décrit précédemment avec un polycondensat tel que décrit ci-après permet notamment, en particulier dans les compositions de maquillage ou de soin des matières kératiniques, et particulirement de la peau ou des lèvres, d'obtenir mélange homogène et un dépôt sur les matières kératiniques brillant, non transfert et peu collant.
Un polyester convenant à l'invention peut être avantageusement obtenu par réaction d'un polyol, d'un acide polycarboxylique, d'un acide monocarboxylique non aromatique, et d'un acide monocarboxylique aromatique.
En particulier, un polyester convenant à l'invention peut être préférentiellement obtenu par réaction : - d'un tétraol ayant de 4 à 10 atomes de carbone ; - d'un acide saturé monocarboxylique, linéaire ou ramifié, ayant de 9 à 23 atomes de carbone , - d'un diacide carboxylique cyclique ayant de 6 à 12 atomes de carbone ; et - d'un acide monocarboxylique aromatique ayant de 7 à 11 atomes de carbone.
De façon avantageuse, un polyester de l'invention peut être obtenu par réaction : - de 10 à 30 % en poids d'un tétraol ayant de 4 à 10 atomes de carbone ; - de 40 à 80 % en poids d'un acide saturé monocarboxylique, linéaire ou ramifié, ayant de 9 à 23 atomes de carbone ; - de 5 à 30 % en poids d'un diacide carboxylique cyclique ayant de 6 à 12 atomes de carbone ; - de 0,1 à 10 % en poids d'un acide monocarboxylique aromatique ayant de 7 à 11 atomes de carbone, les teneurs étant exprimées en pourcentage en poids par rapport au poids total du polyes- ter.
Un polyester utilisé selon l'invention comprend un tétraol. On entend par tétraol un polyol comprenant 4 groupes hydroxyles. Un tétraol utilisé pour la préparation du polyester est avantageusement un composé hy- drocarboné, linéaire, ramifié et/ou cyclique, saturé ou insaturé, comprenant de 4 à 10 atomes de carbone, et pouvant comprendre en outre un ou plusieurs atomes d'oxygène intercalés dans la chaîne (fonction éther). On peut bien évidemment utiliser un mélange de tels tétraols. Un tétraol peut être en particulier un composé hydrocarboné saturé, linéaire ou ramifié, comprenant 4 à 10 atomes de carbone.
Un tétraol peut être choisi parmi le pentaérythritol ou tétraméthylolméthane, l'érythritol, le diglycérol ou le ditriméthylolpropane. De préférence, le tétraol est choisi parmi le pentaérythritol et le diglycérol. Plus préférentiellement encore, le tétraol peut être le pentaérythritol.
La teneur en tétraol, ou en mélange de tétraol, peut représenter de 10 à 30 % en poids, notamment 12 à 25 % en poids, et mieux de 14 à 22 % en poids par rapport au poids total du polyester. Un polyester utilisé selon l'invention comprend également un acide saturé monocarboxylique, linéaire ou ramifié, ayant de 9 à 23 atomes de carbone, et notamment 12 à 22 ato- mes de carbone. Par acide monocarboxylique saturé, on entend un composé de formule RCOOH, dans laquelle R est un radical hydrocarboné saturé, linéaire ou ramifié, comprenant de 8 à 22 atomes de carbone, notamment de 11 à 21 atomes de carbone. On peut bien évidemment utiliser un mélange de tels acides monocarboxyliques.
Parmi les acides monocarboxyliques saturés susceptibles d'être employés, on peut citer, seul ou en mélange, l'acide nonanoïque, l'acide isononanoïque ou acide pélargonique, l'acide décanoïque ou acide caprique, l'acide laurique, l'acide tridécanoïque ou acide tridécylique, l'acide myristique, l'acide palmitique, l'acide stéarique, l'acide isostéarique, l'acide arachidique, et l'acide béhénique.
De préférence, on peut utiliser l'acide laurique, l'acide myristique, l'acide isononanoïque, l'acide nonanoïque, l'acide palmitique, l'acide isostéarique, l'acide stéarique, l'acide béhénique, et leurs mélanges. Préférentiellement, on utilise l'acide isostéarique ou l'acide stéarique. Lorsque l'acide monocarboxylique saturé est liquide à température ambiante, il conduit généralement à un polyester liquide à température ambiante. Comme acide monocarboxylique liquide, on peut citer l'acide nonanoïque, l'acide isononanoïque, l'acide isostéarique. Lorsque l'acide monocarboxylique saturé est solide à température ambiante, il conduit généralement à un polyester solide à température ambiante.
Comme acide monocarboxylique solide, on peut citer l'acide décanoïque, l'acide laurique, l'acide tridécanoïque, l'acide myristique, l'acide palmitique, l'acide stéarique, l'acide arachidique, l'acide béhénique. La teneur en acide monocarboxylique saturé, ou le mélange desdits acides, représente de 40 à 80 % en poids, notamment de 42 à 75 % en poids, voire 45 à 70 % en poids, et mieux 50 à 65 % en poids du poids total du polyester. Le polyester utilisé selon l'invention comprend également un diacide carboxylique cyclique ayant de 6 à 12 atomes de carbone, notamment ayant 8 atomes de carbone. Le diacide carboxylique cyclique peut être aromatique ou non aromatique. Le diacide carboxylique cyclique est de préférence aromatique.
On peut bien évidemment utiliser un mélange de tels diacides carboxyliques cycliques. Un diacide carboxylique cyclique peut être choisi parmi l'acide cyclopropanedicarboxylique, l'acide cyclohexanedicarboxylique, l'acide cyclobutanedicarboxylique, l'acide phtalique, l'acide téréphtalique, l'acide isophtalique, l'acide tétrahydrophtalique, l'acide naphtalène-2,3-dicarboxylique, l'acide naphtalène-2,6-dicarboxylique, ou leurs mélanges. De préférence, le diacide carboxylique cyclique est choisi parmi l'acide phtalique, l'acide téréphtalique, l'acide isophtalique. L'acide phtalique peut être avantageusement mis en oeuvre sous sa forme anhydride. Préférentiellement, le diacide carboxylique cyclique est l'acide isophtalique.
Un diacide carboxylique cyclique, ou un mélange de tels diacides, peut représenter de 5 à 30 % en poids, et de préférence de 15 % à 25 % en poids du poids total du polyester. Un polyester utilisé selon l'invention comprend également un acide monocarboxylique aromatique ayant de 7 à 11 atomes de carbone. Par acide monocarboxylique aromatique, on entend un composé de formule R'COOH, dans laquelle R' est un radical hydrocarboné aromatique, comprenant de 6 à 10 atomes de carbone ; R' est en particulier un radical phényle, éventuellement substitué par 1 à 3 radicaux alkyle comprenant de 1 à 4 atomes de carbone. On peut bien évidemment utiliser un mélange de tels acides monocarboxyliques aromatiques.
L'acide monocarboxylique aromatique peut être choisi parmi l'acide benzoïque et l'acide 4-tert-butyl-benzoïque. L'acide monocarboxylique aromatique est de préférence l'acide benzoïque. Ledit acide monocarboxylique aromatique, ou le mélange desdits acides, représente de 0,1 à 10 % en poids, notamment 0,5 à 9,95 % en poids, mieux encore de 1 à 9,5 % en poids, voire de 1,5 à 8 % en poids du poids total du polyester.
Selon un mode de réalisation préféré, ledit polyester est obtenu par réaction : - de 12 à 25 % en poids d'un tétraol ayant de 4 à 10 atomes de carbone ; - de 40 à 75 % en poids d'un acide saturé monocarboxylique, linéaire ou ramifié, ayant de 9 à 23 atomes de carbone ; - de 15 à 25 % en poids d'un diacide carboxylique cyclique ayant de 6 à 12 atomes de carbone - de 0,5 à 9,95 % en poids d'un acide monocarboxylique aromatique ayant de 7 à 11 atomes de carbone, les teneurs étant exprimées en pourcentage en poids par rapport au poids total du polyester. Selon un autre mode de réalisation préféré, ledit polyester est obtenu par réaction : - de 14 à 22 % en poids d'un tétraol ayant de 4 à 10 atomes de carbone ; - de 45 à 70 % en poids d'un acide saturé monocarboxylique, linéaire ou ramifié, ayant de 9 à 23 atomes de carbone ; - de 15 à 25 % en poids d'un diacide carboxylique cyclique ayant de 6 à 12 atomes de carbone ; - de 1 à 9,5 % en poids d'un acide monocarboxylique aromatique ayant de 7 à 11 atomes de carbone, les teneurs étant exprimées en pourcentage en poids par rapport au poids total du polyester. Selon un autre mode de réalisation préféré, ledit polyester est obtenu par réaction : - de 14 à 22 % en poids d'un tétraol ayant de 4 à 10 atomes de carbone ; - de 50 à 65 % en poids d'un acide saturé monocarboxylique, linéaire ou ramifié, ayant de 9 à 23 atomes de carbone ; - de 15 à 25 % en poids d'un diacide carboxylique cyclique ayant de 6 à 12 atomes de carbone ; - de 1,5 à 8 % en poids d'acide monocarboxylique aromatique ayant de 7 à 11 atomes de carbone, les teneurs étant exprimées en pourcentage en poids par rapport au poids total du polyester. Dans un mode de réalisation préféré du polyester utilisé selon l'invention, l'acide mono-carboxylique aromatique est présent en quantité molaire inférieure ou égale à celle de l'acide saturé monocarboxylique linéaire ou ramifié; notamment le rapport entre le nombre de mole d'acide monocarboxylique aromatique et le nombre de mole d'acide saturé monocarboxylique linéaire ou ramifié varie de 0,08 à 0,70. Ledit rapport pondéral varie de préférence de 0,10 à 0,60, et encore préférentiellement de 0,12 à 0,40. Selon un mode de réalisation de l'invention, un polyester de l'invention peut être choisi parmi les polyesters d'acide benzoïque/acide isophtalique/acide isostéari- que/pentaérythritol, les polyesters d'acide benzoïque/acide isophtalique/acide stéarique/pentaérythritol, et leurs mélanges . Ces monomères sont mis en oeuvre notamment selon les plages de concentrations en monomères décrites précédemment. De préférence, le polyester présente : - un indice d'acide, exprimé en mg d'hydroxyde de potassium par gramme de polyester, supérieur ou égal à 1; notamment compris entre 2 et 30, et encore mieux compris entre 2,5 et 15; et/ou - un indice d'hydroxyle, exprimé en mg d'hydroxyde de potassium par gramme de polyester, supérieur ou égal à 40; notamment compris entre 40 et 120, et encore mieux compris entre 40 et 80. Ces indices d'acide et d'hydroxyle peuvent être aisément déterminés par l'homme du métier par les méthodes analytiques habituelles. De préférence, un polyester de l'invention présente une masse moléculaire moyenne en poids (Mw) comprise entre 3000 et 1 000 000, voire entre 3000 et 300 000.
Le poids moléculaire moyen peut être déterminé par chromatographie par perméation sur gel ou par diffusion de la lumière, selon la solubilité du polymère considéré. De préférence, un polyester de l'invention présente une viscosité, mesurée à 110 °C, comprise entre 20 et 4000 mPa.s, notamment entre 30 et 3500 mPa.s, voire entre 40 et 3000 mPa.s et encore mieux entre 50 et 2500 mPa.s. Cette viscosité est mesurée de la manière décrite ci-après. Selon un mode de réalisation préférée, le polyester peut être sous forme liquide à température ambiante. Un polyester liquide peut avoir une masse moléculaire moyenne en poids (Mw) allant de 40 000 à 1 000 000, de préférence allant de 50 000 à 300 000. Un polyester liquide peut avoir une viscosité, mesurée à 110 °C , allant de 1000 à 4000 mPa.s, et de préférence allant de 1500 à 3000 mPa.s. En particulier, un polyester liquide peut être un polyester d'acide benzoïque/acide isophtalique/acide isostéarique/pentaérythritol, ces monomères étant notamment présents selon les plages de concentrations en monomères décrites précédemment. Selon un autre mode de réalisation, le polyester peut également être sous forme solide à température ambiante. Un polyester solide peut avoir une masse moléculaire moyenne en poids (Mw) allant de 3 000 à 30 000, de préférence allant de 8 000 à 15 000. Le polyester solide peut avoir une viscosité, mesurée à 80 °C, allant de 20 à 1 000 mPa.s, et de préférence allant de 50 à 600 mPa.s. En particulier, un polyester solide peut être un polyester d'acide benzoïque/acide isophta- tique/acide stéarique/pentaérythritol, ces monomères étant notamment présents selon les plages de concentrations en monomères décrites précédemment. Un polyester de l'invention peut être préparé selon le procédé de synthèse décrit dans la demande EP-A-1 870 082. La viscosité d'un polyester de l'invention peut être mesurée de la manière décrite ci- après : La viscosité à 80 °C ou à 110 °C d'un polyester est mesurée à l'aide d'un viscosimètre à cône plan de type BROOKFIELD CAP 1000+. Le cône-plan adapté est déterminé par l'homme du métier, sur la base de ses connaissances; notamment : - entre 50 et 500 mPa.s, on peut utiliser un cône 02, - entre 500 et 1000 mPa.s : cône 03, - entre 1000 et 4000 mPa.s : cône 05, et - entre 4000 et 10000 mPa.s : cône 06.
La quantité de polyester, également appelé polycondensat, présent dans une composition de l'invention peut varier de 1 à 60 % en poids, de préférence de 2 à 50 % en poids, notamment de 3 à 45 % en poids, voire de 4 à 35 % en poids, et mieux de 5 à 30 % en poids par rapport au poids total de la composition. Un polyester convenant à l'invention peut être aisément véhiculable dans les milieux sol- vants ou huileux cosmétiques, notamment les huiles, les alcools gras et/ou les esters gras. Un polyester de l'invention peut être préparé aisément, en une seule étape de synthèse, et sans produire de déchets, et ceci à faible coût. Un polyester convenant à l'invention peut être avantageusement branché (ramifié) afin de générer un réseau par enchevêtrement de chaînes polymériques, et donc d'obtenir les propriétés recherchées, notamment en terme de tenue améliorée, de brillance améliorée, et en terme de solubilité. Selon un mode de réalisation, une composition de l'invention peut comprendre au moins deux polyesters distincts l'un de l'autre.
Polymères filmoqènes La composition selon l'invention peut comprendre , associé audit composé A décrit précédemment, au moins un polymère filmogène en tant qu'ingrédient additionnel, de préférence choisi parmi le groupe comprenant : • un copolymère éthylénique séquencé filmogène, • un polymère vinylique comprenant au moins un motif dérivé de dendrimère carbosiloxane, • une dispersion de particules de d'homopolymère ou de copolymère radicalaire, acrylique ou vinylique dispersées dans ladite phase grasse liquide.
Dans la présente invention, on entend par « polymère filmogène », un polymère apte à former à lui seul ou en présence d'un agent auxiliaire de filmification, un film macroscopiquement continu et adhérent sur les matières kératiniques, et de préférence un film cohésif, et mieux encore un film dont la cohésion et les propriétés mécaniques sont telles que ledit film peut être isolable et manipulable isolément, par exemple lorsque ledit film est réalisé par coulage sur une surface antiadhérente comme une surface téflonnée ou siliconnée.
L'association d'un composé supramoléculaire tel que décrit précédemment avec un poly- mère filmogène permet notamment, en particulier dans les compositions de maquillage ou de soin des matières kératiniques, et particulirement de la peau ou des lèvres, d'obtenir mélange homogène et un dépôt sur les matières kératiniques brillant et non collant.
1. Copolymère éthylénique séquencé : Selon un premier mode de réalisation de l'invention, le polymère filmogène est un copolymère éthylénique séquencé, contenant au moins une première séquence ayant une température de transition vitreuse (Tg) supérieure ou égale à 40°C et étant issue en totalité ou en partie de un ou plusieurs premiers monomères, qui sont tels que l'homopolymère préparé à partir de ces monomères a une température de transition vitreuse supérieure ou égale à 40°C, et au moins une deuxième séquence ayant une température de transition vitreuse inférieure ou égale à 20°C et étant issue en totalité ou en partie de un ou plusieurs deuxièmes monomères, qui sont tels que l'homopolymère préparé à partir de ces monomères a une température de transition vitreuse inférieure ou égale à 20°C, ladite première séquence et ladite deuxième séquence étant reliées entre elles par un segment intermédiaire statistique comprenant au moins un desdits premiers monomères constitutifs de la première séquence et au moins un desdits deuxièmes monomères constitutifs de la deuxième séquence, et ledit copolymère séquencé ayant un indice de polydispersité I supérieur à 2 Le polymère séquencé utilisé selon l'invention comprend ainsi au moins une première séquence et au moins une deuxième séquence. Par "au moins" une séquence, on entend une ou plusieurs séquences. Par polymère "séquencé", on entend un polymère comprenant au moins 2 séquences distinctes, de préférence au moins 3 séquences distinctes.
Par polymère "éthylénique", on entend un polymère obtenu par polymérisation de monomères comprenant une insaturation éthylénique. Le polymère éthylénique séquencé utilisé selon l'invention est préparé exclusivement à partir de monomères monofonctionnels. Cela signifie que le polymère éthylénique séquencé utilisé selon la présente 55 invention ne contient pas de monomères multifonctionnels, qui permettent de casser la linéarité d'un polymère afin d'obtenir un polymère branché ou voire réticulé, en fonction du taux de monomère multifonctionnel. Le polymère utilisé selon l'invention ne contient pas non plus de macromonomères (par « macromonomère » on entend un monomère mono-fonctionnel ayant un groupe pendant de nature polymérique, et ayant de préférence une masse moléculaire supérieure à 500 g/mol, ou bien un polymère comportant sur une seule de ses extrémités un groupe terminal polymérisable (ou à insaturation éthylénique)), qui sont utilisés à la préparation d'un polymère greffé.
On précise que dans ce qui précède et ce qui suit les termes "première" et "deuxième" séquences ne conditionnent nullement l'ordre desdites séquences (ou blocs) dans la structure du polymère.
La première séquence et la deuxième séquence du polymère utilisé dans l'invention peuvent être avantageusement incompatibles l'une avec l'autre.
Par "séquences incompatibles l'une avec l'autre", on entend que le mélange formé par un polymère correspondant à la première séquence et par un polymère correspondant à la deuxième séquence, n'est pas miscible dans le solvant de polymérisation, majoritaire en poids, du polymère séquencé, à température ambiante (25°C) et pression atmosphérique (105 Pa), pour une teneur du mélange desdits polymères supérieure ou égale à 5 % en poids, par rapport au poids total du mélange desdits polymères et dudit solvant de polymérisation, étant entendu que : i) lesdits polymères sont présents dans le mélange en une teneur telle que le rapport pondéral respectif va de 10/90 à 90/10, et que ii) chacun des polymères correspondant au première et seconde sé- quences a une masse moléculaire moyenne (en poids ou en nombre) égale à celle du polymère séquencé +/- 15%. Dans le cas d'un mélange de solvants de polymérisation, dans l'hypothèse de deux ou plusieurs solvants présents en proportions massiques identiques, ledit mélange de polymères est non miscible dans au moins l'un d'entre eux.
Bien entendu, dans le cas d'une polymérisation réalisée dans un solvant uni- que, ce dernier est le solvant majoritaire.
Le polymère séquencé selon l'invention comprend au moins une première séquence et au moins une deuxième séquence reliées entre elles par un segment intermédiaire comprenant au moins un monomère constitutif de la première séquence et au moins un monomère constitutif de la deuxième séquence. Le segment intermédiaire (également appelé séquence intermédiaire) a une température de transition vitreuse Tg comprise entre les températures de transition vitreuse des première et deuxième séquences.
Le segment intermédiaire est une séquence comprenant au moins un monomère constitutif de la première séquence et au moins un monomère constitutif de la deuxième séquence du polymère permet de "compatibiliser" ces séquences. Avantageusement, le segment intermédiaire comprenant au moins un mono- mère constitutif de la première séquence et au moins un monomère constitutif de la deuxième séquence du polymère est un polymère statistique. De préférence, la séquence intermédiaire est issue essentiellement de mono-mères constitutifs de la première séquence et de la deuxième séquence. Par "essentiellement", on entend au moins à 85%, de préférence au moins à 50 90%, mieux à 95% et encore mieux à 100%.
Le polymère séquencé selon l'invention est avantageusement un polymère éthylénique séquencé filmogène. Par polymère "éthylénique", on entend un polymère obtenu par polymérisation 55 de monomères comprenant une insaturation éthylénique.
Par polymère "filmogène", on entend un polymère apte à former à lui seul ou en présence d'un agent auxiliaire de filmification, un dépôt continu sur un support, notamment sur les matières kératiniques.
De façon préférentielle, le polymère selon l'invention ne comprend pas d'atomes de silicium dans son squelette. Par "squelette", on entend la chaîne principale du polymère, par opposition aux chaînes latérales pendantes.
De préférence, le polymère selon l'invention n'est pas hydrosoluble, c'est à dire que le polymère n'est pas soluble dans l'eau ou dans un mélange d'eau et de monoalcools inférieurs linéaires ou ramifiés ayant de 2 à 5 atomes de carbone comme l'éthanol, l'isopropanol ou le n-propanol, sans modification de pH, à une teneur en matière active d'au moins 1% en poids, à température ambiante (25°C).
De préférence, le polymère selon l'invention n'est pas un élastomère. Par "polymère non élastomère", on entend un polymère qui, lors-qu'il est soumis à une contrainte visant à l'étirer (par exemple de 30% relativement à sa longueur initiale), ne revient pas à une longueur sensible-ment identique à sa longueur initiale lorsque cesse la contrainte.
De manière plus spécifique, par "polymère non élastomére" on désigne un polymère ayant une recouvrance instantanée R; < à 50% et une recouvrance retardée R2h < 70% après avoir subi un allongement de 30%. De préférence, R; est < à 30 %, et R2h < 50%. Plus précisément, le caractère non élastomérique du polymère est déterminé selon le protocole suivant : On prépare un film de polymère par coulage d'une solution du polymère dans une matrice téflonnée puis séchage pendant 7 jours dans une ambiance contrôlée à 23±5°C et 50±10 % d'humidité relative. On obtient alors un film d'environ 100 pm d'épaisseur dans lequel sont découpées des éprouvettes rectangulaires (par exemple à l'emporte- pièce) d'une largeur de 15 mm et d'une longueur de 80 mm. On impose à cet échantillon une sollicitation de traction à l'aide d'un appareil commercialisé sous la référence Zwick, dans les mêmes conditions de température et d'humidité que pour le séchage.
Les éprouvettes sont étirées à une vitesse de 50 mm/min et la distance entre les mors est de 50 mm, ce qui correspond à la longueur initiale (lo) de l'éprouvette. On détermine la recouvrance instantanée Ri de la manière suivante : - on étire l'éprouvette de 30 % (Emax) c'est-à-dire environ 0,3 fois sa longueur initiale (lo) - on relâche la contrainte en imposant une vitesse de retour égale à la vitesse de traction, soit 50 mm/min et on mesure l'allongement résiduel de l'éprouvette en pourcentage, après retour à contrainte charge nulle (ci). La recouvrance instantanée en % (Ri) est donnée par la formule ci-après: Ri ù (Emax - £i)/ Emax) X 100 Pour déterminer la recouvrance retardée, on mesure après 2 heures le taux d'allongement résiduel de l'éprouvette en pourcentage (E2h), 2 heures après retour à la contrainte charge nulle. La recouvrance retardée en % (R2h) est donnée par la formule ci-après: R2hù (Emax - E2h)/ Emax) X 100 50 A titre purement indicatif, un polymère selon un mode de réalisation de l'invention possède de préférence une recouvrance instantanée R; de 10% et une recouvrance retardée R2h de 30%.
L'indice de polydispersité du polymère de l'invention est supérieur à 2.
Avantageusement, le polymère séquencé utilisé dans les compositions selon l'invention a un indice de polydispersité I supérieur à 2, par exemple allant de 2 à 9, de préférence supérieur ou égal à 2,5, par exemple allant de 2,5 à 8, et mieux supérieur ou égal à 2,8 et notamment, allant de 2,8 à 6. L'indice de polydispersité I du polymère est égal au rapport de la masse moyenne en poids Mw sur la masse moyenne en nombre Mn. On détermine les masses molaires moyennes en poids (Mw) et en nombre (Mn) par chromatographie liquide par perméation de gel (solvant THF, courbe d'étalonnage établie avec des étalons de polystyrène linéaire, détecteur réfractométrique). La masse moyenne en poids (Mw) du polymère selon l'invention est de préférence inférieure ou égale à 300 000, elle va par exemple de 35 000 à 200 000, et mieux de 45 000 à 150 000 g/mol. La masse moyenne en nombre (Mn) du polymère selon l'invention est de pré- férence inférieure ou égale à 70 000, elle va par exemple de 10 000 à 60 000, et mieux de 12 000 à 50 000 g/mol. De préférence, l'indice de polydispersité du polymère selon l'invention est supérieur à 2, par exemple allant de 2 à 9, de préférence supérieur ou égal à 2,5, par exemple allant de 2,5 à 8, et mieux supérieur ou égal à 2,8 et notamment, allant de 2,8 à 6.
Première séquence ayant une Tq supérieure ou éqale à 40°C
La séquence ayant une Tg supérieure ou égale à 40°C a par exemple une Tg allant de 40 à 150°C, de préférence supérieure ou égale à 50°C, allant par exemple de 50°C à 120 °C, et mieux supérieure ou égale à 60°C, allant par exemple de 60°C à 120°C .
Les températures de transition vitreuse indiquées des première et deuxième séquences peuvent être des Tg théoriques déterminées à partir des Tg théoriques des monomères constitutifs de chacune des séquences, que l'on peut trouver dans un manuel de référence tel que le Polymer Handbook, 3rd ed, 1989, John Wiley, selon la relation sui-vante, dite Loi de Fox : 1/Tg=E/Tg;),
Mi étant la fraction massique du monomère i dans la séquence considerée et Tg; étant la température de transition vitreuse de l'homopolymère du monomère i. Sauf indication contraire, les Tg indiquées pour les première et deuxième séquences dans la présente demande sont des Tg théoriques. L'écart entre les températures de transition vitreuse des première et deuxième séquences est généralement supérieur à 10°C, de préférence supérieur à 20°C, et mieux supérieur à 30°C.
On entend désigner dans la présente invention, par l'expression « compris entre ... et 50 ... », un intervalle de valeurs dont les bornes mentionnées sont exclues, et « de ... à ... » et « allant de ... à ... », un intervalle de valeurs dont les bornes sont inclues. La séquence ayant une Tg supérieure ou égale à 40°C peut être un homopolymère ou un copolymère. 45 La séquence ayant une Tg supérieure ou égale à 40°C peut être issue en totalité ou en partie de un ou plusieurs monomères, qui sont tels que l'homopolymère pré-paré à partir de ces monomères a une température de transition vitreuse supérieure ou égale à 40°C. Cette séquence peut également être appelée « séquence rigide ».
Dans le cas où cette séquence est un homopolymère, elle est issue de monomères, qui sont tel(s) que les homopolymères préparés à partir de ces monomères ont des températures de transition vitreuse supérieures ou égales à 40°C. Cette première séquence peut être un homopolymère, constitué par un seul type de monomère (dont la Tg de l'homopolymère correspondant est supérieure ou égale à 40°C). Dans le cas où la première séquence est un copolymère, elle peut être issue en totalité ou en partie de un ou de plusieurs monomères, dont la nature et la concentration sont choisies de façon que la Tg du copolymère résultant soit supérieure ou égale à 40°C. Le copolymère peut par exemple comprendre : - des monomères qui sont tel(s) que les homopolymères préparés à partir de ces monomères ont des Tg supérieures ou égales à 40°C, par exemple une Tg allant de 40°C à 150 °C, de préférence supérieure ou égale à 50°C, allant par exemple de 50°C à 120°C, et mieux supérieure ou égale à 60°C, allant par exemple de 60°C à 120°C, et - des monomères qui sont tel(s) que les homopolymères préparés à partir de ces monomères ont des Tg inférieures à 40°C, choisis parmi les monomères ayant une Tg comprise entre 20°C à 40°C et/ou les monomères ayant une Tg inférieure ou égale à 20°C, par exemple une Tg allant de -100°C à 20°C, de préférence inférieure à 15°C, notamment allant de ù 80°C à 15°C et mieux inférieur à 10°C, par exemple allant de -50°C à 0°C à, tels que décrits plus loin. Les premiers monomères dont les homopolymères ont une température de transition vitreuse supérieure ou égale à 40°C sont, de préférence, choisis parmi les monomères suivants, appelés aussi monomères principaux : - les méthacrylates de formule CH2 = C(CH3)-COOR1 dans laquelle R, représente un groupe alkyle non substitué, linéaire ou ramifié, contenant de 1 à 4 atomes de carbone, tel qu'un groupe méthyle, éthyle, propyle ou isobutyle ou R, représente un groupe cycloalkyle C4 à C12, de préférence un cycloalkyle C8 à C12, tel que le méthacrylate d'isobornyle, - les acrylates de formule CH2 = CH-COOR2 dans laquelle R2 représente un groupe cycloalkyle en C4 à C12 tel qu'un groupe isobornyle ou un groupe tertio butyle, - les (méth)acrylamides de formule : R' R7 CH2 = C Co N\ R8 où R, et R8 identiques ou différents représentent chacun un atome d'hydrogène ou un groupe alkyle en C, à C12linéaire ou ramifié, tel qu'un groupe n-butyle, tùbutyle, isopropyle, isohexyle, isooctyle, ou isononyle ; ou R, représente H et R8 représente un groupement 1,1-diméthyl-3-oxobutyl, et R' désigne H ou méthyle. Comme exemple de monomères, on peut citer le N-butylacrylamide, le N-t-butylacrylamide, le N-isopropylacrylamide, le N,N-diméthylacrylamide et le N,N-dibutylacrylamide , - et leurs mélanges.
La première séquence est avantageusement obtenue à partir d'au moins un monomère acrylate de formule CH2 = CH-0O0R2 et d'au moins un monomère méthacrylate de formule CH2 = C(CH3)-0O0R2 dans laquelle R2 représente un groupe cycloalkyle C4 à C12, de préférence un cycloalkyle C8 à C12, tel que l'isobornyle. Les monomères et leurs proportions sont de préférence choisis de telle sorte que la température de transition vitreuse de la première séquence est supérieure ou égale à 40°C.
Selon un mode de mise en oeuvre, la première séquence est obtenue à partir : i) d'au moins un monomère acrylate de formule CH2 = CH-0O0R2 dans laquelle R2 représente un groupe cycloalkyle C4 à C12, de préférence un groupe cycloalkyle en C8 à C12, tel que l'isobornyle, - ii) et d'au moins un monomère méthacrylate de formule CH2 = C(CH3)-COOR'2 dans la-quelle R'2 représente un groupe cycloalkyle C4 à C12, de préférence un groupe cycloalkyle en C8 à 012, tel que l'isobornyle.
Selon un mode de mise en oeuvre, la première séquence est obtenue à partir d'au moins un monomère acrylate de formule CH2 = CH-0O0R2 dans laquelle R2 représente un groupe cycloalkyle C8 à 012, tel que l'isobornyle, et d'au moins un monomère méthacrylate de formule CH2 = C(CH3)-COOR'2 dans laquelle R'2 représente un groupe cycloalkyle C8 à 012,, tel que l'isobornyle. De façon préférée, R2 et R'2 représentent indépendamment ou simultanément un groupe isobornyle. De façon préférée, le copolymère séquencé comprend de 50 à 80 % en poids de méthacrylate/acrylate d'isobornyle, de 10 à 30 % en poids d'acrylate d'isobutyle et de 2 à 10 % en poids d'acide acrylique.
La première séquence peut être obtenue exclusivement à partir dudit mono- mère acrylate et dudit monomère méthacrylate.
Le monomère acrylate et le monomère méthacrylate sont de préférence dans des propositions massiques comprises entre 30 :70 et 70 :30, de préférence entre 40 :60 et 60 :40, notamment de l'ordre de 50 :50.
La proportion de la première séquence va avantageusement de 20 à 90% en poids du polymère, mieux de 30 à 80% et encore mieux de 60 à 80%.
Selon un mode de mise en oeuvre, la première séquence est obtenue par po- lymérisation du méthacrylate d'isobornyle et de l'acrylate d'isobornyle.
Deuxième séquence de température de transition vitreuse inférieure à 20°C. La deuxième séquence a avantageusement une température de transition vitreuse Tg inférieure ou égale à 20°C a par exemple une Tg allant de -100°C à 20°C, de préférence inférieure ou égale à 15°C, notamment allant de -80°C à 15°C et mieux inférieure ou égale à 10°C, par exemple allant de - 100 °C à 10 °C, notamment allant de -30°C à 10°C. La deuxième séquence est issue en totalité ou en partie de un ou plusieurs deuxièmes monomères, qui sont tels que l'homopolymère préparé à partir de ces mono- mères a une température de transition vitreuse inférieure ou égale à 20°C.
Cette séquence peut également être appelée « séquence souple ». 41 Le monomère ayant une Tg inférieure ou égale à 20°C (appelé deuxième monomère) est, de préférence, choisi parmi les monomères suivants:
- les acrylates de formule CH2 = CHCOOR3, R3 représentant un groupe alkyle non substitué en C, à C12, linéaire ou ramifié, à l'exception du groupe tertiobutyle, dans lequel se trouve(nt) éventuellement intercalé(s) un ou plusieurs hétéroatomes choisis parmi O, N, S,
- les méthacrylates de formule CH2 = C(CH3)-COOR4, R4 représentant un groupe alkyle non substitué en C6 à C12 linéaire ou ramifié, dans lequel se trouve(nt) éventuellement intercalé(s) un ou plusieurs hétéroatomes choisis parmi 0, N et S;
- les esters de vinyle de formule R5-CO-O-CH = CH2 où R5 représente un groupe alkyle en C4 à C12 linéaire ou ramifié ; - les éthers d'alcool vinylique et d'alcool en C4 à C12, - les N-alkyl en C4 à C12 acrylamides, tels que le N-octylacrylamide, - et leurs mélanges.
Les monomères ayant une Tg inférieure ou égale à 20°C préférés sont l'acry- late d'isobutyle, l'acrylate d'éthyl-2 hexyle ou leurs mélanges en toutes proportions.
Chacune des première et deuxième séquences peut contenir, en proportion minoritaire, au moins un monomère constitutif de l'autre séquence.
Ainsi la première séquence peut contenir au moins un monomère constitutif de la deuxième séquence et inversement.
Chacune des première et/ou deuxième séquence, peu(ven)t comprendre, outre les monomères indiqués ci-dessus, un ou plusieurs autres monomères appelés monomères additionnels, différents des monomères principaux cités précédemment. La nature et la quantité de ce ou ces monomères additionnels sont choisies de manière à ce que la séquence dans laquelle ils se trou-vent ait la température de transition vitreuse désirée.
Ce monomère additionnel est par exemple choisi parmi : - les monomères à insaturation(s) éthylénique(s) comprenant au moins une fonction amine tertiaire comme la 2-vinylpyridine, la 4-vinylpyridine, le méthacrylate de diméthylaminoéthyle, le méthacrylate de diéthylaminoéthyle, le diméthylaminopropyl méthacrylamide et les sels de ceux-ci, - les méthacrylates de formule CH2 = C(CH3)-0O0R6 dans laquelle R6 représente un groupe alkyle linéaire ou ramifié, contenant de 1 à 4 atomes de carbone, tel qu'un groupe méthyle, éthyle, propyle ou isobutyle, ledit groupe alkyle étant substitué par un ou plusieurs substituants choisis parmi les groupes hydroxyle (comme le méthacrylate de 2-hydroxypropyle, le méthacrylate de 2-hydroxyéthyle) et les atomes d'halogènes (Cl, Br, I, F), tel que le méthacrylate de trifluoroéthyle, - les méthacrylates de formule CH2 = C(CH3)-COOR9, R9 représentant un groupe alkyle en C6 à C12 linéaire ou ramifié, dans lequel se trouve(nt) éventuellement intercalé(s) un ou plusieurs hétéroatomes choisis parmi 0, N et S, ledit groupe alkyle étant substitué par un ou plusieurs substituants choi- sis parmi les groupes hydroxyle et les atomes d'halogènes (Cl, Br, I, F) ; - les acrylates de formule CH2 = CHCOOR10, Rio représentant un groupe alkyle en C, à 0,2 linéaire ou ramifié substitué par un ou plusieurs substituants choisis parmi les groupes hydroxyle et les atomes d'halogène (Cl, Br, I et F), tel que l'acrylate de 2-hydroxypropyle et l'acrylate de 2-hydroxyéthyle, ou Rio représente un alkyle en CI à C12-O-POE (polyoxyéthylène) avec répétition du motif oxyéthylène de 5 à 10 fois, par exemple méthoxy-POE, ou R8 représente un groupement polyoxyéthylèné comprenant de 5 à 10 motifs d'oxyde d'éthylène.
En particulier, la première séquence peut comprendre à titre de monomère additionnel : - de l'acide (méth)acrylique, de préférence de l'acide acrylique, - de l'acrylate de tertiobutyle - les méthacrylates de formule CH2 = C(CH3)-000R1 dans laquelle R, représente un groupe alkyle non substitué, linéaire ou ramifié, contenant de 1 à 4 atomes de carbone, tel qu'un groupe méthyle, éthyle, propyle ou isobutyle, - les (méth)acrylamides de formule : R' R7 CH2 = C Co N\ R8 où R, et R8 identiques ou différents représentent chacun un atome d'hydrogène ou un 20 groupe alkyle en C, à 012 linéaire ou ramifié, tel qu'un groupe n-butyle, tùbutyle, isopropyle, isohexyle, isooctyle, ou isononyle ; ou R, représente H et R8 représente un groupe-ment 1,1-diméthyl-3-oxobutyl, et R' désigne H ou méthyle. Comme exemple de monomères, on peut citer le N-butylacrylamide, le N-t-butylacrylamide, le N-isopropylacrylamide, le 25 N,N-diméthylacrylamide et le N,N-dibutylacrylamide , - et leurs mélanges. Le monomère additionnel peut représenter 0,5 à 30% en poids du poids du po-30 lymère. Selon un mode de mise en oeuvre, le polymère de l'invention ne contient pas de monomère additionnel.
De préférence, le polymère de l'invention comprend au moins des monomères acrylate d'isobornyle et méthacrylate d'isobornyle dans la première séquence et des monomères acrylate d'isobutyle et acide acrylique dans la deuxième séquence.
35 De préférence, le polymère comprend au moins des monomères acrylate d'isobornyle et méthacrylate d'isobornyle en proportion équivalente en poids dans la première séquence et des monomères acrylate d'isobutyle et acide acrylique dans la deuxième séquence.
De préférence, le polymère comprend au moins des monomères acrylate 40 d'isobornyle et méthacrylate d'isobornyle en proportion équivalente en poids dans la première séquence, et des monomères acrylate d'isobutyle et acide acrylique dans la deuxième séquence, la première séquence représentant 70% en poids du polymère.
De préférence, le polymère comprend au moins des monomères acrylate d'isobornyle et méthacrylate d'isobornyle en proportion équivalente en poids dans la pre- 45 mière séquence, et des monomères acrylate d'isobutyle et acide acrylique dans la deuxième séquence. De façon préférée, la séquence de Tg supérieure à 40°C représen- 15 tant 70% en poids du polymère, et l'acide acrylique représentant 5% en poids du polymère. Selon un mode de réalisation, la première séquence ne comprend pas de monomère additionnel.
Selon un mode de réalisation préféré, la deuxième séquence comprend de l'acide acrylique à titre de monomère additionnel. En particulier, la deuxième séquence est avantageusement obtenue à partir d'un monomère acide acrylique et d'au moins un autre monomère ayant une Tg inférieure ou égale à 20°C. Le copolymère séquencé peut avantageusement comprendre plus de 2 % en poids de monomères acide acrylique, et notamment de 2 à 15 % en poids, par exemple de 3 à 15 % en poids, en particulier de 4 à 15 % en poids, voire de 4 à 10 % en poids de monomères acide acrylique, par rapport au poids total dudit copolymère. Les monomères constitutifs de la deuxième séquence et leurs proportions sont choisis de telle sorte que la température de transition vitreuse de la deuxième séquence est inférieure ou égale à 20°C.
Segment intermédiaire
Le segment intermédiaire (également appelé séquence intermédiaire) relie la première séquence et la deuxième séquence du polymère utilisé selon la présente invention. Le segment intermédiaire résulte de la polymérisation : i) du ou des premiers monomères, et éventuellement du ou des monomères additionnels, restant disponibles après leur polymérisation à un taux de conversion d'au maximum 90% pour former la première séquence, ii) et du ou des deuxièmes monomères, et éventuellement du ou des monomères additionnels, ajoutés dans le mélange réactionnel.
La formation de la deuxième séquence est initiée lorsque les premiers mono-mères ne réagissent plus ou ne s'incorporent plus dans la chaine polymérique soit parce qu'ils sont tous consommés soit parce que leur réactivité ne leur permet plus d'être.
Ainsi le segment intermédiaire comprend les premiers monomères disponibles, résultant d'un taux de conversion de ces premiers monomères inférieur ou égal à 90%, lors de l'introduction du ou des deuxièmes monomères lors de la synthèse du polymère.
Le segment intermédiaire du polymère séquencé est un polymère statistique (peut également être appelé une séquence statistique). C'est-à-dire qu'il comprend une répartition statistique du ou des premiers monomères et du ou des deuxièmes monomères ainsi que du ou des monomères additionnels éventuellement présents.
Ainsi, le segment intermédiaire est une séquence statistique, de même que la première séquence et la deuxième séquence si elles ne sont pas des homopolymères (c'est-à-dire si elles sont toutes deux formées à partir d'au moins deux monomères différents).
Procédé de préparation du copolymère : Le copolymère éthylénique séquencé selon l'invention est préparé par polymérisation radicalaire libre, selon les techniques bien connues de ce type de polymérisation.
La polymérisation radicalaire libre est effectuée en présence d'un amorceur dont la nature est adaptée, de façon connue, en fonction de la température de polymérisation souhaitée et du solvant de polymérisation. En particulier, l'amorceur peut être choisi parmi les amorceurs à fonction peroxyde, les couples d'oxydoréduction, ou d'autres amorceurs de polymérisation radicalaire connus de l'homme de l'art. 40 45 50 En particulier, à titre d'amorceur à fonction peroxyde, on peut citer par exem- a. les péroxyesters, tel que le terbutyl-péroxyacétate, le perbenzoate de tertiobutyle, le tertbutyl péroxy-2-éthylhexanoate (Trigonox 21S d'Akzo Nobel), le 2,5-bis(2-éthylhexanoylpéroxy)-2,5-diméthylhexane (Trigonox 141 d'Akzo Nobel) ; b. les péroxydicarbonates, tel que le di-isopropylpéroxydicarbonate ; c. les péroxycetones, tel que le méthyléthylcétone péroxyde ; d. hydropéroxydes, tel que l'eau oxygénée (H2O2), le terbutylhydropéroxyde ; e. les péroxydes de diacyle, tel que l'acétyl péroxyde, le benzoyl péroxyde ; f. les péroxydes de dialkyle, tel que le di-tertiobutyle péroxyde ; g. les péroxydes inorganiques, tel que le péroxodisulfate de potassium (K2S2O8); 15 A titre d'amorceur sous forme de couple d'oxydoréduction, on peut citer le couple thiosulfate de potassium + peroxodisulfate de potassium par exemple. Selon un mode de réalisation préférée, l'amorceur est choisi parmi les peroxydes organiques comprenant de 8 à 30 atomes de carbone. De façon préférée, l'amorceur utilisé est le 2.5- Bis(2-éthylhexanoylperoxy)-2.5-diméthylhexane commerciali- 20 sé sous la référence Trigonox® 141 par la société Akzo Nobel. Le copolymère séquencé utilisé selon l'invention est préparé par polymérisation radicalaire libre et non par polymérisation contrôlée ou vivante. En particulier, la polymérisation du copolymère éthylénique séquencé est réalisée en l'absence d'agents de contrôle, et en particulier en l'absence d'agent de contrôle classiquement utilisés dans les 25 procédés de polymérisation vivante ou contrôlée tels que les nitroxydes, les alcoxyamines, les dithioesters, les dithiocarbamates, les dithiocarbonates ou xanthates, les trithiocarbonates, les catalyseurs à base de cuivre, par exemple. Comme indiqué précédemment, le segment intermédiaire est une séquence 30 statistique, de même que la première séquence et la deuxième séquence si elles ne sont pas des homopolymères (c'est-à-dire si elles sont toutes deux formées à partir d'au moins deux monomères différents).
Le copolymère séquencé peut être préparé par polymérisation radicalaire libre, 35 et en particulier par un procédé consistant à mélanger, dans un même réacteur, un solvant de polymérisation, un amorceur, au moins un monomère de transition vitreuse supérieure ou égale à 40°C, au moins un monomère de transition vitreuse inférieure ou égale à 20 °C selon la séquence suivante : - on verse dans le réacteur, une partie du solvant de polymérisation et éven- 40 tuellement une partie de l'amorceur et des monomères de la première coulée, mélange que l'on chauffe à une température de réaction comprise entre 60 et 120 °C, - on verse ensuite, en une première coulée, ledit au moins un premier monomère de Tg supérieure ou égale à 40°C et éventuellement une partie de l'amorceur que l'on laisse à réagir pendant une durée T correspondant à un taux de conversion desdits 45 monomères de 90 % maximum, - on verse ensuite dans le réacteur, en une deuxième coulée, à nouveau de l'amorceur de polymérisation, ledit au moins un deuxième monomère de transition vitreuse inférieure ou égale à 20 °C, qu'on laisse réagir pendant une durée T' au bout de laquelle le taux de conversion desdits monomères atteint un plateau, 50 - on ramène le mélange réactionnel à température ambiante. pie: 10 De façon préférée, le copolymère peut être préparé par polymérisation radicalaire libre, en particulier par un procédé consistant à mélanger, dans un même réacteur, un solvant de polymérisation, un amorceur, un monomère acide acrylique, au moins un monomère de transition vitreuse inférieure ou égale à 20 °C, au moins un monomère acrylate de formule CH2 = CH-000R2 dans laquelle R2 représente un groupe cycloalkyle C4 à C12, et au moins un monomère méthacrylate de formule CH2 = C(CH3)-COOR'2 dans laquelle R'2 représente un groupe cycloalkyle C4 à C12, selon la séquence d'étape sui-vante : - on verse dans le réacteur, une partie du solvant de polymérisation et éven- tuellement une partie de l'amorceur et des monomères de la première coulée, mélange que l'on chauffe à une température de réaction comprise entre 60 et 120 °C, - on verse ensuite, en une première coulée, ledit au moins monomère acrylate de formule CH2 = CH-000R2 et ledit au moins monomère méthacrylate de formule CH2 = C(CH3)-COOR'2 en tant que monomères de Tg supérieure ou égale à 40°C, et éventuellement une partie de l'amorceur que l'on laisse à réagir pendant une durée T correspondant à un taux de conversion desdits monomères de 90 % maximum, - on verse ensuite dans le réacteur, en une deuxième coulée, à nouveau de l'amorceur de polymérisation, le monomère acide acrylique et ledit au moins monomère de transition vitreuse inférieure ou égale à 20 °C, qu'on laisse réagir pendant une durée T' au bout de laquelle le taux de conversion desdits monomères atteint un plateau, - on ramène le mélange réactionnel à température ambiante.
Par solvant de polymérisation, on entend un solvant ou un mélange de sol- vants. En particulier, à titre de solvant de polymérisation utilisable on peut citer : - les cétones liquides à température ambiante tels que méthyléthylcétone, méthylisobutylcétone, diisobutylcétone, l'isophorone, la cyclohexanone, l'acétone ; - les éthers de propylène glycol liquides à température ambiante tels que le monométhyléther de propylène glycol, l'acétate de monométhyl éther de propylène glycol, le mono n-butyl éther de dipropylène glycol ; - les esters à chaîne courte (ayant de 3 à 8 atomes de carbone au total) tels que l'acétate d'éthyle, l'acétate de méthyle, l'acétate de propyle, l'acétate de n-butyle, l'acétate d'isopentyle ; - les éthers liquides à température ambiante tels que le diéthyléther, le dimé- thyléther ou le dichlorodiéthyléther ; - les alcanes liquides à température ambiante tels que le décane, l'heptane, le dodécane, l'isododécane, le cyclohexane, l'isohexadécane ; - les composés cycliques aromatiques liquides à température ambiante tels que le toluène et le xylène ; les aldéhydes liquides à température ambiante tels que le benzaldéhyde, l'acétaldéhyde et leurs mélanges. Classiquement, le solvant de polymérisation est une huile volatile de point éclair inférieur à 80°C. Le point éclair est mesuré en particulier selon la Norme Iso 3679. Le solvant de polymérisation peut être choisi notamment parmi l'acétate d'éthyle, l'acétate de butyle, les alcools tels que l'isopropanol, l'éthanol, les alcanes ali- phatiques tels que l'isododécane et leurs mélanges. De préférence, le solvant de polymérisation est un mélange acétate de butyle et isopropanol ou l'isododécane. Selon un autre mode de mise en oeuvre, le copolymère peut être préparé par polymérisation radicalaire libre selon un procédé de préparation, consistant à mélanger, dans un même réacteur, un solvant de polymérisation, un amorceur, au moins un mono-mère de transition vitreuse inférieure ou égale à 20 °C, et au moins un monomère de Tg supérieure ou égale à 40°C, selon la séquence d'étape suivante : - on verse dans le réacteur, une partie du solvant de polymérisation et éventuellement une partie de l'amorceur et des monomères de la première coulée, mélange que l'on chauffe à une température de réaction comprise entre 60 et 120 °C, - on verse ensuite, en une première coulée, ledit au moins un monomère de transition vitreuse inférieure ou égale à 20 °C et éventuellement une partie de l'amorceur que l'on laisse à réagir pendant une durée T correspondant à un taux de conversion des-dits monomères de 90 % maximum, - on verse ensuite dans le réacteur, en une deuxième coulée, à nouveau de l'amorceur de polymérisation, ledit au moins un monomère de Tg supérieure ou égale à 40°C, qu'on laisse réagir pendant une durée T' au bout de laquelle le taux de conversion desdits monomères atteint un plateau, - on ramène le mélange réactionnel à température ambiante.
Selon un mode préféré de mise en oeuvre, le copolymère peut être préparé par polymérisation radicalaire libre selon un procédé de préparation, consistant à mélanger, dans un même réacteur, un solvant de polymérisation, un amorceur, un monomère acide acrylique, au moins un monomère de transition vitreuse inférieure ou égale à 20 °C, au moins un monomère de Tg supérieure ou égale à 40°C, et en particulier en tant que monomères de Tg supérieure ou égale à 40°C, au moins un monomère acrylate de for- mule CH2 = CH-COOR2 dans laquelle R2 représente un groupe cycloalkyle C4 à C12, et au moins un monomère méthacrylate de formule CH2 = C(CH3)-COOR'2 dans laquelle R'2 représente un groupe cycloalkyle C4 à C12, selon la séquence d'étape suivante : - on verse dans le réacteur, une partie du solvant de polymérisation et éventuellement une partie de l'amorceur et des monomères de la première coulée, mélange que l'on chauffe à une température de réaction comprise entre 60 et 120 °C, - on verse ensuite, en une première coulée, le monomère acide acrylique et ledit au moins monomère de transition vitreuse inférieure ou égale à 20 °C et éventuelle-ment une partie de l'amorceur que l'on laisse à réagir pendant une durée T correspondant à un taux de conversion desdits monomères de 90 % maximum, - on verse ensuite dans le réacteur, en une deuxième coulée, à nouveau de l'amorceur de polymérisation, ledit au moins un monomère acrylate de formule CH2 = CH-COOR2 et ledit au moins un monomère méthacrylate de formule CH2 = C(CH3)-COOR'2, en tant que monomère de Tg supérieure ou égale à 40°C, qu'on laisse réagir pendant une durée T' au bout de laquelle le taux de conversion desdits mo- nomères atteint un plateau, - on ramène le mélange réactionnel à température ambiante. La température de polymérisation est de préférence de l'ordre de 90 °C. La durée de réaction après la deuxième coulée est de préférence comprise entre 3 et 6 heures.
De façon préférée le copolymère éthylénique séquencé est présent dans la compsition dans une teneur en matière aactive allant de 0,1 à 60%, mieux 0,5 à 50%, mieux 1 à 30% et mieux encore 1 à 40% en poids par rapport au poids total de la composition Distillation du solvant de synthèse Il est possible de procéder à une étape d'élimination totale ou partielle dudit solvant ou huile volatile (classiquement l'isododécane). On procède alors en particulier par distillation, éventuellement sous vide, et ajout éventuel d'huile ester hydrocarbonée non volatile comprenant au moins 16 atomes de carbone et ayant une masse molaire inférieure à 650 g/moles, telle que le néopentanoate d'octyledodécyle (notamment le néopentanoate de 2-octyledodécyle) Cette étape est réalisée à chaud et éventuellement sous vide pour distiller un maximum solvant de synthèse volatil et est connue de l'homme du métier.55 2. Polymère vinylique comprenant au moins un motif dérivé de dendrimère carbosiloxane.
Selon un second mode de réalisation de l'invention, le polymère filmogène présent dans la composition selon l'invention est un polymère vinylique comprenant au moins un motif dérivé de dendrimère carbosiloxane.
