ES2784261T3 - Receptores de células T anti-KRAS mutado - Google Patents

Receptores de células T anti-KRAS mutado Download PDF

Info

Publication number
ES2784261T3
ES2784261T3 ES15807756T ES15807756T ES2784261T3 ES 2784261 T3 ES2784261 T3 ES 2784261T3 ES 15807756 T ES15807756 T ES 15807756T ES 15807756 T ES15807756 T ES 15807756T ES 2784261 T3 ES2784261 T3 ES 2784261T3
Authority
ES
Spain
Prior art keywords
seq
tcr
amino acid
chain
acid sequence
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
ES15807756T
Other languages
English (en)
Inventor
Qiong J Wang
Zhiya Yu
James C Yang
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
US Department of Health and Human Services
Original Assignee
US Department of Health and Human Services
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by US Department of Health and Human Services filed Critical US Department of Health and Human Services
Application granted granted Critical
Publication of ES2784261T3 publication Critical patent/ES2784261T3/es
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/0005Vertebrate antigens
    • A61K39/0011Cancer antigens
    • A61K39/001154Enzymes
    • A61K39/001164GTPases, e.g. Ras or Rho
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/705Receptors; Cell surface antigens; Cell surface determinants
    • C07K14/70503Immunoglobulin superfamily
    • C07K14/7051T-cell receptor (TcR)-CD3 complex
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/46Cellular immunotherapy
    • A61K39/461Cellular immunotherapy characterised by the cell type used
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/46Cellular immunotherapy
    • A61K39/463Cellular immunotherapy characterised by recombinant expression
    • A61K39/4632T-cell receptors [TCR]; antibody T-cell receptor constructs
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/46Cellular immunotherapy
    • A61K39/464Cellular immunotherapy characterised by the antigen targeted or presented
    • A61K39/4643Vertebrate antigens
    • A61K39/4644Cancer antigens
    • A61K39/464454Enzymes
    • A61K39/464464GTPases, e.g. Ras or Rho
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P1/00Drugs for disorders of the alimentary tract or the digestive system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P1/00Drugs for disorders of the alimentary tract or the digestive system
    • A61P1/18Drugs for disorders of the alimentary tract or the digestive system for pancreatic disorders, e.g. pancreatic enzymes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P11/00Drugs for disorders of the respiratory system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P13/00Drugs for disorders of the urinary system
    • A61P13/08Drugs for disorders of the urinary system of the prostate
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P15/00Drugs for genital or sexual disorders; Contraceptives
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/82Translation products from oncogenes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y306/00Hydrolases acting on acid anhydrides (3.6)
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/574Immunoassay; Biospecific binding assay; Materials therefor for cancer
    • G01N33/5748Immunoassay; Biospecific binding assay; Materials therefor for cancer involving oncogenic proteins
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/51Medicinal preparations containing antigens or antibodies comprising whole cells, viruses or DNA/RNA
    • A61K2039/515Animal cells
    • A61K2039/5152Tumor cells
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K2239/00Indexing codes associated with cellular immunotherapy of group A61K39/46
    • A61K2239/38Indexing codes associated with cellular immunotherapy of group A61K39/46 characterised by the dose, timing or administration schedule
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K2239/00Indexing codes associated with cellular immunotherapy of group A61K39/46
    • A61K2239/46Indexing codes associated with cellular immunotherapy of group A61K39/46 characterised by the cancer treated
    • A61K2239/54Pancreas
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2333/00Assays involving biological materials from specific organisms or of a specific nature
    • G01N2333/90Enzymes; Proenzymes
    • G01N2333/914Hydrolases (3)

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Immunology (AREA)