Le polymère vinylique peut posséder notamment un squelette et au moins une chaîne latérale, laquelle comprend une structure de dendrimère carbosiloxane. Le terme « stuc- ture de dendrimère carbosiloxane » dans le contexte de la présente invention représente une structure moléculaire possédant des groupes ramifiés ayant des masses moléculaires élevées, ladite structure ayant une régularité élevée dans la direction radiale en partant de la liaison au squelette. De telles structures de dendrimère carbosiloxane sont décrites sous la forme d'un copolymère siloxane-silylalkylène fortement ramifié dans la demande de brevet japonais mise à l'inspection publique Kokai 9-171 154.
Le polymère vinylique contient des motifs dérivés de dendrimères carbosiloxane qui peu-vent être représentés par la formule générale suivante : R1 I s Y-~-~ i 0--'Si- dans laquelle R' représente un groupe aryle ou un groupe alkyle possédant de 1 à 10 atomes de carbone, et X' représente un groupe silylalkyle qui, lorsque i = 1, est représenté par la formule : R= /3-
dans laquelle R' est le même que défini ci-dessus, R2 représente un groupe alkylène pos- sédant de 2 à 10 atomes de carbone, R3 représente un groupe alkyle possédant de 1 à 10 atomes de carbone, X'+' représente un atome d'hydrogène, un groupe alkyle possédant de 1 à 10 atomes de carbone, un groupe aryle, ou le groupe silylalkyle défini ci-dessus avec i = i + 1 ;.i est un nombre entier de 1 à 10 qui représente la génération dudit groupe silylalkyle, et a' est un nombre entier de 0 à 3 ; Y représente un groupe organique polymé- risable à l'aide de radicaux choisi dans le groupe constitué par un groupe organique qui contient un groupe méthacrylique ou un groupe acrylique et qui est représenté par les formules : ~81 g; RI R2 -Si and et R4 0 R5 dans lesquelles R4 représente un atome d'hydrogène ou un groupe alkyle, R5 représente un groupe alkylène possédant de 1 à 10 atomes de carbone tel qu'un groupe méthylène, un groupe éthylène, un groupe propylène, ou un groupe butylène, le groupe méthylène et le groupe propylène étant préférés ; et un groupe organique qui contient un groupe styryle et qui est représenté par la formule : dans laquelle R6 représente un atome d'hydrogène ou un groupe alkyle, R7 représente un groupe alkyle possédant de 1 à 10 atomes de carbone tel qu'un groupe méthyle, un groupe éthyle, un groupe propyle, ou un groupe butyle, le groupe méthyle étant préféré, R8 représente un groupe alkylène possédant de 1 à 10 atomes de carbone tel qu'un groupe méthylène, un groupe éthylène, un groupe propylène, un groupe butylène, le groupe éthylène étant préféré, b est un nombre entier de 0 à 4, et c vaut 0 ou 1 de sorte que si c vaut 0, -(R8)c- représente une liaison. R' représente un groupe aryle ou un groupe alkyle possédant de 1 à 10 atomes de carbone, où le groupe alkyle est de préférence représenté par un groupe méthyle, un groupe éthyle, un groupe propyle, un groupe butyle, un groupe pentyle, un groupe isopropyle, un groupe isobutyle, un groupe cyclopentyle, un groupe cyclohexyle, et où le groupe aryle est de préférence représenté par un groupe phényle et un groupe naphtyle, où les groupes méthyle et phényle sont plus particulièrement préférés, et le groupe méthyle est préféré entre tous. Le polymère vinylique qui contient une structure de dendrimère carbosiloxane peut être le produit de polymérisation de (A) de 0 à 99,9 parties en poids d'un monomère de type vinyle ; et (B) de 100 à 0,1 parties en poids d'un dendrimère carbosiloxane qui contient un groupe organique polymérisable à l'aide de radicaux, représenté par la formule générale : 49 Y 50 dans laquelle Y représente un groupe organique polymérisable à l'aide de radicaux, R' représente un groupe aryle ou un groupe alkyle possédant de 1 à 10 atomes de carbone, et X' représente un groupe silylalkyle qui, lorsque i = 1, est représenté par la formule :
(yR )aif ùR2ùSi dans laquelle R' est le même que défini ci-dessus, R2 représente un groupe alkylène possédant de 2 à 10 atomes de carbone, R3 représente un groupe alkyle possédant de 1 à 10 atomes de carbone, X'+' représente un atome d'hydrogène, un groupe alkyle possédant de 1 à 10 atomes de carbone, un groupe aryle, ou le groupe silylalkyle défini ci-dessus avec i = i + 1 ; i est un nombre entier de 1 à 10 qui représente la génération dudit groupe silylalkyle, et a' est un nombre entier de 0 à 3 ; où ledit groupe organique polymérisable à l'aide de radicaux contenu dans le composant (B) est choisi dans le groupe constitué par un groupe organique qui contient un groupe méthacrylique ou un groupe acrylique et qui est représenté par les formules : 4 0 CH2 C---C Rb
et and dans lesquelles R4 représente un atome d'hydrogène ou un groupe alkyle, R5 représente un groupe alkylène possédant de 1 à 10 atomes de carbone ; et un groupe organique qui contient un groupe styryle et qui est représenté par la formule :15 dans laquelle R6 représente un atome d'hydrogène ou un groupe alkyle, R7 représente un groupe alkyle possédant de 1 à 10 atomes de carbone, R8 représente un groupe alkylène possédant de 1 à 10 atomes de carbone, b est un nombre entier de 0 à 4, et c vaut 0 ou 1.
Dans le cas où c vaut 0, -(R8)c- représente une liaison. Le monomère de type vinyle qui est le composant (A) dans Le polymère vinylique est un monomère de type vinyle qui contient un groupe vinyle polymérisable à l'aide de radicaux. Il n'y a aucune limitation particulière en ce qui concerne le type d'un tel mono-mère. Ce qui suit sont des exemples de ce monomère de type vinyle : le méthacrylate de méthyle, le méthacrylate d'éthyle, le méthacrylate de n-propyle, le méthacrylate d'isopropyle, ou un méthacrylate d'alkyle analogue inférieur ; le méthacrylate de glycidyle ; le méthacrylate de n-butyle, le méthacrylate d'isobutyle, le méthacrylate de tertbutyle, le méthacrylate de n-hexyle, l'acide méthacrylique, le méthacrylate de cyclohexyle, le méthacrylate de 2-éthylhexyle, le méthacrylate d'octyle, le méthacrylate de lauryle, le méthacrylate de stéaryle, ou un méthacrylate analogue supérieur ; l'acétate de vinyle, le propionate de vinyle, ou un ester de vinyle d'acide gras analogue inférieur ; le caproate de vinyle, le 2-éthylhexoate de vinyle, le laurate de vinyle, le stéarate de vinyle, ou un ester d'acide gras analogue supérieur ; le styrène, le vinyltoluène, le méthacrylate de benzyle, le méthacrylate de phénoxyéthyle, la vinylpyrrolidone, ou des monomères vinyliques aro- matiques analogues ; le méthacrylamide, le N-méthylolméthacrylamide, le N- méthoxyméthylméthacrylamide, l'isobutoxyméthoxyméthacrylamide, le N,N-diméthylméthacrylamide, ou des monomères analogues de type vinyle qui contiennent des groupes amide ; le méthacrylate d'hydroxyéthyle, le méthacrylate de l'alcool hydroxypropylique, ou des monomères analogues de type vinyle qui contiennent des groupes hy- droxyle ; l'acide méthacrylique, l'acide itaconique, l'acide crotonique, l'acide fumarique, l'acide maléique, ou des monomères analogues de type vinyle qui contiennent un groupe acide carboxylique ; le méthacrylate de tétrahydrofurfuryle, le méthacrylate de butoxyéthyle, le méthacrylate de l'éthoxydiéthylèneglycol, le polyéthylèneglycolméthacrylate, le polypropylèneglycolmonométhacrylate, l'éther d'hydroxybutyle et de vinyle, l'éther de cé- tyle et de vinyle, l'éther de 2-éthylhexyle et de vinyle, ou un monomère analogue de type vinyle avec des liaisons éther ; le méthacryloxypropyltriméthoxysilane, le polydiméthylsiloxane ayant un groupe méthacrylique sur l'une de ses extrémités moléculaires, le polydiméthylsiloxane ayant un groupe styryle sur une de ses extrémités moléculaires, ou un composé analogue de silicone possédant des groupes insaturés ; le butadiène ; le chlo- rure de vinyle ; le chlorure de vinylidène ; le méthacrylonitrile ; le dibutylfumarate ; l'acide maléique anhydre ; l'acide succinique anhydre ; l'éther de méthacryle et de glycidyle ; un sel organique d'une amine, un sel d'ammonium, et un sel de métal alcalin de l'acide méthacrylique, de l'acide itaconique, de l'acide crotonique, de l'acide maléique, ou de l'acide fumarique ; un monomère insaturé polymérisable à l'aide de radicaux possédant un groupe acide sulfonique tel qu'un groupe styrène acide sulfonique ; un sel d'ammonium quaternaire dérivé de l'acide méthacrylique tel que le chlorure de 2-hydroxy-3-méthacryloxypropyltriméthylammonium ; et un ester de l'acide méthacrylique d'un alcool possédant un groupe amine tertiaire tel qu'un ester de l'acide méthacrylique et de la diéthylamine.
Les monomères de type vinyle multifonctionnels peuvent également être utilisés. Ce qui suit représente des exemples de tels composés : le triméthacrylate de triméthylolpropane, le triméthacrylate de pentaérythritol, le diméthacrylate d'éthylèneglycol, le dimé- thacrylate de tétraéthylèneglycol, le polyéthylèneglycoldiméthacrylate, le diméthacrylate de 1,4-butanediol, le diméthacrylate de 1,6-hexanediol, le diméthacrylate de néopentylglycol, le triméthylolpropanetrioxyéthylméthacrylate, le diméthacrylate de tris-(2-hyd roxyéthyl)isocyanurate, le triméthacrylate de tris-(2-hydroxyéthyl)isocyanurate, le po- lydiméthylsiloxane coiffé de groupes styryle possédant des groupes divinylbenzène sur les deux extrémités, ou des composés analogues de silicone possédant des groupes in-saturés. Le dendrimère carbosiloxane, lequel est le composant (B), est représenté par la formule suivante : y.... S 0i1 Ce qui suit représente les exemples préférés de groupe organique Y polymérisable à l'aide de radicaux : un groupe acryloxyméthyle, un groupe 3-acryloxypropyle, un groupe méthacryloxyméthyle, un groupe 3-méthacryloxypropyle, un groupe 4-vinylphényle, un groupe 3-vinylphényle, un groupe 4-(2-propényl)phényle, un groupe 3-(2- propényl)phényle, un groupe 2-(4-vinylphényl)éthyle, un groupe 2-(3-vinylphényl)éthyle, un groupe vinyle, un groupe allyle, un groupe méthallyle, et un groupe 5-hexényle. R1 représente un groupe alkyle ou un groupe aryle possédant de 1 à 10 atomes de carbone, où le groupe alkyle peut être un groupe méthyle, un groupe éthyle, un groupe propyle, un groupe butyle, un groupe pentyle, un groupe isopropyle, un groupe isobutyle, un groupe cyclopentyle, ou un groupe cyclohexyle ; et le groupe aryle peut être un groupe phényle ou un groupe naphtyle. Les groupes méthyle et phényle sont particulièrement préférés, le groupe méthyle étant préféré entre tous. X1 représente un groupe silylalkyle qui est représenté par la formule suivante, lorsque i est égal à un : (?R ) R2 Si dans laquelle R2 représente un groupe alkylène possédant de 2 à 10 atomes de carbone, tel qu'un groupe éthylène, un groupe propylène, un groupe butylène, un groupe hexylène, ou un groupe alkylène linéaire analogue ; un groupe méthylméthylène, un groupe méthyléthylène, un groupe 1-méthylpentylène, un groupe 1,4-diméthylbutylène, ou un groupe alkylène ramifié analogue. Les groupes éthylène, méthyléthylène, hexylène, 1- méthylpentylène et 1,4-diméthylbutylène sont préférés entre tous. R3 représente un groupe alkyle possédant de 1 à 10 atomes de carbone, tel que les groupes méthyle, éthyle, propyle, butyle, et isopropyle. R1 est le même que défini ci-dessus. X'+1 représente un atome d'hydrogène, un groupe alkyle possédant de 1 à 10 atomes de carbone, un groupe aryle, ou le groupe silylalkyle avec i = i + 1. a' est un nombre entier de 0 à 3, et i est un nombre entier de 1 à 10 qui indique le nombre de génération qui représente le nombre de répétitions du groupe silylalkyle. Par exemple, lorsque le nombre de génération est égal à un, le dendrimère carbosiloxane peut être représenté par la première formule générale montrée ci-dessous, dans laquelle Y, R1, R2 et R3 sont les mêmes que définis ci-dessus, R12 représente un atome d'hydrogène ou est identique à R1 ; a1 est identique à a'. De préférence, le nombre moyen total de groupes OR3 dans une molécule est dans la plage de 0 à 7. Lorsque le nombre de génération est égal à 2, le dendrimère carbosiloxane peut être représenté par la deuxième formule générale montrée ci-dessous, dans laquelle Y, R1, R2, R3 et R12 sont les mêmes que définis ci-dessus ; a1 et a2 représentent le a' de la génération indiquée. De préférence, le nombre moyen total de groupes OR3 dans une molécule est dans la plage de 0 à 25. Dans le cas où le nombre de génération est égal à 3, le dendrimère carbosiloxane est représenté par la troisième formule générale montrée ci-dessous, dans la-quelle Y, R1, R2, R3 et R12 sont les mêmes que définis ci-dessus ; a1, a2 et a3 représentent le a' de la génération indiquée. De préférence, le nombre moyen total de groupes OR3 dans une molécule est dans la plage de 0 à 79. (OR3) a Si--R2ùSi-O---Si~---R) RI 3 a Rl (0R3)a' R1 (OR3)a2 R1 YùSiùO--Si--R2-Si- O- SiùR2ùSi _.(Où 1iùR12) 3-e 21 3-a1 R1 R1 R1 1 R1 (OR3)41 R1 (OR3)a2 R1 (OR3)a3 R1
YùSiùO--Si---R2ùSiù 0ùSfùR2-Si--0ùSi--- Rù ( OùSiùR12) 3-a R1 R1 R1 R1 Un dendrimère carbosiloxane qui contient un groupe organique polymérisable à l'aide de radicaux peut être représenté par les formules de structures moyennes suivan-15 tes : Y---Si--O 3 3 2 -a 54 cfäHs 3 efHei h a l &ît-- oiùc6yts o r C'He--C-- 01 0» ?el'7 +1iùCe) CeHn 8 3 H2C= O-C3 0 ~Ha 3û oùli-c2lir C'H3 3 cH, cEz 3 3Jâ à / 1 çHa ?s H$ C'Li20ùî--0-C3fre Siù Où C2 CEt Si 0 C104113 E4 S' ifs -S' 0ù C 3 CH -LHe 3 3 @x3 ~~ ceî.-si. rgrst-'-o--rcn8l CH3 c% ?Ha o- i.C2He~Si qCE
GHa Clla 3 C H3 ?Ha ( : Hg \ CH3 13 , a _ 3 CH2r----C C2H.t-Si-O--li-CaH4-5i CHg CHg HQco`gùO•CsHa-Si o s C--Cùo-OaHe-s. ?H3 (?d1 3 I ?H3 \ Où~rCtH.~Sr Crùi--CiI$ CHa CH3 i.9 a CH3 où li CH3 CH3 .a, a ?H3 (OCH9 aù rC2H4-5j . OH3 ÇHg H2C=CùCùO-CBHs-Sio 3 ?H3 (?CHa).6/ I?H3 Où rC$H~ Si 0ùpi--H CHg \ CHa 2.s 3 CH2 Si Le dendrimère carbosiloxane peut être fabriqué selon le procédé pour fabriquer un siloxane silalkylène ramifié décrit dans la demande de brevet japonais Hei 9-171 154. Par exemple, il peut être produit en soumettant à une réaction d'hydrosilylation un composé organosilicium qui contient un atome d'hydrogène relié à un atome de silicium, représenté par la formule générale suivante : y-g~-O---~-33 et un composé organosilicium qui contient un groupe alcényle. Dans la formule ci-dessus, le composé organosilicium peut être représenté par le 3-méthacryloxypropyltris- (diméthylsiloxy)silane, le 3-acryloxypropyltris-(diméthylsiloxy)silane, et le 4-vinylphényltris- (diméthylsiloxy)silane. Le composé organosilicium qui contient un groupe alcényle peut être représenté par le vinyltris-(triméthylsiloxy)silane, le vinyltris-(diméthylphénylsiloxy)silane, et le 5-hexényltris-(triméthylsiloxy)silane. La réaction d'hydrosilylation est réalisée en présence d'un acide chloroplatinique, d'un complexe de vinylsiloxane et de platine, ou d'un catalyseur analogue d'un métal de transition. Dans le polymère vinylique qui contient une structure de dendrimère, le rapport de polymérisation entre les composants (A) et (B), en termes de rapport en poids entre (A) et (B), peut être dans une plage de 0/100 à 99,9/0,1, et de préférence dans une plage de 1/99 à 99/1. Un rapport entre les composants (A) et (B) de 0/100 signifie que le composé devient un homopolymère de composant (B). Le polymère vinylique contient une structure de dendrimère carbosiloxane et ce polymère peut être obtenu par la copolymérisation des composants (A) et (B), ou par la polymérisation du seul composant (B). La polymérisation peut être une polymérisation radicalaire ou une polymérisation ionique, toutefois la polymérisation radicalaire est préférée.
La polymérisation peut être réalisée en provoquant une réaction entre les composants (A) et (B) dans une solution pendant une période de 3 à 20 heures en présence d'un initiateur de radicaux à une température de 50°C à 150°C. Un solvant approprié dans ce but est l'hexane, l'octane, le décane, le cyclohexane, ou un hydrocarbure aliphatique analogue ; le benzène, le toluène, le xylène, ou un hydrocarbure aromatique analogue ; l'éther dié- thylique, l'éther dibutylique, le tétrahydrofurane, le dioxane, ou des éthers analogues ; l'acétone, la méthyléthylcétone, la méthylisobutylcétone, la di-isobutylcétone, ou des cétones analogues ; l'acétate de méthyle, l'acétate d'éthyle, l'acétate de butyle, l'acétate d'isobutyle, ou des esters analogues ; le méthanol, l'éthanol, l'isopropanol, le butanol, ou des alcools analogues ; l'octaméthylcyclotétrasiloxane, le décaméthylcyclopentasiloxane, l'hexaméthyldisiloxane, l'octaméthyltrisiloxane, ou un oligomère organosiloxane analogue. Un initiateur de radicaux peut être tout composé connu dans l'art pour des réactions classiques de polymérisation radicalaire. Les exemples spécifiques de tels initiateurs de radicaux sont le 2,2'-azobis(isobutyronitrile), le 2,2'-azobis(2-méthylbutyronitrile), le 2,2'-azobis(2,4-diméthylvaléronitrile) ou des composés analogues de type azobis ; le peroxyde de benzoyle, le peroxyde de lauroyle, le peroxybenzoate de tert-butyle, le peroxy-2-éthylhexanoate de tert-butyle, ou un peroxyde organique analogue. Ces initiateurs de radicaux peuvent être utilisés seuls ou dans une combinaison de deux ou plus. Les initiateurs de radicaux peuvent être utilisés dans une quantité de 0,1 à 5 parties en poids pour 100 parties en poids des composants (A) et (B). Un agent de transfert de chaîne peut être ajouté. L'agent de transfert à chaîne peut être le 2-mercaptoéthanol, le butylmercaptan, le n-dodécylmercaptan, le 3-mercaptopropyltriméthoxysilane, un polydiméthylsiloxane possédant un groupe mercaptopropyle ou un composé analogue de type mercapto ; le chlorure de méthylène, le chloroforme, le tétrachlorure de carbone, le bromure de butyle, le 3-chloropropyltriméthoxysilane, ou un composé halogéné analogue. Dans la fabrication du polymère de type vinyle, après la polymérisation, le monomère vinylique résiduel qui n'a pas réagi peut être éliminé dans des conditions de chauffage sous vide. Pour faciliter la préparation de mélange de la matière première de produits cosmétiques, la masse moléculaire moyenne en nombre du polymère vinylique qui contient un dendrimère carbosiloxane, peut être choisie dans la plage entre 3 000 et 2 000 000, de préférence entre 5 000 et 800 000. Il peut être un liquide, une gomme, une pâte, un solide, une poudre, ou toute autre forme. Les formes préférées sont les solutions constituées par la dilution dans des solvants, d'une dispersion, ou d'une poudre. Le polymère vinylique peut être une dispersion d'un polymère de type vinyle ayant une structure de dendrimère carbosiloxane dans sa chaîne moléculaire latérale, dans un liquide tel qu'une huile de silicone, une huile organique, un alcool, ou l'eau. Le polymère vinylique ayant une structure de dendrimère carbosiloxane dans sa chaîne moléculaire latérale, dans ce mode de réalisation, est le même que celui décrit ci-dessus. Le liquide peut être une huile de silicone, une huile organique, un alcool, ou l'eau. L'huile de silicone peut être un diméthylpolysiloxane ayant les deux extrémités moléculai- res coiffées de groupes triméthylsiloxy, un copolymère de méthylphénylsiloxane et de di- méthylsiloxane ayant les deux extrémités moléculaires coiffées de groupes triméthylsiloxy, un copolymère de méthyl-3,3,3-trifluoropropylsiloxane et de diméthylsiloxane ayant les deux extrémités moléculaires coiffées de groupes triméthylsiloxy, ou des huiles de silicone linéaires non-réactives analogues, aussi bien que l'hexaméthylcyclotrisiloxane, l'octaméthylcyclotétrasiloxane, le décaméthylcyclopentasiloxane, le dodécaméthylcyclohexasiloxane, ou un composé cyclique analogue. En plus des huiles de silicone non-réactives, des polysiloxanes modifiés possédant des groupes fonctionnels tels que des groupes silanol, des groupes amino, et des groupes polyéther sur les extrémités ou à l'intérieur des chaînes moléculaires latérales peuvent être utilisés.
Les huiles organiques peuvent être l'huile de paraffine, l'isoparaffine, le laurate d'hexyle, le myristate d'isopropyle, le myristate de myristyle, le myristate de cétyle, le myristate de 2-octyldodécyle ; le palmitate d'isopropyle, le palmitate de 2-éthylhexyle, le stéarate de butyle, l'oléate de décyle, l'oléate de 2-octyldodécyle, le lactate de myristyle, le lactate de cétyle, l'acétate de lanoline, l'alcool stéarique, l'alcool cétostéarique, l'alcool oléique, l'huile d'avocat, l'huile d'amande, l'huile d'olive, l'huile de cacao, l'huile de jojoba, l'huile de gomme, l'huile de tournesol, l'huile de soja, l'huile de camélia, le squalane, l'huile de ricin, l'huile de vison, l'huile de graine de coton, l'huile de noix de coco, l'huile de jaune d'oeuf, le suif de boeuf, le saindoux, le monooléate de polypropylèneglycol, le 2-éthylhexanoate de néopentylglycol, ou une huile d'ester de glycol analogue ; l'isostéarate de triglycéryle, le triglycéride d'un acide gras d'huile de noix de coco, ou une huile d'ester d'alcool polyhydrique analogue ; l'éther de polyoxyéthylène et de lauryle, l'éther de polyoxypropylène et de cétyle, ou un éther de polyoxyalkylène analogue. L'alcool peut être de n'importe quel type approprié pour une utilisation conjointe-ment avec une matière première de produits cosmétiques. Par exemple, il peut être le méthanol, l'éthanol, le butanol, l'isopropanol ou des alcools analogues inférieurs. Une solution ou une dispersion de l'alcool devrait avoir une viscosité dans la plage de 10 à 109 mPa à 25°C. Pour améliorer les propriétés de sensation d'utilisation dans un produit cosmétique, la viscosité devrait être dans la plage de 100 à 5 x 108 mPa.s. Les solutions et les dispersions peuvent facilement être préparées en mélangeant Le polymère vinylique ayant une structure de dendrimère carbosiloxane, à une huile de silicone, une huile organique, un alcool, ou de l'eau. Les liquides peuvent être présents dans l'étape de polymérisation du polymère de type vinyle ayant une structure de dendrimère carbosiloxane. Dans ce cas, le monomère vinylique résiduel qui n'a pas réagi devrait être complètement éliminé par traitement thermique de la solution ou de la dispersion sous pression atmosphérique ou réduite. Dans le cas d'une dispersion, la dispersité du polymère de type vinyle peut être améliorée en ajoutant un agent tensio-actif. Un tel agent peut être l'acide hexylbenzènesulfonique, l'acide octylbenzènesulfonique, l'acide décylbenzènesulfonique, l'acide dodécylbenzènesulfonique, l'acide cétylbenzènesulfonique, l'acide myristylbenzènesulfonique, ou des agents tensio-actifs anioniques des sels de so- dium de ces acides ; l'hydroxyde d'octyltriméthylammonium, l'hydroxyde de dodécyltrimé- thylammonium, l'hydroxyde d'hexadécyltriméthylammonium, l'hydroxyde d'octyldiméthylbenzylammonium, l'hydroxyde de décyldiméthylbenzylammonium, l'hydroxyde de dioctadécyldiméthylammonium, l'hydroxyde de suif de boeuftriméthylammonium, l'hydroxyde d'huile de noix de coco-triméthylammonium, ou un agent tensio-actif cationique analogue ; un éther d'alkyle de polyoxyalkylène, un polyoxyalkylènealkylphénol, un ester d'alkyle de polyoxyalkylène, l'ester de sorbitol de polyoxyalkylène, le polyéthylèneglycol, le polypropylèneglycol, un additif de l'oxyde d'éthylène de diéthylèneglycol triméthylnonanol, et des agents tensio-actifs non ioniques de type polyester, aussi bien que des mélanges. En outre, les solvants et les dispersions peuvent être corn- binés avec de l'oxyde de fer approprié pour une utilisation avec les produits cosmétiques, ou un pigment analogue, aussi bien que de l'oxyde de zinc, de l'oxyde de titane, de l'oxyde de silicium, du mica, du talc ou des oxydes inorganiques analogues sous forme de poudre. Dans la dispersion, un diamètre moyen des particules de polymère de type vinyle peut être dans une plage comprise entre 0,001 et 100 micron, de préférence entre 0,01 et 50 micron. En effet, au-delà de la plage recommandée, un produit cosmétique mélangé à l'émulsion n'aura pas une sensation suffisamment bonne sur la peau ou au toucher, ni des propriétés d'étalement suffisantes ni une sensation plaisante. Le polymère vinylique contenu dans la dispersion ou la solution peut avoir une concentration dans une plage comprise entre 0,1 et 95 % en poids, de préférence entre 5 et 85 % en poids. Cependant, pour facilité la manipulation et la préparation de mélange, la plage devrait être de préférence entre 10 et 75 % en poids. Le polymère vinylique peut être un des polymères décrits dans les exemples de la demande EP0963751 ou par exemple le produit TIB-4-200 commercialisé par Dow Corning.
Selon un mode de réalisation, le polymère vinylique comprend en outre au moins un groupement organique fluoré.
On préfère particulièrement des structures dans lesquelles les motifs polymérisés vinyli- ques constituent le squelette et des structures dendritiques carbosiloxane ainsi que des groupements organiques fluorés sont fixés sur des chaînes latérales. Les groupements organiques fluorés peuvent être obtenus en substituant par des atomes de fluor tout ou partie des atomes d'hydrogène de groupements méthyle, éthyle, propyle, isopropyle, butyle, isobutyle, tert-butyle, pentyle, néopentyle, hexyle, cyclohexyle, heptyle, octyle, nonyle, décyle, undécyle, dodécyle, tridécyle, tétradécyle, hexadécyle, octadécyle, et d'autres groupements alkyle de 1 à 20 atomes de carbone, ainsi que des groupements alkyloxyalkylène de 6 à 22 atomes de carbone. Les groupements représentés par la formule : -(CH2)X (CF2)y-R13 sont suggérés à titre d'exemple de groupements fluoroalkyle, obtenus en substituant des atomes de fluor pour des atomes d'hydrogène de groupements alkyle. Dans la formule, l'indice « x » et 0, 1, 2 ou 3 et « y » et un entier de 1 à 20. R13 est un atome ou un groupement choisi parmi un atome d'hydrogène, un atome de fluor, -(CH(CF3)2- ou CF(CF3)2. De tels groupements alkyle substitués par fluor sont exemplifiés par des groupements polyfluoroalkyle ou perfluoroalkyle linéaires ou ramifiés représentés par les formules présentées ci-dessous. -CF3, -C2F5, -nC3F7, -CF(CF3)2, -nC4F9, CF2CF(CF3)2, -nC5F11, -nC6F13, -nC8F17, -CH2CF3, - (CH(CF3)2, CH2CH(CF3)2-CH2(CF2)2F, -CH2(CF2)3F, -CH2(CF2)4F, -CH2(CF2)6F, - CH2(CF2)8F, -CH2CH2CF3, -CH2CH2(CF2)2F, -CH2CH2(CF2)3F, -CH2CH2(CF2)4F, - CH2CH2(CF2)6F, -CH2CH2(CF2)8F, -CH2CH2(CF2)10F, -CH2CH2(CF2)12F, -CH2CH2(CF2)14F, - CH2CH2(CF2)16F, -CH2CH2CH2CF3, -CH2CH2CH2(CF2)2F, -CH2CH2CH2(CF2)2H û CH2(CF2)4H, et -CH2CH2(CF2)3H. Les groupements représentés par - CH2CH2-(CF2)m-CFR14-[OCF2CF(CF3)]n-OC3F, sont suggérés comme des groupements fluoroalkyloxyfluoroalkylène obtenus en substituant des atomes de fluor pour des atomes d'hydrogène des groupements alkyoxyalkylène. Dans la formule, l'indice « m » est 0 ou 1, « n » est 0, 1, 2, 3, 4, ou 5, et R14 est un atome de fluor ou CF3. De tels groupements fluoroalkyloxyfluoroalkylène sont exemplifiés par les groupements perfluoroalkyloxyfluoroalkylène représentés par les formules présentées ci-dessous. - CH2CH2CF(CF3)-[OCF2CF(CF3)]n-OC3F7, -CH2CH2CF2CF2-[OCF2CF(CF3)]n-OC3F7. Le poids moléculaire moyen en nombre du polymère vinylique utilisé dans la présente in- vention peut être compris entre 3000 et 2 000 000, et, plus préférablement entre 5000 et 800000. Ce type de polymère vinylique fluoré peut être obtenu par addition - d'un monomère vinylique (B) qui n'a pas de groupement organique fluoré dans la molécule - sur un monomère vinylique contenant des groupements organiques fluorés dans la molécule (A), et - un dendrimère carbosiloxane (C) contenant des groupements organiques polymérisables par voie radicalaire représenté par la formule générale (III) : Y -Si 60 dans laquelle Y est un groupement organique polymérisable par voie radicalaire et R1 et X' sont tels que ci-dessus et en les soumettant à une copolymérisation. Les monomères vinyliques (A) contenant des groupements organiques fluorés dans la molécule sont de préférence des monomères représentés par la formule générale :-(CH2)=CR15COORf. Dans la formule, R15 est un atome d'hydrogène ou un groupement méthyle, Rf est un groupement organique fluoré exemplifié par les groupements fluoroalkyle et fluoroalkyloxyfluoroalkylène décrits ci-dessus. Les composés représentés par les formules présentées ci-dessous sont suggérés à titre d'exemples spécifiques du compo- sant (A). Dans les formules présentes ci-dessous, « z » est un entier de 1 à 4. CH2=CCH3COO-CF3. Cf-I2=CCH3COO-C2F5. CH2wCCB3000- nC3F7. Cl2CCH3COO-CF (CF3)2. CH2=CCH3COO- nC4F9. CH2=CCH3000-CF 2 CF(CF3)2. CH2=CCH3COO- nCSF~,. CH2=CCH3000- nC6F13. CH2=CCH3COO- nC3F17. CH2=CCH3COO-CH 2CF3. CH2 =CCH3COO-CH(CF3)2. CH2=CCH3COO.CH2CH(CF3)2_ CH2=CCH3COO-CI-I.2 (CF2)2F. CH2=CCH3COO-CH2(CF2) 3F. CH2=CCH3COO CH2 (CF2)4F. CH2=CCH3COO-CH2(CF2) 6F, CH2=CCH3COO-CH2 (CF2)8F. CH2=CCH3000-CH2CH2CF3_ CH2=CCH3000-CH2CH2 (CF2)2F. CH2=CCHCOO-CH2CH2 (CF2)3F, CH2 CCH3COO-CH2CH2 (CF2)4F. CH2=CCH3COO-CH2CH2 (CF2)6F. CH2=CCH3COO-CH2CH2 (CF2)&F. CH2=CCH3COO-CH2CH2 (CF2)10F. CH2=CCH3COO-CH2CH2 (CF2)12F. CH2 CH3COO-CH2CH2 (CF2)14F, CH2 =CCH3COO-.CH2CH2 (CF2)16F. CH2=°CCH3COO-CH2CH2CH2CF3. CFI2=CCH3COO-CH2CI-12CH2 (CF2)2F. CH2=CCH3COO-CH2CH2CH2 (CF2 )2H, CH2=CCH3000-CH2 (CF2)4H CH2=CCH3COO CH2CH2(CF2 )3H. CH2=CCH3COO-CH2CH2CF(CF3 )- [OCF2 CF(CF3 )]z --OC3 F7. CH2=CCI-H3COO-CH2CH2CF2CF2 - [OCF2 CF(CF3 )]z --OC3 F7,
CH2 =CHCOO-CF3_ CH2=CHCOO-C2 F6. CH2=CHCOO-nC3F7_ CH2=CHCOO-CF(CF3)2. CH2=CHCOO-nC4F9, CH2=CHCOO- CF2CF(CF3)2. CH2--CHCOO-nC5Ft } CH2CHCOO- nC6Ft3. CH2=CHCOO- riCsF17. CH2=CHCOO-OE2CF3. CH2=CHCOO-CH(CF3)2_ CH2=CHCOO-CH2CkI(CF3)z. CH2ùCI COO-CH2(CF2)2F. CH2=CHCOO-CH2 (CF2)3 F. CH2=CHCOO-CH2(CFz)4 F. CH2=CHCOO-CH2(CF2)6F. CH2=CFICOO-CH2 (CF2)s F. CH2-CHCOO-CH2CH2CF3. CH2=CH000-CH2CH2 (CF2)2F, CH2=CHCOO-CH2CH2 (CFz)3F_ CH2=CHCOO-CH2CH2 (CF2)4F. CH2 =CHCOO-CH2CH2 (CF2)6F, CH2 CHCOO-CH2CH2 (CF2)8F. C112=CHCOO-CH2CH2(CF2) znF. CH2 =CHCOO-CH2CH2 (CF2)12F. CH2=CHCOO-CH2CH2 (CF2)14F. CH2=CHCOO-CH2CH2 (CF2)16F. CH2=CHCOO-CH2CH2CH2CF3, CH2ùCHCOO-CH2CH2 CH2 (CF2)2F. CHz CHCOO-CHCHzCH2 (CF)2 H. CH2CH000-CH2(CF2)4H. CH2=CHCOO-CH2CH2(CF2) 311. CH2=CHCOO-CH2CH2CF(CF3)-[OCF2 CF(CF3 )]z ùOC3 F7. CH2-CFICOO-CH2CH2zCF2CF2-[OCF2 CF(CF3 )]z ùOC3 F7. Parmi ceux-ci, les polymères vinyliques représentés par les formules présentées ci-dessous sont préférables.
CH2=CHCOO-CH2CH2 (CF2)6F, CH2=CHCOO-CH2CH2 (CF2)8F. CH2- CCH3COO-CH2CH2 (CF2)6 F, CH2=CCH3COO-CH2CH2 (CF2)s F. CH2=CHCOO-CH2CF3. CH2-CCH3COO-CH2CF3 Les polymères vinyliques représentés par les formules présentées ci-dessous sont particulièrement préférables. CH2-CHCO7-CH2CF3, CH2-CCH3COO-Ci2CF3. Les monomères vinyliques (B) qui ne contiennent pas de groupements organiques fluorés dans la molécule peuvent être des monomères quelconques ayant des groupements viny- tiques polymérisables par voie radicalaire qui sont exemplifiés par exemple par l'acrylate de méthyle, le méthacrylate de méthyle, l'acrylate d'éthyle, le méthacrylate d'éthyle, l'acrylate de n-propyle, le méthacrylate de n-propyle, l'acrylate d'isopropyle, le méthacrylate d'isopropyle, et d'autres acrylates ou méthacrylates d'alkyles inférieurs ; l'acrylate de glycidyle, le méthacrylate de glycidyle ; l'acrylate de n-butyle, le méthacrylate de n-butyle, l'acrylate d'isobutyle, le méthacrylate d'isobutyle, l'acrylate de tert-butyle, le méthacrylate de tert-butyle, l'acrylate de n-hexyle, le méthacrylate de n-hexyle, l'acrylate de n-hexyle, le méthacrylate de n-hexyle, l'acrylate de cyclohexyle, le méthacrylate de cyclohexyle, l'acrylate de 2-éthylhexyle, le méthacrylate de 2-éthylhexyle, l'acrylate d'octyle, le méthacrylate d'octyle, l'acrylate de lauryle, le méthacrylate de lauryle, l'acrylate de stéaryle, le méthacrylate de stéaryle, et d'autres acrylates et méthacrylates supérieurs ; l'acétate de vinyle, le propionate de vinyle, et d'autres esters vinyliques d'acide gras inférieurs ; le butyrate de vinyle, le caproate de vinyle, le 2-éthylhexanoate de vinyle, le laurate de vinyle, le stéarate de vinyle, et d'autres esters d'acide gras supérieurs ; le styrène, le vinyltoluène, l'acrylate de benzyle, le méthacrylate de benzyle, l'acrylate de phénoxyéthyle, le méthacrylate de phénoxyéthyle, la vinylpyrrolidone, et d'autres monomères vinyliques aromatiques ; l'acrylate de diméthylaminoéthyle, le méthacrylate de diméthylaminoéthyle, l'acrylate de diéthylaminoéthyle, le méthacrylate de diéthylaminoéthyle, et d'autres mo- nomères vinyliques à amino, l'acrylamide, le méthacrylamide, le N-méthylolacrylamide, le N-méthylolméthacrylamide, le N-méthoxyméthylacrylamide, le N- méthoxyméthyméthacrylamide, l'isobutoxyméthoxyacrylamide, l'isobutoxyméthoxyméthacrylamide, le N,N-diméthylacrylamide, le N,N- diméthylméthacrylamide ,et d'autres monomères vinyliques à amides ; l'acrylate d'hydroxyéthyle, le méthacrylate d'hydroxyéthyle, l'alcool hydroxypropylique d'acide acrylique, l'alcool hydroxypropylique d'acide méthacrylique et d'autres monomères vinyliques à hydroxy ; l'acide acrylique, l'acide méthacrylique, l'acide itaconique, l'acide crotonique, l'acide fumarique, l'acide maléique, et d'autres monomères vinyliques à acide carboxylique ; l'acrylate de tétrahydrofurfuryle, le méthacrylate de tétrahydrofurfuryle, l'acrylate de butoxyéthyle, le méthacrylate de butoxyéthyle, l'acrylate d'éthoxydiéthylèneglycol, le méthacrylate d'éthoxydiéthylèneglycol, l'acrylate de polyéthylèneglycol, le méthacrylate de polyéthylèneglycol, le monoacrylate de polypropylèneglycol, le monométhacrylate de polypropylèneglycol, l'hydroxybutylvinyléther, le cétylvinyléther, le 2-éthylhexylvinyléther et d'autres monomères vinyliques à liaisons éther ; l'acryloxypropyltriméthoxysilane, le mé- thacryloxypropyltriméthoxysilane, les polydiméthylsiloxanes contenant des groupements acryle ou méthacryle à l'une des extrémités, les polydiméthylsiloxanes contenant des groupements alcénylaryle à l'une des extrémités et d'autres composés siliconés à groupements insaturés ; le butadiène ; le chlorure de vinyle ; le chlorure de vinylidène, l'acrylonitrile, le méthacrylonitrile ; le fumarate de dibutyle ; l'anhydride maléique ; l'anhydride dodécylsuccinique ; l'acrylglycidyléther, le méthacrylglycidyléther, l'acrylate de 3,4-époxycyclohexylméthyle, le méthacrylate de 3,4-époxycyclohexylméthyle, les sels de métaux alcalins, les sels d'ammonium et les sels d'amines organiques d'acide acrylique, d'acide méthacrylique, d'acide itaconique, d'acide crotonique, d'acide fumarique, d'acide maléique et d'autres acides carboxyliques insaturés polymérisables par voie radicalaire, les monomères insaturés polymérisables par voie radicalaire contenant des groupements acide sulfonique tels que l'acide styrènesulfonique ainsi que leurs sels de métaux alcalins, leurs sels d'ammonium et leurs sels d'amine organique ; les sels d'ammonium quaternaire issus d'acide acrylique ou d'acide méthacrylique tels que le chlorure de 2-hydroxy-3-méthacryloxypropyltriméthylammonium, les esters d'acide méthacrylique d'un alcool à amine tertiaire tels que l'ester de diéthylamine d'acide méthacrylique et leurs sels d'ammonium quaternaire. En outre, il est également possible d'utiliser à titre de monomères vinyliques (B) les monomères vinyliques polyfonctionnels qui sont exemplifiés par exemple par le triacrylate de triméthylolpropane, le triméthacrylate de triméthylolpropane, le triacrylate de pentaérythri- toi, le triméthacrylate de pentaérythritol, le diacrylate d'éthylèneglycol, le diméthacrylate d'éthylèneglycol, le diacrylate de tétraéthylèneglycol, le diméthacrylate de tétraéthylèneglycol, le diacrylate de polyéthylèneglycol, le diméthacrylate de polyéthylèneglycol, le diacrylate de 1,4-butanediol, le diméthacrylate de 1,4-butanediol, le diacrylate de 1,6-hexanédiol, le diméthacrylate de 1,6-hexanédiol, le diacrylate de néopentylglycol, le dimé- thacrylate de néopentylglycol, l'acrylate de triméthylolpropanetrioxyéthyle, le méthacrylate de triméthylolpropanetrioxyéthyle, le diacrylate de tris(2-hydroxyéthyl)isocyanu rate, le di- méthacrylate de tris(2-hydroxyéthyl)isocyan urate, le triacrylate de tris(2-hyd roxyéthyl)isocyanurate, le triméthacrylate de tris(2-hydroxyéthyl)isocyanurate, le polydiméthylsiloxane dont les deux extrémités de la chaîne moléculaire sont bloquées par des groupements alcénylaryle, et d'autres composés siliconés à groupements insaturés. En ce qui concerne le rapport mentionné ci-dessus dans lequel le composant (A) et le composant (B) sont copolymérisés, le rapport en poids du composé (A) au composé (B) doit être dans la gamme de 0,1:99,9 à 100:0, et, de préférence dans la gamme 1:99 à 100:0.
Le dendrimère carbosiloxane (C) est représenté par la formule générale (III) indiquée ci- dessus. Dans la formule (III), Y est un groupement organique polymérisable par voie radicalaire, dont le type n'est pas sujet à des limitations spéciales quelconques dès lors qu'il s'agit d'un groupement organique susceptible de subir une réaction d'addition radicalaire. Des groupements organiques à acryle et à méthacryle, des groupements organiques à alcénylaryle, ou des groupements alcényle de 2 à 10 atomes de carbone représentés par les formules générales présentées ci-dessous sont suggérées à titre d'exemples spécifiques. CH2 = C C NU- t5._ Dans les formules, R4 et R6 sont des atomes d'hydrogène ou des groupements méthyle, R5 et R8 sont des groupements alkylène de 1 à 10 atomes de carbone, et R7 est un groupement alkyle de 1 à 10 atomes de carbone. L'indice « b » est un entier de 0 à 4, et « c » est 0 ou 1. Acryloxyméthyle, 3-acryloxypropyle, méthacryloxyméthyle, 3-méthacryloxypropyle, 4-vinylphényle, 3-vinylphényle, 4-(2-propényl)phényle, 3-(2- propényl)phényle, 2-)4-vinylphényl)éthyle, 2-(3-vinylphényl)ényle, vinyle, allyle, méthallyle, et 5-hexényle sont suggérés à titre d'exemples de tels groupements organiques polymérisables à voie radicalaire. L'exposant « i » dans la formule (Il) qui est un entier de 1 à 10 est le nombre de générations dudit groupement silylalkyle, autrement dit le nombre de fois que le groupement silylalkyle est répété. Ainsi, le dendrimère carboxyloxane de ce corn- posant avec un nombre de génération de 1 est représenté par la formule générale : ..l 3-a 3 (dans laquelle Y, R1, R2, et R3 sont tels que ci-dessus et R12 est un atome d'hydrogène ou tel que R1 décrit ci-dessus. L'indice « a1 » est un entier de 0 à 3, le total moyen de « a1 » par molécule étant de 0 à 7). Les dendrimères carbosiloxane de ce composant avec un nombre de génération de 2 sont représentés par la formule générale :
R' (oR3) R' (OR3)a2 / R1 R' Y Si (OR3),' r R' Si Si R'2 Y--Si O Si-R2ù Si O-- Si R? S R' siùR'2 (dans laquelle Y, R1, R2, R3 et R12 sont tels que ci-dessus et les indices « a1 » et « a2 » sont des entiers de 0 à 3, le total moyen de « a1 » et de « a2 » par molécule étant de 0 à 25).
Les dendrimères carbosiloxane de ce composant avec un nombre de génération de 3 sont représentés par la formule générale : 64 - - RI (01112. RI (OR12 R O- RI )3-a3L 2 sel a R (dans laquelle Y, Ri. R2, R3 et R12 sont tels que ci-dessus et les indices « a' ». « "z» et x « a » sont des entiers de O à 3, le total moyen de « al », de «az » et de «ax » par molécule deO à 79). 5 Le composant (C) est exemplifié par des dendrimères carbosiloxane représentés par des formules de composition moyenne représentées ci-dessous. . CH3 ?H3 cH2ùotùcùo-c3116-si oli-c2114- 11 o [ cH ' C~eù=Q--cù'0r-^ù" Qùiicel le 8i 11 ~ C8H17 /8 !8 CH3 cH3 cria cH2ù cl ù cù o- c 3H6- si où c2l-14- si ^ ! c H^ CH3 CH-Cù'O-CaH-Si 0ù '-C o [_ o- lic21-14 si- ) ! / CH3 i cI4 ~ ~ [} ! CIT" OH2,-=e- o-Q3H6 13 SiùCHa ù CHa C ! ~i--CH~ K~-- /3 ~ 13 ~~ l"-G \ 0ù SiùC61-15 C6H5 /a CH3 O--8,KSi~0-! C211~ U ^ ! C3In ^ . ~~ / C81117 / n ?Ha H2C=C• O-03Hs-Si o CH3 / CH3 .5 3
3).5 / ÇH3 Où S i---H CH3 2.5 3 ?Ha Où i iùH CH3 \ CHa 3 3 CH3 CHa
CHZ =CHùSi(OSiùC2H4ùSiù(OSiùCH3)3)3
CH3 3 CH3 CH3 CH3 1 1 CH2= CHùSi(OSîùG~H4°--Si--((7SiùH}aJs 1 CH3 CH3 Les dendrimères carbosiloxane du composant (C) peuvent être préparés en utilisant le procédé de préparation pour les copolymères de siloxane/silakylène ramifiés décrits dans le document EP1055674. Par exemple, ils peuvent être préparés en soumettant des corn- posés siliconés organiques à alcényle et des composés siliconés comprenant des atomes d'hydrogène liés au silicium, représentés par la formule générale : r 1
Yù Si O Si H RI L -/3 (dans laquelle R' et Y, sont tels que ci-dessus) à une réaction d'hydrosilation. Par exemple, le 3-méthacyloxypropyltris(diméthylsiloxy)silane, le 3- acryloxypropyltris(diméthylsiloxy)silane, et le 4-vinylphényltris(diméthylsiloxy)silane sont utilisés à titre de composés de silicium représentés par la formule ci-dessus. Le vinyl- tris(triméthylsiloxy)silane, le vinyltris(diméthylphénylsiloxy)silane, et le 5-hexényltris(triméthylsiloxy)silane sont utilisés comme composés organiques de silicium à C H3 H2~.`=C--^--O-C3Hs-Si, ÇH3 ~ ?HS o---irC2H4-Si OùSiùCH3 CH3 \ CH3 3 , 3 CH3 Çiâa CH2-- CZR4-Si-0ù~SrC -S' Sie2 L,-S' OùSi CH3 C113 l CHg \ CHa /3 YH3 (QCH3X.1 ?H3 où& c2H si o- i CH3 CH3 CH3 1.9 3 C Hs (O CHI 5 VH3 0-- S IC2H4. Si OùI CH3 CH2---C cH3 H2a-C- -0-C3H4-Si o CH3 (OC I Où Ii C2H4'Si CH3
CH3 1 Où'i C2Ha-S alcényle. En outre, il est préférable d'effectuer la réaction d'hydrosilation en présence d'un catalyseur de métal de transition tel que l'acide chloroplatinique et le complexe de platine/vinylsiloxane. Le rapport de copolymérisation du composant (C), en termes de son rapport en poids par rapport au total du composé (A) et du composé (B), doit être dans la gamme de 0,1:99,9 à 99,9 :0,1, et de préférence dans la gamme de 1:99 à 99:1, et encore plus préférablement dans la gamme de 5:95 à 95:5. Des groupements amino peuvent être introduits dans les chaînes latérales du polymère vinylique en utilisant, inclus dans le composant (B), des monomères vinyliques contenant des groupements amino, tels que l'acrylate de diméthylaminoéthyle, le méthacrylate de diméthylaminoéthyle, l'acrylate de diéthylaminoéthyle et le méthacrylate de diéthylaminoéthyle, puis en réalisant une modification avec du monochlorure acétate de potassium, du monochlorure acétate d'ammonium, du sel d'aminométhylpropanol d'acide monochloroacétique, du sel de triéthanolamine d'acide monobromoacétique, du monochloropropionate de sodium, et d'autres sels de métaux alcalins d'acides gras halogénés ; sinon on peut introduire des groupements acides carboxyliques dans les chaînes latérales du polymère vinylique en utilisant, inclus dans le composant (B), des monomères vinyliques contenant des acides carboxyliques, tels que l'acide acrylique, l'acide méthacrylique, l'acide itaconique, l'acide crotonique, l'acide fumarique et l'acide maléique, et similaires, puis en neutra- lisant le produit avec de la triéthylamine, de la diéthylamine, de la triéthanolamine, et d'autres amines.
Le polymère vinylique fluoré peut être un des polymères décrits dans les exemples de la demande WO03/045337 ou par exemple le produit TIB-4-100 commercialisé par Dow Corning.
Le polymère vinylique peut être présent en une teneur allant de 0,1 % à 70 % en poids, par rapport au poids total de la composition, de préférence allant de 0,5 % à 50 % en poids, et préférentiellement allant de 1 % à 40 % en poids, de préférence encore allant de 5 à 15% en poids.
Le polymère vinylique peut être présent dans la composition à hauteur d'au moins 3% en poids dans la composition, de préférence entre 5 et 25% en poids, de préférence encore entre 5 et 15% en poids, notamment de l'ordre de 10% en poids. 3. Dispersion de particules de d'homopolymère ou de copolymère radicalaire, acrylique ou vinylique dispersées dans ladite phase qrasse liquide
40 Selon un troisième mode de réalisation de l'invention, le polymère filmogène présent dans la composition selon l'invention est une dispersion de particules de d'homopolymère ou de copolymère radicalaire, acrylique ou vinylique dispersées dans la phase grasse liquide de la composition.
45 Selon l'invention le polymère sous la forme de particules dispersées dans la phase grasse liquide volatile est un solide insoluble dans la phase grasse liquide de la composition même à sa température de ramollissement, à l'inverse d'une cire même d'origine polymérique qui est elle soluble dans la phase organique liquide (ou phase grasse) à sa température de fusion. 50 La composition selon l'invention comprend avantageusement au moins une dispersion stable de particules de polymère généralement sphériques d'un ou plusieurs polymères, dans une phase grasse liquide volatile. Ces dispersions peuvent notamment se présenter sous forme de nanoparticules de polymères en dispersion stable dans ladite phase orga- 55 nique liquide. Les nanoparticules sont de préférence d'une taille moyenne comprise entre35 et 800 nm, et mieux entre 50 et 500 nm. Il est toutefois possible d'obtenir des tailles de particules de polymère allant jusqu'à 1µm.
De préférence, les particules de polymères en dispersion sont insolubles dans les alcools 5 hydrosolubles tels que, par exemple, l'éthanol.
Les polymères en dispersion utilisables dans la première composition de l'invention ont de préférence un poids moléculaire de l'ordre de 2000 à 10 000 000 g/mol, et une Tg de - 100°C à 300°C et mieux de -50° à 100°C, de préférence de -10°C à 50°C. Il est possible d'utiliser des polymères filmifiables, de préférence ayant une Tg basse, inférieure ou égale à la température de la peau et notamment inférieure ou égale à 40°C.
De préférence le polymère utilisé est filmifiable, c'est-à-dire apte à former seul ou en as-15 sociation avec un agent plastifiant, un film isolable. Il est toutefois possible d'utiliser un polymère non filmifiable.
Par « polymère non filmifiable », on entend un polymère non capable de former seul, un film isolable. Ce polymère permet, en association avec un composé non volatil du type 20 huile, de former un dépôt continu et homogène sur la peau et/ou les lèvres.
Parmi les polymères filmifiables, on peut citer des homopolymères ou des copolymères radicalaires, acryliques ou vinyliques, de préférence ayant une Tg inférieure ou égale à 40°C et notamment allant de û 10° à 30°C, utilisés seul ou en mélange. Parmi les polymères non filmifiables, on peut citer des homopolymères ou copolymères radicalaires, vinyliques ou acryliques, éventuellement réticulés, ayant de préférence une Tg supérieure à 40°C et notamment allant de 45° à 150°C, utilisés seul ou en mélange.
30 Par polymère radicalaire, on entend un polymère obtenu par polymérisation de monomères à insaturation notamment éthylénique, chaque monomère étant susceptible de s'homopolymériser (à l'inverse des polycondensats). Les polymères radicalaires peuvent être notamment des polymères ou des copolymères vinyliques, notamment des polymères acryliques. 35 Les polymères acryliques peuvent résulter de la polymérisation de monomères à insaturation éthylénique ayant au moins un groupement acide et/ou des esters de ces monomères acides et/ou des amides de ces acides.
40 Comme monomère porteur de groupement acide, on peut utiliser des acides carboxyliques insaturés a,13-éthyléniques tels que l'acide acrylique, l'acide méthacrylique, l'acide crotonique, l'acide maléique, l'acide itaconique. On utilise de préférence l'acide (méth)acrylique et l'acide crotonique, et plus préférentiellement l'acide (méth)acrylique.
45 Les esters de monomères acides sont avantageusement choisis parmi les esters de l'acide (méth)acrylique (encore appelé les (méth)acrylates), comme les (méth)acrylates d'alkyle, en particulier d'alkyle en C1-C20, de préférence en C1-C8, les (méth)acrylates d'aryle, en particulier d'aryle en C6-C10, les (méth)acrylates d'hydroxyalkyle, en particulier d'hydroxyalkyle en C2-C6. Comme (méth)acrylates d'alkyle, on peut citer le (méth)acrylate 50 de méthyle, d'éthyle, de butyle, d'isobutyle, d'éthyl-2 hexyle et de lauryle. Comme (méth)acrylates d'hydroxyalkyle, on peut citer le (méth)acrylate d'hydroxyéthyle, le (méth)acrylate de 2-hydroxypropyle. Comme (méth)acrylates d'aryle, on peut citer l'acrylate de benzyle ou de phényle.
55 Les esters de l'acide (méth)acrylique particulièrement préférés sont les (méth)acrylates 25 d'alkyle.
Comme polymère radicalaire, on utilise de préférence les copolymères d'acide (méth)acrylique et de (méth)acrylate d'alkyle, notamment d'alkyle en C1-C4. Plus préféren- tiellement, on peut utiliser les acrylates de méthyle éventuellement copolymérisés avec l'acide acrylique.
Comme amides des monomères acides, on peut citer les (méth)acrylamides, et notamment les N-alkyl (méth)acrylamides, en particulier d'alkyle en C2-C12 tels que le N-éthyl acrylamide, le N-t-butyl acrylamide, le N-octyl acrylamide ; les N- dialkyl (C1-C4) (méth)acrylamides.
Les polymères acryliques peuvent également résulter de la polymérisation de monomères à insaturation éthylénique ayant au moins un groupe amine, sous forme libre ou bien par- tiellement ou totalement neutralisée, ou bien encore partiellement ou totalement quaternisée. De tels monomères peuvent être par exemple le (méth)acrylate de diméthylaminoéthyle, le méthacrylamide de diméthylaminoéthyle, la vinylamine, la vinylpyridine, le chlorure de diallyldiméthylammonium.
Les polymères vinyliques peuvent également résulter de l'homopolymérisation ou de la copolymérisation d'au moins un monomère choisi parmi les esters vinyliques et les monomères styrèniques. En particulier, ces monomères peuvent être polymérisés avec des monomères acides et/ou leurs esters et/ou leurs amides, tels que ceux mentionnés précédemment. Comme exemple d'esters vinyliques, on peut citer l'acétate de vinyle, le pro- pionate de vinyle, le néodécanoate de vinyle, le pivalate de vinyle, le benzoate de vinyle et le t-butyl benzoate de vinyle. Comme monomères styrèniques, on peut citer le styrène et l'alpha-méthyl styrène.
La liste des monomères donnée n'est pas limitative et il est possible d'utiliser tout mono- mère connu de l'homme du métier entrant dans les catégories de monomères acryliques et vinyliques (y compris les monomères modifiés par une chaîne siliconée).
Comme autres monomères vinyliques utilisables, on peut encore citer : - la N-vinylpyrrolidone, la vinylcaprolactame, les vinyl N-alkyl(C,-C6) pyrroles, les vinyl- oxazoles, les vinyl-thiazoles, les vinylpyrimidines, les vinylimidazoles, - les oléfines tels que l'éthylène, le propylène, le butylène, l'isoprène, le butadiène.
Le polymère vinylique peut être réticulé à l'aide d'un ou plusieurs monomères difonctionnels, notamment comprenant au moins deux insaturations éthyléniques, tel que le dimé- thacrylate d'éthylène glycol ou le phtalate de diallyle.
Le ou les polymères en dispersion dans la phase liquide organique peuvent représenter en matière sèche de 1 à 60% du poids de la composition, de préférence de 2 à 50 % et mieux de 5 à 40%. On choisit de préférence d'utiliser une dispersion de particules de polymère filmifiable, les particules étant dispersées dans une huile volatile.
Selon un mode de mise en oeuvre, la composition contient un stabilisant solide à tempéra- 50 ture ambiante. Les particules de polymère sont de préférence stabilisées en surface grâce à un stabilisant qui peut être un polymère séquencé, un polymère greffé, et/ou un polymère statistique, seul ou en mélange. La stabilisation peut être effectuée par tout moyen connu, et en particulier par ajout direct du polymère séquencé, polymère greffé et/ou polymère statistique, lors de la polymérisation. 68 55 Le stabilisant est de préférence également présent dans le mélange avant polymérisation du polymère. Toutefois, il est également possible de l'ajouter en continu, notamment lors-qu'on ajoute également les monomères en continu.
On peut utiliser 2-30% en poids de stabilisant par rapport au mélange initial de monomères, et de préférence 5-20% en poids.
Parmi les polymères greffés, on peut citer les polymères siliconés greffés avec une chaîne hydrocarbonée ; les polymères hydrocarbonés greffés avec une chaîne siliconée. Ainsi on peut utiliser des copolymères blocs greffés ou séquencés comprenant au moins un bloc de type polyorganosiloxane et au moins un bloc d'un polymère radicalaire, comme les copolymères greffés de type acrylique/silicone qui peuvent être employés notamment lorsque le milieu non aqueux est siliconé. 15 On peut aussi utiliser des copolymères blocs greffés ou séquencés comprenant au moins un bloc de type polyorganosiloxane et au moins d'un polyéther. Le bloc polyorganopolysiloxane peut être notamment un polydiméthylsiloxane ou bien encore un poly alkyl(C2-C18) méthyl siloxane ; le bloc polyéther peut être un poly alkylène en C2-C18, en particulier po- 20 lyoxyéthylène et/ou polyoxypropylène. En particulier, on peut utiliser les diméthicones copolyol ou des alkyl (C2-C18) diméthicones copolyol tels que ceux vendu sous la dénomination "Dow Corning 3225C" par la société Dow Corning, les lauryl méthicones tels que ceux vendu sous la dénomination "Dow Corning Q2-5200 par la société "Dow Corning".
25 Comme copolymères blocs greffés ou séquencés, on peut citer aussi ceux comprenant au moins un bloc résultant de la polymérisation d'au moins un monomère éthylénique, à une ou plusieurs liaisons éthyléniques éventuellement conjuguées, comme l'éthylène ou les diènes tels que le butadiène et l'isoprène, et d'au moins un bloc d'un polymère vinylique et mieux styrénique. Lorsque le monomère éthylénique comporte plusieurs liaisons éthyléni- 30 ques éventuellement conjuguées, les insaturations éthyléniques résiduelles après la polymérisation sont généralement hydrogénées. Ainsi, de façon connue, la polymérisation de l'isoprène conduit, après hydrogénation, à la formation de bloc éthylène-propylène, et la polymérisation de butadiène conduit, après hydrogénation, à la formation de bloc éthylène-butylène. Parmi ces polymères, on peut citer les copolymères séquencés, notam- 35 ment de type "dibloc" ou "tribloc" du type polystyrène/polyisoprène (SI), polystyrène/polybutadiène (SB) tels que ceux vendus sous le nom de 'LUVITOL HSB' par BASF, du type polystyrène/copoly(éthylène-propylène) (SEP) tels que ceux vendus sous le nom de 'Kraton' par Shell Chemical Co ou encore du type polystyrène/copoly(éthylènebutylène) (SEB). En particulier, on peut utiliser le Kraton G1650 (SEBS), le Kraton G1651 40 (SEBS), le Kraton G1652 (SEBS), le Kraton G1657X (SEBS), le Kraton G1701X (SEP), le Kraton G1702X (SEP), le Kraton G1726X (SEB), le Kraton D-1101 (SBS), le Kraton D-1102 (SBS), le Kraton D-1107 (SIS). Les polymères sont généralement appelés des copolymères de diènes hydrogénés ou non.
45 On peut aussi utiliser les Gelled Permethyl 99A-750, 99A-753-59 et 99A-753-58 (mélange de tribloc et de polymère en étoile), Versagel 5960 de chez Penreco (tribloc + polymère en étoile) ; OS129880, OS129881 et OS84383 de chez Lubrizol (copolymère styrène/méthacrylate).
50 Comme copolymères blocs greffés ou séquencés comprenant au moins un bloc résultant de la polymérisation d'au moins un monomère éthylénique à une ou plusieurs liaisons éthyléniques et d'au moins un bloc d'un polymère acrylique, on peut citer les copolymères bi- ou triséquencés poly(méthylacrylate de méthyle)/polyisobutylène ou les copolymères greffés à squelette poly(méthylacrylate de méthyle) et à greffons polyisobutylène. 55 Comme copolymères blocs greffés ou séquencés comprenant au moins un bloc résultant de la polymérisation d'au moins un monomère éthylénique à une ou plusieurs liaisons éthyléniques et d'au moins un bloc d'un polyéther tel qu'un polylkylène en C2-C18 (polyéthyléné et/ou polyoxypropyléné notamment), on peut citer les copolymères bi- ou frisé- quencés polyoxyéthylène/polybutadiène ou polyoxyéthylène/polyisobutylène.
On peut ainsi employer des copolymères à base d'acrylates ou de méthacrylates d'alkyle issus d'alcools en C1-C4, et d'acrylates ou de méthacrylates d'alkyle issus d'alcools en C8-C30. On peut en particulier citer le copolymère méthacrylate de stéaryle/méthacrylate de méthyle.
Lorsque le solvant de synthèse liquide comprend au moins une huile de silicone, l'agent stabilisant est de préférence choisi dans le groupe constitué par les copolymères blocs greffés ou séquencés comprenant au moins un bloc de type polyorganosiloxane et au moins un bloc d'un polymère radicalaire ou d'un polyéther ou d'un polyester comme les blocs polyoxypropyléné et/ou oxyéthyléné.
Lorsque le phase grasse liquide ne comprend pas d'huile de silicone, l'agent stabilisant est de préférence choisi dans le groupe constitué par : - (a) les copolymères blocs greffés ou séquencés comprenant au moins un bloc de type polyorganosiloxane et au moins un bloc d'un polymère radicalaire ou d'un polyéther ou d'un polyester, - (b) les copolymères d'acrylates ou de méthacrylates d'alkyle issus d'alcools en C1-C4, et d'acrylates ou de méthacrylates d'alkyle issus d'alcools en C8-C30, - (c) les copolymères blocs greffés ou séquencés comprenant au moins un bloc résultant de la polymérisation d'au moins un monomère éthylénique, à liaisons éthyléniques conjuguées, et au moins un bloc d'un polymère vinylique ou acrylique ou d'un polyéther ou d'un polyester, ou leurs mélanges.
De préférence, on utilise des polymères dibloc comme agent stabilisant.
Lorsque le polymère présente une température de transition vitreuse trop élevée pour l'application souhaitée, on peut lui associer un plastifiant de manière à abaisser cette température du mélange utilisé. Le plastifiant peut être choisi parmi les plastifiants usuellement utilisés dans le domaine d'application et notamment parmi les composés susceptibles d'être des solvants du polymère. On peut aussi utiliser des agents de coalescence afin d'aider la polymère à former un dépôt continu et homogène. Les agents de coalescence ou plastifiants utilisables dans l'invention sont notamment ceux cités dans le document FR-A-2782 917.
La composition peut contenir un plastifiant du polymère, de manière à abaisser la Tg du film de polymère et améliorer l'adhérence du film de polymère sur son support, en particulier les matières kératiniques. Le composé plastifiant abaisse notamment la température de transition vitreuse du polymère d'au moins 2, 3 ou 4 °C, de préférence de 5°C à 20°C. Dans un mode de réalisation préféré, le composé plastifiant abaisse notamment la température de transition vitreuse du polymère d'au moins 2, 3 ou 4 °C, de préférence de 5°C à 20°C, lorsque le composé plastifiant représente au plus 10% en poids du polymère.
Selon un mode de réalisation, le composé peut être choisi parmi les esters d'au moins un acide carboxylique comprenant 1 à 7 atomes de carbones et d'un polyol comprenant au moins 4 groupes hydroxyles.
Le polyol selon l'invention peut être un ose ou un polyol dérivé d'un ose, comme l'érythritol, le xylitol ou le sorbitol. Le polyol peut être un mono- ou un polysaccharide comprenant un à 10 oses, de préférence de un à 4, de préférence encore un ou deux oses. Le polyol peut être choisi parmi l'érythritol, le xylitol, le sorbitol, le glucose, et le saccharose.
Le polyol selon l'invention est de préférence un disaccharide. Parmi les disaccharides, on peut citer le saccharose (alpha-D-glucopyranosyl-(1-2)-béta-D-fructofuranose), le lactose (béta-D-galactopyranosyl-(1-4)-béta-D-glucopyranose) et le maltose (alpha-D-glucopyranosyl-(1-4)-béta-D-glucopyranose).
Le plastifiant peut être constitué d'un polyol substitué par au moins deux acides monocar- boxyliques différents, ou par au moins trois acides monocarboxyliques différents. L'acide est de préférence un acide monocarboxylique choisi en particulier parmi les acides comprenant 1 à 7 atomes de carbones, de préférence 1 à 5 atomes de carbone, par exemple les acides acétique, n-propanoïque, isopropanoïque, n-butanoïque, isobutanoïque, tertiobutanoïque, n-pentanoïque et benzoïque.
Selon un mode de mise en oeuvre préféré, l'ester est le di-acétate-hexa-(2-méthylpropanoate) de saccharose.
Solvant de synthèse des particules de polymère La dispersion de polymère peut être fabriquée comme décrit dans le document EP-A- 749747.
On prépare un mélange comprenant les monomères initiaux ainsi qu'un amorceur radicalaire. Ce mélange est dissous dans un solvant appelé, dans la suite de la présente description, "solvant de synthèse". Lorsque la phase grasse est une huile non volatile, on peut effectuer la polymérisation dans un solvant organique apolaire (solvant de synthèse) puis ajouter l'huile non volatile (qui doit être miscible avec ledit solvant de synthèse) et distiller sélectivement le solvant de synthèse.
On choisit un solvant de synthèse tel que les monomères initiaux, et l'amorceur radicalaire, y sont solubles, et les particules de polymère obtenues y sont insolubles afin qu'elles y précipitent lors de leur formation. En particulier, on peut choisir le solvant de synthèse parmi les alcanes tels que l'heptane, l'isododécane ou le cyclohexane.
Lorsque la phase grasse choisie est une huile volatile, on peut directement effectuer la polymérisation dans ladite huile qui joue donc également le rôle de solvant de synthèse. Les monomères doivent également y être solubles, ainsi que l'amorceur radicalaire, et le polymère obtenu doit y être insoluble.
Les monomères sont de préférence présents dans le solvant de synthèse, avant polymé- risation, à raison de 5-20% en poids du mélange réactionnel. La totalité des monomères peut être présente dans le solvant avant le début de la réaction, ou une partie des mono-mères peut être ajoutée au fur et à mesure de l'évolution de la réaction de polymérisation.
L'amorceur radicalaire peut être notamment l'azo-bis-isobutyronitrile ou le tertiobutylpe- roxy-2-éthyl hexanoate. La phase volatile de la composition peut être constituée par ou comprendre le solvant de synthèse des particules de polymères dispersées.
Polymère semi-cristallin La composition selon l'invention peut comprendre en tant qu'ingrédient additionnel au moins un polymère semi-cristallin associé audit composé A décrit précédemment.
L'association d'un composé supramoléculaire tel que décrit précédemment avec un poly-55 mère semi-cristallin permet notamment, en particulier dans les compositions de maquil-50 lage ou de soin des matières kératiniques, et particulirement de la peau ou des lèvres, d'obtenir mélange homogène et un dépôt sur les matières kératiniques brillant et non collant.
De préférence, la quantité totale de polymère(s) semi-cristallin(s) représente de 0,1 à 50 % du poids total de la composition et mieux de 0,5 à 40 % et encore mieux de 1 à 20 %.
Par "polymères", on entend au sens de l'invention des composés comportant au moins 2 motifs de répétition, de préférence au moins 3 motifs de répétition et plus spécialement au moins 10 motifs répétitifs.
Par "polymère semi-cristallin", on entend au sens de l'invention, des polymères comportant une partie cristallisable et une partie amorphe dans le squelette et présentant une température de changement de phase réversible du premier ordre, en particulier de fusion (transition solide-liquide). La partie cristallisable est soit une chaîne latérale (ou chaîne pendante), soit une séquence dans le squelette.
Lorsque la partie cristallisable du polymère semi-cristallin est une séquence du squelette polymérique, cette séquence cristallisable est de nature chimique différente de celle des séquences amorphes; le polymère semi-cristallin est dans ce cas un copolymère séquencé par exemple du type dibloc, tribloc ou multibloc. Lorsque la partie cristallisable est une chaîne pendante au squelette, le polymère semi cristallin peut être un homopolymère ou un copolymère.
Par "composé organique" ou "à structure organique", on entend des composés contenant des atomes de carbone et des atomes d'hydrogène et éventuellement des hétéroatomes comme S, O, N, P seuls ou en association.
La température de fusion du polymère semi-cristallin est de préférence inférieure à 150°C. La température de fusion du polymère semi-cristallin est de préférence supérieure ou égale à 30°C et inférieure à 100°C. De préférence encore, la température de fusion du polymère semi-cristallin est de préférence supérieure ou égale à 30°C et inférieure à 60°C. 35 Le ou les polymères semi-cristallins selon l'invention servant sont des solides à température ambiante (25°C) et pression atmosphérique (760 mm de Hg), dont la température de fusion est supérieure ou égale à 30°C. Les valeurs de point de fusion correspondent au point de fusion mesuré à l'aide d'un calorimètre à balayage différentiel (D. S. C), tel que le 40 calorimètre vendu sous la dénomination DSC 30 par la société METTLER, avec une montée en température de 5 ou 10°C par minute. (Le point de fusion considéré est le point correspondant à la température du pic le plus endotherme du thermogramme).
Le ou les polymères semi-cristallins selon l'invention ont de préférence une température 45 de fusion supérieure à la température du support kératinique destiné à recevoir ladite composition, en particulier la peau ou les lèvres.
Le ou les polymères semi-cristallins selon l'invention peuvent être capables de structurer seuls ou en mélange, la composition sans ajout de tensioactif particulier, ni de charge, ni 50 de cire.
Selon l'invention les polymères semi-cristallins sont avantageusement solubles dans la phase grasse, notamment à au moins 1 % en poids, à une température supérieure à leur température de fusion. En dehors des chaînes ou séquences cristallisables, les séquen- 55 ces des polymères sont amorphes.30 Par "chaîne ou séquence cristallisable", on entend au sens de l'invention une chaîne ou séquence qui si elle était seule passerait de l'état amorphe à l'état cristallin, de façon réversible, selon qu'on est au-dessus ou en dessous de la température de fusion. Une chaîne au sens de l'invention est un groupement d'atomes, pendant ou latéral par rapport au squelette du polymère. Une séquence est un groupement d'atomes appartenant au squelette, groupement constituant un des motifs répétitif du polymère.
De préférence, le squelette polymérique des polymères semi-cristallins est soluble dans la phase grasse.
De préférence, les séquences ou chaînes cristallisables des polymères semi-cristallins représentent au moins 30 % du poids total de chaque polymère et mieux au moins 40 %. Les polymères semi-cristallins à chaînes latérales cristallisables sont des homo ou des copolymères. Les polymères semi-cristallins de l'invention à séquences cristallisables sont des copolymères, séquencés ou multiséquencés. Ils peuvent être obtenus par polymérisation de monomère à double liaisons réactives (ou éthyléniques) ou par polycondensation. Lorsque les polymères de l'invention sont des polymères à chaînes latérales cristallisables, ces derniers sont avantageusement sous forme aléatoire ou statistique.
De préférence, les polymères semi-cristallins de l'invention sont d'origine synthétique. Selon un mode de réalisation de l'invention, les polymères semi-cristallins de l'invention ne comportent pas de squelette polysaccharidique.
Selon un mode de réalisation préféré, le polymère semi-cristallin est choisi parmi : - les homopolymères et copolymères comportant des motifs résultant de la polymérisation de un ou plusieurs monomères porteurs de chaîne(s) latérale(s) hydrophobe(s) cristallisable(s), - les polymères portant dans le squelette au moins une séquence cristallisable, - les polycondensats de type polyester, aliphatique ou aromatique ou aliphati- que/aromatique, - les homopolymères et/ou les copolymères d'éthylène et/ou de propylène préparés par catalyse métallocène.
Les polymères semi-cristallins utilisables dans l'invention peuvent être choisis en particu- lier parmi: - les copolymères séquencés de polyoléfines à cristallisation contrôlée, dont les monomères sont décrits dans EP-A-O 951 897. - les polycondensats et notamment de type polyester, aliphatique ou aromatique ou aliphatique/aromatique, - les homopolymères et/ou les copolymères d'éthylène et/ou de propylène préparés par catalyse métallocène, - les homo- ou co-polymères portant au moins une chaîne latérale cristallisable et les homo- ou co-polymères portant dans le squelette au moins une séquence cristallisable, comme ceux décrits dans le document US-A-5 156 911, - les homo- ou co-polymères portant au moins une chaîne latérale cristallisable en particulier à groupement(s) fluoré(s), tels que décrits dans le document WO-A-01/19333, - et leurs mélanges.
Dans les deux derniers cas, la ou les chaînes latérales ou séquences cristallisables sont hydrophobes.
A) Polymères semi-cristallins à chaînes latérales cristallisables On peut citer en particulier ceux définis dans les documents US-A-5 156 911 et WO-A-01/19333.
Ce sont des homopolymères ou copolymères comportant de 50 à 100 % en poids de mo- tifs résultant de la polymérisation de un ou plusieurs monomères porteurs de chaîne latérale hydrophobe cristallisable. Ces homo- ou co-polymères sont de toute nature du moment qu'ils présentent les conditions indiquées ci-après avec en particulier la caractéristique d'être solubles ou dispersa- bles dans la phase grasse, par chauffage au-dessus de leur température de fusion Pf. Ils peuvent résulter : - de la polymérisation notamment radicalaire d'un ou plusieurs monomères à double(s) liaison(s) réactive(s) ou éthyléniques vis-à-vis d'une polymérisation, à savoir à groupe vinylique, (méth)acrylique ou allylique. - de la polycondensation d'un ou plusieurs monomères porteurs de groupes co-réactifs (acide carboxylique ou sulfonique, alcool, amine ou isocyanate), comme par exemple les polyesters, les polyuréthanes, les polyéthers, les polyurées, les polyamides.
a) D'une façon générale les motifs (chaînes ou séquences) cristallisables des polymères semi-cristallins selon l'invention, proviennent de monomère(s) à séquence(s) ou chaîne(s) cristallisable(s), utilisé(s) pour la fabrication des polymères semi-cristallins. Ces polymères sont choisis notamment parmi les homopolymères et copolymères résultant de la polymérisation d'au moins un monomère à chaîne(s) cristallisable(s) qui peut être représenté par la formule X : ù M ù avec M représentant un atome du squelette polymérique S représentant un espaceur S C représentant un groupe cristallisable C
Les chaînes « -S-C » cristallisables peuvent être aliphatiques ou aromatiques, éventuellement fluorées ou perfluorées. « S » représente notamment un groupe (CH2)n ou (CH2CH2O)n ou (CH2O), linéaire ou ramifié ou cyclique, avec n entier allant de 0 à 22. De préférence « S » est un groupe linéaire. De préférence, « S » et « C » sont différents.
Lorsque les chaînes cristallisables sont des chaînes aliphatiques hydrocarbonées, elles comportent des chaînes alkyle hydrocarbonées à au moins 11 atomes de carbone et au plus 40 atomes de carbone et mieux au plus 24 atomes de carbone. Il s'agit notamment de chaînes aliphatiques ou chaînes alkyle possédant au moins 12 atomes de carbone et de préférence, il s'agit de chaînes alkyles en C14-C24. de préférence en C16-C22 .Lorsqu'il s'agit de chaînes alkyle fluorées ou perfluorées, elles comportent au moins 11 atomes de carbone dont au moins 6 atomes de carbone sont fluorés.
Comme exemple d'homopolymères ou de copolymères semi-cristallins à chaîne(s) cristallisable(s), on peut citer ceux résultant de la polymérisation d'un ou plusieurs monomères suivants : les (méth)acrylates d'alkyle saturés avec le groupe alkyle en C14-C24, les (méth)acrylates de perfluoroalkyle avec un groupe alkyle perfluoro en C11-C15, les N-alkyl (méth)acrylamides avec le groupe alkyle en C14 à C24 avec ou sans atome de fluor, les esters vinyliques à chaînes alkyle ou perfluoro (alkyle) avec le groupe alkyle en C14 à C24 (avec au moins 6 atomes de fluor pour une chaîne perfluoro alkyle), les éthers vinyliques à chaînes alkyle ou perfluoro (alkyle) avec le groupe alkyle en C14 à C24 et au moins 6 atomes de fluor pour une chaîne perfluoro alkyle, les alpha-oléfines en C14 à C24 comme par exemple l'octadécène, les para-alkyl styrènes avec un groupe alkyle comportant de 12 à 24 atomes de carbone, leurs mélanges.
Lorsque les polymères résultent d'une polycondensation, les chaînes cristallisables hydrocarbonées et/ou fluorées telles que définies ci-dessus, sont portées par un monomère qui peut être un diacide, un diol, une diamine, un di-isocyanate.
Lorsque les polymères objets de l'invention sont des copolymères, ils contiennent, en plus, de 0 à 50 % de groupes Y ou Z résultant de la copolymérisation : a) de Y qui est un monomère polaire ou non polaire ou un mélange des deux : Lorsque Y est un monomère polaire, c'est soit un monomère porteur de groupes po- lyoxyalkylénés (notamment oxyéthyléné et/ou oxypropyléné), un (méth)acrylate d'hydroxyalkyle comme l'acrylate d'hydroxyéthyle, le (méth)acrylamide, un N-alkyl(méth)acrylamide, un NN-dialkyl(méth)acrylamide comme par exemple le NN-diisopropylacrylamide ou la N-vinyl-pyrolidone (NVP), le N-vinyl caprolactame, un mono-mère porteur d'au moins un groupe acide carboxylique comme les acides (méth)acryliques, crotonique, itaconique, maléique, fumarique ou porteur d'un groupe anhydride d'acide carboxylique comme l'anhydride maléique, et leurs mélanges.
Lorsque Y est un monomère non polaire il peut être un ester du type (méth)acrylate d'alkyle linéaire ramifié ou cyclique, un ester vinylique, un alkyl vinyl éther, une alpha- oléfine, le styrène ou le styrène substitué par un groupe alkyle en C, à C,o, comme l'améthylstyrène, un macromonomère du type polyorganosiloxane à insaturation vinylique.
Par "alkyle", on entend au sens au sens de l'invention un groupement saturé notamment en C8 à C24, sauf mention exprès. [3) de Z qui est un monomère polaire ou un mélange de monomères polaires. Dans ce cas, Z a la même définition que le "Y polaire" défini ci-dessus.
De préférence, les polymères semi-cristallins à chaîne latérale cristallisable sont des ho- 25 mopolymères d'alkyl(méth)acrylate ou d'alkyl(méth)acrylamide avec un groupe alkyle tel que défini ci-dessus, et notamment en C14-C24, des copolymères de ces monomères avec un monomère hydrophile de préférence de nature différente de l'acide (méth)acrylique comme la N-vinylpyrrolidone ou l'hydroxyéthyl (méth)acrylate et leurs mélanges.
30 De façon avantageuse, le ou les polymères semi-cristallins à chaîne latérale cristallisable ont une masse moléculaire moyenne en poids Mp allant de 5 000 à 1 000 000, de préférence de 10 000 à 800 000, préférentiellement de 15 000 à 500 000, de préférence encore de 100 000 à 200 000.
35 A titre d'exemple particulier de polymère semi-cristallin utilisable dans la composition selon l'invention, on peut citer les produits Intelimer® de la société Landec décrits dans la brochure "Intelimer® polymers", Landec IP22 (Rev. 4-97). Ces polymères sont sous forme solide à température ambiante (25°C). Ils sont porteurs de chaînes latérales cristallisables et présentent la formule X précédente. 40 Par exemple, on choisit le produit Intelimer® IPA 13-1 de la société Landec, qui est un polyacrylate de stéaryle de poids moléculaire d'environ 145 000 et dont la température de fusion est égale à 49°C.
45 Les polymères semi-cristallins peuvent être notamment ceux décrits dans les exemples 3, 4, 5, 7, 9 du brevet US-A-5 156 911 à groupement -000H, résultant de la copolymérisation d'acide acrylique et d'alkyl(méth)acrylate en C5 à C16 de température de fusion allant de 20°C à 35°C et plus particulièrement de la copolymérisation : - d'acide acrylique, d'hexadécylacrylate et d'isodécylacrylate dans un rapport 1/16/3, 50 - d'acide acrylique et de pentadécylacrylate dans un rapport 1/19, - d'acide acrylique, d'hexadécylacrylate, éthylacrylate dans un rapport 2,5/76,5/20, - d'acide acrylique, d'hexadécylacrylate et de méthylacrylate dans un rapport 5/85/10, - d'acide acrylique, de polyoctadécylméthacrylate dans un rapport 2,5/97,5.20 On peut aussi utiliser le polymère Structure « O » de National Starch tel que celui décrit dans le document US-A-5 736 125 de température de fusion de 44°C
Les polymères semi-cristallins peuvent être notamment les polymères semi-cristallins à chaînes pendantes cristallisables comportant des groupements fluorés tels que décrits dans les exemples 1, 4, 6, 7 et 8 du document WO-A-01/19333.
On peut encore utiliser les polymères semi-cristallins obtenus par copolymérisation d'acrylate de stéaryle et d'acide acrylique ou de NVP tels que décrits dans le document US-A-5 519 063 ou EP-A- 550 745.
On peut aussi utiliser les polymères semi-cristallins obtenus par copolymérisation de l'acrylate de béhényle et de l'acide acrylique ou de NVP, tels que décrits dans les documents US-A-5 519 063 et EP-A- 055 0745 et plus spécialement ceux décrits dans les exemples 3 et 4, ci-après, de préparation de polymère.
B) Les polymères portant dans le squelette au moins une séquence cristallisable
Il s'agit encore de polymères solubles ou dispersables dans la phase grasse par chauf- fage au-dessus de leur point de fusion Pf. Ces polymères sont notamment des copolymères séquencés constitués d'au moins deux séquences de nature chimique différente dont l'une est cristallisable.
Le polymère portant dans le squelette au moins une séquence cristallisable peut être choisi parmi les copolymères séquencés d'oléfine ou de cyclooléfine à chaîne cristallisable comme ceux issus de la polymérisation séquencée de : - cyclobutène, cyclohexène, cyclooctène, norbornène (c'est-à-dire bicyclo(2,2,1)heptène-2), 5-méthylnorbornène, 5-éthylnorbornène, 5,6-diméthylnorbornène, 5,5,6-triméthyl norbornène, 5-éthylidène-norbornène, 5-phényl-norbonène, 5-benzylnorbornène, 5-vinyl nor- bornène, 1,4,5,8-diméthano-1,2,3,4,4a,5,8a-octahydronaphtalène, dicyclopentadiène ou leurs mélanges, avec - l'éthylène, le propylène, le 1-butène, le 3-méthyl-1-butène, le 1-hexène, le 4-méthyl-1-pentène, le 1-octène, le 1-décène, le 1-éicosène ou leurs mélanges, et en particulier les copoly(éthylène/norbornène) blocs et les terpolymères (éthy- lène/propylène/éthylidène-norbornène), blocs. On peut aussi utiliser ceux résultants de la copolymérisation séquencée d'au moins 2 a-oléfines en C2-C16 et mieux en C2-C12 tels que ceux cités précédemment et en particulier les bipolymères séquencés d'éthylène et d' l -octène.
Le polymère portant dans le squelette au moins une séquence cristallisable peut être choisi parmi les copolymères présentant au moins une séquence cristallisable, le reste du copolymère étant amorphe (à température ambiante). Ces copolymères peuvent, en outre, présenter deux séquences cristallisables de nature chimique différente.
Les copolymères préférés sont ceux qui possèdent à la fois à température ambiante, une séquence cristallisable et une séquence amorphe à la fois hydrophobe et lipophile réparties séquentiellement. On peut citer par exemple les polymères possédant une des séquences cristallisables et une des séquences amorphes suivantes : - Séquence cristallisable par nature de type polyester comme les poly(alkylène téréphta- late), ou de type polyoléfine comme les polyéthylènes ou polypropylènes.
- Séquence amorphe et lipophile comme les polyoléfines ou copoly(oléfine)s amorphes telles que le poly(isobutylène), le polybutadiène hydrogéné, le poly(isoprène) hydrogéné.
Comme exemple de tels copolymères à séquence cristallisable et à séquence amorphe, on peut citer : a) les copolymères séquencés poly(E-caprolactone)-b-poly(butadiène), utilisés de préférence hydrogénés, tels que ceux décrits dans l'article D6 "Melting behavior of poly(-caprolactone)-block-polybutadiène copolymers" de S. Nojima, Macromolécules, 32, 3727- 3734 (1999). [3) les copolymères séquencés poly(butylènetéréphtalate)-b-poly(isoprène) hydrogénés séquencés ou multiséquencés, cités dans l'article D7 "Study of morphological and mechanical properties of PP/PBT" de B. Boutevin et al., Polymer Bulletin, 34, 117-123 (1995). y) les copolymères séquencés poly(éthylène)-b-copoly(éthylène/propylène) cités dans les articles D8 "Morphology of semi-crystalline block copolymers of ethylene-(ethylene-altpropylene)" de P. Rangarajan et al., Macromolecules, 26, 4640-4645 (1993) et D9 "Polymer agregates with crystalline cores : the system poly(ethylene)-poly(ethylene-propylene)" P. Richter et al., Macromolécules, 30, 1053-1068 (1997). 8) les copolymères séquencés poly(éthylène)-b-poly(éthyléthylène) cités dans l'article général D10 "Cristallization in block copolymers" de I.W. Hamley, Advances in Polymer Science, vol 148, 113-137 (1999).
C) Polycondensats de type polyester, aliphatique ou aromatique ou aliphati-20 que/aromatique
Les polycondensats polyester peuvent être choisis parmi les polyesters aliphatiques. Leur masse moléculaire est de préférence supérieure ou égale à 200 et inférieure ou égal à 10000, et de préférence encore supérieure ou égale à 300 et inférieure ou égal à 5000, 25 de préférence supérieure ou égale à 500 et supérieure ou égale à 2 000 g/mol.
Les polycondensats polyester sont en particulier choisis parmi les polycaprolactones. En particulier, les polycaprolactones peuvent être choisies parmi les homopolymères d'E-caprolactones. L'homopolymérisation peut être initiée avec un diol, notamment un diol 30 ayant de 2 à 10 atomes, tels que le diéthylène glycol, le 1,4-butanediol, le néopentyl glycol.
On peut utiliser par exemple les polycaprolactones, notamment celles commercialisées sous le nom de CAPA @ 240 (point de fusion de 68°C et poids moléculaire de 4000), 223 35 (point de fusion de 48°C et poids moléculaire de 2000), 222 (point de fusion de 48°C et poids moléculaire de 2000), 217 (point de fusion de 44°C et poids moléculaire de 1250), 2125 (point de fusion de 45°C et poids moléculaire de 1250), 212 (point de fusion de 45°C et poids moléculaire de 1000), 210 (point de fusion de 38°C et poids moléculaire de 1000), 205 (point de fusion de 39°C et poids moléculaire de 830) par la société SOLVAY, 40 PCL-300, PCL-700 par la société UNION CARBIDE.
On peut utiliser en particulier la CAPA ® 2125 dont la température de fusion est comprise entre 35 et 45°C et dont la masse moléculaire est poids est égale à 1250.
45 Les polymères semi-cristallins de la composition de l'invention peuvent être ou non réticulés en partie du moment où le taux de réticulation ne gène pas leur dissolution ou dispersion dans la phase grasse par chauffage au-dessus de leur température de fusion. Il peut s'agir alors d'une réticulation chimique, par réaction avec un monomère multifonctionnel lors de la polymérisation. Il peut aussi s'agir d'une réticulation physique qui peut alors être 50 due soit à l'établissement de liaisons type hydrogène ou dipolaire entre des groupes portés par le polymère comme par exemple les interactions dipolaires entre ionomères carboxylates, ces interactions étant en faible quantité et portées par le squelette du polymère ; soit à une séparation de phase entre les séquences cristallisables et les séquences amorphes, portées par le polymère. 55 De préférence, les polymères semi-cristallins de la composition selon l'invention sont non réticulés.
D) les homopolymères et/ou les copolymères d'éthylène et/ou de propylène préparés par catalyse métallocène
Le polymère serai-cristallin de la composition de l'invention peut également être un polymère cireux obtenu par catalyse métallocène, tels que ceux décrits dans le brevet US2007/0031361 , 10 Ces polymères sont des homopolymères ou des copolymères d'éthylène et/ou de propylène préparés par catalyse métallocène; c'est-à-dire par polymérisation à basse pression et en présence d'un catalyseur métallocène.
15 La masse moyenne en poids (Mw) des cires obtenues par catalyse métallocène décrites dans ce document est inférieure ou égale à 25 000 g/mol, elle va par exemple de 2 000 à 22 000 g/mol et mieux de 4 000 à 20 000 g/mol. La masse moyenne en nombre (Mn) des cires obtenues par catalyse métallocène décrites dans ce document est de préférence inférieure ou égale à 15 000 g/mol, elle va par 20 exemple de 1 000 à 12 000 g/mol, et mieux de 2 000 à 10 000 g/mol. L'indice de polydispersité I du polymère est égal au rapport de la masse moyenne en poids Mw sur la masse moyenne en nombre Mn. De façon préférée, l'indice de polydispersité des polymères cireux est compris entre 1,5 et 10, de préférence entre 1,5 et 5, de préférence entre 1,5 et 3 et mieux encore, entre 2 et 25 2,5. Les homopolymères et les copolymères cireux peuvent être obtenus de manière connue à partir des monomères éthylène et/ou propylène par exemple par catalyse métallocène selon le procédé décrit dans le document EP 571 882. 30 Les homopolymères et les copolymères d'éthylène et/ou de propylène préparés par catalyse métallocène peuvent être non modifiés ou modifiés « polairement » (polar modified waxes, c'est-à-dire des cires modifiées de sorte qu'elles présentent les propriétés d'une 35 cire polaire). Les homopolymères et les copolymères cireux modifiés polairement peu-vent être préparés de manière connue à partir de homopolymères et les copolymères cireux non modifiés tels que ceux décrits précédemment par oxydation avec des gaz contenant de l'oxygène, tel que l'air, ou par greffage avec des monomères polaires tels que l'acide maléique ou l'acide acrylique ou encore des dérivés de ces acides. Ces deux 40 voies permettant de modifier polairement des polyoléfines obtenues par catalyse métallo-cène sont décrites respectivement dans les documents EP890 583 et US 5 998 547 par exemple,
Selon la présente invention, les homopolymères et les copolymères d'éthylène et/ou de 45 propylène préparés par catalyse métallocène modifiés polairement et particulièrement préférés sont les polymères modifiés de façon à ce qu'ils présentent des propriétés hydrophiles. A titre d'exemple, on peut citer des homopolymères ou des copolymères d'éthylène et/ou de propylène modifiés par la présence de groupes hydrophiles tels que l'anhydride maléique, l'acrylate, le méthacrylate, la polyvinylpyrrolidone (PVP), etc. 50 Les homopolymères ou des copolymères d'éthylène et/ou de propylène cireux modifiés par la présence de groupes hydrophiles tels que l'anhydride maléique ou l'acrylate, sont particulièrement préférés. 55 A titre d'exemple, on peut citer : - les cires de polypropylène modifiées par de l'anhydride maléique (PPMA) commercialisés par la société Clariant ou les copolymères polypropylène-éthylène-anhydride male que, tels que ceux commercialisés par la société Clariant sous le nom de LicoCare comme LicoCare PP207 LP3349, LicoCare CM401 LP3345, LicoCare CA301 LP 3346, et LicoCare CA302 LP 3347, ou encore - les cires de polyéthylène non modifiées commercialisés par la société Clariant, telle que le produit LicoCare PE 102 LP3329.
Dans le cadre d'une composition pour les lèvres, on préférera un polymère cireux modifié polairement présentant un faible degré de cristallinité, de préférence de moins de 40%.
L'utilisation de ces polymères cireux permet notamment de limiter la perte en brillance des compositions de rouge à lèvres.
De façon préférée, la quantité totale en polymères cireux, modifiés ou non, représente de 0,1% à 30% du poids total de la composition, ou mieux de 0,5% à 20%, et mieux encore de 1% à 15%.
Agents épaississants capable d'établir des interactions hydrogène La composition selon l'invention peut comprendre en tant qu'ingrédient additionnel au moins un agent épaississant comprenant au moins un groupe, de préférence au moins deux groupes, capable d'établir des interactions hydrogène choisi parmi •les agents épaississants polymèriques et •les organogélateurs, associé audit composé A décrit précédemment.
La composition selon l'invention comprend au moins un agent épaississant comprenant au moins un groupe, de préférence au moins deux groupes, capable d'établir des interac- tions hydrogène choisi parmi les agents épaississants polymériques et les organogélateurs.
L'association d'un composé supramoléculaire tel que décrit précédemment avec un agent épaissisant, capable d'établir des interactions hydrogènes, permet notamment, en particu- lier dans les compositions de maquillage ou de soin des matières kératiniques, et particulirement de la peau ou des lèvres, d'obtenir mélange homogène et un dépôt sur les matières kératiniques brillant et de préférence non collant.
De façon préférée, l'agent épaississant est présent dans la composition en une teneur totale - allant de 0,1 % à 70 % en poids par rapport au poids total de la composition, de préférence allant de 0,5 % à 50 % en poids, et mieux allant de 1 % à 45 % en poids, par rapport au poids total de ladite composition, lorsqu'il est choisi parmi les agents épaississant polymériques, ou - allant de 0,1 à 20% en poids, notamment de 0,5 à 15% en poids, voire de 0,5 à 10% en poids, mieux de 1 à 8% en poids, et encore mieux de 2 à 5% en poids par rapport au poids total de ladite composition, lorsqu'il est choisi parmi les organogélateurs.
Selon l'invention, les agents épaississants polymériques utilisés comprenant au moins un motif comprenant au moins un groupe, de préférence au moins deux groupes, capables d'établir des interactions hydrogène, peuvent appartenir aux deux familles suivantes : 1) des polymères comportant au moins deux groupes capables d'établir des interactions hydrogène, ces deux groupes étant situés dans la chaîne du polymère, et/ou 2) des polymères comportant au moins deux groupes capables d'établir des interactions hydrogène, ces deux groupes étant situés sur des greffons ou ramifications.
Par « polymère », on entend au sens de l'invention un composé ayant au moins 2 motifs de répétition, et de préférence au moins 3 motifs de répétition.
Par "motifs de répétition hydrocarbonés", on entend au sens de l'invention un motif comportant de 2 à 80 atomes de carbone, et de préférence de 2 à 60 atomes de carbone, portant des atomes d'hydrogène et éventuellement des atomes d'oxygène, qui peut être linéaire, ramifié ou cyclique, saturé ou insaturé. Ces motifs comprennent, en outre, chacun de un à plusieurs hétéroatomes non pendants et se trouvant dans le squelette polyméri- que. Ces hétéroatomes sont choisis parmi les atomes d'azote, de soufre, de phosphore et leurs associations, associés éventuellement à un ou plusieurs atome d'oxygène.
De façon préférée, ces groupes sont choisis parmi les groupes ester, amide, sulfonamide, carbamate, thiocarbamate, urée, uréthane, thiourée, oxamido, guanidino, biguanidino et leurs combinaisons.
A titre d'exemple d'agents épaississants polymériques pouvant être utilisés et comprenant au moins un motif comprenant au moins un groupe, de préférence au moins deux groupes, capables d'établir des interactions hydrogène, on peut citer : - les polymères de masse moléculaire moyenne en poids inférieure à 100 000, comportant a) un squelette polymérique ayant des motifs de répétition hydrocarbonés pourvus d'au moins un hétéroatome, et éventuellement b) au moins une chaîne grasse pendante et/ou au moins une chaîne grasse terminale éventuellement fonctionnalisées, ayant de 6 à 120 atomes de carbone et étant liées à ces motifs hydrocarbonés, telles que décrites dans les demandes WO-A-02/056847, WO-A-02/47619, en particulier les résines de polyamides (notamment comprenant des groupes alkyles ayant de 12 à 22 atomes de carbone) telles que celles décrites dans US-A-5783657. - les résines de polyamides siliconées telles que décrites dans la demande EP-A-1266647, dans la demande de brevet français déposée sous le n° 0216039,
les organopolysiloxanes comprenant au moins un groupe carboxyle, et de préférence les organopolysiloxanes comprenant au moins deux groupes carboxyles, par motif.
De tels agents épaississants sont notamment décrits dans les demandes EP-A-1400234, .-et sont décrits de manière plus détaillée ci-après.
Polyamide siliconé Selon un premier mode de réalisation de l'invention, l'agent structurant polymérique com- prenant des groupes capables d'établir des liaisons hydrogène est un polyamide siliconé. Les polyamides siliconés sont de préférence solides à la température ambiante (25 °C) et pression atmosphérique (760 mm de Hg). Par polymère, on entend au sens de l'invention un composé ayant au moins 2 motifs de répétition, de préférence au moins 3 motifs de répétition et mieux encore 10 motifs de ré- pétition. Les polyamides siliconés de la composition de l'invention peuvent être des polymères du type polyorganosiloxane comme par exemple ceux décrits dans les documents US-A-5 874 069, US-A-5,919,441, US-A-6,051,216 et US-A-5,981,680. Selon l'invention, les polymères siliconés peuvent appartenir aux deux familles suivantes : (1) des polyorganosiloxanes comportant au moins deux groupes amides, ces deux grou- pes étant situés dans la chaîne du polymère, et/ou (2) des polyorganosiloxanes comportant au moins deux groupes amides, ces deux groupes étant situés sur des greffons ou ramifications.
A) Selon une première variante, les polymères siliconés sont des polyorganosiloxanes tels que définis ci-dessus et dont les motifs capables d'établir des interactions hydrogènes sont disposés dans la chaîne du polymère.
Les polymères siliconés peuvent plus particulièrement être des polymères corn- prenant au moins un motif répondant à la formule générale I : R4 R6 Si O R5 SiùX G Y G X R' m n
(1) dans laquelle : 1) R4, R5, R6 et R7, identiques ou différents, représentent un groupe choisi parmi: - les groupes hydrocarbonés, linéaires, ramifiés ou cycliques, en C, à C4o, saturés ou insaturés, pouvant contenir dans leur chaîne un ou plusieurs atomes d'oxygène, de soufre et/ou d'azote, et pouvant être substitués en partie ou totalement par des atomes de fluor, - les groupes aryles en C6 à C,o, éventuellement substitués par un ou plu-20 sieurs groupes alkyle en C, à C4, - les chaînes polyorganosiloxanes contenant ou non un ou plusieurs atomes d'oxygène, de soufre et/ou d'azote, 2) les X, identiques ou différents, représentent un groupe alkylène di-yle, linéaire ou ramifié en C, à Cao, pouvant contenir dans sa chaîne un ou plusieurs atomes 25 d'oxygène et/ou d'azote, 3) Y est un groupe divalent alkylène linéaire ou ramifié, arylène, cycloalkylène, alkylarylène ou arylalkylène, saturé ou insaturé, en C, à 050, pouvant comporter un ou plusieurs atomes d'oxygène, de soufre et/ou d'azote, et/ou porter comme substituant l'un des atomes ou groupes d'atomes suivants : fluor, hydroxy, cycloalkyle en C3 à C8, al- 30 kyle en C, à C4o, aryle en C5 à C,o, phényle éventuellement substitué par 1 à 3 groupes alkyle en C, à C3, hydroxyalkyle en C, à C3 et amino alkyle en C, à C6, ou 4) Y représente un groupe répondant à la formule : R8 T 35 dans laquelle - T représente un groupe hydrocarboné trivalent ou tétravalent, linéaire ou ramifié, saturé ou insaturé, en C3 à C24 éventuellement substitué par une chaîne polyorganosiloxane, et pouvant contenir un ou plusieurs atomes choisis parmi O, N et S, ou T représente un atome trivalent choisi parmi N, P et Al, et 40 - R8 représente un groupe alkyle en C, à C5o, linéaire ou ramifié, ou une chaîne polyorganosiloxane, pouvant comporter un ou plusieurs groupes ester, amide, uréthane, thiocarbamate, urée, thiourée et/ou sulfonamide qui peut être lié ou non à une autre chaîne du polymère, 5) les G, identiques ou différents, représentent les groupes divalents choisis parmi: C O O C N(R9) C
O O O C N(R9) N(R9) S02 S02 N(R9)
O N(R9) C O 0 C N(R9) N(R9) C O
O O S
O C N(R9) N(R9) C N(R9)
O N(R9) C N(R9)
S N(R9) C C N(R9) ; NH C NH . et
O O NH
NH C NH C NH
NH NH où R9 représente un atome d'hydrogène ou un groupe alkyle, linéaire ou ramifié, en C, à C20, à condition qu'au moins 50 % des R9 du polymère représente un atome d'hydrogène et qu'au moins deux des groupes G du polymère soient un autre groupe que : O C et C O Il Il O o 10 6) n est un nombre entier allant de 2 à 500, de préférence de 2 à 200, et m est un nombre entier allant de 1 à 1000, de préférence de 1 à 700 et mieux encore de 6 à 200. Selon l'invention, 80 % des R4, R5, R6 et R7, du polymère sont choisis de préférence parmi 15 les groupes méthyle, éthyle, phényle et 3,3,3-trifluoropropyle.
Selon l'invention, Y peut représenter divers groupes divalents, comportant éventuellement de plus une ou deux valences libres pour établir des liaisons avec d'autres motifs du polymère ou copolymère. De préférence, Y représente un groupe choisi parmi : 20 a) les groupes alkylène linéaires en C, à C2o, de préférence en C, à C,o, b) les groupes alkylène ramifiés pouvant comporter des cycles et des insaturations non conjuguées, en Cao à C56, c) les groupes cycloalkylène en C5-C6, d) les groupes phénylène éventuellement substitués par un ou plusieurs 25 groupes alkyle en C, à C4o, e) les groupes alkylène en C, à C2o, comportant de 1 à 5 groupes amides, 5 83 f) les groupes alkylène en C, à C2°, comportant un ou plusieurs substituants, choisis parmi les groupes hydroxyle, cycloalcane en C3 à C8, hydroxyalkyle en C1 à C3 et alkylamines en C, à C6, g) les chaînes polyorganosiloxane de formule : dans laquelle R4, R5, R6, R7, T et m sont tels que définis ci-dessus, et h) les chaînes polyorganosiloxanes de formule : ù R4 Si O - m R5 ù R4 R6 R5 Selon la seconde variante, les polyorganosiloxanes peuvent être des polymères comprenant au moins un motif répondant à la formule (Il) : R4 Si O R6 miùRn Si O R'° m2 (II) dans laquelle - R4 et R6, identiques ou différents, sont tels que définis ci-dessus pour la formule (I), - R10 représente un groupe tel que défini ci-dessus pour R4 et R6, ou représente le groupe de formule -X-G-R12 dans laquelle X et G sont tels que définis ci-dessus pour la formule (I) et R12 représente un atome d'hydrogène ou un groupe hydrocarboné, linéaire, ramifié ou cyclique, saturé ou insaturé, en C1 à C5° comportant éventuellement dans sa chaîne un ou plusieurs atomes choisis parmi O, S et N, éventuellement substitué par un ou plusieurs atomes de fluor et/ou un ou plusieurs groupes hydroxyle, ou un groupe phényle éventuellement substitué par un ou plusieurs groupes alkyle en C1 à C4, - R11 représente le groupe de formule -X-G-R 2 dans laquelle X, G et R12 sont tels que définis ci-dessus, - m1 est un nombre entier allant de 1 à 998, et - m2 est un nombre entier allant de 2 à 500. Selon l'invention, le polymère siliconé utilisé comme agent structurant, peut être un homopolymère, c'est-à-dire un polymère comportant plusieurs motifs identiques, en parti-30 culier des motifs de formule (I) ou de formule (Il).
Selon l'invention, on peut aussi utiliser un polymère siliconé constitué par un copolymère comportant plusieurs motifs de formule (I) différents, c'est-à-dire un polymère dans lequel l'un au moins des R4, R5, R6, R7, X, G, Y, m et n est différent dans l'un des motifs. Le copolymère peut être aussi formé de plusieurs motifs de formule (Il), dans lequel l'un au moins des R4, R6, Rio, R11, ml et m2 est différent dans l'un au moins des motifs. On peut encore utiliser un polymère comportant au moins un motif de formule (I) et au moins un motif de formule (Il), les motifs de formule (I) et les motifs de formule (Il) pouvant être identiques ou différents les uns des autres.
Selon une variante de l'invention, on peut encore utiliser un polymère comprenant de plus au moins un motif hydrocarboné comportant deux groupes capables d'établir des interactions hydrogènes choisis parmi les groupes ester, amide, sulfonamide, carbamate, thiocarbamate, urée, uréthane, thiourée, oxamido, guanidino, biguanidino et leurs combinaisons.
Ces copolymères peuvent être des polymères blocs, des polymères séquencés ou des polymères greffés. Selon un mode de réalisation avantageux de l'invention, les groupes capables d'établir des interactions hydrogènes sont des groupes amides de formule ùC(0)NH- et ù HN-C(0)-. Dans ce cas, l'agent structurant peut être un polymère comprenant au moins un motif de formule (III) ou (IV) :
Rù4 R5 C X SiO Si X C NH Y NH O R6 mR' O n R4 5 R NH X SiO Si X NH C Y C R6 m R' n ou (IV) dans lesquelles R4, R5, R6, R7, X, Y, m et n sont tels que définis ci-dessus.
Un tel motif peut être obtenu : - soit par une réaction de condensation entre un silicone à extrémités a, co-acides carboxyliques et une ou plusieurs diamines, selon le schéma réactionnel sui- vant : R4 R5 HOOC X io Si X COOH + H2N Y NH2 . m R7 R5 C X SiO Si X CO NH Y NH -o R6 m R7n - soit par réaction de deux molécules d'acide carboxylique a-insaturé avec une diamine selon le schéma réactionnel suivant : CH2=CH-X I-COOH+H2N-Y-NH2 CH2=CH-XI-CO-NH-Y-NH-CO-XI-CH=CH2 suivie de l'addition d'un siloxane sur les insaturations éthyléniques, selon le schéma suivant CH2=CH-X I-CO-NH-Y-NH-CO-X I-CH=CH2 R5 SiH m R7 - R4 +H SiO R6 Co x X CO NH Y NH R5 R7 _n m dans lesquels Xi-(CH2)2- correspond au X défini ci-dessus et Y, R4, R5, R6, R7 et m sont tels que définis ci-dessus, - soit par réaction d'un silicone à extrémités a, io-NH2 et d'un diacide de formule HOOC-Y-000H selon le schéma réactionnel suivant :15 H2N X R5 Si X NH2+HOOC-Y-COOH _R6 -m R7 R5 X NH C Y C R7 o o _n HN X m Dans ces polyamides de formule (III) ou (IV), m va de 1 à 700, en particulier de 15 à 500 et notamment de 50 à 200 et n va particulier de 1 à 500, de préférence de 1 à 100 et mieux encore de 4 à 25, - X est de préférence une chaîne alkylène linéaire ou ramifiée ayant de 1 à 30 atomes de carbone, en particulier 1 à 20 atomes de carbone, notamment de 5 à 15 atomes de carbone et plus particulièrement de 10 atomes de carbone, et - Y est de préférence une chaîne alkylène linéaire ou ramifiée ou pouvant comporter des cycles et/ou des insaturations, ayant de 1 à 40 atomes de carbone, en particulier de 1 à 20 atomes de carbone, et mieux encore de 2 à 6 atomes de carbone, en particulier de 6 atomes de carbone.
Dans les formules (III) et (IV), le groupe alkylène représentant X ou Y peut éven- tuellement contenir dans sa partie alkylène au moins l'un des éléments suivants : 1) 1 à 5 groupes amides, urée, uréthane, ou carbamate, 2) un groupe cycloalkyle en C5 ou C6, et 3) un groupe phénylène éventuellement substitué par 1 à 3 groupes alkyles identiques ou différents en Ci à C3.
Dans les formules (III) et (IV), les groupes alkylènes peuvent aussi être substitués par au moins un élément choisi dans le groupe constitué de : - un groupe hydroxy, - un groupe cycloalkyle en C3 à C8, - un à trois groupes alkyles en C, à 040, - un groupe phényle éventuellement substitué par un à trois groupes alky- les en C, à C3, - un groupe hydroxyalkyle en C, à C3, et - un groupe aminoalkyle en C, à C6. Dans ces formules (III) et (IV), Y peut aussi représenter :
R8 T où R8 représente une chaîne polyorganosiloxane, et T représente un groupe de formule : 87 Ria (CH2)a C (CH2)b OU (CH2)a N (CH2)b ù (CH2)22954130 (CH2),
dans lesquelles a, b et c sont indépendamment des nombres entiers allant de 1 à 10, et R13 est un atome d'hydrogène ou un groupe tel que ceux définis pour R4, R5, R6 et R7. Dans les formules (III) et (IV), R4, R5, R6 et R7 représentent de préférence, in- 5 dépendamment, un groupe alkyle en C1 à C4o, linéaire ou ramifié, de préférence un groupe CH3, C2H5, n-C3H, ou isopropyle, une chaîne polyorganosiloxane ou un groupe phényle éventuellement substitué par un à trois groupes méthyle ou éthyle. Comme on l'a vu précédemment, le polymère peut comprendre des motifs de formule (III) ou (IV) identiques ou différents. 10 Ainsi, le polymère peut être un polyamide contenant plusieurs motifs de for- mule (III) ou (IV) de longueurs différentes, soit un polyamide répondant à la formule (V) : R4 R5 SiO Si X C(0) NH Y NH R6 1R R4 R5 SiO Si X C(0) NH Y NH R6 m2R C(0)ùX P C(0)-X n (V)
dans laquelle X, Y, n, R4 à R7 ont les significations données ci-dessus, m1 et m2 qui sont 15 différents, sont choisis dans la gamme allant de 1 à 1000, et p est un nombre entier allant de 2 à 300. Dans cette formule, les motifs peuvent être structurés pour former soit un copolymère bloc, soit un copolymère aléatoire, soit un copolymère alterné. Dans ce copolymère, les motifs peuvent être non seulement de longueurs différentes mais aussi de struc- 20 tures chimiques différentes, par exemple ayant des Y différents. Dans ce cas, le polymère peut répondre à la formule VI: R4 R5 SiO Si x C(0) NH Y NH R6 m1R R4 R5 SiO Si x C(0) NH Y NH R6 m R7 C(0) X C(0) X n P 25 dans laquelle R4 à R7, X, Y, m1, m2, n et p ont les significations données ci-dessus et Y1 est différent de Y mais choisi parmi les groupes définis pour Y. Comme précédemment, les différents motifs peuvent être structurés pour former soit un copolymère bloc, soit un copolymère aléatoire, soit un copolymère alterné. Dans ce premier mode de réalisation de l'invention, l'agent structurant peut 30 être aussi constitué par un copolymère greffé. Ainsi, le polyamide à unités silicone peut être greffé et éventuellement réticulé par des chaînes silicones à groupes amides. De tels polymères peuvent être synthétisés avec des amines trifonctionnelles. Dans ce cas, le polymère peut comprendre au moins un motif de formule (VII): R'4 R'5 Si X' CO NH T NH R" SiO CO X' R16 n R '8 R19 NH Y NH CO X2 SiO Si X2 CO NH