  • Organic Chemistry (AREA)
  • Animal Behavior & Ethology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Engineering & Computer Science (AREA)
  • Cell Biology (AREA)
  • Microbiology (AREA)
  • Epidemiology (AREA)
  • Oncology (AREA)
  • Mycology (AREA)
  • Biochemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Molecular Biology (AREA)
  • Genetics & Genomics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • General Chemical & Material Sciences (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Biophysics (AREA)
  • Zoology (AREA)
  • Urology & Nephrology (AREA)
  • Toxicology (AREA)
  • Biomedical Technology (AREA)
  • Hematology (AREA)
  • Wood Science & Technology (AREA)
  • General Engineering & Computer Science (AREA)
  • Food Science & Technology (AREA)
  • Pathology (AREA)
  • General Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Biotechnology (AREA)

Abstract

Receptor de células T (TCR) aislado que tiene especificidad antigénica para un epítopo mutado presentado en el contexto de una molécula de HLA-A11, consistiendo el epítopo mutado en VVVGAVGVGK (SEQ ID NO: 33) o VVGAVGVGK (SEQ ID NO: 35), en el que el TCR comprende una CDR1 de cadena β que comprende la secuencia de aminoácidos de SEQ ID NO: 125, una CDR2 de cadena β que comprende la secuencia de aminoácidos de SEQ ID NO: 126, una CDR3 de cadena α que comprende la secuencia de aminoácidos de SEQ ID NO: 127, una CDR1 de cadena β que comprende la secuencia de aminoácidos de SEQ ID NO: 128, una CDR2 de cadena β que comprende la secuencia de aminoácidos de SEQ ID NO: 129 y una CDR3 de cadena β que comprende la secuencia de aminoácidos de SEQ ID NO: 130.

Description

DESCRIPCIÓN
Receptores de células T anti-KRAS mutado
Referencia cruzada a solicitudes relacionadas
Esta solicitud de patente reivindica el beneficio de la solicitud de patente provisional estadounidense n.° 62/084.654, presentada el 26 de noviembre de 2014 y la solicitud de patente provisional estadounidense n.° 62/171.321, presentada el 5 de junio de 2015.
Incorporación por referencia del material presentado electrónicamente
Se incorpora mediante la referencia en su totalidad en el presente documento un listado de secuencias de nucleótidos/aminoácidos legible por ordenador presentado simultáneamente con el presente documento e identificado tal como sigue: Un archivo ASCII (Texto) de 231.164 bites nombrado “722261_ST25.txt”, fechado el 20 de noviembre de 2015.
Antecedentes de la invención
Algunos cánceres pueden tener opciones de tratamiento muy limitadas, particularmente cuando el cáncer se vuelve metastásico e inextirpable. A pesar de los avances en tratamientos tales como, por ejemplo, cirugía, quimioterapia y radioterapia, el pronóstico para muchos cánceres tales como, por ejemplo, cánceres pancreático, colorrectal, pulmonar, endometrial, ovárico y prostático, puede ser malo. Por consiguiente, existe una necesidad no cumplida de tratamientos adicionales para el cáncer.
El documento US 7709002 B1 notifica un(os) epítopo(s) de CTL CD8+ humano(s) que refleja(n) una mutación puntual específica en el oncogén K-ras en el codón 12 y un péptido anidado de 10 meros [es decir, ras5-14 (Asp12)], que se mostró que se unía a HLA-A2 y presenta una capacidad funcional específica para la expansión de los precursores CTL CD8+ sensibilizados in vivo.
El documento GB 2 328 680 A notifica un péptido capaz de inducir respuestas de células T citotóxicas específicas (CD8+) que comprende de 8 a 10 aminoácidos de la proteína protooncogénica p21 ras que incluye la posición 12, 13 o 61 en la que se ha realizado una sustitución de aminoácidos en la última posición y da a conocer que estos péptidos pueden usarse como vacunas contra el cáncer y en composiciones para el tratamiento contra el cáncer.
Abrams et al, European Journal of Immunology 26 (2): 435-443 (1996)) examinaron la capacidad de un péptido mutante de K-ras de 9 meros para inducir linfocitos T citotóxicos (CTL) CD8+ in vivo. El péptido elegido reflejó las posiciones 4-12 de la secuencia de mutación puntual del oncogén K-ras que codifica para la sustitución de Gly a Val en el codón 12.
http://ibis.internal.epo.org/exam/dbfetchjsp?id=UNIPROT:Q5R1F9 y http://ibis.internal.epo.org/exam/dbfetch.jsp?id=UNIPROT:A0A075B5I2 dan a conocer la secuencia de aminoácidos de TRAV3D-3 y Trbv4 de Mus musculus, respectivamente.