R' m2 R 2' p (VII) dans laquelle X1 et X2 qui sont identiques ou différents, ont la signification donnée pour X dans la formule (I), n est tel que défini dans la formule (I), Y et T sont tels que définis dans la formule (I), R14 à R21 sont des groupes choisis dans le même groupe que les R4 à R7, m1 et m2 sont des nombres situés dans la gamme allant de 1 à 1 000, et p est un nombre entier allant de 2 à 500. Dans la formule (VII), on préfère que : - p soit va de 1 à 25, mieux encore de 1 à 7, - R14 à R21 soient des groupes méthyle, - T réponde à l'une des formules suivantes : R25 R25 R25 R23 Al R24 R25 dans lesquelles R22 est un atome d'hydrogène ou un groupe choisi parmi les groupes dé-finis pour R4 à R7, et R23, R24 et R25 sont indépendamment des groupes alkylène, linéaires ou ramifiés, de préférence encore, à la formule : C R24 R23 N R24 R23 P R2415 R23 N R25 en particulier avec R23, R24 et R25 représentant -CH2-CH2-, m, et m2 vont de 15 à 500, et mieux encore de 15 à 45, X, et X2 représentent -(CH2)10-, et Y représente -CHZ-. Ces polyamides à motif silicone greffé de formule (VII) peuvent être copolymérisés avec des polyamides-silicones de formule (II) pour former des copolymères blocs, des copolymères alternés ou des copolymères aléatoires. Le pourcentage en poids de motifs silicone greffé (VII) dans le copolymère peut aller de 0,5 à 30 % en poids.
Selon l'invention, comme on l'a vu précédemment, les unités siloxanes peuvent être dans la chaîne principale ou squelette du polymère, mais elles peuvent également être présentes dans des chaînes greffées ou pendantes. Dans la chaîne principale, les unités siloxanes peuvent être sous forme de segments comme décrits ci-dessus. Dans les chaînes pendantes ou greffées, les unités siloxanes peuvent apparaître individuellement ou en segments.
Selon une variante de réalisation de l'invention, on peut utiliser un copolymère de polyamide silicone et de polyamide hydrocarboné, soit un copolymère comportant des motifs de formule (Ill) ou (IV) et des motifs polyamide hydrocarboné. Dans ce cas, les motifs polyamide-silicone peuvent être disposés aux extrémités du polyamide hydrocarboné. Selon un mode de réalisation préféré, le polyamide siliconé comprend des motifs de formule III, de préférence dans laquelle les groupes R4, R5, R6 et R7 représente des groupes méthyle, un de X et Y représente un groupe alkylène de 6 atomes de carbone et l'autre un groupe groupes alkylène de 11 atomes de carbones, n représentant le degré de polymérisation DP du polymère. A titre d'exemple de tels polyamides siliconés, on peut citer les composés commercialisés par la société Dow Corning sous le nom DC 2-8179 (DP 100) et DC 2-8178 (DP 15) dont le nom INCI est « Nylon-611/dimethicone copolymè- res ».
Avantageusement, la composition selon l'invention comprend au moins un polymère bloc polydiméthylsiloxane de formule générale (I) possédant un indice m de valeur environ 15.
De préférence encore, la composition selon l'invention comprend au moins un polymère comprenant au moins un motif de formule (III) où m va de 5 à 100, en particulier de 10 à 75 et plus particulièrement est de l'ordre de 15 ; de préférence encore R4, R5, R6 et R7 représentent indépendamment, un groupe alkyle en C, à C40, linéaire ou ramifié, de préférence un groupe CH3, C2H5, n-C3H7 ou isopropyle dans la formule (Ill).
A titre d'exemple de polymère siliconé utilisable, on peut citer un des polyamides siliconés, obtenus conformément aux exemples 1 à 3 du document US-A-5 981 680.
Selon une variante de réalisation de l'invention, le polymère est constitué par un homopolymère ou copolymère comportant des groupes uréthane ou urée. Ces polymères sont décrits en détail dans la demande WO 2003/106614 publiée le 24/12/2003 dont le 89 R24 Comme précédemment, un tel polymère peut comporter des motifs polyorganosiloxanes contenant deux ou plusieurs groupes uréthanes et/ou urées, soit dans le squelette du polymère, soit sur des chaînes latérales ou comme groupes pendants. Les polymères comportant au moins deux groupes uréthanes et/ou urées dans le squelette peu- vent être des polymères comprenant au moins un motif répondant à la formule suivante (VIII): R5 iùXùUùCùNHùYùNHùCII ùUùX 1 n m R' 0 O (VIII) dans laquelle les R4, R5, R6, R7, X, Y, m et n ont les significations données ci-dessus pour la formule (I), et U représente -O- ou ùNH-, afin que : U C NH Il O corresponde à un groupe uréthane ou urée. Dans cette formule (VIII), Y peut être un groupe alkylène, en C, à C4o, linéaire ou ramifié, substitué éventuellement par un groupe alkyle en C, à C15 ou un groupe aryle en C5à C,o. De préférence, on utilise un groupe -(CH2)6-. Y peut aussi représenter un groupe cycloaliphatique ou aromatique en C5 à C12 pouvant être substitué par un groupe alkyle en C, à C15 ou un groupe aryle en C5 à CIO, par exemple un radical choisi parmi le radical méthylène-4-4-biscyclohexyle, le radical dé- rivé de l'isophorone diisocyanate, les 2,4 et 2,6-tolylènes, le 1,5-naphtylène, le pphénylène et le 4,4'-biphénylène méthane. Généralement, on préfère que Y représente un radical alkylène en C, à C40, linéaire ou ramifié, ou un radical cycloalkylène en C4 à C12. Y peut aussi représenter une séquence polyuréthane ou polyurée correspondant à la condensation de plusieurs molécules de diisocyanate avec une ou plusieurs mo- fécules de coupleurs du type diol ou diamine. Dans ce cas, Y comprend plusieurs groupes uréthane ou urée dans la chaîne alkylène. Il peut répondre à la formule (IX) : B' NH C U B U NH B' O d (IX) dans laquelle B' est un groupe choisi parmi les groupes donnés ci-dessus pour Y, U est -O- ou -NH-, et B2 est choisi parmi : • les groupes alkylène en C, à C4o, linéaires ou ramifiés, • les groupes cycloalkylène en C5 à C12, éventuellement porteurs de substituants alkyle, par exemple un à trois groupes méthyle ou éthyle, ou alkylène, par exemple le radical du diol : cyclohexane diméthanol, • les groupes phénylène pouvant éventuellement être porteurs de substituants alkyles en C, à C3, et ùR4 Si-O R6 • les groupes de formule :
R8 T dans laquelle T est un radical trivalent hydrocarboné pouvant contenir un ou plusieurs hétéroatomes tels que l'oxygène, le soufre et l'azote et R8 est une chaîne polyorganosi-5 loxane ou une chaîne alkyle en C, à C50, linéaire ou ramifiée. T peut représenter par exemple : (CH2), CH CH2 10 (CH2), O CH CH2 avec w étant un nombre entier allant de 1 à 10 et R8 étant une chaîne polyorganosiloxane. Lorsque Y est un groupe alkylène, en C, en C40linéaire ou ramifié, on préfère les groupes -(CH2)2- et -(CH2)6-. 15 Dans la formule donnée ci-dessus pour Y, d peut être un entier allant de 0 à 5, de préférence de 0 à 3, de préférence encore égal à 1 ou 2. De préférence B2 est un groupe alkylène en C, à C40, linéaire ou ramifié, en particulier û (CH2)2- ou û(CH2)6-, ou le groupe : T R8 20 avec R8 étant une chaîne polyorganosiloxane. Comme précédemment, le polymère constituant le copolymère texturant peut être formé de motifs silicone uréthane et/ou silicone-urée de longueur et/ou de constitution différentes, et se présenter sous la forme de copolymères blocs, séquencés ou statistiques (aléa- 25 toires). Les polymères de formule (VIII) comportant des groupes urées ou uréthanes dans la chaîne du polymère siliconé peuvent être obtenus par réaction entre un silicone à groupes terminaux a,O)-NH2 ou ûOH, de formule : 91 ou / R4 H2N X Sii R6 30 NH2 dans laquelle m, R4, R5, R6, R7 et X sont tels que définis pour la formule (I), et un diisocyanate OCN-Y-NCO où Y a la signification donnée dans la formule (I) ; et éventuelle-ment un coupleur diol ou diamine de formule H2N-B2-NH2 ou HO-B2-OH, où B2 est tel que 35 défini dans la formule (IX).
Suivant les proportions stoechiométriques entre les deux réactifs, diisocyanate et cou-pleur, on pourra avoir pour Y la formule (IX) avec d égale 0 où d égale 1 à 5. Comme dans le cas des polyamides silicones de formule (IV), (Il) ou (III), on peut utiliser dans l'invention des polyuréthanes ou des polyurées silicones ayant des motifs de Ion- gueur et de structure différentes, en particulier des motifs de longueurs différentes par le nombre d'unités silicones. Dans ce cas, le copolymère peut répondre par exemple à la formule : O (Xii) dans laquelle R4, R5, R6, R7, X, Y et U sont tels que définis pour la formule (VIII) et m,, m2, n et p sont tels que définis pour la formule (V).
Selon l'invention, le silicone peut aussi comporter les groupes uréthane et/ou urée non plus dans le squelette mais en ramifications latérales. Dans ce cas, le polymère peut 15 comprendre au moins un motif de formule : R5 Si-X-U-C-NH-Y NH mR7 O -u-x R4 Si-O R6 C u-X n R5 Si-X-U-C-NH-Y-NH mzR7 O R4 Si-O R6 P mi R4 Si O R6 R5 Si O R26 (X) m2 CH 2
U O C NH R 27
dans laquelle R4, R6, R5, m, et m2 ont les significations données ci-dessus pour la formule (Il), et R5 pour la formule (I), - U représente O ou NH, 20 - R26 représente un groupe alkylène en C, à C40, comportant éventuelle-ment un ou plusieurs hétéroatomes choisis parmi O et N, ou un groupe phénylène, et - R27 est choisi parmi les groupes alkyle en C, à C50, linéaires, ramifiés ou cycliques, saturés ou insaturés, et les groupes phényle éventuellement substitués par un à trois groupes alkyles en C, à C3. 25 Les polymères comportant au moins un motif de formule (X) contiennent des unités siloxanes et des groupes urées ou uréthanes, et ils peuvent être utilisés comme copolymère texturant dans les compositions de l'invention. Les polymères siloxanes peuvent avoir un seul groupe urée ou uréthane par ramification ou peuvent avoir des ramifications à deux groupes urée ou uréthane, ou encore contenir 30 un mélange de ramifications à un groupe urée ou uréthane et de ramifications à deux groupes urée ou uréthane. Ils peuvent être obtenus à partir de polysiloxanes ramifiés, comportant un ou deux groupes amino par ramification, en faisant réagir ces polysiloxanes avec des monoisocyanates. A titre d'exemples de polymères de départ de ce type ayant des ramifications amino et 35 diamino, on peut citer les polymères répondant aux formules suivantes : CH3 CH3
CH3 [si OJ /[Si o ] CH3 Y x
CH3 CH2(CH2)2NH2 y=57;x=3 CH3 CH3
CH3 Si OJ /-[ Si O CH3 Y x CH3 R NH y=56 ; x = 4 (CH2)2NH2 Dans ces formules, le symbole "/" indique que les segments peuvent être de longueurs différentes et dans un ordre aléatoire, et R représente un groupe aliphatique linéaire ayant de préférence 1 à 6 atomes de carbone et mieux encore 1 à 3 atomes de carbone. De tels polymères à ramification peuvent être formés en faisant réagir un polymère siloxane, ayant au moins trois groupes amino par molécule de polymère, avec un composé ayant un seul groupe monofonctionnel (par exemple un acide, un isocyanate ou isothiocyanate) pour faire réagir ce groupe monofonctionnel avec l'un des groupes amino et for- mer les groupes capables d'établir des interactions hydrogène. Les groupes amino peu-vent être sur des chaînes latérales s'étendant de la chaîne principale du polymère siloxane de sorte que les groupes capables d'établir des interactions hydrogène sont formés sur ces chaînes latérales, ou bien les groupes amino peuvent être aux extrémités de la chaîne principale de sorte que les groupes capables d'interaction hydrogène seront des groupes terminaux du polymère. Comme mode opératoire pour former un polymère contenant des unités siloxanes et des groupes capables d'établir des interactions hydrogène, on peut citer la réaction d'une siloxane diamine et d'un diisocyanate dans un solvant siliconé de façon à fournir directe-ment un gel. La réaction peut être exécutée dans un fluide siliconé, le produit résultant étant dissous dans le fluide siliconé, à température élevée, la température du système étant ensuite diminuée pour former le gel. Les polymères préférés pour l'incorporation dans les compositions selon la présente invention, sont des copolymères siloxanes-urées qui sont linéaires et qui contiennent des groupes urées comme groupes capables d'établir des interactions hydrogène dans le squelette du polymère. A titre d'illustration d'un polysiloxane terminé par quatre groupes urées, on peut citer le polymère de formule : 10 (Ph = Phényle) CH,
Si O C3H6 HN(Ph) C(0) HN C,Ha N C(0)N(Ph)H N C2H4 NHC(0)N(Ph)H C(0)N(Ph)H
(XI) où Ph est un groupe phényle et n est un nombre de 0 à 300, en particulier de 0 à 100, par exemple de 50. Ce polymère est obtenu par réaction du polysiloxane à groupes amino sui-5 vant : CH3 CH3 H3C Si -[ Si O C3H6 CH3 C3H6 H2N CzH4 NH NIL C2H4 NH3 (n-50) avec l'isocyanate de phényle. On peut obtenir également des polyuréthanes ou polyurées silicones ramifiés en utilisant à la place du diisocyanate OCN-Y-NCO, un triisocyanate de formule : o OCNY N/ CN /Y NCO /c\N/\ O I O YNCO
On obtient ainsi une polyuréthane ou polyurée silicone ayant des ramifications comportant une chaîne organosiloxane avec des groupes capables d'établir des interactions hydrogène. Un tel polymère comprend par exemple un motif répondant à la formule : 94 HC 3 ùR 14 ù Ris coùU---X' SiO SiùX i UùCOùNHùTùNH R 16 R17 m1 ùR'8 ù R 19 NHùYùNHùCOùU X2 SiO SiùX~ UùCO NH R2o m2 R 21 P (XIII) dans laquelle X1 et X2 qui sont identiques ou différents, ont la signification donnée pour X dans la formule (I), n est tel que défini dans la formule (I), Y et T sont tels que définis dans la formule (I), R14 à R21 sont des groupes choisis dans le même groupe que les R4 à R7, m1 et m2 sont des nombres situés dans la gamme allant de 1 à 1 000, et p est un nombre entier allant de 2 à 500. Comme dans le cas des polyamides, on peut utiliser dans l'invention des copolymères de polyuréthane -ou de polyurée- silicone et de polyuréthane ou polyurée hydrocarboné en réalisant la réaction de synthèse du polymère en présence d'une séquence a, io-difonctionnelle de nature non silicone, par exemple un polyester, un polyéther ou une polyoléfine. Comme on l'a vu précédemment, les copolymères de l'invention peuvent avoir des motifs siloxanes dans la chaîne principale du polymère et des groupes capables d'établir des interactions hydrogène, soit dans la chaîne principale du polymère ou aux extrémités de celle-ci, soit sur des chaînes latérales ou ramifications de la chaîne principale. Ceci peut correspondre aux cinq dispositions suivantes : 1 (1) 1 II (2) (3) (4) (5) dans lesquelles, la ligne continue est la chaîne principale du polymère siloxane et les car-rés représentent les groupes capables d'établir des interactions hydrogène. 5 Dans le cas (1), les groupes capables d'établir des interactions hydrogène sont disposés aux extrémités de la chaîne principale. Dans le cas (2), deux groupes capables d'établir des interactions hydrogène, sont disposés à chacune des extrémités de la chaîne principale. Dans le cas (3), les groupes capables d'établir des interactions hydrogène sont disposés à l'intérieur de la chaîne principale dans des motifs répétitifs. Dans les cas (4) et (5), il s'agit de copolymères dans lesquels les groupes capables d'établir des interactions hydrogène sont disposés sur des ramifications de la chaîne principale d'une première série de motifs qui sont copolymérisés avec des motifs ne comportant pas de groupes capables d'établir des interactions hydrogène.
Les polymères et copolymères utilisés dans la composition de l'invention ont avantageusement une température de transition de l'état solide à l'état liquide allant de 45 °C à 190 °C. De préférence, ils présentent une température de transition de l'état solide à l'état liquide allant de 70 à 130 °C et mieux de 80 °C à 105 °C. Le polyamide siliconé peut être présent dans la première composition en une teneur totale allant de 0,5 % à 70 % en poids par rapport au poids total de la composition, de préfé-20 rence allant de 2 % à 50 % en poids, et mieux allant de 5 % à 45 % en poids, de préférence allant de 5 à 40% en poids du poids total de ladite composition.
L'association d'un composé supramoléculaire tel que décrit précédemment avec un poly- amide siliconé permet notamment, en particulier dans les compositions de maquillage ou de soin des matières kératiniques, et particulirement de la peau ou des lèvres, d'obtenir mélange homogène et un dépôt sur les matières kératiniques brillant et non collant.
POLYAMIDE Selon un second mode de réalisation de l'invention, l'agent structurant polymérique comprenant des groupes capables d'établir des liaisons hydrogène est un polymère masse moléculaire moyenne en poids inférieure à 100 000, comportant a) un squelette polymérique ayant des motifs de répétition hydrocarbonés pourvus d'au moins un hétéroatome, et éventuellement b) au moins une chaîne grasse pendante et/ou au moins une chaîne grasse terminale éventuellement fonctionnalisées, ayant de 6 à 120 atomes de carbone et étant liées à ces motifs hydrocarbonés, telles que décrites dans les demandes WO-A- 02/056847, WO-A-02/47619• •; en particulier les résines de polyamides (notamment comprenant des groupes alkyles ayant de 12 à 22 atomes de carbone) telles que celles décrites dans US-A-5783657•
Le polymère structurant de la composition de l'invention est un solide non déformable à température ambiante (25°C). Il est capable de structurer la composition sans l'opacifier. 25 Par "chaînes fonctionnalisées" au sens de l'invention, on entend une chaîne alkyle corn-portant un ou plusieurs groupes fonctionnels ou réactifs notamment choisis parmi les groupes hydroxyle, éther, oxyalkylène ou polyoxyalkylène, halogène, dont les groupes fluorés ou perfluorés, ester, siloxane, polysiloxane. En outre, les atomes d'hydrogène 30 d'une ou plusieurs chaînes grasses peuvent être substitués au moins partiellement par des atomes de fluor.
Par « polymère », on entend au sens de l'invention un composé ayant au moins 2 motifs de répétition. 35 Par "motifs de répétition hydrocarbonés", on entend au sens de l'invention un motif comportant de 2 à 80 atomes de carbone, et de préférence de 2 à 60 atomes de carbone, portant des atomes d'hydrogène et éventuellement des atomes d'oxygène, qui peut être linéaire, ramifié ou cyclique, saturé ou insaturé. Ces motifs comprennent, en outre, chacun 40 de un à plusieurs hétéroatomes avantageusement non pendants et se trouvant dans le squelette polymérique. Ces hétéroatomes sont choisis parmi les atomes d'azote, de soufre, de phosphore et leurs associations, associés éventuellement à un ou plusieurs atomes d'oxygène. De préférence, les motifs comportent au moins un atome d'azote en particulier non pendant. Ces motifs comportent, en outre, avantageusement, un groupe car- 45 bonyle. Les motifs à hétéroatome sont en particulier des motifs amide formant un squelette du type polyamide, des motifs carbamate et/ou urée formant un squelette polyuréthane, polyurée et/ou polyurée-uréthane. De préférence, ces motifs sont des motifs amide. Avantageusement, les chaînes pendantes sont liées directement à l'un au moins des hétéroa- 50 tomes du squelette polymérique. Ce polymère peut comprendre entre les motifs hydrocarbonés des motifs siliconés ou des motifs oxyalkylénés. En outre, ce polymère de la composition de l'invention comprend avantageusement de 40 à 98 % de chaînes grasses par rapport au nombre total des motifs à hétéroatome et des 55 chaînes grasses et mieux de 50 à 95 %. La nature et la proportion des motifs à hétéroa- tome est fonction de la nature de la phase grasse et est en particulier similaire à la nature polaire de la phase grasse. Ainsi, plus les motifs à hétéroatome sont polaires et en pro-portion élevée dans ce polymère, ce qui correspond à la présence de plusieurs hétéroatomes, plus ce polymère a de l'affinité avec les huiles polaires. En revanche, plus les mo- tifs à hétéroatome sont peu polaires voire apolaires ou en proportion faible, plus ce polymère a de l'affinité avec les huiles apolaires.
Ce polymère est avantageusement un polyamide, de préférence un polymère de polyamide de masse moléculaire moyenne en poids inférieure à 100 000, comportant a) un squelette polymérique, ayant des motifs répétitifs amide, et b) éventuellement au moins une chaîne grasse pendante et/ou au moins une chaîne terminale éventuellement fonctionnalisées, ayant de 8 à 120 atomes de carbone et étant liées à ces motifs amide. De préférence, les chaînes grasses pendantes sont liées à l'un au moins des atomes d'azote des motifs amide de ce polymère.
En particulier, les chaînes grasses de ce polyamide représentent de 40 à 98 % du nombre total des motifs amide et des chaînes grasses, et mieux de 50 à 95 %. Avantageusement, ce polymère, et en particulier ce polyamide, de la composition selon l'invention présente une masse moléculaire moyenne en poids inférieure à 100 000 (notamment allant de 1000 à 100 000), en particulier inférieure à 50 000 (notamment allant de 1000 à 50 000), et plus particulièrement allant de 1000 à 30 000, de préférence de 2000 à 20 000, et mieux de 2000 à 10 000. Ce polymère, et en particulier ce polyamide, est non soluble dans l'eau, notamment à 25 °C. En particulier, il ne comporte pas de groupe ionique. En tant que polymères préférés utilisables dans l'invention, on peut citer les polyamides ramifiés par des chaînes grasses pendantes et/ou des chaînes grasses terminales ayant de 6 à 120 atomes de carbone et mieux de 8 à 120 et notamment de 12 à 68 atomes de carbone, chaque chaîne grasse terminale étant liée au squelette polyamide par au moins un groupe de liaison en particulier ester. De préférence, ces polymères comportent une chaîne grasse à chaque extrémité du squelette polymérique et en particulier du squelette polyamide. Comme autre groupe de liaison on peut citer les groupes éther, amine, urée, uréthane, thioester, thiurée, thiouréthane. Ces polymères sont de préférence des polymères résultant d'une polycondensation entre un diacide carboxylique ayant au moins 32 atomes de carbone (ayant notamment de 32 à 44 atomes de carbone) avec une amine choisie parmi les diamines ayant au moins 2 atomes de carbone (notamment de 2 à 36 atomes de carbone) et les triamines ayant au moins 2 atomes de carbone (notamment de 2 à 36 atomes de carbone). Le diacide est de préférence un dimère issu d'acide gras à insaturation éthylénique ayant au moins 16 atomes de carbone, de préférence de 16 à 24 atomes de carbone, comme l'acide oléique, linoléique ou linolénique. La diamine est de préférence l'éthylène diamine, l'hexylène dia- mine, l'hexaméthylène diamine. La triamine est par exemple l'éthylène triamine. Pour les polymères comportant un ou 2 groupements d'acide carboxylique terminaux, il est avantageux de les estérifier par un monoalcool ayant au moins 4 atomes de carbone, de préférence de 10 à 36 atomes de carbone et mieux de 12 à 24 et encore mieux de 16 à 24, par exemple 18 atomes de carbone.
Ces polymères sont plus spécialement ceux décrits dans le document US-A-5783657 de la société Union Camp. Chacun de ces polymères satisfait notamment à la formule (I) sui-vante : C ùR2- C ùOùRi 0 0 n R4 R4 ÎùR2- Î NùR3-N-0 0 R1-O (I) dans laquelle n désigne un nombre entier de motifs amide tel que le nombre de groupes ester représente de 10 % à 50 % du nombre total des groupes ester et amide ; R, est à chaque occurrence indépendamment un groupe alkyle ou alcényle ayant au moins 4 atomes de carbone et notamment de 4 à 24 atomes de carbone ; R2 représente à chaque occurrence indépendamment un groupe hydrocarboné en C4 à C42 à condition que 50 % des groupes R2 représentent un groupe hydrocarboné en Cao à C42 ; R3 représente à chaque occurrence indépendamment un groupe organique pourvu d'au moins 2 atomes de carbone, d'atomes d'hydrogène et optionnellement d'un ou plusieurs atomes d'oxygène ou d'azote ; et R4 représente à chaque occurrence indépendamment un atome d'hydrogène, un groupe alkyle en C, à C,o ou une liaison directe à R3 ou à un autre R4 de sorte que l'atome d'azote auquel sont liés à la fois R3 et R4 fasse partie d'une structure hétérocyclique définie par R4-N-R3, avec au moins 50 % des R4 représentant un atome d'hydrogène. Dans le cas particulier de la formule (I), les chaînes grasses terminales éventuellement fonctionnalisées au sens de l'invention sont des chaînes terminales liées au dernier hétéroatome, ici l'azote, du squelette polyamide. En particulier, les groupes ester de la formule (I), qui font partie des chaînes grasses terminales et/ou pendantes au sens de l'invention, représentent de 15 à 40 % du nombre total des groupes ester et amide et mieux de 20 à 35 %. De plus, n représente avanta- geusement un nombre entier allant de 1 à 5 et mieux supérieur à 2. De préférence, R, est un groupe alkyle en C12 à C22 et de préférence en C16 à C22. Avantageusement, R2 peut être un groupe hydrocarboné (alkylène) en C,o à C42. De préférence, 50 % au moins et mieux au moins 75 % des R2 sont des groupes ayant de 30 à 42 atomes de carbone. Les autres R2 sont des groupes hydrogénés en C4 à C19 et même en C4 à C12. De préférence, R3 représente un groupe hydrocarboné en C2 à C36 ou un groupe polyoxyalkyléné et R4 représente un atome d'hydrogène. De préférence, R3 représente un groupe hydrocarboné en C2 à C12. Les groupes hydrocarbonés peuvent être des groupes linéaires, cycliques ou ramifiés, saturés ou insaturés. Par ailleurs, les groupes alkyle et alkylène peuvent être des groupes linéaires ou ramifiés, saturés ou non. En général, les polymères de formule (I) se présentent sous forme de mélanges de polymères, ces mélanges pouvant en outre contenir un produit de synthèse correspondant à un composé de formule (I) où n vaut 0, c'est-à-dire un diester.
A titre d'exemple de polymères utilisables dans les compositions selon l'invention, on peut citer les produits commerciaux vendus par la société Arizona Chemical sous les noms Uniclear 80 et Uniclear 100, dont le nom INCI est « éthylènediamine/stéaryl dimère dilinoléate copolymère », ou encore Uniclear 80 V, Uniclear 100 V et Uniclear 100 VG dont le nom INCI est « éthylène diamine/stéaryl dimère tallate copolymère ». Ils sont vendus res- pectivement sous forme de gel à 80 % (en matière active) dans une huile minérale et à 100 % (en matière active). Ils ont un point de ramollissement de 88 à 94 °C. Ces produits commerciaux sont un mélange de copolymères d'un diacide en C36 condensé sur l'éthylène diamine, de masse moléculaire moyenne en poids d'environ 6000. Les groupes ester terminaux résultent de l'estérification des terminaisons d'acide restantes par l'alcool céty- tique, stéarylique ou leurs mélanges (appelés aussi alcool cétylstéarylique).
Comme polymère utilisable dans les compositions selon l'invention, on peut encore citer les résines polyamides résultant de la condensation d'un acide di-carboxylique aliphatique et d'une diamine (incluant les composés ayant plus de 2 groupes carbonyle et 2 groupes amine), les groupes carbonyle et amine de motifs unitaires adjacents étant condensés par une liaison amide. Ces résines polyamides sont notamment celles commercialisées sous la marque Versamid® par les sociétés General Mills, Inc. et Henkel Corp. (Versamid 930, 744 ou 1655) ou par la société Olin Mathieson Chemical Corp., sous la marque Onamid® notamment Onamid S ou C. Ces résines ont une masse moléculaire moyenne en poids allant de 6000 à 9000. Pour plus d'information sur ces polyamides, on peut se référer aux 2954130 100 documents US-A-3645705 et US-A-3148125. Plus spécialement, on utilise les Versamid® 930 ou 744. On peut aussi utiliser les polyamides vendus par la société Arizona Chemical sous les références Uni-Rez (2658, 2931, 2970, 2621, 2613, 2624, 2665, 1554, 2623, 2662) et le 5 produit vendu sous la référence Macromelt 6212 par la société Henkel. Pour plus d'information sur ces polyamides, on peut se référer au document US-A-5500209. Il est aussi possible d'utiliser des résines de polyamides issues de légumes comme celles décrites dans les brevets US-A-5783657 et US-A-5998570. 10 Le polymère présent dans la composition selon l'invention a avantageusement une température de ramollissement supérieure à 65°C et pouvant aller jusqu'à 190 °C. De préférence, il présente une température de ramollissement allant de 70 à 130 °C et mieux de 80 à 105 °C. Le premier polymère est en particulier un polymère non cireux. Le(s) polymère(s) utilisable(s) selon l'invention présente(nt) du fait de leur(s) chaîne(s) 15 grasse(s) une bonne solubilité dans les huiles et donc conduise(nt) à des compositions macroscopiquement homogènes même avec un taux élevé (au moins 25%) de polymère.
Ce polymère peut être présent dans la composition selon l'invention en une teneur allant de 0,5 % à 70 % en poids par rapport au poids total de la composition, de préférence al- 20 tant de 2 % à 50 % en poids, et mieux allant de 5 % à 45 % en poids, de préférence allant de 5 à 40% en poids du poids total de ladite composition.
L'association d'un composé supramoléculaire tel que décrit précédemment avec un polyamide permet notamment, en particulier dans les compositions de maquillage ou de soin 25 des matières kératiniques, et particulirement de la peau ou des lèvres, d'obtenir mélange homogène et un dépôt sur les matières kératiniques brillant.
Orqanoqélateurs :
30 Selon un second mode de réalisation de l'invention, l'agent épaississant comprenant des groupes capables d'établir des liaisons hydrogène est non polymérique, associé audit composé A décrit précédemment
Selon ce mode de réalisation, l'agent épaississant non polymérique est de préférence un 35 organogélateur.
Les organogélateurs sont des agents épaississant de milieux huileux, et en particulier des gélifiants organiques moléculaires non polymériques. Les organogélateurs sont des composés dont les molécules sont capables d'établir entre elles des interactions physiques, 40 en particulier des liaisons H dans le cadre de la présente invention, conduisant à une auto-agrégation des molécules avec formation d'un réseau supra-moléculaire 3D qui est responsable de la gélification de la (des) huile(s) (appelée également phase grasse liquide). Le réseau supra-moléculaire peut résulter de la formation d'un réseau de fibrilles (dues 45 aux empilements ou agrégations de molécules d'organogélateur), immobilisant les molécules de la phase grasse liquide. L'aptitude à former ce réseau de fibrilles, et donc à gélifier, dépend de la nature (ou classe chimique) de l'organogélateur, de la nature des substituants portés par ses molécules pour une classe chimique donnée et de la nature de la phase grasse liquide. 50 Les interactions physiques sont diverses mais excluent la co-cristallisation. Ces interactions physiques sont en particulier des interactions du type interactions hydrogènes auto-complémentaires da,s le cadre de la présente invention. D'autre type d'interactions peu-vent également intervenir telles que des interactions tt entre cycles insaturés, des interactions dipolaires, des liaisons de coordination avec des dérivés organométalliques et leurs 55 associations. En général, chaque molécule d'un organogélateur peut établir plusieurs ty- 2954130 101 pes d'interactions physiques avec une molécule voisine. Selon l'invention, les molécules des organogélateurs selon l'invention comportent au moins un groupement capable d'établir des liaisons hydrogènes et mieux au moins deux groupements capables d'établir des liaisons hydrogène, au moins un cycle aromatique et 5 mieux aux moins deux cycles aromatiques, au moins une ou plusieurs liaisons à insaturation éthylénique et/ou au moins un ou plusieurs carbones asymétriques. De préférence, les groupements capables de faire des liaisons hydrogènes sont choisis parmi les groupements hydroxyle, carbonyle, amine, acide carboxylique, amide, urée, benzyle et leurs associations. 10 Le ou les organogélateurs selon l'invention sont solubles dans la phase grasse liquide après chauffage jusqu'à obtention d'une phase liquide homogène transparente. Ils peu-vent être solides ou liquides à température ambiante et pression atmosphérique. Le ou les organogélateurs moléculaires utilisables dans la composition selon l'invention 15 sont notamment ceux décrits dans le document "Specialist Surfactants", édité par D. Robb de 1997, p.209-263, chapitre 8 de P. Terech, les demandes européennes EP-A-1068854 et EP-A-1086945 ou encore dans la demande WO-A-02/47031.
On peut notamment citer parmi ces organogélateurs, les amides d'acides carboxyliques 20 en particulier les acides tri-carboxyliques comme les cyclohexanetricarboxamides (voir la demande de brevet européen EP-A-1068854), les diamides ayant des chaînes hydrocarbonées contenant chacune de 1 à 22 atomes de carbone, par exemple de 6 à 18 atomes de carbone, lesdites chaînes étant non substituées ou substituées avec au moins un substituant choisi parmi les groupes ester, urée et fluoro (voir la demande EP-A-1086945) 25 et notamment les diamides résultant de la réaction du diaminocyclohexane, en particulier du diaminocyclohexane sous forme trans, et d'un chlorure d'acide comme par exemple le N,N'-bis (dodécanoyl)-1,2-diaminocyclohexane, les amides de N-acylamino acides comme les diamides résultant de l'action d'un N-acylamino acide avec des amines comportant de 1 à 22 atomes de carbone, comme par exemple ceux décrits dans le document 30 WO-93/23008 et notamment les amides de l'acide N-acylglutamique où le groupe acyle représente une chaîne alkyle en C8 à C22 tels que le dibutylamide de l'acide N-Lauroyl-L-glutamique, fabriqué ou commercialisé par la société Ajinomoto sous la dénomination GP-1 et leurs mélanges.
35 En particulier, il peut être intéressant d'associer les résines selon l'invention à des organogélateurs particuliers, et notamment des composés de type bis-urée.
De façon avantageuse, l'agent épaississant utilisé dans la composition selon l'invention est un organogélateurs de type bis-urée. En particulier, l'organogélateur de type bis urée peut être choisi parmi : - Les dérivés de bis-urées de formule générale (I) : O O R,NN A NN,R
1 1 1 1 H H H H (I)
45 dans laquelle : - A est un groupement de formule : 40 avec R' étant un radical alkyle C, à C4 linéaire ou ramifié et les * symbolisant les points de rattachement du groupement A à chacun des deux atomes d'azote du reste du composé de formule générale (I), et - R est un radical alkyle en C6 à C15, mono-ramifié, non cyclique, saturé ou insaturé et dont la chaîne hydrocarbonée est éventuellement interrompue par 1 à 3 hétéroatomes choisis parmi O, S et N, ou l'un de ses sels ou isomères notamment décrits dans la demande de brevet FR-A-2892303 - Les dérivés de bis-urées siliconés de formule générale (I) ou l'un de ses sels et/ou isomères : O O R~N~N - A I NN,R' (I) I I I H H H H dans laquelle : - A est un groupement de formule (Il) : avec R1 étant un radical alkyle C, à C4 linéaire ou ramifié, et les * symbolisant les points 20 de rattachement du groupement A à chacun des deux atomes d'azote du reste du composé de formule générale (I), et
- R et R', identiques ou différents, sont choisis parmi : - i) les radicaux de formule (III) : 25 Rb
ùLùS iùORa (III) R~ dans laquelle : - L est une liaison simple ou un radical divalent carboné, notamment hydrocarboné (alkylène), linéaire, ramifié et/ou cyclique, saturé ou insaturé, comprenant 1 à 18 atomes de 30 carbone, et pouvant comprendre 1 à 4 hétéroatomes choisis parmi N, O et S; - Ra est : a) un radical carboné, notamment hydrocarboné (alkyle), linéaire, ramifié et/ou cyclique, saturé ou insaturé, comprenant 1 à 18 atomes de carbone, et pouvant comprendre 1 à 8 hétéroatomes choisis parmi N, O, Si et S; ou bien 35 b) un radical siliconé de formule : 2954130 103 R2 R4 Si O*SiùR6
R3 R5 avec n étant compris entre 0 et 100, notamment entre 1 et 80, voire 2 à 20; et R2 à R6 étant, indépendamment les uns des autres, des radicaux carbonés, notamment hydrocarbonés (alkyles) linéaires ou ramifiés, ayant 1 à 12, notamment 1 à 6 ato- 5 mes de carbone, et pouvant comprendre 1 à 4 hétéroatomes, notamment O; - Rb et Rc sont, indépendamment l'un de l'autre, choisis parmi: a) les radicaux carbonés, notamment hydrocarbonés (alkyles), linéaires, ramifiés et/ou cycliques, saturés ou insaturés, comprenant 1 à 18 atomes de carbone, et pouvant comprendre 1 à 4 hétéroatomes choisis parmi N, O, Si et S; 10 b) les radicaux de formule : R 1 '2 R'4
ùO [ i i O*SiùR'6
R'3 R'5 avec n étant compris entre 0 et 100, notamment entre 1 et 80, voire 2 à 20; et R'2 à R'6 étant, indépendamment les uns des autres, des radicaux carbonés, notam- 15 ment hydrocarbonés (alkyles) linéaires ou ramifiés, ayant 1 à 12, notamment 1 à 6 atomes de carbone, et pouvant comprendre 1 à 4 hétéroatomes, notamment O. et - ii) les radicaux alkyle en C, à Cao, linéaire, ramifié et/ou cyclique, saturé ou insaturé, et comprenant éventuellement 1 à 3 hétéroatomes choisis parmi O, S, F et N; étant entendu que l'un au moins des radicaux R et/ou R' est de formule (III) tels que ceux décrits dans la demande de brevet FR-A-2900819.
- Les dérivés de bis-urées décrits dans la demande de brevet FR-A-28994476.
De façon préférée, l'organogélateur de type bis-urée est siliconé.
Ainsi, les compositions selon l'invention peuvent comprendre de 0,01 à 20% en poids, notamment de 0,05 à 15% en poids, voire de 0,1 à 10% en poids, mieux de 1 à 8% en poids, et encore mieux de 2 à 5% en poids, d'organogélateurs, tels que les composé(s) bis-urée par exemple, par rapport au poids total de la composition.
Il est clair que cette quantité efficace est susceptible de varier significativement selon, entre autre, la nature du composé dérivé bis-urée, le fait qu'il soit utilisé à l'état pur ou en mélange avec d'autres dérivés bis-urée, et la nature de la phase grasse liquide.
Le mélange de bis-urées est avantageusement soluble à une température inférieure ou égale à 50 °C, voire inférieure ou égale à 30 °C, et notamment à température ambiante, dans la phase grasse liquide à texturer.
Selon un mode de réalisation préféré, la composition selon l'invention comprend en outre au moins additif choisi parmi les huiles volatiles, les huiles non volatiles, les matières colorantes, les corps gras pâteux, les cires, les charges, et leur mélange.
45 MATIERES COLORANTES La composition selon l'invention comprend de préférence au moins une matière 40 2954130 104 colorante, de préférence en une teneur d'au moins 0,1 % en poids par rapport au poids total de la composition. La matière colorante peut être choisie parmi les matières colorantes pulvérulentes (notamment les pigments et les nacres), les matières colorantes hydrosolubles ou liposolubles. 5 Par pigments au sens de l'invention, on entend des particules blanches ou colorées, minérales ou organiques, insolubles dans une solution aqueuse, destinées à colorer et/ou opacifier le film de maquillage résultant. Les pigments incluent également les nacres ou pigments nacrés. Les pigments peuvent être présents à raison de 0,1 à 15 % en poids, notamment 10 de 1 à 10 % en poids, et en particulier de 2 à 8 % en poids, par rapport au poids total de la composition cosmétique. Comme pigments minéraux utilisables dans l'invention, on peut citer les oxydes de titane, de zirconium ou de cérium, ainsi que les oxydes de zinc, de fer ou de chrome, le bleu ferrique, le violet de manganèse, le bleu outremer et l'hydrate de chrome. 15 Selon un mode de réalisation, les oxydes de titane et les oxydes de fer sont plus particulièrement considérés dans l'invention. Selon un mode de réalisation, un pigment convenant à l'invention peut en particulier être à base de dioxyde de titane et d'oxyde de fer. Il peut également s'agir de pigment ayant une structure qui peut être par exemple 20 de type séricite/oxyde de fer brun/dioxyde de titane/silice. Un tel pigment est commercialisé par exemple sous la référence COVERLEAF NS ou JS par la société CHEMICALS AND CATALYSTS et présente un rapport de contraste voisin de 30. Un pigment convenant à l'invention peut comporter une structure qui peut être, par exemple, de type microsphères de silice contenant de l'oxyde de fer. Un exemple de pig- 25 ment présentant cette structure est celui commercialisé par la société MIYOSHI sous la référence PC BALL PC-LL-100 P, ce pigment étant constitué de microsphères de silice contenant de l'oxyde de fer jaune. Parmi les pigments organiques utilisables dans l'invention, on peut citer le noir de carbone, les pigments de type D & C, les laques à base de carmin de cochenille, de ba- 30 ryum, strontium, calcium, aluminium ou encore les dicéto pyrrolopyrroles (DPP) décrits dans les documents EP-A-542669, EP-A-787730, EP-A-787731 et WO-A- 96/08537. Par « nacres » ou « pigments nacrés », il faut comprendre des particules colorées de toute forme, irisées ou non, notamment, produites par certains mollusques dans leur coquille ou bien synthétisées et qui présentent un effet de couleur par interférence optique. 35 Les nacres peuvent être choisies parmi les pigments nacrés, tels que le mica titane recouvert avec un oxyde de fer, le mica titane recouvert avec de l'oxychlorure de bismuth, le mica titane recouvert avec de l'oxyde de chrome, le mica titane recouvert avec un colorant organique, ainsi que les pigments nacrés à base d'oxychlorure de bismuth. Il peut également s'agir de particules de mica à la surface desquelles sont superposées au moins deux couches successives d'oxydes métalliques et/ou de matières colorantes or- ganiques. On peut également citer, à titre d'exemple de nacres, le mica naturel recouvert d'oxyde de titane, d'oxyde de fer, de pigment naturel ou d'oxychlorure de bismuth. Parmi les nacres disponibles sur le marché, on peut citer les nacres TIMICA, FLAMENCO et DUOCHROME (sur base de mica) commercialisées par la société ENGELHARD, les nacres TIMIRON commercialisées par la société MERCK, les nacres sur base de mica PRESTIGE commercialisées par la société ECKART et les nacres sur base de mica synthétique SUNSHINE commercialisées par la société SUN CHEMICAL. Les nacres peuvent plus particulièrement posséder une couleur ou un reflet jaune, rose, rouge, bronze, orangé, brun, or et/ou cuivré. A titre illustratif des nacres pouvant être mises en oeuvre dans le cadre de la pré-sente invention, on peut, notamment, citer les nacres de couleur or, notamment, commercialisées par la société ENGELHARD, sous le nom de Brillant gold 212G (Timica), Gold 222C (Cloisonne), Sparkle gold (Timica), Gold 4504 (Chromalite) et Monarch gold 233X (Cloisonne) ; les nacres bronzes, notamment, commercialisées par la société MERCK 2954130 105 sous la dénomination Bronze fine (17384) (Colorona) et Bronze (17353) (Colorona) et par la société ENGELHARD sous la dénomination Super bronze (Cloisonne) ; les nacres oranges, notamment, commercialisées par la société ENGELHARD sous la dénomination Orange 363C (Cloisonne) et Orange MCR 101 (Cosmica) et par la société MERCK sous 5 la dénomination Passion orange (Colorona) et Matte orange (17449) (Microna) ; les nacres de teinte brune, notamment, commercialisées par la société ENGELHARD sous la dénomination Nu-antique copper 340XB (Cloisonne) et Brown CL4509 (Chromalite) ; les nacres à reflet cuivre, notamment, commercialisées par la société ENGELHARD sous la dénomination Copper 340A (Timica) ; les nacres à reflet rouge, notamment, commerciali- 10 sées par la société MERCK sous la dénomination Sienna fine (17386) (Colorona) ; les nacres à reflet jaune, notamment, commercialisées par la société ENGELHARD sous la dénomination Yellow (4502) (Chromalite) ; les nacres de teinte rouge à reflet or, notamment, commercialisées par la société ENGELHARD sous la dénomination Sunstone G012 (Gemtone) ; les nacres roses, notamment, commercialisées par la société ENGELHARD 15 sous la dénomination Tan opale G005 (Gemtone) ; les nacres noires à reflet or, notamment, commercialisées par la société ENGELHARD sous la dénomination Nu antique bronze 240 AB (Timica), les nacres bleues, notamment, commercialisées par la société MERCK sous la dénomination Matte blue (17433) (Microna), les nacres blanches à reflet argenté, notamment, commercialisées par la société MERCK sous la dénomination Xiro- 20 na Silver et les nacres orangées rosées vert doré, notamment, commercialisées par la société MERCK sous la dénomination Indian summer (Xirona) et leurs mélanges. Selon une variante de réalisation, une composition de l'invention peut comprendre à titre de pigments, un pigment choisi parmi le dioxyde de titane, les pigments à base de dioxyde de titane et d'oxyde de fer, ou les pigments à base de dioxyde de titane, comme 25 par exemple la séricite/oxyde fer brun/dioxyde de titane/silice, le mica naturel recouvert d'oxyde de titane, et leurs mélanges.
Une composition selon l'invention peut comprendre en outre au moins une matière colorante distincte des pigments tels que définis ci-dessus. 30 Une telle matière colorante peut être choisie parmi des matières colorantes organiques ou inorganiques, liposolubles ou hydrosolubles, des matériaux à effet optique spécifique et leurs mélanges. Une composition cosmétique selon l'invention peut ainsi comprendre également des colorants hydrosolubles ou liposolubles. Les colorants liposolubles sont, par exemple, 35 le rouge Soudan, le DC Red 17, le DC Green 6, le [3-carotène, l'huile de soja, le brun Soudan, le DC Yellow 11, le DC Violet 2, le DC orange 5 et le jaune quinoléine. Les colorants hydrosolubles sont, par exemple, le jus de betterave et le bleu de méthylène. Une composition cosmétique selon l'invention peut également contenir au moins un matériau à effet optique spécifique. 40 Cet effet est différent d'un simple effet de teinte conventionnel, c'est-à-dire unifié et stabilisé tel que produit par les matières colorantes classiques, comme, par exemple, les pigments monochromatiques. Au sens de l'invention, « stabilisé » signifie dénué d'effet de variabilité de la couleur avec l'angle d'observation ou encore en réponse à un change-ment de température. 45 Par exemple, ce matériau peut être choisi parmi les particules à reflet métallique, les agents de coloration goniochromatiques, les pigments diffractants, les agents thermochromes, les agents azurants optiques, ainsi que les fibres, notamment, interférentielles. Les particules à reflet métallique utilisables dans l'invention sont en particulier choisies parmi : 50 - les particules d'au moins un métal et/ou d'au moins un dérivé métallique, - les particules comportant un substrat organique ou minéral, monomatière ou multimatériaux, recouvert au moins partiellement par au moins une couche à reflet métallique comprenant au moins un métal et/ou au moins un dérivé métallique, et - les mélanges desdites particules. 55 Parmi les métaux pouvant être présents dans lesdites particules, on peut citer par exem- 2954130 106 ple Ag, Au, Cu, Al, Ni, Sn, Mg, Cr, Mo, Ti, Zr, Pt, Va, Rb, W, Zn, Ge, Te, Se et leurs mélanges ou alliages. Ag, Au, Cu, Al, Zn, Ni, Mo, Cr, et leurs mélanges ou alliages (par exemple, les bronzes et les laitons) sont des métaux préférés. Par « dérivés métalliques », on désigne des composés dérivés de métaux, notamment, 5 des oxydes, des fluorures, des chlorures et des sulfures A titre illustratif de ces particules, on peut citer des particules d'aluminium, telles que celles commercialisées sous les dénominations STARBRITE 1200 EAC® par la société SIBERLINE et METALURE® par la société ECKART. On peut également citer les poudres métalliques de cuivre ou des mélanges d'alliages, 10 telles les références 2844 commercialisées par la société RADIUM BRONZE, les pigments métalliques, comme l'aluminium ou le bronze, tels que ceux commercialisés sous les dénominations ROTOSAFE 700 de la société ECKART, les particules d'aluminium en-robé de silice commercialisées sous la dénomination VISIONAIRE BRIGHT SILVER de la société ECKART et les particules d'alliage métallique, comme des poudres de bronze (al- 15 liage cuivre et zinc) enrobé de silice commercialisées sous la dénomination de Visionaire Bright Natural Gold de la société Eckart. Il peut encore s'agir de particules comportant un substrat de verre comme celles commercialisées par la société NIPPON SHEET GLASS sous les dénominations MICROGLASS METASHINE. 20 L'agent de coloration goniochromatique peut être choisi, par exemple, parmi les structures multicouches interférentielles et les agents de coloration à cristaux liquides. Des exemples de structures multicouche interférentielles symétriques utilisables dans des compositions réalisées conformément à l'invention sont, par exemple, les structures sui-vantes : AI/SiO2/AI/SiO2/AI, des pigments ayant cette structure étant commercialisés par la 25 société DUPONT DE NEMOURS ; Cr/MgF2/AI/MgF2/Cr, des pigments ayant cette structure étant commercialisés sous la dénomination CHROMAFLAIR par la société FLEX ; MoS2/SiO2/AI/SiO2/MoS2 ; Fe2O3/SiO2/AI/SiO2/Fe2O3, et Fe2O3/SiO2/Fe2O3/SiO2/Fe2O3, des pigments ayant ces structures étant commercialisés sous la dénomination SICOPEARL par la société BASF ; MoS2/SiO2/mica-oxyde/SiO2/MoS2 ; Fe2O3/SiO2/mica- 30 oxyde/SiO2/Fe2O3 ; TiO2/SiO2/TiO2 et TiO2/AI2O3/TiO2 ; SnO/TiO2/SiO2/TiO2/SnO ; Fe2O3/SiO2/Fe2O3 ; SnO/mica/TiO2/SiO2/TiO2/mica/SnO, des pigments ayant ces structures étant commercialisés sous la dénomination XIRONA par la société MERCK (Darmstadt). A titre d'exemple, ces pigments peuvent être les pigments de structure silice/oxyde de titane/oxyde d'étain commercialisés sous le nom XIRONA MAGIC par la société 35 MERCK, les pigments de structure silice/oxyde de fer brun commercialisés sous le nom XIRONA INDIAN SUMMER par la société MERCK et les pigments de structure silice/oxyde de titane/mica/oxyde d'étain commercialisés sous le nom XIRONA CARRIBEAN BLUE par la société MERCK. On peut encore citer les pigments INFINITE COLORS de la société SHISEIDO. Selon l'épaisseur et la nature des différentes couches, 40 on obtient différents effets. Ainsi, avec la structure Fe2O3/SiO2/AI/ SiO2/Fe2O3 on passe du doré-vert au gris-rouge pour des couches de SiO2 de 320 à 350 nm ; du rouge au doré pour des couches de SiO2 de 380 à 400 nm ; du violet au vert pour des couches de SiO2 de 410 à 420 nm ; du cuivre au rouge pour des couches de SiO2 de 430 à 440 nm. On peut citer, à titre d'exemple de pigments à structure multicouche polymérique, ceux 45 commercialisés par la société 3M sous la dénomination COLOR GLITTER. Comme particules goniochromatiques à cristaux liquides, on peut utiliser, par exemple, celles vendues par la société CHENIX, ainsi que celle commercialisées sous la dénomination HELICONE® HC par la société WACKER.
50 Les matières colorantes, en particulier les pigments traités avec un agent hydrophobe, peuvent être présents dans la composition en une teneur allant de 0,1 % à 50 % en poids, par rapport au poids total de la composition, de préférence allant de 0,5 % à 30 % en poids, et préférentiellement allant de 1 % à 20 % en poids. 55 Phase qrasse liquide 2954130 107 Selon un mode de réalisation préféré, la compositon comprend une phase grasse liquide comprenant au moins une huile. Par « huile », on entend un composé non aqueux, liquide à température ambiante (25 °C) 5 et pression atmosphérique (760 mm de Hg).
Huile volatile
La composition selon l'invention peut comprendre au moins une huile volatile. 10 Au sens de l'invention, une huile volatile présente à température ambiante (25 °C) et pression atmosphérique (760 mm de Hg) une pression de vapeur allant de 0,02 mm à 300 mm de Hg (2,66 Pa à 40 000 Pa) et mieux allant de 0,1 à 90 mm de Hg (13 Pa à 12 000 Pa). Les huiles non volatiles correspondent alors à une pression de va- 15 peur inférieure à 0,02 mm de Hg (2,66 Pa), et mieux, inférieure à 10-3 mm de Hg (0, 13 Pa). L'huile volatile peut être une huile siliconée, une huile hydrocarbonée ou une huile fluorée. a. Huile siliconée Selon une variante de l'invention, la phase grasse liquide comprend au moins une huile 20 siliconée volatile. Par « huile siliconée », on entend une huile comprenant au moins un atome de silicium, et notamment comprenant des groupes Si-O.
L'huile volatile siliconée utilisable dans l'invention peut être choisie parmi les huiles silico- 25 nées ayant un point éclair allant de 40 °C à 150 °C, de préférence ayant un point éclair supérieur à 55 °C et inférieur ou égal à 105 °C, et préférentiellement allant de 65 °C à 95 °C. Le point éclair est en particulier mesuré selon la norme iso 3679. L'huile siliconée volatile peut être choisie parmi les huiles siliconées linéaires ou cycliques telles que les polydiméthylsiloxanes (PDMS) linéaires ou cycliques ayant de 3 à 7 atomes 30 de silicium. A titre d'exemple de telles huiles, on peut citer l'octyltriméthicone, l'hexyltriméthicone, la décaméthylcyclopentasiloxane (cyclopentasiloxane ou D5), l'octaméthylcyclotétrasiloxane (cyclotétradiméthylsiloxane ou D4), la dodécaméthylcyclo-hexasiloxane (D6), la décaméthyltétrasiloxane (L4), KF 96 A de Shin Etsu, les polydiméthysiloxanes telles que celles 35 commercialisées sous la référence DC 200 (1,5 cSt), DC 200 (5 cSt), DC 200 (3 cSt) par Dow Corning.
b. Huile hydrocarbonée Selon une variante de l'invention, la phase grasse liquide comprend au moins une huile 40 hydrocarbonée volatile. Par « huile hydrocarbonée », on entend une huile formée essentiellement, voire constituée, d'atomes de carbone et d'hydrogène, et éventuellement d'atomes d'oxygène, d'azote, et ne contenant pas d'atome de silicium ou de fluor. Elle peut contenir des groupes alcool, ester, éther, acide carboxylique, amine et/ou amide. 45 Les huiles (également appelées solvants) hydrocarbonées volatiles peuvent être choisies parmi les huiles hydrocarbonées ayant de 8 à 16 atomes de carbones, et notamment les alcanes ramifiés en C8-C16 comme les isoalcanes en C8-C16 d'origine pétrolière (appelées aussi isoparaffines) comme l'isododécane (encore appelé 2,2,4,4,6- 50 pentaméthylheptane), l'isodécane, l'isohexadécane, et par exemple les huiles vendues sous les noms commerciaux d'Isopars' ou de Permetyls, les esters ramifiés en C8-C16 le néopentanoate d'iso-hexyle, et leurs mélanges. D'autres huiles hydrocarbonées volatiles comme les distillats de pétrole, notamment ceux vendus sous la dénomination ShelI Soit par la société SHELL, peuvent aussi être utilisées. De préférence, le solvant volatil est 55 choisi parmi les huiles volatiles hydrocarbonées ayant de 8 à 16 atomes de carbone et 2954130 108 leurs mélanges. Comme autres solvants (huiles) hydrocarbonés volatiles utilisables dans la composition selon l'invention, on peut également citer, les cétones liquides à température ambiante tels que méthyléthylcétone, l'acétone; les esters à chaîne courte (ayant de 3 à 8 atomes 5 de carbone au total) tels que l'acétate d'éthyle, l'acétate de méthyle, l'acétate de propyle, l'acétate de n-butyle ; les éthers liquides à température ambiante tels que le diéthyléther, le diméthyléther ou le dichlorodiéthyléther; les alcools et notamment les monoalcools inférieurs linéaires ou ramifiés ayant de 2 à 5 atomes de carbone comme l'éthanol, l'isopropanol ou le n-propanol. 10 De préférence, la composition présente une teneur en huile volatile supérieure à 5% en poids, de préférence allant de 5 % à 50% en poids et allant de 10 % à 35 % en poids en poids par rapport au poids total de la composition.
15 Selon un mode de réalisation préféré, l'huile volatile a un point éclair supérieur à 65°c, et mieux, supérieur à 80°C. A titre d'exemple d'une telle huile volatile on peut citer l'isohexadécane.
Huiles non volatiles 20 La composition selon l'invention peut comprendre, au moins une huile non volatile. Celle-ci peut être en particulier choisie parmi les huiles hydrocarbonées et/ou siliconées et/ou fluorées non volatiles, et de préférence parmi les huiles hydrocarbonées. On entend par « huile non volatile », une huile restant sur la peau ou la fibre kératinique, 25 plus généralement sur la matière kératinique, à température ambiante et pression atmosphérique, au moins plusieurs heures et ayant notamment une pression de vapeur inférieure à 10-3 mm de Hg (0,13 Pa). On peut également définir une huile non volatile comme ayant une vitesse d'évaporation telle que dans les conditions définies précédemment, la quantité évaporée au bout de 30 minutes est inférieure à 0,07mg/cm2. 30 Ces huiles peuvent être d'origine végétale, minérale ou synthétique. Comme huile hydrocarbonée non volatile, on peut notamment citer : - les huiles hydrocarbonées d'origine végétale telles que les triglycérides constitués d'esters d'acides gras et de glycérol dont les acides gras peuvent avoir des Ion- 35 gueurs de chaînes variées de C4 à C24, ces derniers pouvant être linéaires ou ramifiées, saturées ou insaturées, comme les triglycérides des acides heptanoïque, octanoïque ; ces huiles sont notamment les huiles de germe de blé, de tournesol, de pépins de raisin, de sésame, de maïs, d'abricot, de ricin, de karité, d'avocat, d'olive, de soja, l'huile d'amande douce, de palme, de colza, de coton, de noisette, de macadamia, de jojoba, de luzerne, 40 de pavot, de potimarron, de sésame, de courge, de colza, de cassis, d'onagre, de millet, d'orge, de quinoa, de seigle, de carthame, de bancoulier, de passiflore, de rosier muscat ; ou encore les triglycérides des acides caprylique/caprique comme ceux vendus par la société Stéarineries Dubois ou ceux vendus sous les dénominations de « Miglyol 810®» , « 812® » et « 818® » par la société Dynamit Nobel, 45 - les éthers de synthèse; - les hydrocarbures linéaires ou ramifiés, d'origine minérale ou synthétique tels que l'huile de paraffine ou ses dérivés, la vaseline, le polyisobutène hydrogéné tel que le Parléam® commercialisé par la société NIPPON OIL FATS, le squalane, les polybutylènes tels que L'INDOPOL H-100 (de masse molaire ou MW=965 g/mol), L'INDOPOL H-300 50 (MW=1340 g/mol), L'INDOPOL H-1500 (MW=2160g/mol) commercialisés ou fabriqués par la société AMOCO, les polyisobutylènes hydrogénés tels que le PANALANE H-300 E commercialisés ou fabriqué par la société AMOCO (MW =1340 g/mol), le VISEAL 20000 commercialisé ou fabriqué par la société SYNTEAL (MW=6000 g/mol), le REWOPAL PIB 1000 commercialisé ou fabriqué par la société WITCO (MW=1000 g/mol), les polydécènes 55 et les polydécènes hydrogénés tels que : le PURESYN 10 (MW=723 g/mol), le PURESYN 2954130 109 150 (MW=9200 g/mol) commercialisé ou fabriqués par la société MOBIL CHEMICALS, et leurs mélanges; - les esters d'acide gras, en particulier de 4 à 22 atomes de carbone, et notamment d'acide octanoïque, d'acide heptanoïque, d'acide lanolique, d'acide oléique, d'acide 5 laurique, d'acide stéarique comme le dioctanoate de propylène glycol, le monoisostéarate de propylène glycol, le poly-glycéryl 2-diisostéarate, le diheptanoate de néopentylglycol, - les esters de synthèse comme les huiles de formule R,000R2 dans laquelle R, représente le reste d'un acide gras linéaire ou ramifié comportant de 1 à 40 atomes de carbone et R2 représente une chaîne hydrocarbonée notamment ramifiée contenant de 1 10 à 40 atomes de carbone à condition que R, + R2 soit 11, comme par exemple l'huile de Purcellin (octanoate de cétostéaryle), l'isononanoate d'isononyle, le benzoate d'alcool en C12 à C15, le palmitate d'éthyl 2-hexyle, le stéarate d'octyl-2 dodécyle, l'érucate d'octyl-2 dodécyle, l'isostéarate d'isostéaryle, le benzoate d'octyl-2 dodécyle, des octanoates, décanoates ou ricinoléates d'alcools ou de polyalcools, le myristate d'isopropyle, le palmitate 15 d'isopropyle, le stéarate de butyle, le laurate d'hexyle, le palmitate de 2-éthyl-hexyle, le laurate de 2-hexyl-décyle, le palmitate de 2-octyl-décyle, le myristate de 2-octyldodécyle, le néopentanoate d'isodécyle ; - les esters hydroxylés comme le lactate d'isostéaryle, l'octylhydroxystéarate, l'hydroxystéarate d'octyldodécyle, le diisostéarylmalate, le citrate de triisocétyle, le triisos- 20 téarate de glycérine ou de diglycérine; le diisononanoate de diéthylèneglycol ; et - les esters du pentaérythritol comme le tétra décyl -2 tétradécanoate de pentaérythrityle (MW=1538 g/mol), le tétraisostéarate de pentaérythrityle (MW=1202 g/mol), le tétraisononanoate de pentaérythrityle (MW=697 g/mol), - les esters d'acides aromatiques et d'alcools comprenant 4 à 22 atomes de carbone, no- 25 tamment le trimellitate de tridécyle, - un polyester résultant de l'estérification d'au moins un triglycéride d'acide(s) carboxylique(s) hydroxylé(s) par un acide monocarboxylique aliphatique et par un acide dicarboxylique aliphatique, éventuellement insaturé comme l'huile de ricin d'acide succinique et d'acide isostéarique commercialisée sous la référence Zénigloss par Zénitech, 30 - les esters de dimère diol et de dimère diacide de formule générale HO-R'-(-000-R2-COO-R'-)h-OH, dans laquelle : R' représente un reste de dimère diol obtenu par hydrogénation du diacide dilinoléique R2 représente un reste de diacide dilinoléique hydrogéné, et h représente un entier variant de 1 à 9, 35 notamment les esters de diacides dilinoléiques et de dimères diols dilinoléiques commercialisés par la société NIPPON FINE CHEMICAL sous la dénomination commerciale LUSPLAN DD-DA5® et DD-DA7®,
- les copolymères de vinylpyrrolidone/1-héxadécène, par exemple commercialisé sous la 40 dénomination ANTARON Vû216 par la société ISP (MW=7300 g/mol),
- les alcools gras liquides à température ambiante à chaîne carbonée ramifiée et/ou insaturée ayant de 8 à 26 atomes de carbone comme l'alcool oléique, l'alcool linoléique ou linolénique, l'alcool isostéarique ou l'octyl dodécanol; 45 les acides gras supérieurs en C8-C26 tels que l'acide oléique, l'acide linoléique, l'acide linolénique, ou l'acide isostéarique ; - et leurs mélanges.
Les huiles de silicone non volatiles utilisables dans la composition selon l'invention, peu- 50 vent être les huiles siliconées telles que les huiles siliconées phénylées (également appelée huile siliconée phénylée) comme la TRIMETHYLSILOXYPHENYL DIMETHICONE commercialisée sous la référence BELSIL PDM 1000 de la société WACKER (MW=9000 g/mol), ou encore la 1,3,5-trimethyl 1,1,3,5,5-pentaphenyl trisiloxane, commercialisée par société Dow Corning sous la référence (PH-1555 HRI de Dow Corning, nom INCI : trimé- 55 thyl pentaphényl trisiloxane). nom INCI : triméthyl pentaphényl trisiloxane) , les phényl 2954130 110 triméthicones (telles que la phényl triméthicone vendue sous le nom commercial DC556 par Dow Corning), les phényl diméthicones, les phényl triméthylsiloxy diphényl siloxanes, les diphényl diméthicones, les diphényl méthyldiphényl trisiloxanes, les polydiméthylsiloxanes (PDMS) non volatiles, les polydiméthylsiloxanes comportant des groupements 5 alkyle ou alcoxy, pendant et/ou en bout de chaîne siliconée, groupements ayant chacun de 2 à 24 atomes de carbone.
De façon préférée, l'huile non volatile peut être présente en une teneur allant de 10 0,1 à 60 % en poids, notamment allant de 0,5 à 50 °/a en poids, et en particulier allant de 1 à 40 % en poids, par rapport au poids total de la composition.
Outre les huiles décrites précédemment, la phase grasse peut également comprendre au moins un corps gras qui n'est pas liquide à température ambiante (25°C) et à pression 15 atmosphérique, appelé corps gras solide, choisi parmi les cires et les corps gras pâteux.
Corps gras solides De façon préférée, la composition selon l'invention comprend au moins un corps gras so-20 lide choisi parmi les cires et les corps gras pâteux, et leur mélange.
Corps gras pâteux Par "corps gras pâteux" (également appelé corps gras pâteux) au sens de la pré-sente invention, on entend un composé gras lipophile à changement d'état solidelliquide 25 réversible, présentant à l'état solide une organisation cristalline anisotrope, et comportant à la température de 23°C une fraction liquide et une fraction solide. En d'autres termes, la température de fusion commençante du composé pâteux peut être inférieure à 23°C. La fraction liquide du composé pâteux mesurée à 23°C peut représenter 9 à 97% en poids du composé. Cette fraction liquide à 23°C représente de préférence 30 entre 15 et 85%, de préférence encore entre 40 et 85% en poids. Au sens de l'invention, la température de fusion correspond à la température du pic le plus endothermique observé en analyse thermique (DSC) telle que décrite dans la norme ISO 11357-3 ; 1999. Le point de fusion d'un pâteux ou d'une cire peut être mesuré à l'aide d'un calorimètre à balayage différentiel (DSC), par exemple le calorimètre vendu sous la 35 dénomination « MDSC 2920 » par la société TA Instruments.
Le protocole de mesure est le suivant : Un échantillon de 5 mg de pâteux ou de cire (selon le cas) disposé dans un creuset est soumis à une première montée en température allant de -20 °C à 100 °C, à la vitesse de 40 chauffe de 10 °C/minute, puis est refroidi de 100 °C à -20 °C à une vitesse de refroidissement de 10 °C/minute et enfin soumis à une deuxième montée en température allant de -20 °C à 100 °C à une vitesse de chauffe de 5 °C/minute. Pendant la deuxième montée en température, on mesure la variation de la différence de puissance absorbée par le creuset vide et par le creuset contenant l'échantillon de pâteux ou de cire en fonction de 45 la température. Le point de fusion du composé est la valeur de la température correspondant au sommet du pic de la courbe représentant la variation de la différence de puissance absorbée en fonction de la température. La fraction liquide en poids du composé pâteux à 23°C est égale au rapport de l'enthalpie de fusion consommée à 23°C sur l'enthalpie de fusion du composé pâteux. 50 L'enthalpie de fusion du composé pâteux est l'enthalpie consommée par le composé pour passer de l'état solide à l'état liquide. Le composé pâteux est dit à l'état solide lorsque l'intégralité de sa masse est sous forme solide cristalline. Le composé pâteux est dit à l'état liquide lorsque l'intégralité de sa masse est sous forme liquide. L'enthalpie de fusion du composé pâteux est égale à l'aire sous la courbe du thermo-55 gramme obtenu à l'aide d'un calorimètre à balayage différentiel (D. S. C), tel que le calo- 2954130 111 rimètre vendu sous la dénomination MDSC 2920 par la société TA instrument, avec une montée en température de 5 ou 10°C par minute, selon la norme ISO 11357-3:1999. L'enthalpie de fusion du composé pâteux est la quantité d'énergie nécessaire pour faire passer le composé de l'état solide à l'état liquide. Elle est exprimée en J/g. 5 L'enthalpie de fusion consommée à 23°C est la quantité d'énergie absorbée par l'échantillon pour passer de l'état solide à l'état qu'il présente à 23°C constitué d'une fraction liquide et d'une fraction solide. La fraction liquide du composé pâteux mesurée à 32°C représente de préférence de 30 à 100% en poids du composé, de préférence de 50 à 100%, de préférence encore de 60 à 10 100% en poids du composé. Lorsque la fraction liquide du composé pâteux mesurée à 32°C est égale à 100%, la température de la fin de la plage de fusion du composé pâteux est inférieure ou égale à 32°C. La fraction liquide du composé pâteux mesurée à 32°C est égale au rapport de l'enthalpie de fusion consommée à 32°C sur l'enthalpie de fusion du composé pâteux. L'enthalpie de 15 fusion consommée à 32°C est calculée de la même façon que l'enthalpie de fusion consommée à 23°C.
Le composé pâteux est de préférence choisi parmi les composés synthétiques et les composés d'origine végétale. Un composé pâteux peut être obtenu par synthèse à partir 20 de produits de départ d'origine végétale. Le composé pâteux est avantageusement choisi parmi - la lanoline et ses dérivés - les éthers de polyol choisi parmi les éthers de pentaérythritol et de polyalkylène glycol, les éthers d'alcool gras et de sucre, et leurs mélanges. l'éther pentaérythritol et de 25 polyéthylène glycol comportant 5 motifs oxyéthylénés (5 OE) (nom CTFA : PEG-5 Pentaerythrityl Ether), l'éther de pentaérythritol et de polypropylène glycol comportant 5 motifs oxypropylénés (5 OP) (nom CTFA : PPG-5 Pentaerythrityl Ether), et leurs mélanges et plus spécialement le mélange PEG-5 Pentaerythrityl Ether, PPG-5 Pentaerythrityl Ether et huile de soja, commercialisé sous la dénomination « Lanolide » par la société Vevy, mé- 30 lange où les constituants se trouvent dans un rapport en poids 46/46/8 : 46 % de PEG-5 Pentaerythrityl Ether, 46 % de PPG-5 Pentaerythrityl Ether et 8 % d'huile de soja. - les composés siliconés polymères ou non - les composés fluorés polymères ou non - les polymères vinyliques, notamment: 35 • les homopolymères et les copolymères d'oléfines • les homopolymères et copolymères de diènes hydrogénés • les oligomères linéaires ou ramifiés, homo ou copolymères de (méth)acrylates d'alkyles ayant de préférence un groupement alkyle en C8-C30 • les oligomères homo et copolymères d'esters vinyliques ayant des groupe- 40 ments alkyles en C8-C30 , • les copolymères de vinylpyrrolidone/eicosène (nom INCI VP/eicosene copolymer), par exemple vendu par la société ISP sous le nom commercial Ganex V220F®, • les oligomères homo et copolymères de vinyléthers ayant des groupements alkyles en C8-C30, 45 - les polyéthers liposolubles résultant de la polyéthérification entre un ou plusieurs diols en C2-C100, de préférence en C2-050, - les esters, - et/ou leurs mélanges. Le composé pâteux est de préférence un polymère, notamment hydrocarboné. 50 Parmi les polyéthers liposolubles, on préfère en particulier les copolymères d'éthylène-oxyde et/ou de propylène-oxyde avec des alkylènes-oxydes à longue chaîne en C6-C30, de préférence encore tels que le rapport pondéral de l'éthylène-oxyde et/ou de propylène-oxyde avec alkylènes-oxydes dans le copolymère est de 5:95 à 70:30. Dans cette famille, 55 on citera notamment les copolymères tels que les alkylènes-oxydes à longue chaîne sont 2954130 112 disposés en blocs ayant un poids moléculaire moyen de 1.000 à 10.000, par exemple un copolymère bloc de polyoxyethylène/polydodécyle glycol tel que les éthers de dodécanediol (22 mol) et de polyéthylène glycol (45 0E) commercialisés sous la marque ELFACOS ST9 par Akzo Nobel. 5 Parmi les esters, on préfère notamment : - les esters d'un glycérol oligomère, notamment les esters de diglycérol, en particulier les condensats d'acide adipique et de glycérol, pour lesquels une partie des groupes hydroxyles des glycérols ont réagi avec un mélange d'acides gras tels que l'acide stéari- 10 que, l'acide caprique, l'acide stéarique et l'acide isostéarique et l'acide 12-hydroxystéarique, à l'image notamment de ceux commercialisé sous la marque Softisan 649 par la société Sasol - le propionate d'arachidyle commercialisé sous la marque Waxenol 801 par Alzo, - les esters de phytostérol, 15 - les triglycérides d'acides gras et leurs dérivés, - les esters de pentaérythritol, - les polyesters non réticulés résultant de la polycondensation entre un acide dicarboxylique ou un polyacide carboxylique linéaire ou ramifié en C4-050 et un diol ou un polyol en C2-050, 20 les esters aliphatiques d'ester résultant de l'estérification d'un ester d'acide hydroxycarboxylique aliphatique par un acide carboxylique aliphatique. De préférence, l'acide carboxylique aliphatique comprend de 4 à 30 et de préférence de 8 à 30 atomes de carbone. Il est de préférence choisi parmi l'acide héxanoïque, l'acide heptanoïque, l'acide octane que, l'acide éthyl-2 héxanoïque, l'acide nonanoïque, l'acide décanoïque, l'acide undéca- 25 noïque, acide dodécanoïque, l'acide tridécanoïque, l'acide tétradécanoïque, l'acide pentadécanoïque, l'acide héxadécanoïque, l'acide héxyldécanoïque, l'acide heptadécanoïque, l'acide octadécanoïque, l'acide isostéarique, l'acide nonadécanoïque, l'acide eicosanoïque, l'acide isoarachidique, l'acide octyldodécanoïque, l'acide henéicosanoïque, l'acide docosanoïque, et leurs mélanges. L'acide carboxylique aliphatique est de préférence ra- 30 mifié. L'ester d'acide hydroxy carboxylique aliphatique est avantageusement issu d'un acide carboxylique aliphatique hydroxylé comportant de 2 à 40 atomes de carbone, de préférence de 10 à 34 atomes de carbone et mieux de 12 à 28 atomes de carbone, et de 1 à 20 groupes hydroxyle, de préférence de 1 à 10 groupes hydroxyle et mieux de 1 à 6 groupes hydroxyle. L'ester d'acide hydroxy carboxylique aliphatique est choisi parmi : 35 a) les esters partiels ou totaux d'acides monocarboxyliques aliphatiques mono hydroxylés linéaires, saturés ; b) les esters partiels ou totaux d'acides monocarboxyliques aliphatiques mono hydroxylés insaturés ; c) les esters partiels ou totaux de polyacides carboxyliques aliphatiques mono hydroxylés 40 saturés ; d) les esters partiels ou totaux de polyacides carboxyliques aliphatiques poly hydroxylés saturés ; e) les esters partiels ou totaux de polyols aliphatiques en C2 à C16 ayant réagi avec un mono ou un poly acide carboxylique aliphatique mono ou poly hydroxylé, 45 et leurs mélanges. - les esters de dimère diol et dimère diacide, le cas échéant, estérifiés sur leur(s) fonction(s) alcool(s) ou acide(s) libre(s) par des radicaux acides ou alcools, notamment les esters dimer dilinoleate, de tels esters peuvent être notamment choisis parmi les esters de nomenclature INCI suivante : le bis-béhényl/isostéaryl/phytostéryl dimerdilino- 50 léyle dimerdilinoléate (Plandool G), le phytostéryl/isostéryl/cétyl/stéaryl/béhényl dimerdilinoléate (Plandool H ou Plandool S), et leurs mélanges. - les esters de rosinate hydrogénée, tel que les dimères dilinoleyl de rosinate hydrogéné (Lusplan DD-DHR ou DD-DHR de Nippon Fine Chemical) - et leurs mélanges. 55 3 De façon avantageuse, le (ou les) composé pâteux représente de préférence 0,1 à 80%, mieux 0,5 à 60%, mieux 1 à 30% et mieux encore 1 à 20% en poids par rapport au poids total de la composition.
Cires :
Selon un mode de réalisation préféré, la composition selon l'invention comprend au moins une cire. La cire considérée dans le cadre de la présente invention est d'une manière générale un composé lipophile, solide à température ambiante (25 °C), à changement d'état solide/liquide réversible, ayant un point de fusion supérieur ou égal à 30 °C pouvant aller jusqu'à 200 °C et notamment jusqu'à 120 °C. En particulier, les cires convenant à l'invention peuvent présenter un point de fusion supérieur ou égal à 45 °C, et en particulier supérieur ou égal à 55 °C.
Les cires susceptibles d'être utilisées dans les compositions selon l'invention sont choisies parmi les cires, solides, à température ambiante d'origine animale, végétale, minérale ou de synthèse et leurs mélanges. A titre illustratif des cires convenant à l'invention, on peut notamment citer les cires hydro- carbonées comme la cire d'abeille, la cire de lanoline, et les cires d'insectes de Chine, la cire de son de riz, la cire de Carnauba, la cire de Candellila, la cire d'Ouricury, la cire d'Alfa, la cire de berry, la cire de shellac, la cire du Japon et la cire de sumac; la cire de montan, les cires d'orange et de citron, les cires microcristallines, les paraffines et l'ozokérite; les cires de polyéthylène, les cires obtenues par la synthèse de Fisher-Tropsch et les copolymères cireux ainsi que leurs esters. On peut aussi citer des cires obtenues par hydrogénation catalytique d'huiles animales ou végétales ayant des chaînes grasses, linéaires ou ramifiées, en C$-C32. Parmi celles-ci, on peut notamment citer l'huile de jojoba isomérisée telle que l'huile de jojoba partielle-ment hydrogénée isomérisée trans fabriquée ou commercialisée par la société Desert Whale sous la référence commerciale Iso-Jojoba-50®, l'huile de tournesol hydrogénée, l'huile de ricin hydrogénée, l'huile de coprah hydrogénée, l'huile de lanoline hydrogénée, et le tétrastéarate de di-(triméthylol-1,1,1 propane) vendu sous la dénomination de Hest 2T-45® par la société HETERENE. On peut encore citer les cires de silicone (C30-45 ALKYL DIMETHICONE), les cires fluo- rées. On peut également utiliser les cires obtenues par hydrogénation d'huile de ricin estérifiée avec l'alcool cétylique vendues sous les dénominations de Phytowax ricin 16L64® et 22L73® par la société SOPHIM. De telles cires sont décrites dans la demande FR-A-2792190.
Comme cire, on peut utiliser un (hydroxystéaryloxy)stéarate d'alkyle en C20-C40 (le groupe alkyle comprenant de 20 à 40 atomes de carbone), seul ou en mélange. Une telle cire est notamment vendue sous les dénominations « Kester Wax K 82 P® », « Hydroxypolyester K 82 P®» et « Kester Wax K 80 P®» par la société KOSTER KEUNEN.
Comme micro cires pouvant être utilisées dans les compositions selon l'invention, on peut citer notamment les micro cires de carnauba telles que celle commercialisée sous la dé-nomination de MicroCare 350® par la société MICRO POWDERS, les micro cires de cire synthétique telles que celle commercialisée sous la dénomination de MicroEase 1145® par la société MICRO POWDERS, les micro cires constituées d'un mélange de cire de carnauba et de cire de polyéthylène telles que celles commercialisées sous les dénominations de Micro Care 300® et 310® par la société MICRO POWDERS, les micro cires constituées d'un mélange de cire de carnauba et de cire synthétique telles que celle commercialisée sous la dénomination Micro Care 325® par la société MICRO POWDERS, les micro cires de polyéthylène telles que celles commercialisées sous les dénominations de Micropoly 200®, 220®, 220L® et 2505® par la société MICRO POWDERS et les micro cires 2954130 114 de polytétrafluoroéthylène telles que celles commercialisées sous les dénominations de Microslip 519® et 519 L® par la société MICRO POWDERS. La composition selon l'invention peut comprendre une teneur en cires allant de 0,1 à 30 % en poids par rapport au poids total de la composition, en particulier elle peut en contenir 5 de 0,5 à 20 %, plus particulièrement de 1 à 15 %.
Polymère filmoqène additionnel La composition peut comprendre, outre le copolymère décrit précédemment, un polymère 10 additionnel tel qu'un polymère filmogène. Selon la présente invention, on entend par « polymère filmogène », un polymère apte à former à lui seul ou en présence d'un agent auxiliaire de filmification, un dépôt continu sur un support, notamment sur les matières kératiniques. Parmi les polymères filmogènes utilisables dans la composition de la présente invention, 15 on peut citer les polymères synthétiques, de type radicalaire ou de type polycondensat, les polymères d'origine naturelle et leurs mélanges. Comme polymère filmogène, on peut citer en particulier les polymères acryliques, les polyuréthanes, les polyesters, les polyamides, les polyurées, les polymères cellulosiques comme la nitrocellulose. Le polymère peut être associé à un ou des agents auxiliaires de filmification. Un tel agent 20 de filmification peut être choisi parmi tous les composés connus de l'homme du métier comme étant susceptibles de remplir la fonction recherchée, et notamment être choisi parmi les agents plastifiants et les agents de coalescence.
Gélifiants lipophiles 25 Selon un mode de réalisation, la composition selon l'invention peut comprendre au moins un gélifiant. Les gélifiants utilisables dans les compositions selon l'invention peuvent être des gélifiants lipophiles organiques ou minéraux, polymériques ou moléculaires. Comme gélifiant lipophile minéral, on peut citer les argiles éventuellement modifiées comme les hectorites modifiées par un chlorure d'ammonium en C10 à C22, comme 30 l'hectorite modifiée par du chlorure de di-stéaryl di-méthyl ammonium telle que, par exemple, celle commercialisée sous la dénomination de Bentone 38V® par la société ELEMENTIS. On peut également citer la silice pyrogénée éventuellement traitée hydrophobe en surface dont la taille des particules est inférieure à 1 pm. Il est en effet possible de modifier chimi- 35 quement la surface de la silice, par réaction chimique générant une diminution du nombre de groupes silanol présents à la surface de la silice. On peut notamment substituer des groupes silanol par des groupements hydrophobes : on obtient alors une silice hydrophobe. Les groupements hydrophobes peuvent être : - des groupements triméthylsiloxyle, qui sont notamment obtenus par frai- 40 terrent de silice pyrogénée en présence de l'hexaméthyldisilazane. Des silices ainsi traitées sont dénommées « Silica silylate » selon le CTFA (8ème édition, 2000). Elles sont par exemple commercialisées sous les références Aerosil R812® par la société DEGUSSA, CAB-O-SIL TS-530® par la société CABOT, - des groupements diméthylsilyloxyle ou polydiméthylsiloxane, qui sont no- 45 tamment obtenus par traitement de silice pyrogénée en présence de polydiméthylsiloxane ou du diméthyldichlorosilane. Des silices ainsi traitées sont dénommées « Silica diméthyl silylate » selon le CTFA (8ème édition, 2000). Elles sont par exemple commercialisées sous les références Aerosil R972®, et Aerosil R974® par la société DEGUSSA, CAB-OSIL TS-610® et CAB-O-SIL TS-720® par la société CABOT. 50 Parmi les gélifiants lipophiles pouvant être utilisés dans les compositions selon l'invention, on peut encore citer les esters de dextrine et d'acide gras, tels que les palmitates de dextrine, notamment tels que ceux commercialisés sous les dénominations Rheopearl TL® ou Rheopearl KL® par la société CHIBA FLOUR. 2954130 115 On peut également utiliser les polyamides siliconés du type polyorganosiloxane tels que ceux décrits dans les documents US-A-5,874,069, US-A-5,919,441, US-A-6,051,216 et US-A-5,981,680. 5 Ces polymères siliconés peuvent appartenir aux deux familles suivantes : - des polyorganosiloxanes comportant au moins deux groupes capables d'établir des interactions hydrogène, ces deux groupes étant situés dans la chaîne du polymère, et/ou - des polyorganosiloxanes comportant au moins deux groupes capables d'établir des interactions hydrogène, ces deux groupes étant situés sur des greffons ou ramifications. 10
Charges : La composition selon l'invention peut comprendre au moins une charge. 15 Au sens de la présente invention, par « charge » on désigne des particules solides de toutes formes, qui se présentent sous une forme insoluble et dispersée dans le milieu de la composition, même à des températures pouvant atteindre la température de fusion de tous les corps gras de la composition. Généralement, les charges utilisées selon l'invention sont incolores ou blanches à savoir 20 non pigmentaires, c'est-à-dire qu'elles ne sont pas utilisées pour conférer une couleur ou teinte particulière à la composition selon l'invention, même si leur utilisation peut conduire de manière inhérente à un tel résultat. Ces charges servent notamment à modifier la rhéologie ou la texture de la composition.
25 Elles sont donc, à ce titre, distinctes des nacres, des matières pigmentaires organiques comme par exemple le noir de carbone, les pigments de type D & C, et les laques à base de carmin de cochenille, de baryum, strontium, calcium, aluminium et des matières pigmentaires inorganiques comme par exemple le dioxyde de titane, les oxydes de zirconium ou de cérium, ainsi que les oxydes de fer (noir, jaune ou rouge) ou de chrome, le violet de 30 manganèse, le bleu outremer, l'hydrate de chrome et le bleu ferrique qui, elles, sont utilisées pour procurer un effet de teinte et de coloration aux compositions les incorporant. De tels composés ne sont pas couverts, au sens de l'invention, par la définition de charges qui couvrent donc les charges non pigmentaires pouvant être organiques ou inorganiques. 35 Les charges non pigmentaires utilisées dans les compositions selon la présente invention peuvent être de formes lamellaires, globulaires, sphériques, de type fibres, ou de toute autre forme intermédiaire entre ces formes définies. La taille des particules, à savoir leur granulométrie, est choisie de manière à assurer une bonne dispersion des charges dans la composition selon l'invention. La granulométrie des 40 particules peut se distribuer dans la plage allant de 5 pm à 10 nm, en particulier de 10 pm à Io nm. Les charges selon l'invention peuvent être ou non enrobées superficiellement, en particulier traitées en surface par des silicones, des acides aminés, des dérivés fluorés ou toute autre substance favorisant la dispersion et la compatibilité de la charge dans la composi- 45 tion.
Charqes minérales Au sens de la présente invention, les termes « minérale » et « inorganique » sont utilisés de manière interchangeable. 50 Parmi les charges minérales non pigmentaires utilisables dans les compositions selon l'invention, on peut citer le talc, le mica, la silice, la perlite notamment disponible dans le commerce auprès de la société WORLD MINERALS EUROPE sous la dénomination commerciale Perlite P1430, Perlite P2550 ou Perlite P204, le kaolin, le carbonate de calcium précipité, le carbonate et l'hydrogéno-carbonate de magnésium, l'hydroxyapatite, le 55 nitrure de bore, les microsphères de silice creuses (Silica Beads® de Maprecos), les mi- 2954130 116 crocapsules de verre ou de céramique, et leurs mélanges. Selon un mode de réalisation, la composition cosmétique selon l'invention comprend au moins une charge minérale non pigmentaire choisie parmi le groupe comprenant le kaolin, le talc, la silice, la perlite, l'argile et leurs mélanges. 5 Charges organiques Parmi les charges organiques, on peut citer les poudres de polyamide (Nylon® Orgasol® de chez Atochem), de poly- -alanine et polyéthylène, la lauroyl-lysine, l'amidon, les poudres de polymères de tétrafluoroéthylène (Téflon®), les microsphères creuses de polymè- 10 res telles que celles de chlorure de polyvinylidène/acrylonitrile comme l'Expancel® (Nobel Industrie), de copolymère d'acide acrylique (tel que le polytrap (Dow Corning)), les copolymères acrylates, le PMMA, le stéarate d'oligomère d'acide 12-hydroxystéarique et les microbilles de résine de silicone (Tospearls® de Toshiba, par exemple), le carbonate et l'hydrogéno-carbonate de magnésium, les savons métalliques dérivés d'acides organi- 15 ques carboxyliques ayant de 8 à 22 atomes de carbone, de préférence de 12 à 18 atomes de carbone, par exemple le stéarate de zinc, de magnésium ou de lithium, le laurate de zinc, le myristate de magnésium, et leurs mélanges. Au sens de la présente invention, les charges organiques sont distinctes des pigments. Il peut également s'agir de particules comprenant un copolymère, ledit copolymère corn- 20 prenant du triméthylol hexyllactone. En particulier, il peut s'agir d'un copolymère d'hexaméthylène di-isocyanate/triméthylol hexyllactone. De telles particules sont notamment disponibles dans le commerce, par exemple sous la dénomination de PLASTIC POWDER D-400® ou PLASTIC POWDER D-800® de la société TOSHIKI.
25 Selon un mode de réalisation, une composition de l'invention peut comprendre au moins une charge choisie parmi le talc, la silice, l'amidon, l'argile, le kaolin, la perlite, et leurs mélanges. Un ou plusieurs agents dispersants peuvent être le cas échéant utilisés pour protéger les charges ou particules dispersées contre leur agglomération ou floculation. Ils peuvent être 30 ajoutés indépendamment des charges ou particules solides ou sous forme de dispersion colloïdale de particules. La concentration en dispersant est choisie de manière à obtenir une dispersion satisfaisante des particules solides (sans floculation). Cet agent dispersant peut être un tensioactif, un oligomère, un polymère ou un mélange 35 de plusieurs d'entre eux, portant une ou des fonctionnalités ayant une affinité forte pour la surface des particules à disperser. En particulier, on utilise les esters de l'acide polyhydroxy-12 stéarique tel que le stéarate d'acide poly(12-hydroxystéarique) de poids moléculaire d'environ 750g/mole tel que celui vendu sous le nom de Solsperse 21 000® par la société Avecia, les esters de l'acide polyhydroxy-12-stéarique avec des po- 40 lyols comme le glycérol, la diglycérine, tels que le polyglyceryl-2 dipolyhydroxystearate (nom CTFA) vendu sous la référence Dehymuls PGPH® par la société HENKEL (ou poly (12-hydroxystéarate) de diglycérol), ou encore l'acide poly (12-hydroxystéarique) tel que celui vendu sous la référence Arlacel P100 par la société Uniqema et leurs mélanges. Comme autre dispersant utilisable dans la composition de l'invention, on peut citer les dé- 45 rivés ammonium quaternaire d'acides gras polycondensés comme le Solsperse 17 000® vendu par la société Avecia, les mélanges de poly diméthylsiloxane/oxypropylène tels que ceux vendus par la société Dow Corning sous les références DC2-5185, DC2-5225 C.
50 Ingrédients cosmétiques usuels additionnels La composition selon l'invention peut comprendre en outre tout ingrédient cosmétique usuel pouvant être choisi notamment parmi les polymères filmogènes, les antioxydants, les parfums, les conservateurs, les neutralisants, les tensioactifs, les filtres solaires, les 55 vitamines, les hydratants, les composés auto-bronzants, les actifs antirides, les émollients, 2954130 117 les actifs hydrophiles ou lipophiles, les agents anti-radicaux libres, les agents déodorants, les sequestrants, les agents filmogènes, les polymères semi-cristallins et leurs mélanges. Bien entendu, l'homme du métier veillera à choisir les éventuels ingrédients complémentaires et/ou leur quantité de telle manière que les propriétés avantageuses de la composi- 5 tion selon l'invention ne soient pas ou substantiellement pas altérées par l'adjonction envisagée.
Les compositions selon l'invention peuvent se présenter sous toute forme acceptable et 10 usuelle pour une composition cosmétique. Elles peuvent donc se présenter sous la forme d'une suspension, une dispersion notamment d'huile dans de l'eau grâce à des vésicules; une solution organique ou huileuse éventuellement épaissie voire gélifiée; une émulsion huile-dans-eau, eau-dans-huile, ou multiple; un gel ou une mousse; un gel huileux ou émulsionné; une dispersion de vésicules notamment lipidiques; une lotion biphase ou 15 multiphase; un spray; d'une lotion, d'une crème, d'une pommade, d'une pâte souple, d'un onguent, d'un solide coulé ou moulé et notamment en stick ou en coupelle, ou encore de solide compacté. L'homme du métier pourra choisir la forme galénique appropriée, ainsi que sa méthode de préparation, sur la base de ses connaissances générales, en tenant compte d'une part de 20 la nature des constituants utilisés, notamment de leur solubilité dans le support, et d'autre part de l'application envisagée pour la composition.
De façon préférée, la composition selon l'invention comprend moins de 3%, ou mieux, moins de 1% d'eau en poids par rapport au poids total de la composition. De façon encore 25 préférée la composition est totalement anhydre. Par anhydre, on entend notamment que l'eau n'est de préférence pas ajoutée délibérément dans la composition mais peut être présente à l'état de trace dans les différents composés utilisés dans la composition.
Selon un mode de réalisation préféré, la composition selon l'invention est un rouge à lè- 30 vres.
Selon un mode de réalisation préféré, la composition selon l'invention est sous forme liquide à 25°C, telle qu'un gloss pour les lèvres. Selon un autre mode de réalisation la composition est sous forme solide à 25°C. Dans le 35 cas d'un rouge à lèvres, il peut d'agir d'un stick de rouge à lèvres ou d'un rouge à lèvres coulé en coupelle par exemple. Par « solide », on entend une composition dont la dureté mesurée selon le protocole précédente est supérieure ou égale à 30 Nm-' à la température de20°C et à pression atmosphérique (760 mm de Hg). 40 Protocole de mesure de la dureté : La dureté de la composition est mesurée selon le protocole suivant : Le stick de rouge à lèvres est conservé à 20 °C pendant 24 heures avant la mesure de la dureté. 45 La dureté peut être mesurée à 20 °C par la méthode dite « du fil à couper le beurre », qui consiste à couper transversalement un bâton de produit, de préférence cylindrique de révolution, à l'aide d'un fil rigide de tungstène de diamètre 250 pm en déplaçant le fil relativement au stick à une vitesse de 100 mm/min. La dureté des échantillons de compositions de l'invention, exprimée en Nm-1, est mesurée 50 au moyen d'un dynamomètre DFGS2 commercialisé par la société INDELCOCHATILLON. La mesure est reproduite trois fois puis moyennée. La moyenne des trois valeurs lues au moyen du dynamomètre mentionné ci-dessus, notée Y, est donnée en grammes. Cette moyenne est convertie en Newton puis divisée par L qui représente la dimension la plus 55 élevée traversée par le fil. Dans le cas d'un bâton cylindrique, L est égal au diamètre (en 2954130 118 mètres). La dureté est convertie en Nm_, par l'équation ci-dessous : (Yx 10-3 x9.8)/L Pour une mesure à une température différente, on conserve le stick 24 heures à cette 5 nouvelle température avant la mesure.
Les compositions conformes à l'invention peuvent être utilisées pour le soin ou le maquillage des matières kératiniques telles que la peau, les cils, les sourcils, les ongles, les lèvres, et plus particulièrement pour le maquillage des lèvres, des cils et/ou du visage. 10 Elles peuvent donc se présenter sous la forme d'un produit de soin et/ou de maquillage de la peau du corps ou du visage, des lèvres, des cils, des sourcils, ou des ongles; d'un produit solaire ou autobronzant; elles se présentent avantageusement sous forme de composition de maquillage, notamment de mascara, d'eye-liner, de rouge à lèvres, de bril- 15 tant à lèvres (gloss), de fard à joues ou à paupières, de fond de teint, de vernis à ongles ou de soin des ongles.
L'invention a encore pour objet un procédé de traitement cosmétique des matières kératiniques, notamment de la peau du corps ou du visage, des lèvres, des ongles et/ou des 20 cils, comprenant l'application sur lesdites matières d'une composition cosmétique telle que définie précédemment. Ce procédé selon l'invention permet notamment le soin ou le maquillage desdites matières kératiniques, en particulier des lèvres et/ou des ongles, par application d'une composition notamment de rouge à lèvres, de brillant à lèvres (gloss), de soin des ongles ou de 25 vernis à ongles selon l'invention.
L'invention est illustrée plus en détail dans les exemples de réalisation suivants.
Exemple 1 : 30 Exemple 1 : Préparation d'un copolymère de poly (acrylate d'isobornyle / méthacrylate disobornyle / acrylate isobutyle / acide acrylique) 300 g d'isododécane sont introduits dans un réacteur de 1 litre, puis on augmente la température de façon à passer de la température ambiante (25 °C) à 90 °C en 1 heure. 35 On ajoute ensuite, à 90 °C et en 1 heure, 105 g de méthacrylate d'isobornyle, 105 g d'acrylate d'isobornyle et 1,8 g de 2.5- Bis(2-éthylhexanoylperoxy)-2.5-diméthylhexane (Trigonox®141 d'Akzo Nobel). Le mélange est maintenu 1 h30 à 90 °C. On introduit ensuite au mélange précédent, toujours à 90 °C et en 30 minutes, 75 g 40 d'acrylate d'isobutyle, 15 g d'acide acrylique et 1,2 g de 2.5-Bis (2-ethylhexanoylperoxy)-2.5-di méthyl hexane. Le mélange est maintenu 3 heures à 90 °C, puis l'ensemble est refroidi. On obtient une solution à 50 % de matière active en copolymère dans l'isododécane. On obtient un copolymère comprenant une première séquence ou bloc poly(acrylate 45 d'isobornyle/méthacrylate d'isobornyle) ayant une Tg de 128 °C, une deuxième séquence poly (acrylate d'isobutyle/acide acrylique) ayant une Tg de -9 °C et une séquence intermédiaire qui est un copolymère statistique acrylate d'isobornyle/méthacrylate d'isobornyle/acrylate d'isobutyle/acide acrylique. La Tg du copolymère est de 74 °C. 50 Il s'agit de Tg théoriques calculées par la loi de Fox.
Exemple N° 2 : Préparation des résines de siloxane On utilise les résines suivantes : 55 2954130 119 Résine MQ = une résine MQ de formule M0,43Q0,57 et de Mn = 3 230 dissoute dans du xylène à 70,8 % en poids de solides. La résine MQ a été fabriquée selon les techniques décrites pas Daudt dans le brevet US 2 676 182.
5 Résine de propyle T = une résine de propyle silsesquioxane à 74,8 % en poids dans du toluène. La résine de propyle silsesquioxane a été obtenue par hydrolyse de propyle trichlorosilane.
Préparation de résines MQTPr 10 Une résine MQ, une résine de propyle T, du xylène et du KOH 1 M dans de l'eau dans les proportions présentées dans le tableau 1 sont introduits dans un tricol muni d'un agitateur, d'une sonde de température et d'un appareil de Dean Stark équipé d'un condenseur au sommet. Du xylène est pré-introduit dans l'appareil de Dean Stark afin de s'assurer de 15 maintenir un niveau de solides de 50 % dans le réacteur. Le mélange dans le réacteur est maintenu à une température de reflux (entre 100 et 140 °C) pendant au moins 3 heures. Toute eau se formant dans le mélange réactionnel est éliminée en continu le cas échéant et piégée sous forme d'un azéotrope dans l'appareil de Dean Stark. Après 3 heures de reflux, l'eau est éliminée de l'appareil et le chauffage est poursuivi pendant 30 minutes 20 supplémentaires. Après refroidissement du mélange, un excès d'acide acétique est ajouté afin de neutraliser le KOH dans le mélange. Le mélange est ensuite filtré afin d'éliminer les sels formés en le passant au travers d'un filtre sous pression. Un échange de solvant est réalisé en chauffant le mélange dans un évaporateur rotatif sous vide. Après élimination de la majorité du xylène, du décaméthylcyclopentasiloxane -ou de l'isododécane- est 25 ajouté tout en continuant d'éliminer tout solvant aromatique résiduel. Les structures des résines de siloxane résultantes sont caractérisées par spectroscopie RMN 29Si et CPG et les résultats sont récapitulés dans le tableau 2 ci-dessous.
Tableau 1 Exemple Rapport massi- % en % en % en % en % en # que de résines poids de poids de poids de poids de poids MQ/TPr ajoutées résine résine de xylène KOH 1 M d'acide MQ propyle T acétique 1-a (85:15) 59,4 10,5 29,1 0,9 0,2 1-b (50:50) 34,9 34,8 29,1 0,9 0,2 1-c (30:70) 20,9 48,8 29,2 0,9 0,2 1-d (95:5) 67,1 3,5 28,3 0,9 0,2 1-e (100:0) 69,3 0 28,8 0,9 0,2 Tableau 2 Exemple # Structure de la résine selon % en Mn Mw Mw/Mn la caractérisation RMN poids de OH Ré- Mo,43Qo,57 3 230 1 516 4,7 sine MQ Résine de TPr1,o 7,0 3 470 11 400 3,3 propyle T 1-a M0,374Q0,529:TPr0,097 1,4 5 880 271 000 46,1 1-b M0,248Q0,341 •TPr0,412 2,1 6 640 3 860 000 581,3 1-c M0,162Q0,217:TPr0,621 1,5 7 600 25 300 000 3329 1 -d M0,419Q0,5485•TPr0,03 1 ,5 30 10 2954130 120 11-e I MQ 11,7 15 200 128 900 15,6 Exemples 3 à 5 : Rouges à lèvres liquide 5 Les compositions de rouge à lèvres liquides suivantes ont été préparées : Composé Composition 3 se- Composition 4 Composition 5 Ion l'invention (% selon l'invention selon en poids) (% en poids) l'invention (% en poids) Composé supramolécu- 80 80 80 laire préparé à partir du JARCOL 16 (51.7% dans un mélange isodo- decane/ethanol 90/10) (Composé supramolécu- laire n°9 préparé ci- avant) Pentaérythritol 20 / 19 - - acide benzoïque 4 / acide isostéarique 56 / acide isophtalique 20 (tel que préparé dans l'exemple 2 de EP-A- 1870082) COPOLYMERE - 19 - ACRYLIQUE EN DISPERSION DANS L'ISODODECANE AVEC COPOLYMERE STYRENE/ISOPRENE (KRATON G1701) (MEXOMERE PAP De CHIMEX) Poly (Methacrylate d'iso- - - 19 bornyle-co-acrylate d'isobornyle-co-acrylate d'isobutyle-co-acide acrylique) à 50% en ma- tière active dans 50% d'isododécane tel que préparé selon l'exemple 1 ci-dessus RED 7 (UNIPURE RED 1 1 1 LC 3079 OR de LCW (SENSIENT) Total : 100 100 100 Protocole de préparation: Dans un premier temps, les pigments sont broyés à la broyeuse tri-cylindre dans une partie de la phase huileuse. 2954130 121 Le reste des ingrédients liposolubles sont ensuite mélangés à une température de l'ordre de 50 °C (supérieure à la température de fusion des corps gras solides (pâteux ou cire) présents dans la composition) sous agitation Rayneri. Le broyat est alors ajouté au mélange on agite pour bien homogénéiser. Puis on laisse 5 refroidir à température ambiante et on conditionne ensuite le jus dans une bouillote avec un applicateur.
Les différentes compositions obtenues sont homogènes. Après application des compositions sur les lèvres on observe les résultats suivants : 10 -Pour la composition 3 comprenant un polycondensat, le dépôt formé est brillant, non transfert et peu collant. - Pour la composition 4 comprenant une dispersion non aqueuse, le dépôt formé est brillant et non collant. - Pour la composition 5 comprenant un copolymère éthylénique séquence, le dépôt 15 formé est brillant et non collant.
Exemples 6 et 7 : Rouges à lèvres liquide
20 Les compositions de rouge à lèvres liquides suivantes, contenant une résine siliconée, ont été préparées : Composé Composition 6 Composition 7 selon l'invention selon l'invention (% en poids) (% en poids)5 Composé supramoléculaire préparé à 70 70 partir du JARCOL 16 (51.7% dans un mélange isododecane/ethanol 90/10) (Composé supramoléculaire n°9 préparé ci-avant) Résine MQ-T Propyle (30 :70) à 70.3% 29 - dans l'isododécane telle que préparée dans l'exemple 1-C ci-dessus DE DOW CORNING TRIMETHYLSILOXYSILICATE (60% - 29 ISODODECANE) (SR 1000 de Momen- tive) RED 7 ( UNIPURE RED LC 3079 OR de 1 1 LCW (SENSIENT) Total : 100 100 Protocole de préparation:
30 Dans un premier temps, les pigments sont broyés à la broyeuse tri-cylindre dans une partie de la phase huileuse. Le reste des ingrédients liposolubles sont ensuite mélangés à une température de l'ordre de 50 °C (supérieure à la température de fusion des corps gras solides (pâteux opu cire) présents dans la composition) sous agitation Rayneri. 35 Le broyat est alors ajouté au mélange on agite pour bien homogénéiser. Puis on laisse refroidir à température ambiante et on conditionne ensuite le jus dans une bouillote avec un applicateur. 2954130 122
Les différentes compositions obtenues sont homogènes. Après application des compositions sur les lèvres on observe les résultats suivants : - Pour la composition 6 comprenant une résine siliconée de type MQT, le dépôt for- 5 mé est très brillant et non collant. - Pour la composition 7 comprenant une résine siliconée de type MQ, le dépôt formé est très brillant et non collant.
10 Exemples 8 et 9 : Rouges à lèvres liquide
Les compositions de rouge à lèvres liquides suivantes, contenant un composé épaississants capable d'établir des interactions hydrogène, ont été préparées : Composé Composition 8 Composition 1 selon l'invention selon l'invention (% en poids) (% en poids) Composé supramoléculaire préparé à 90 90 partir du JARCOL 16 (51.7% dans un mélange isododecane/ethanol 90/10) (Composé supramoléculaire n°9 préparé ci-avant) ETHYLENEDIAMINE/STEARYL DIMER 9 - DILINOLEATE COPOLYMER (UNICLEAR 100VG d'ARIZONA CHEMICALS) NYLON-611/DIMETHICONE - 9 COPOLYMER (DOW CORNING 2-8179 GELLANT de Dow CORNING) RED 7 ( UNIPURE RED LC 3079 OR de 1 1 LCW (SENSIENT) Total : 100 100 Protocole de préparation: 20 Dans un premier temps, les pigments sont broyés à la broyeuse tri-cylindre dans une partie de la phase huileuse. Le reste des ingrédients liposolubles sont ensuite mélangés à une température de l'ordre de 50 °C (supérieure à la température de fusion des corps gras solides (pâteux opu cire) 25 présents dans la composition) sous agitation Rayneri. Le broyat est alors ajouté au mélange on agite pour bien homogénéiser. Puis on laisse refroidir à température ambiante et on conditionne ensuite le jus dans une bouillote avec un applicateur. Les différentes compositions obtenues sont homogènes. 30 Après application des compositions sur les lèvres on observe les résultats suivants : - Pour la composition 8 comprenant un polyamide, le dépôt formé est brillant. - Pour la composition 9 comprenant un polyamide siliconé, le dépôt formé est brillant et non collant.
35 Exemples 10 : Rouges à lèvres liquide 2954130 123 La composition de rouge à lèvres liquide suivante, contenant un elastomère siliconé, a été préparée : Composé Composition 10 selon l'invention (% en poids) Composé supramoléculaire préparé à 89 partir du JARCOL 16 (51.7% dans un mélange isododecane/ethanol 90/10) (Composé supramoléculaire n°9 préparé ci-avant) DIMETHICONE (and) DIMETHICONE 10 CROSSPOLYMER( DOW CORNING 9041 SILICONE ELASTOMER BLEND de DOW CORNING) RED 7 ( UNIPURE RED LC 3079 OR de 1 LCW (SENSIENT) Total : 100 Protocole de préparation:
10 Dans un premier temps, les pigments sont broyés à la broyeuse tri-cylindre dans une partie de la phase huileuse. Le reste des ingrédients liposolubles sont ensuite mélangés à une température de l'ordre de 50 °C (supérieure à la température de fusion des corps gras solides (pâteux opu cire) présents dans la composition) sous agitation Rayneri.
15 Le broyat est alors ajouté au mélange on agite pour bien homogénéiser. Puis on laisse refroidir à température ambiante et on conditionne ensuite le jus dans une bouillote avec un applicateur. La composition obtenue est homogène. Après application des compositions sur les lèvres, on obtient un dépôt brillant et non collant (le dépôt est brillant, mais un peu moins brillant 20 que les dépôts obtenus avec les compositions 1 à 9).