El documento WO 2008/089053 A2 da a conocer células humanas, particularmente células T humanas, que comprenden un receptor de células T (TCR) murino que tiene especificidad de antígeno para los aminoácidos 154-162 de gp100, así como también se proporcionan adicionalmente polipéptidos, proteínas, ácidos nucleicos, vectores de expresión recombinantes, células huésped, poblaciones de células, anticuerpos o fragmentos de unión a antígeno de los mismos, conjugados y composiciones farmacéuticas relacionados.
Gaudernack et al., Immunotechnology 2 (1): 3-0 (1996) notifican las respuestas de las células T contra ras mutantes como base para vacunas contra el cáncer novedosas.
Breve sumario de la invención
Una realización de la invención proporciona un receptor de células T (TCR) aislado que tiene especificidad antigénica para un epítopo mutado presentado en el contexto de una molécula de HLA-A11, consistiendo el epítopo mutado en VVVGAVGVGK (SEQ ID NO: 33) o VVGAVGVGK (SEQ ID NO: 35) en el que el TCR comprende una CDR 1 de cadena a que comprende la secuencia de aminoácidos de SEQ ID NO: 125, una CDR2 de cadena a que comprende la secuencia de aminoácidos de SEQ ID NO: 126, una CDR3 de cadena a que comprende la secuencia de aminoácidos de SEQ ID NO: 127, una CDR1 de cadena p que comprende la secuencia de aminoácidos de SEQ ID NO: 128, una CDR2 de cadena p que comprende la secuencia de aminoácidos de SEQ ID NO: 129 y una CDR3 de cadena p que comprende la secuencia de aminoácidos de SEQ ID NO: 130.
La invención proporciona además polipéptidos y proteínas relacionados, así como ácidos nucleicos relacionados, vectores de expresión recombinante, células huésped, poblaciones de células y composiciones farmacéuticas relacionadas con los TCR de la invención.
Se proporcionan además por la invención métodos in vitro de detección de la presencia de cáncer en un mamífero y células huésped o poblaciones de células para su uso en métodos de tratamiento o prevención del cáncer en un mamífero.
Descripción detallada de la invención
El homólogo del oncogén viral de sarcoma de rata Kristen (KRAS), también denominado GTPasa KRas, oncogén viral de sarcoma de rata Kristen V-Ki-Ras2 o KRAS2, es un miembro de la superfamilia de GTPasa pequeña. Existen dos variantes de transcrito de KRAS: la variante de KRAS A y la variante de KRAS B. A continuación en el presente documento, las referencias a “KRAS” (mutado o no mutado) se refieren tanto a la variante A como a la variante B, a menos que se especifique de otra manera. Sin querer restringirse a una teoría o mecanismo particular, se considera que, cuando está mutado, KRAS puede estar implicado en la transducción de señales tempranamente en la oncogénesis de muchos cánceres humanos. Una sola sustitución de aminoácido puede activar la mutación. Cuando está activado, KRAS mutado se une a guanosina-5'-trifosfato (GTP) y convierte el GTP en guanosina-5'-difosfato (GDP). El producto de proteína KRAS mutada puede activarse constitutivamente. La proteína de KRAS mutado puede expresarse en cualquiera de una variedad de cánceres humanos tales como, por ejemplo, cánceres pancreático (por ejemplo, carcinoma pancreático), colorrectal, pulmonar (por ejemplo, adenocarcinoma pulmonar), endometrial, ovárico (por ejemplo, cáncer ovárico epitelial) y prostático.