Claims (23)

  1. REVENDICATIONS1. Composition cosmétique de maquillage et/ou de soin des matières kératiniques corn- prenant, dans un milieu cosmétiquement, (i) un composé supramoléculaire susceptible d'être obtenu par réaction entre : - au moins une huile portant au moins une fonction réactive nucléophile choisie parmi OH et NH2, et - au moins un groupe de jonction capable d'établir des liaisons hydrogène avec un ou plu- sieurs groupes de jonction partenaires, chaque appariement d'un groupe de jonction faisant intervenir au moins 3 liaisons hydrogène, ledit groupe de jonction portant au moins une fonction réactive isocyanate ou imidazole susceptible de réagir avec la fonction réactive portée par l'huile, ledit groupe de jonction comprenant en outre au moins un motif de formule (I) ou (Il) : O IN R2~\N~\NHùCùNHùR1ù* H I I oO *ù R3 N I R2~ 'NNHùCùNHùR1ù* H 0 (I) (II) dans lesquelles : - R1 et R3, identiques ou différents, représentent un radical carboné divalent choisi parmi (i) un groupe alkyle linéaire ou ramifié en C1-C32, (ii) un groupe cycloalkyle en C4-C16 et (iii) un groupe aryle en C4-C16; comprenant éventuellement 1 à 8 hétéroatomes choisis parmi O, N, S, F, Si et P; et/ou éventuellement substitué par une fonction ester, amide ou par un radical alkyle en C1-C12; ou un mélange de ces groupes; - R2 représente un atome d'hydrogène ou un radical carboné, notamment hydrocarboné, linéaire, ramifié ou cyclique, saturé ou insaturé, éventuellement aromatique, en C1-C32, pouvant comprendre un ou plusieurs hétéroatomes choisis parmi O, N, S, F, Si et P ; (ii) et au moins un ingrédient additionnel choisi de préférence parmi : - les élastomères siliconés, - les résines siliconées, - les polycondensats susceptible d'être obtenu par réaction: • d'un tétraol ayant de 4 à 10 atomes de carbone ; • d'un acide saturé monocarboxylique, linéaire ou ramifié, ayant de 9 à 23 atomes de carbone ; • d'un diacide carboxylique cyclique ayant de 6 à 12 atomes de carbone ; et • d'un acide monocarboxylique aromatique ayant de 7 à 11 atomes de carbone, - les polymères filmogènes, de préférence choisi parmi le groupe comprenant : • un copolymère éthylénique séquencé filmogène, • un polymère vinylique comprenant au moins un motif dérivé de dendrimère carbosiloxane, • une dispersion de particules de d'homopolymère ou de copolymère radicalaire, 40 acrylique ou vinylique dispersées dans ladite phase grasse liquide, - les polymères semi-cristallins, - les agents épaississants comprenant au moins un groupe, de préférence au moins deux groupes, capable d'établir des interactions hydrogène choisi parmi •les agents épaississants polymèriques et 45 •les organogélateurs. 2954130 125
  2. 2. Composition selon la revendication 1, dans laquelle l'huile portant la fonction réactive est choisie parmi, seule ou en mélange : (i) les alcools gras, comprenant 6 à 50 atomes de carbone, linéaires, ramifiés ou cycliques, saturés ou insaturés, comprenant 1 ou plusieurs OH; éventuellement comprenant 5 un ou plusieurs NH2; (ii) les esters et les éthers portant au moins un groupe OH libre, et notamment les esters et éthers partiels de polyol, et les esters d'acide carboxylique hydroxylé; (iii) les huiles naturelles, naturelles modifiées, végétales, hydroxylées. 10
  3. 3. Composition selon l'une des revendications précédentes, dans laquelle l'huile portant la fonction réactive est choisie parmi, seule ou en mélange : - les monoalcools linéaires ou ramifiés en C6-050, notamment en C6-C32, en particulier en C8-C28, saturés ou insaturés, et notamment l'alcool isostéarylique, l'alcool cétylique, l'alcool oléique, l'alcool oléylique, l'alcool isopalmitoylique, le butyl-2 octanol, l'hexyl-2 dé- 15 canot, l'octyl-2 décanol, l'octyl-2 dodécanol, l'octyl-2 tétradécanol, le décyl-2 tétradécanol, le dodécyl-2 hexadécanol; - les diols linéaires ou ramifiés en C6-050, notamment en C6-C40, en particulier en C8-C38, saturés ou insaturés, et notamment ramifié en C32-36; - les triols linéaires ou ramifiés en C6-050, notamment en C6-C32, en particulier en C8- 20 C28, saturés ou insaturés, et notamment le phytantriol; - les esters partiels de pentaérythritol, et notamment l'adipate de pentaérythrityle, le caprate de pentaérythrityle, le succinate de pentaérythrityle, le tétraisononanoate de pentaérythrityle, le triisononanoate de pentaérythrityle, le tétraisostéarate de pentaérythrityle, le triisostéarate de pentaérythrityle, le tétradécyl-2 tétradécanoate de pentaérythrityle, le té- 25 traéthyl hexanoate de pentaérythrityle, le tétraoctyl dodécanoate de pentaérythrityle; - les diesters, triesters, tetraesters ou pentaesters de dipentaérythritol, et notamment le dipentaérythrityle pentaisononanoate, le dipentaérythrityle pentaisostéarate, le dipentaérythrityle tétraisostéarate, le dipentaérythrityle tri(polyhydroxystéarate); - les mono et di-esters de triméthylolpropane comme le triméthylolpropane mono- 30 isostéarate, le triméthylolpropane di-isostearate, le triméthylolpropane monoethyl-2 hexylate, le triméthylolpropane diethyl-2 hexylate; - les mono-, di- et tri-esters de di-triméthylolpropane comme le di-triméthylolpropane diisostearate, le di-triméthylolpropane tri-isostearate, le di-triméthylolpropane tri-ethyl hexanoate; 35 - les mono-esters ou poly-esters partiels de glycérol ou de polyglycérols, et notamment : - le di-isostearate de glycérol, le di-isononanoate de glycérol, - les mono-, di- et tri-esters de polyglycérol-2; par exemple avec l'acide isostéarique, l'acide ethyl-2 hexylique et/ou l'acide isononanoïque; et notamment le polyglycéryl-2-isostéarate; le polyglycéryl-2-diisostéarate; le triisostéarate de polyglycéryl-2; le polyglycé- ryl-2-nonaisostearate; le polyglycéryl-2-nonanoate; - les mono-, di-, tri- ou tétra-esters de polyglycérol-3; par exemple avec soit l'acide isostéarique, l'acide ethyl-2 hexylique et/ou l'acide isononanoïque; et notamment le polyglycéryl-3-isostéarate, le polyglycéryl-3-diisostéarate; le triisostéarate de polyglycéryl-3; le polyglycéryl-3-nonaisostearate; le polyglycéryl-3-nonanoate; - les esters partiels de polyglycérol-10 et en particulier le polyglycéryl-10 nonaisostearate; le polyglycéryl-10-nonanoate; le polyglycéryl-10-isostéarate, le polyglycéryl-10-diisostéarate, le triisostéarate de polyglycéryl-10; - les monoesters de propylène glycol comme le monoisostearate de propylène glycol, le néopentanoate de propylène glycol, le monooctanoate de propylène glycol; - les monoesters de dimères-diols comme l'isostéaryl dimer dilinoleate et l'octyl dodecyl dimer dilinoleate - les éthers de glycérol, tels que le polyglycéryl-2 oleyléther, le polyglycéryl-3 cétyléther, le polyglycéryl-3 décyltétradécyléther et le polyglycéryl-2 stéaryléther; - les esters entre acide mono-, di- ou tri-carboxylique hydroxylé et monoalcools, et en par- ticulier: 2954130 126 - les esters, notamment monoesters, d'acide 12-hydroxystéarique; tels que l'hydroxystéarate d'octyle, et l'octyl-2 dodecyl hydroxystearate; on peut également citer les polyhydroxystéarates oligomères correspondants, notamment ayant un degré de polymérisation de 1 à 10, possédant au moins un OH résiduel; 5 - les esters d'acide lactique, et notamment les lactates d'alkyles en C4-40, tels que le lactate de 2-éthylhexyle, le lactate de diisostéaryle, le lactate d'isostéaryle, le lactate d'isononyle, le lactate d'octyl-2 dodécyle; - les esters d'acide malique, et notamment les malates d'alkyles en C4-40, tels que le malate de diéthyl-2 hexyle, le malate de diisostéaryle, le malate de dioctyl-2 dodécyle; 10 - les esters d'acide citrique, et notamment les citrates d'alkyles en C4-40, tels que le citrate de triisostéaryle, le citrate de triisocétyle et le citrate de tri-isoarachidyle. - les esters triglycériques portant un ou plusieurs OH, - l'huile de ricin, hydrogénée ou non, ainsi que ses dérivés notamment issus de la transesterification de l'huile de ricin; 15 - les huiles époxydées modifiées, la modification consistant à ouvrir la fonction époxy pour obtenir un diol, et notamment l'huile de soja modifiée hydroxylée; les huiles de soja hydroxylées (directement hydroxylées ou d'abord époxydées).
  4. 4. Composition selon l'une des revendications précédentes, dans laquelle l'huile est une 20 huile brillante, c'est-à-dire ayant un indice de réfraction supérieur ou égal à 1,46 à 25°C.
  5. 5. Composition selon l'une des revendications précédentes, dans laquelle l'huile a une masse molaire (Mw) comprise entre 150 et 6000, notamment entre 170 et 4000, voire entre 180 et 2000, préférentiellement entre 200 et 1500, et encore mieux entre 220 et 800 25 g/mol.
  6. 6. Composition selon la revendication 1, dans laquelle l'huile portant la fonction réactive est choisie parmi : - les alcools gras, comprenant 6 à 50 atomes de carbone, linéaires, ramifiés ou cycliques, 30 saturés ou insaturés, comprenant 1 ou plusieurs OH; éventuellement comprenant un ou plusieurs NH2, tels que les monoalcools linéaires ou ramifiés en C6-050, notamment en C6-C32, en particulier en C8-C28, saturés ou insaturés, et notamment l'alcool isostéarylique, l'alcool cétylique, l'alcool oléique, l'alcool oléylique, l'alcool isopalmitoylique, le butyl-2 octanol, l'hexyl-2 décanol, l'octyl-2 décanol, l'octyl-2 dodécanol, l'octyl-2 tétradécanol, le 35 décyl-2 tétradécanol, le dodécyl-2 hexadécanol, - les esters d'acide dicarboxylique hydroxylé avec un monoalcool, et en particulier d'acide malique, et notamment les malates d'alkyles en C4-40, tels que le malate de diéthyl-2 hexyle, le malate de diisostéaryle, le malate de dioctyl-2 dodécyle. 40
  7. 7. Composition selon l'une des revendications précédentes, dans laquelle, dans le groupe de jonction, le radical R1 représente : - un groupe alkylène divalent, linéaire ou ramifié, en C2-C12, notamment un groupe 1,2-éthylène, 1,6-hexylène, 1,4-butylène, 1,6-(2,4,4-triméthylhexylène), 1,4-(4- méthylpentylène), 1,5-(5-méthylhexylène), 1,6-(6-méthylheptylène), 1,5-(2,2,5- 45 triméthylhexylène), 1,7-(3,7-diméthyloctylène). - un groupe cycloalkylène ou arylène, divalent, en C4-C12, notamment choisi parmi les radicaux suivants ùisophorone-, tolylène, 2-méthyl-1,3-phénylène, 4-méthyl-1,3-phénylène; 4,4'-méthylènebiscyclohexylène; 4,4-bisphénylèneméthylène; ou de structure : * CH2 CH * 50
  8. 8. Composition selon l'une des revendications précédentes, dans laquelle, dans le groupe de jonction, le radical R2 représente H, ou bien : - un groupe alkyle en C1-C32, en particulier en C1-C16, voire en C1-C10;7 - un groupe cycloalkyle en C4-C12 ; - un groupe aryle en C4-C12 ; - un groupe aryl(C4-C12) alkyle en C1-018 - un groupe alcoxy en C1_C4 ; - un groupe arylalcoxy, en particulier un groupe aryle (C1-C4) alcoxy ; - un hétérocycle en C4-C12 ou une combinaison de ces radicaux, qui peuvent éventuellement être substitués par une fonction amino, ester et/ou hydroxy.
  9. 9. Composition selon l'une des revendications précédentes, dans laquelle, dans le groupe de jonction, le radical R3 représente un radical divalent ûR'3-O-C(0)-NH-R'4- dans lequel R'3 et R'4, identiques ou différents, représentent un radical carboné divalent choisi parmi un groupe alkyle linéaire ou ramifié en C1-C32 ou un groupe cycloalkyle en C4-C16 ou un groupe aryle en C4-C16; ou leur mélange.
  10. 10. Composition selon l'une des revendications précédentes, dans laquelle, dans le groupe de jonction, (a) dans la formule (I), on a : - R, = -isophorone- et R2 = méthyl, - R, = -(CH2)6- et R2 = méthyl, - R, = -(CH2)6- et R2 = isopropyl, ou - R, = 4,4'-méthylènebiscyclohexylène et R2 = méthyle, ou bien (b) dans la formule (Il), R1 représente le radical -isophorone-, R2= méthyle et R3=- (CH2)2000-NH-isophorone-.
  11. 11. Composition selon l'une des revendications précédentes, dans laquelle le groupe de jonction est de formule : O IN R2~~N~~NHùCùNHùR1ù NCO H I I o ou de formule : O OCN ù R3\N 1 I R2N H N H /NHùR1ùNCO I I o dans laquelle R1, R2 et R3 sont tels que définis dans l'une des revendications précédentes.
  12. 12. Composition selon l'une des revendications précédentes, dans laquelle le groupe de jonction est choisi parmi les groupes suivants :8 H H 1 1 O ,NN NH O CH3 NCO NH O H3C CH3 H H 1 I O vN~N~ NH O H3CCH3 NCO O NN H ON H H X O N O N NCO OCN X O N N N O H H
  13. 13. Composition selon l'une des revendications précédentes, dans laquelle les composés supramoléculaires sont choisis parmi ceux répondant aux structures suivantes :9 O IOI N~~iOUN isostéarylùO` O1N` NÂN~N~o IOI 000 H H isostéaryl O O N' isostéarylùO O1N NÂN/O I I OO~O H H 1 isostéaryl X 00 O OO N)'L O 0ùisostéaryl isostéarylOH X 0 ll IOI N `O N`v^ ^NÂN)NäO IoI \ /~ H H O N i~ NNÂN)N O H H
  14. 14. Composition selon l'une des revendications précédentes, dans laquelle la masse moléculaire moyenne en nombre (Mn) du composé supramoléculaire est comprise entre 180 à 8000, de préférence 200 à 6000, voire de 300 à 4000, et encore mieux de 400 à 3000, préférentiellement de 500 à 1500.
  15. 15. Composition selon l'une des revendications précédentes, dans laquelle la quantité de composé supramoléculaire présent dans la composition est comprise entre 5 % et 95 % en poids, de préférence entre 10 % et 95 % en poids, et mieux de préférence entre 20 % 130 131 et 90 % en poids par rapport au poids total de la composition.
  16. 16. Composition selon l'une des revendications précédentes, caractérisée en ce que ledit ingrédient additionnel est un élastomère d'organopolysiloxane est choisi parmi ceux obte-5 nus - par réaction d'addition réticulation de diorganosiloxane contenant au moins un hydrogène lié au silicium et de diorganopolysiloxane ayant des groupements à insaturation éthylénique liés au silicium, - par réaction de condensation réticulation déhydrogénation entre un dior-10 ganopolysiloxane à terminaisons hydroxyle et un diorganopolysiloxane contenant au moins un hydrogène lié au silicium, - par réaction de condensation réticulation d'un diorganopolysiloxane à terminaisons hydroxyle et d'un organopolysilane hydrolysable, - par réticulation thermique d'organopolysiloxane, ou 15 par réticulation d'organopolysiloxane par radiations de haute énergie.
  17. 17. Composition selon l'une des revendications 1 à 15, caractérisée en ce que ledit ingrédient additionnel est une résine siliconée choisie parmi le groupe comprenant : a) une résine de type MQ, notamment choisie parmi (i) les alkylsiloxysilicates, qui peuvent 20 être des triméthylsiloxysilicates, de formule [(R1)3SiO,/2]x(SiO412)y, dans laquelle x et y sont des entiers allant de 50 à 80, et tel que le groupement R1 représente un groupement alkyle ayant de 1 à 8 atomes de carbone ou un groupe hydroxyle, de préférence, un groupe méthyl, et (ii) les résines phénylalkylesiloxysilicate, telle que la phénylpropyldiméthylsiloxysilicate, et/ou 25 b) une résine de type T, notamment choisie parmi les polysilsesquioxanes de formule (RSiO312)x, dans laquelle x est supérieur à 100 et le groupement R est un groupement alkyle ayant de 1 à 10 atomes de carbone, par exemple un groupe méthyle, lesdites polysilsesquioxanes pouvant en outre comprendre des groupes terminaux Si-OH, et/ou c) une résine de type MQT, notamment de type MQT-propyl, pouvant comprendre les uni- 30 tés (i) (R13SiO12)a, (ii) (R22SiO2J2)b, (iii) (R3SiO312), et (iv) SiO412)d avec RI, R2 et R3 représentant indépendamment un radical hydrocarboné, notamment alkyle, ayant de 1 à 10 atomes de carbone, un groupe phényl, un groupe phénylalkyl ou bien encore un groupe hydroxyle et de préférence un radical alkyle ayant de 1 à 8 atomes de carbone ou un groupement phényl, 35 a étant compris entre 0,05 et 0,5, b étant compris entre zéro et 0,3, c étant supérieur à zéro, d étant compris entre 0,05 et 0,6, a + b + c + d = 1 et a, b, c et d étant des fractions molaires, 40 à condition que plus de 40 % en moles des groupements R3 de la résine de siloxane soient des groupements propyle.
  18. 18.- Composition selon l'une des revendications 1 à 15, caractérisée en ce que ledit ingrédient additionnel est un polymère filmogène choisi parmi : 45 -un polymère éthylénique séquencé filmogène caractérisé en ce que la deuxième séquence est obtenue à partir d'acide acrylique et d'acrylate d'isobutyle et en ce que la première séquence est obtenue à partir d'acrylate d'isobornyle et de méthacrylate d'isobornyle, - une dispersion de particules de d'homopolymère ou de copolymère radicalaire, acrylique 50 ou vinylique dispersées dans une phase grasse liquide telle que les particules du polymère en dispersion sont choisies parmi les polymères ou copolymères acryliques, et en ce qu'elles sont insolubles dans les alcools hydrosolubles.
  19. 19. - Composition selon l'une des revendications 1 à 15, caractérisée en ce que ledit in-55 grédient additionnel est un polymère semi-cristallin est choisi parmi : 2954130 132 - les homopolymères et copolymères comportant des motifs résultant de la polymérisation de un ou plusieurs monomères porteurs de chaîne(s) latérale(s) hydrophobe(s) cristallisable(s), - les polymères portant dans le squelette au moins une séquence cristallisable, - les polycondensats de type polyester, aliphatique ou aromatique ou aliphati- que/aromatique, - les homopolymères et/ou les copolymères d'éthylène et/ou de propylène préparés par catalyse métallocène.
  20. 20. - Composition selon l'une des revendications 1 à 15, caractérisée en ce que ledit ingrédient additionnel est un agent épaissant capable d'établir des liaisons H, choisi parmi : (i) les polymères de masse moléculaire moyenne en poids inférieure à 100 000, comportant a) un squelette polymérique ayant des motifs de répétition hydrocarbonés pourvus d'au moins un hétéroatome, et éventuellement b) au moins une chaîne grasse pendante et/ou au moins une chaîne grasse terminale éventuellement fonctionnalisées, ayant de 6 à 120 atomes de carbone et étant liées à ces motifs hydrocarbonés, - de préférence tels qu'un polyamide de masse moléculaire moyenne en poids inférieure à 100 000, comportant a) un squelette polymérique ayant des motifs de répétition hydrocarbonés qui sont des amides, et b) éventuellement au moins une chaîne grasse pendante et/ou au moins une chaîne grasse terminale éventuellement fonctionnalisées, ayant de 8 à 120 atomes de carbone et étant liées à ces motifs hydrocarbonés qui sont des amides (il) les polyamides siliconées, comprenant de préférence au moins un motif répondant à la formule générale I : R4 R5 G'ùX L SiO Jm Si X G R5 n (I) 1) dans laquelle : G' représente C(0) quand G représente -C(0)-NH-Y-NH-, et G' représente ûNH- quand G représente ûNH-C(0)-Y-C(0)- 2) R4, R5, R6 et R7, identiques ou différents, représentent un groupe choisi parmi : les groupes hydrocarbonés, linéaires, ramifiés ou cycliques, en Cl à C46, saturés ou insaturés, pouvant contenir dans leur chaîne un ou plusieurs atomes d'oxygène, de soufre et/ou d'azote, et pouvant être substitués en partie ou totalement par des atomes de fluor, les groupes aryles en C6 à Cl0, éventuellement substitués par un ou plusieurs groupes alkyle en CI à C4i les chaînes polyorganosiloxanes contenant ou non un ou plu-sieurs atomes d'oxygène, de soufre et/ou d'azote, 3) les X, identiques ou différents, représentent un groupe alkylène di-yle, linéaire ou ramifié en C, à C30, pouvant contenir dans sa chaîne un ou plusieurs atomes d'oxygène et/ou d'azote, 4) Y est un groupe divalent alkylène linéaire ou ramifié, arylène, cycloalkylène, alky- larylène ou arylalkylène, saturé ou insaturé, en C, à C50, pouvant comporter un ou plusieurs atomes d'oxygène, de soufre et/ou d'azote, et/ou porter comme substi- tuant l'un des atomes ou groupes d'atomes suivants : fluor, hydroxy, cycloalkyle en 2954130 133 C3 à co, alkyle en C1 à C4o, aryle en C5 à C10, phényle éventuellement substitué par 1 à 3 groupes alkyle en C1 à co, hydroxyalkyle en C1 à co et amino alkyle en C1 à C6, ou 5) Y représente un groupe répondant à la formule : R8 dans laquelle T représente un groupe hydrocarboné trivalent ou tétravalent, linéaire ou ramifié, saturé ou insaturé, en C3 à C24 éventuellement substitué par une chaîne polyorganosiloxane, et pouvant contenir un ou plusieurs atomes choisis parmi O, N et S, ou T représente un atome trivalent choisi parmi N, P et Al, et R8 représente un groupe alkyle en C1 à C50i linéaire ou ramifié, ou une chaîne polyorganosiloxane, pouvant comporter un ou plusieurs groupes ester, amide, uréthane, thiocarbamate, urée, thiourée et/ou sulfonamide qui peut être lié ou non à une autre chaîne du polymère, 6) n est un nombre entier allant de 2 à 500, de préférence de 2 à 200, et m est un nombre entier allant de 1 à 1000, de préférence de 1 à 700 et mieux encore de 6 à 200. 20
  21. 21.- Composition selon l'une des revendications précédentes, caractérisée en ce qu'elle comprend en outre au moins additif choisi parmi les huiles volatiles, les huiles non volatiles, les matières colorantes, les corps gras pâteux, les cires, les charges et leur mélange.
  22. 22. Composition selon l'une des revendications précédentes, se présentant sous la forme 25 d'une composition de soin et/ou de maquillage de la peau du corps ou du visage, des lèvres, des cils, des sourcils, ou des ongles; d'un produit solaire ou autobronzant.
  23. 23. Procédé de traitement cosmétique des matières kératiniques, notamment de la peau du corps ou du visage, des lèvres, des ongles, et/ou des cils, comprenant l'application sur 30 lesdites matières d'une composition cosmétique telle que définie selon l'une quelconque des revendications 1 à 22. 5 10 15
FR0959202A 2009-12-18 2009-12-18 Composition cosmetique comprenant un compose supramoleculaire capable d'etablir des liaisons hydrogene, et un ingredient additionnel particulier Active FR2954130B1 (fr)

Priority Applications (5)

Application Number Priority Date Filing Date Title
FR0959202A FR2954130B1 (fr) 2009-12-18 2009-12-18 Composition cosmetique comprenant un compose supramoleculaire capable d'etablir des liaisons hydrogene, et un ingredient additionnel particulier
US13/516,920 US9017648B2 (en) 2009-12-18 2010-12-15 Cosmetic composition comprising a supramolecular compound capable of establishing hydrogen bonds, and a particular additional ingredient
ES10792919.2T ES2443848T3 (es) 2009-12-18 2010-12-15 Composición cosmética que comprende un compuesto supramolecular capaz de establecer enlaces de hidrógeno, y un ingrediente adicional particular
EP10792919.2A EP2512427B1 (fr) 2009-12-18 2010-12-15 Composition cosmétique comprenant un composé supramoléculaire capable d'établir des liaisons hydrogène ainsi qu'un ingrédient additionnel particulier
PCT/EP2010/069840 WO2011073294A1 (fr) 2009-12-18 2010-12-15 Composition cosmétique comprenant un composé supramoléculaire capable d'établir des liaisons hydrogène ainsi qu'un ingrédient additionnel particulier

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
FR0959202A FR2954130B1 (fr) 2009-12-18 2009-12-18 Composition cosmetique comprenant un compose supramoleculaire capable d'etablir des liaisons hydrogene, et un ingredient additionnel particulier