Una realización de la invención proporciona un TCR aislado que tiene especificidad antigénica para KRAS humano mutado (a continuación en el presente documento, “KRAS mutado”). A continuación en el presente documento, las referencias a un “TCR” se refieren también a porciones funcionales y variantes funcionales del TCR, a menos que se especifique de otra manera. El TCR dado a conocer puede tener especificidad antigénica para cualquier proteína, polipéptido o péptido de KRAS mutado. En una realización de la divulgación, el TCR tiene especificidad antigénica para una proteína de KRAS mutado que comprende o consiste en la secuencia de aminoácidos de SEQ ID NO: 1, 32, 122 o 123. Las secuencias de aminoácidos de la proteína de la variante A de KRAS mutado de cada una de SEQ ID Nos.: 1 y 32 corresponden en general a las posiciones 1-189 de la secuencia de aminoácidos de la variante A de proteína de KRAS no mutado, de tipo natural (WT) de SEQ ID NO: 29 con la excepción de que en SEQ ID Nos.: 1 y 32, la glicina en la posición 12 se sustituye con ácido aspártico o valina, respectivamente. Las secuencias de aminoácidos de la proteína de la variante B de KRAS mutado de cada una de SEQ ID Nos.: 122 y 123 corresponden en general a las posiciones 1 a 188 de la secuencia de aminoácidos de la variante B de la proteína de KRAS no mutado, de WT de SEQ ID NO: 121 con la excepción de que en SEQ ID Nos.: 122 y 123, la glicina en la posición 12 se sustituye con ácido aspártico o valina, respectivamente. El TCR de la invención tiene especificidad antigénica para un péptido de KRAS mutado que consiste en la secuencia de aminoácidos de VVVGAVGVGK (SEQ ID NO: 33) o VVGAVGVGK (SEQ ID NO: 35). Las secuencias de aminoácidos de KRAS mutado VVVGAVGVGK (SEQ ID NO: 33) y VVGAVGVGK (SEQ ID NO: 35) también se denominan en el presente documento “KRAS G12V”. Las secuencias de aminoácidos de KRAS mutado VVVGADGVGK (SEQ ID NO: 2) y VVGADGVGK (SEQ ID NO: 34) también se denominan en el presente documento “KRAS G12d ”.
Las secuencias de aminoácidos del epítopo de KRAS mutado descritas en el presente documento se encuentran también en otros dos oncogenes mutados en cáncer humano, el homólogo del oncogén viral de RAS (V-Ras) de neuroblastoma (NRAS) y el homólogo del oncogén viral de sarcoma de rata Harvey (HRAS). Las secuencias de aminoácidos de NRAS humano mutado y de HRAS humano mutado contienen las secuencias del epítopo de KRAS humano mutado descritas en el presente documento. Por consiguiente, en una realización de la invención, los TCR de la invención tienen también especificidad antigénica para NRAS y HRAS humanos mutados. KRAS humano mutado, NRAS humano mutado y HRAS humano mutado se denominan colectivamente en el presente documento “diana(s) mutada(s)”.
Los TCR de la invención tienen la capacidad de reconocer la diana mutada, por ejemplo, KRAS mutado, de manera dependiente del complejo mayor de histocompatibilidad (MHC) de clase I. “De manera dependiente del MHC de clase I”, tal como se utiliza en el presente documento, significa que el TCR provoca una respuesta inmunitaria al unirse a la diana mutada, por ejemplo, KRAS mutado, dentro del contexto de una molécula de MHC de clase I. El TCR de la invención tiene especificidad antigénica para el epítopo mutado presentado en el contexto de una molécula de HLA-A11.
Los TCR de la invención proporcionan muchas ventajas, incluyendo cuando se expresan por células usadas para transferencia celular adoptiva. KRAS mutado, NRAS mutado y HRAS mutado se expresan por células cancerosas y no se expresan por células normales no cancerosas. Sin querer restringirse a una teoría o mecanismo particular, se cree que los TCR de la invención seleccionan como diana ventajosamente la destrucción de células cancerosas mientras minimizan o eliminan la destrucción de células normales no cancerosas, reduciendo de ese modo la toxicidad, por ejemplo, minimizándola o eliminándola. Además, ventajosamente, los TCR de la invención pueden tratar o prevenir con éxito uno o más de los cánceres positivos para KRAS mutado, cánceres positivos para NRAS mutado y cánceres positivos para HRAS mutado que no responden a otros tipos de tratamientos tales como, por ejemplo, quimioterapia, cirugía o radiación. Adicionalmente, los TCR de la invención pueden proporcionar un reconocimiento de alta avidez de uno o más de KRAS mutado, NRAS mutado y HRAS mutado, lo cual puede proporcionar la capacidad para reconocer células tumorales no manipuladas (por ejemplo, las células tumorales que no se han tratado con interferón (IFN)-y, transfectadas con un vector que codifica para uno de, o tanto para KRAS mutado como para HLA-A11, pulsadas con el péptido de KRAS7-16 o KRAS8-16 mutado, o una combinación de los mismos).
La frase “especificidad antigénica”, tal como se utiliza en el presente documento, significa que el TCR puede unirse específicamente a, y reconocer inmunológicamente, la diana mutada, por ejemplo, KRAS mutado, con alta avidez. Por ejemplo, puede considerarse que un TCR tiene “especificidad antigénica” para la diana mutada si las células T que expresan el TCR secretan al menos aproximadamente 200 pg/ml o más (por ejemplo, 200 pg/ml o más, 300 pg/ml o más, 400 pg/ml o más, 500 pg/ml o más, 600 pg/ml o más, 700 pg/ml o más, 1000 pg/ml o más, 5.000 pg/ml o más, 7.000 pg/ml o más, 10.000 pg/ml o más, 20.000 pg/ml o más, o un intervalo definido por dos cualesquiera de los valores anteriores) de IFN-y al cocultivarse con (a) células diana HLA-A11+ negativas para el antígeno pulsadas con una baja concentración del péptido diana mutado (por ejemplo, de aproximadamente 0,05 ng/ml a aproximadamente 5 ng/ml, 0,05 ng/ml, 0,1 ng/ml, 0,5 ng/ml, 1 ng/ml, 5 ng/ml, o un intervalo definido por dos cualesquiera de los valores anteriores) o (b) células diana HLA-A11+ negativas para el antígeno en las cuales se ha introducido una secuencia de nucleótidos que codifica para la diana mutada de tal manera que la célula diana expresa la diana mutada. Las células que expresan los TCR de la invención también pueden secretar IFN-y al cocultivarse con células diana HLA-A11+ negativas para el antígeno pulsadas con concentraciones más altas del péptido diana mutado.
Alternativa o adicionalmente, puede considerarse que un TCR tiene “especificidad antigénica” para un diana mutada si las células T que expresan el TCR secretan al menos el doble del IFN-y al cocultivarse con (a) células diana HLA-A11+ negativas para el antígeno pulsadas con una baja concentración del péptido diana mutado o (b) células diana HLA-A11+ negativas para el antígeno en las cuales se ha introducido una secuencia de nucleótidos que codifica para la diana mutada de tal manera que la célula diana expresa la diana mutada en comparación con la cantidad del IFN-y expresado por un control negativo. El control negativo puede ser, por ejemplo, (i) células T que expresan el TCR, cocultivadas con (a) células diana HLA-A11+ negativas para el antígeno pulsadas con la misma concentración de un péptido irrelevante (por ejemplo, algún otro péptido con una secuencia diferente al péptido diana mutado) o (b) células diana HLA-A11+ negativas para el antígeno en las cuales se ha introducido una secuencia de nucleótidos que codifica para un péptido irrelevante de tal manera que la célula diana expresa el péptido irrelevante, o (ii) células T no transducidas (por ejemplo, derivadas de PBMC, que no expresan el TCR) cocultivadas con (a) células diana HLA-A11+ negativas para el antígeno pulsadas con la misma concentración del péptido diana mutado o (b) células diana HLA-A11+ negativas para el antígeno en las cuales se ha introducido una secuencia de nucleótidos que codifica para la diana mutada de tal manera que la célula diana expresa la diana mutada. La secreción del IFN-y puede medirse mediante métodos conocidos en la técnica tales como, por ejemplo, análisis inmunoabsorbente ligado a enzimas (ELISA).