Publications (2)

Publication Number Publication Date
FR2954130A1 true FR2954130A1 (fr) 2011-06-24
FR2954130B1 FR2954130B1 (fr) 2012-02-24

Family

ID=42738821

Family Applications (1)

Application Number Title Priority Date Filing Date
FR0959202A Active FR2954130B1 (fr) 2009-12-18 2009-12-18 Composition cosmetique comprenant un compose supramoleculaire capable d'etablir des liaisons hydrogene, et un ingredient additionnel particulier

Country Status (5)

Country Link
US (1) US9017648B2 (fr)
EP (1) EP2512427B1 (fr)
ES (1) ES2443848T3 (fr)
FR (1) FR2954130B1 (fr)
WO (1) WO2011073294A1 (fr)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9730882B2 (en) 2012-03-12 2017-08-15 L'oreal Cosmetic composition based on a supramolecular polymer, a hyperbranched functional polymer and a polyethylene wax
US8846015B2 (en) 2012-03-12 2014-09-30 L'oreal Cosmetic compositions based on a supramolecular polymer, a hyperbranched functional polymer, a light silicone fluid and a copolymer of a silicone resin and a fluid silicone
US9089502B2 (en) 2012-03-12 2015-07-28 L'oreal Cosmetic compositions based on a supramolecular polymer, a hyperbranched functional polymer, a light silicone fluid, a copolymer of a silicone resin and a fluid silicone, and a functional filler
US8709388B2 (en) 2012-03-12 2014-04-29 L'oreal Cosmetic composition based on a supramolecular polymer and a hyperbranched functional polymer
CN104635372B (zh) * 2015-02-06 2017-02-22 京东方科技集团股份有限公司 彩膜基板及显示装置
US9803055B2 (en) 2015-02-24 2017-10-31 Hempel A/S Method for producing fluorinated polysiloxane
US11690825B2 (en) 2016-03-09 2023-07-04 Board Of Regents, The University Of Texas System 20-HETE receptor (GPR75) antagonists and methods of use
CN109415541A (zh) * 2016-06-16 2019-03-01 株式会社普利司通 橡胶用添加剂
KR102491224B1 (ko) * 2017-06-01 2023-01-20 엘지디스플레이 주식회사 터치표시장치 및 터치패널
CN112041376B (zh) * 2018-04-16 2023-04-04 信越化学工业株式会社 有机el用透明干燥剂及其使用方法
BR112021024874A2 (pt) 2019-06-12 2022-01-25 Nouryon Chemicals Int Bv Processo para a produção de peróxidos de diacila
HUE063796T2 (hu) 2019-06-12 2024-01-28 Nouryon Chemicals Int Bv Eljárás diacil-peroxidok elõállítására
US20220306490A1 (en) * 2019-06-12 2022-09-29 Nouryon Chemicals International B.V. Method for isolating carboxylic acid from an aqueous side stream
CN114057973B (zh) * 2021-12-07 2023-04-28 广州予能新材料科技有限公司 一种有机硅改性聚氨酯材料及其制备方法
WO2023145518A1 (fr) * 2022-01-25 2023-08-03 株式会社Adeka Copolymère et composition cosmétique contenant ledit copolymère

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002098377A1 (fr) * 2001-06-07 2002-12-12 L'oreal Composition cosmetique formant apres application un polymere supramoleculaire
WO2006118460A1 (fr) * 2005-05-04 2006-11-09 Suprapolix B.V. Hydrogels a liaisons hydrogenes
EP2140858A1 (fr) * 2008-07-04 2010-01-06 L'Oréal Composition cosmétique ou dermatologique comprenant un composé capable d'établir des liaisons hydrogène, et procédé de traitement cosmétique

Family Cites Families (66)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2676182A (en) 1950-09-13 1954-04-20 Dow Corning Copolymeric siloxanes and methods of preparing them
US3148125A (en) 1961-03-22 1964-09-08 Yardley Of London Inc Clear lipstick
US3645705A (en) 1970-03-03 1972-02-29 Kolar Lab Inc Transparent combustible material suitable for candle bodies
US3627851A (en) 1970-10-23 1971-12-14 Dow Corning Flexible coating composition
BE786656A (fr) 1971-07-30 1973-01-24 Ici Ltd Siloxanes
JPS61194009A (ja) 1985-02-21 1986-08-28 Toray Silicone Co Ltd メ−クアツプ化粧料
JPS62243621A (ja) 1986-04-17 1987-10-24 Toray Silicone Co Ltd シリコ−ンゴム粒状物の製造方法
DE3712202C1 (de) 1987-04-10 1988-09-08 Kleinewefers Ramisch Gmbh Verfahren und Vorrichtung zum Gasbeheizen von Kalanderwalzen
DE3717073A1 (de) 1987-05-21 1988-12-08 Wacker Chemie Gmbh Siliconharzpulver und verfahren zu deren herstellung
JPS63313710A (ja) 1987-06-16 1988-12-21 Toray Silicone Co Ltd 洗顔化粧料
US5082706A (en) 1988-11-23 1992-01-21 Dow Corning Corporation Pressure sensitive adhesive/release liner laminate
GB8906626D0 (en) 1989-03-22 1989-05-04 Dow Corning Method of making organosiloxane resins
US5156911A (en) 1989-05-11 1992-10-20 Landec Labs Inc. Skin-activated temperature-sensitive adhesive assemblies
JP2631772B2 (ja) 1991-02-27 1997-07-16 信越化学工業株式会社 新規なシリコーン重合体及びそれを用いた水分散能を有するペースト状シリコーン組成物
FR2679444B1 (fr) 1991-07-25 1995-04-07 Oreal Utilisation comme agents epaississants des huiles, dans une composition cosmetique huileuse, d'une association de deux copolymeres.
US5248739A (en) 1991-10-18 1993-09-28 Dow Corning Corporation Silicone pressure sensitive adhesives having enhanced adhesion to low energy substrates
ES2101826T3 (es) 1991-11-04 1997-07-16 Chimie Ind Sa Soc Nouv Procedimiento para la preparacion de pigmentos, especialmente, pigmentos fluorescentes.
EP0545002A1 (fr) 1991-11-21 1993-06-09 Kose Corporation Polymère de silicone, composition pâteuse et composition cosmétique du type eau-dans-l'huile le contenant
DE69301818T2 (de) 1992-05-12 1996-10-02 Procter & Gamble Schwiesshemmende gelstiftzusammensetzung
ES2100388T3 (es) 1992-05-26 1997-06-16 Hoechst Ag Procedimiento para preparar ceras de poliolefina.
JP2666661B2 (ja) 1992-06-18 1997-10-22 信越化学工業株式会社 オルガノポリシロキサンパウダーの製造方法
US5319040A (en) 1993-03-12 1994-06-07 General Electric Company Method for making substantially silanol-free silicone resin powder, product and use
JP2832143B2 (ja) 1993-12-28 1998-12-02 信越化学工業株式会社 シリコーン微粒子およびその製造方法
US5500209A (en) 1994-03-17 1996-03-19 The Mennen Company Deodorant and antiperspirant compositions containing polyamide gelling agent
GB9418499D0 (en) 1994-09-14 1994-11-02 Ciba Geigy Ag Process for producing n-methylated organic pigments
DE19603357B4 (de) 1995-02-10 2004-09-23 General Electric Co. Siloxysilicatharze geringer Viskosität mit organischen, funktionellen Gruppen
FR2735689B1 (fr) 1995-06-21 1997-08-01 Oreal Composition comprenant une dispersion de particules de polymeres dans un milieu non aqueux
EP0765656B1 (fr) 1995-09-29 2001-07-04 Shiseido Company Limited Composition cosmétique comprenant une émulsion eau-dans-l'huile
JPH09171154A (ja) 1995-12-19 1997-06-30 Nippon Sheet Glass Co Ltd 画像入力光学系及びこの光学系を用いた画像入力装置
EP0787731B1 (fr) 1996-01-30 2002-08-07 Ciba SC Holding AG Dicétopyrrolopyrroles et leurs polymères
EP0787730B1 (fr) 1996-01-30 2001-08-01 Ciba SC Holding AG Diketopyrrolopyrroles polyméisables et polymères préparés avec les-mêmes
US5837793A (en) 1996-03-22 1998-11-17 Dow Corning Toray Silicone Co., Ltd. Silicone rubber powder and method for the preparation thereof
US5919441A (en) 1996-04-01 1999-07-06 Colgate-Palmolive Company Cosmetic composition containing thickening agent of siloxane polymer with hydrogen-bonding groups
US5874069A (en) 1997-01-24 1999-02-23 Colgate-Palmolive Company Cosmetic composition containing silicon-modified amides as thickening agents and method of forming same
US5707612A (en) 1996-04-08 1998-01-13 Alzo, Inc. Use urethane polymers of castor oil skin and personal care product compositiions
US5783657A (en) 1996-10-18 1998-07-21 Union Camp Corporation Ester-terminated polyamides of polymerized fatty acids useful in formulating transparent gels in low polarity liquids
DE19648895A1 (de) 1996-11-26 1998-05-28 Clariant Gmbh Polar modifizierte Polypropylen-Wachse
US5811487A (en) 1996-12-16 1998-09-22 Dow Corning Corporation Thickening silicones with elastomeric silicone polyethers
US5736125A (en) 1997-01-10 1998-04-07 National Starch And Chemical Investment Holding Corporation Compositions containing copolymers as a thickening agent
WO2000035925A1 (fr) 1997-06-12 2000-06-22 Dow Corning Toray Silicone Co., Ltd. Copolymere ramifie de siloxane/silalkylene, polymere organique a base de silicone, et procede de production correspondant
EP0890583B1 (fr) 1997-07-11 2003-10-29 Clariant GmbH Procédé d'oxydation de cires de polyéthylènes
US6051216A (en) 1997-08-01 2000-04-18 Colgate-Palmolive Company Cosmetic composition containing siloxane based polyamides as thickening agents
EP0951897B1 (fr) 1998-04-21 2003-09-03 L'oreal Composition à application topique contenant un copolymère d'oléfines à cristallisation contrôlée
US6280748B1 (en) 1998-06-12 2001-08-28 Dow Corning Toray Silicone, Ltd. Cosmetic raw material cosmetic product and method for manufacturing cosmetic products
US5981680A (en) 1998-07-13 1999-11-09 Dow Corning Corporation Method of making siloxane-based polyamides
FR2782917A1 (fr) 1998-09-09 2000-03-10 Oreal Composition de maquillage a base de polymere filmogene
FR2792190B1 (fr) 1999-04-16 2001-09-28 Sophim Procede de fabrication d'un emollient non gras a base de cires-esters
FR2796276B1 (fr) 1999-07-15 2003-05-16 Oreal Composition sous forme solide comprenant une huile et un compose gelifiant particulier, procede de traitement cosmetique et utilisation dudit compose
US7101928B1 (en) 1999-09-17 2006-09-05 Landec Corporation Polymeric thickeners for oil-containing compositions
FR2798655B1 (fr) 1999-09-21 2001-11-16 Oreal Composition comprenant un compose derive de cyclohexane, compose et utilisation dudit compose pour structurer une composition
FR2800608B1 (fr) 1999-11-04 2002-10-18 Oreal Composition cosmetique contenant un ester d'acide gras hydroxyle
US6517823B1 (en) * 2000-01-27 2003-02-11 L'oreal S.A. High gloss mascara
WO2002047031A2 (fr) 2000-12-05 2002-06-13 Yeda Research And Development Co. Ltd. Appareil et procede permettant d'aligner des sequences d'images sans chevauchement spatial ou temporel
DE60140764D1 (de) 2000-12-12 2010-01-21 Oreal Kosmetische zusammensetzung enthaltend ein polymer und fasern
WO2002056847A1 (fr) 2001-01-17 2002-07-25 L'oreal Composition cosmetique contenant un polymer et une huile fluoree
FR2825915B1 (fr) 2001-06-14 2006-02-03 Oreal Composition a base d'huile siliconee structuree sous forme rigide, notamment pour une utilisation cosmetique
JP4693330B2 (ja) 2001-11-28 2011-06-01 東レ・ダウコーニング株式会社 化粧品原料、化粧品および化粧品の製造方法
US20030232030A1 (en) 2002-06-12 2003-12-18 L'oreal Compositions containing at least one oil structured with at least one silicone-polyamide polymer, and at least one gelling agent and methods of using the same
EP1400234A1 (fr) 2002-09-20 2004-03-24 L'oreal Composition cosmétique comprenant des fibres rigides et un composé choisi parmi un polymère filmogène et/ou une cire
EP1711551B1 (fr) 2004-02-02 2007-08-29 Dow Corning Corporation Resines au propyle siloxane mq-t
JP4082618B2 (ja) * 2004-03-22 2008-04-30 ロレアル ポリグリセロール化されたシリコーンエラストマーを含有する化粧品用組成物
DE102005026278A1 (de) 2005-06-08 2005-10-13 Clariant Gmbh Kosmetische, pharmazeutische und dermatologische Zubereitungen enthaltend Homo- und/oder Copolymerwachse aus den Monomeren Ethylen und/oder Propylen
FR2892303A1 (fr) 2005-10-24 2007-04-27 Oreal Composition cosmetique texturee par un derive bis-uree a phase grasse liquide texturee par un compose bis-uree
FR2894476B1 (fr) 2005-12-13 2008-02-15 Oreal Composition cosmetique texturee par un derive bis-uree symetrique specifique
FR2900819B1 (fr) 2006-05-09 2010-10-15 Oreal Compose de type bis-uree, composition le comprenant, utilisation et procede de traitement cosmetique
FR2902653B1 (fr) 2006-06-22 2008-09-12 Oreal Composition cosmetique ou pharmaceutique comprenant un polycondensat, procede de traitement cosmetique employant ladite composition, ledit polycondensat et procede de preparation

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002098377A1 (fr) * 2001-06-07 2002-12-12 L'oreal Composition cosmetique formant apres application un polymere supramoleculaire
WO2006118460A1 (fr) * 2005-05-04 2006-11-09 Suprapolix B.V. Hydrogels a liaisons hydrogenes
EP2140858A1 (fr) * 2008-07-04 2010-01-06 L'Oréal Composition cosmétique ou dermatologique comprenant un composé capable d'établir des liaisons hydrogène, et procédé de traitement cosmétique

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
FOLMER B J B ET AL: "SUPRAMOLECULAR POLYMER MATERIALS: CHAIN EXTENSION OF TELECHELIC POLYMERS USING A REACTIVE HYDROGEN-BONDING SYNTHON", ADVANCED MATERIALS, WILEY VCH VERLAG, DE LNKD- DOI:10.1002/1521-4095(200006)12:12<874::AID-ADMA874>3.3.CO;2-3, vol. 12, no. 12, 16 June 2000 (2000-06-16), pages 874 - 878, XP000959548, ISSN: 0935-9648 *

Also Published As

Publication number Publication date
FR2954130B1 (fr) 2012-02-24
WO2011073294A1 (fr) 2011-06-23
US20130004438A1 (en) 2013-01-03
ES2443848T3 (es) 2014-02-20
EP2512427A1 (fr) 2012-10-24
EP2512427B1 (fr) 2013-11-06
US9017648B2 (en) 2015-04-28

Similar Documents

Publication Publication Date Title
FR2954130A1 (fr) Composition cosmetique comprenant un compose supramoleculaire capable d&#39;etablir des liaisons hydrogene, et un ingredient additionnel particulier
FR2939033A1 (fr) Composition cosmetique de maquillage et/ou de soin des matieres keratiniques, et procede de maquillage
WO2009080960A2 (fr) Procédé cosmétique de maquillage et/ou de soin utilisant une résine de siloxane et un polymère filmogène.
FR2960433A1 (fr) Procede cosmetique de maquillage et/ou de soin de la peau et/ou des levres
FR2974367A1 (fr) Compositions comprenant un polymere a motif dendrimere carbosiloxane et une quantite elevee de mono-alcool
FR2935269A1 (fr) Composition cosmetique comprenant un polymere a motif dendrimere carbosiloxane.
FR3041530A1 (fr) Composition anhydre comprenant une huile non volatile, une huile hydrocarbonee volatile, un polymere filmogene lipophile particulier, un mono-alcool et un materiau particulaire
FR2992215A1 (fr) Composition cosmetique anhydre comprenant une huile, des particules d&#39;aerogel de silice hydrophobe, un actif hydrophile et au moins un agent tensioactif
FR2973245A1 (fr) Compositions comprenant de la perlite et un polymere a motif dendrimere carbosiloxane
FR2992206A1 (fr) Composition cosmetique comprenant une huile, des particules d&#39;aerogel de silice hydrophobe et une resine hydrocarbonee
FR2954131A1 (fr) Composition cosmetique comprenant un compose supramoleculaire capable d&#39;etablir des liaisons hydrogene, et une huile particuliere
FR2967910A1 (fr) Produit cosmetique comprenant un polyamide silicone, une resine siliconee et au moins un copolymere ethylenique sequence
FR2935268A1 (fr) Composition cosmetique comprenant un polymere a motif dendrimere carbosiloxane.
FR2954132A1 (fr) Composition cosmetique comprenant un compose supramoleculaire capable d&#39;etablir des liaisons hydrogene et un corps gras pateux apolaire
FR2956317A1 (fr) Procede de maquillage des levres
FR2992196A1 (fr) Composition cosmetique liquide comprenant une huile, des particules d&#39;aerogel de silice hydrophobe et un copolymere ethylenique sequence
FR2894472A1 (fr) Composition cosmetique comprenant un ester d&#39;acide dimerdilinoleique et de polyol(s) et un polymere semi-cristallin
FR2894469A1 (fr) Produit cosmetique bicouche comprenant un ester d&#39;acide dimerdilinoleique et de polyol(s)
FR2976805A1 (fr) Composition cosmetique comprenant un compose supramoleculaire capable d&#39;etablir des liaisons hydrogene, et deux huiles siliconees particulieres distinctes
FR2968957A1 (fr) Composition cosmetique comprenant un compose supramoleculaire capable d&#39;etablir des liaisons hydrogene, une huile siliconee et une cire
FR2954145A1 (fr) Procede de maquillage de la peau et/ou des levres
FR2992211A1 (fr) Composition cosmetique liquide comprenant une huile, des particules d&#39;aerogel de silice hydrophobe et un organogelateur non polymerique
FR2992194A1 (fr) Composition cosmetique comprenant une huile, des particules d&#39;aerogel de silice hydrophobe, une argile lipophile et une cire
FR3015257A1 (fr) Composition solide avec un polymere vinylique a motif dendrimere carbosiloxane, deux huiles siliconees phenylees incompatibles et procede de traitement
FR3015258A1 (fr) Composition solide avec un polymere vinylique a motif dendrimere carbosiloxane, des huiles volatiles hydrocarbonees et procede de traitement

Legal Events

Date Code Title Description
PLFP Fee payment

Year of fee payment: 7

PLFP Fee payment

Year of fee payment: 8

PLFP Fee payment

Year of fee payment: 9

PLFP Fee payment

Year of fee payment: 11

PLFP Fee payment

Year of fee payment: 12

PLFP Fee payment

Year of fee payment: 13

PLFP Fee payment

Year of fee payment: 14

PLFP Fee payment

Year of fee payment: 15