Alternativa o adicionalmente, puede considerarse que un TCR tiene “especificidad antigénica” para una diana mutada si al menos el doble del número de células T que expresan el TCR secretan el IFN-y al cocultivarse con (a) células diana HLA-A11+ negativas para el antígeno pulsadas con una baja concentración del péptido diana mutado o (b) células diana HLA-A11+ negativas para el antígeno en las cuales se ha introducido una secuencia de nucleótidos que codifica para la diana mutada de tal manera que la célula diana expresa la diana mutada en comparación con el número de células T de control negativo que secretan IFN-y. La concentración del péptido y del control negativo puede ser tal como se describe en el presente documento con respecto a otros aspectos de la invención. El número de células que secretan IFN-y puede medirse mediante métodos conocidos en la técnica tales como, por ejemplo, ELISPOT.
La invención proporciona un TCR que comprende dos polipéptidos (es decir, cadenas de polipéptido), tales como una cadena alfa (a ) de un TCR, una cadena beta (P) de un TCR, una cadena gamma (y) de un TCR, una cadena delta (8) de un TCR, o una combinación de las mismas.
El TCR de la invención comprende una primera cadena de polipéptido que comprende una CDR1 de cadena a del TCR G12V anti-KRAS que comprende la secuencia de aminoácidos de SEQ ID NO: 125, una CDR2 de cadena a del TCR G12V anti-KRAS que comprende la secuencia de aminoácidos de SEQ ID NO: 126, una CDR3 de cadena a del TCR G12V anti-KRAS que comprende la secuencia de aminoácidos de SEQ ID NO: 127, y una segunda cadena de polipéptidos que comprende una CDR1 de cadena P del TCR G12V anti-KRAS que comprende la secuencia de aminoácidos de SEQ ID NO: 128, una CDR2 de cadena P del TCR G12V anti-KRAS que comprende la secuencia de aminoácidos de SEQ ID NO: 129 y una CDR3 de cadena P del TCR G12V anti-KRAS que comprende la secuencia de aminoácidos de SEQ ID NO: 130. En este aspecto, el TCR de la invención comprende las secuencias de aminoácidos de todas de SEQ ID Nos.: 125-130.
En una realización de la invención, el TCR comprende una secuencia de aminoácidos de una región variable de un TCR que comprende las CDR expuestas anteriormente. En este aspecto, el TCR puede comprender la secuencia de aminoácidos de SEQ ID NO: 131 (la región variable de cadena a del TCR G12V anti-KRAS); SEQ ID NO: 132 (la región variable de cadena p del TCR G12V anti-KRAS); o ambas SEQ ID Nos.: 131 y 132. Preferiblemente, el TCR de la invención comprende las secuencias de aminoácidos de ambas SEQ ID Nos.: 131 y 132.
En una realización de la invención, el TCR comprende además una secuencia de aminoácidos de una región constante de un TCR. En este aspecto, el TCR puede comprender la secuencia de aminoácidos de SEQ ID NO: 13 (la región constante de cadena a del TCR G12D anti-KRAS), SEQ ID NO: 14 (la región constante de cadena p del TCR G12D anti-KRAS), ambas SEQ ID Nos.: 13 y 14; SEQ ID NO: 135 (la región constante de cadena a del TCR G12V anti-KRAS), SEQ ID NO: 136 (la región constante de cadena p del TCR G12V anti-KRAS), ambas SEQ ID Nos.: 135 y 136; SEQ ID NO: 147 (la región constante de cadena a del TCR G12V anti-KRAS), SEQ ID NO: 148 (la región constante de cadena p del TCR G12V anti-KRAS), ambas SEQ ID Nos.: 147 y 148; SEQ ID NO: 159 (la región constante de cadena a del TCR G12D anti-KRAS), SEQ ID NO: 160 (la región constante de cadena p del TCR G12D anti-KRAS), o ambas SEQ ID Nos.: 159 y 160. Preferiblemente, el TCR de la invención comprende las secuencias de aminoácidos de ambas SEQ ID Nos.: 13 y 14; ambas SEQ ID Nos.: 135 y 136; ambas SEQ ID Nos.: 147 y 148; ambas SEQ ID Nos.: 159 y 160.
En una realización de la invención, el TCR de la invención puede comprender una combinación de una región variable y una región constante. En este aspecto, el TCR puede comprender: una cadena a que comprende las secuencias de aminoácidos tanto de SEQ ID NO: 131 (la región variable de cadena a ) como de SEQ ID NO: 135 (la región constante de cadena a ); una cadena p que comprende las secuencias de aminoácidos tanto de SEQ ID NO: 132 (la región variable de cadena p) como de SEQ ID NO: 136 (la región constante de cadena p); o las secuencias de aminoácidos de todas de SEQ ID Nos.: 131, 132, 135 y 136. Preferiblemente, el TCR de la invención comprende las secuencias de aminoácidos de todas de SEQ ID Nos.: 131, 132, 135 y 136.
En una realización de la invención, el TCR de la invención puede comprender una combinación de las secuencias de aminoácidos de todas de SEQ ID Nos.: 125 a 127 y 135; una cadena p que comprende las secuencias de aminoácidos de todas de SEQ ID Nos.: 128-130 y 136; o las secuencias de aminoácidos de todas de SEQ ID Nos.: 125-130 y 135-136.
En una realización de la invención, el TCR de la invención puede comprender una cadena a de un TCR y una cadena p de un TCR. En este aspecto, la cadena a del TCR de la invención puede comprender la secuencia de aminoácidos de SEQ ID NO: 133 (la cadena a del TCR G12V anti-KRAS). Una cadena a de este tipo puede emparejarse con cualquier cadena p de un TCR. En este aspecto, la cadena p del TCR de la invención puede comprender la secuencia de aminoácidos de SEQ ID NO: 134 (la cadena p del TCR G12V anti-KRAS). Por tanto, el TCR de la invención puede comprender la secuencia de aminoácidos de SEQ ID NO: 133, SEQ ID NO: 134, o ambas SEQ ID Nos.: 133 y 134. Preferiblemente, el TCR de la invención comprende las secuencias de aminoácidos de ambas SEQ ID Nos.: 133 y 134.
En una realización de la invención, los TCR de la invención reconocen la diana mutada, por ejemplo, KRAS mutado, ya sea (i) en presencia de CD4 y en ausencia de CD8 o (ii) en presencia de CD8 y en ausencia de CD4. En una realización preferida, un TCR que comprende las secuencias de aminoácidos de (i) SEQ ID Nos.: 131­ 132; o (ii) SEQ ID Nos.: 133-134 reconoce la diana mutada, por ejemplo, KRAS mutado, ya sea (i) en presencia de CD4 y en ausencia de CD8 o (ii) en presencia de CD8 y en ausencia de CD4. Por consiguiente, estos TCR de la invención pueden reconocer, ventajosamente, la diana mutada, por ejemplo, KRAS mutado, cuando se expresan por células ya sea CD4+ o CD8+.
En una realización de la invención, el TCR es un TCR murino. Tal como se usa en el presente documento, el término “murino”, cuando se refiere a un TCR o a cualquier componente de un TCR descrito en el presente documento (por ejemplo, una región determinante de complementariedad (CDR), una región variable, una región constante, una cadena a y/o una cadena p), significa un TCR (o un componente del mismo) que se deriva de un ratón, es decir, un TCR (o un componente del mismo) que se originó de o, en un momento, se expresó por una célula T de ratón. En una realización de la invención, un TCR que comprende (i) todas de SEQ ID Nos.: 125-130; (ii) SEQ ID Nos.: 131 y 132; (iii) SEQ ID Nos.: 133 y 134; (iv) todas de SEQ ID Nos.: 125-130 y 135-136; o (v) todas de SEQ ID Nos.: 131, 132, 135 y 136; es un t Cr murino.
Se incluyen en el alcance de la invención variantes funcionales de los TCR de la invención descritos en el presente documento. El término “variante funcional”, tal como se usa en el presente documento, se refiere a un TCR, polipéptido o proteína que tiene una identidad o similitud de secuencia sustancial o significativa para un TCR, polipéptido o proteína original, variante funcional que retiene la actividad biológica del TCR, polipéptido o proteína del cual es una variante. Las variantes funcionales abarcan, por ejemplo, aquellas variantes del TCR, polipéptido o proteína descritos en el presente documento (el TCR, polipéptido o proteína original) que retienen la capacidad de unirse específicamente a la diana mutada, por ejemplo, KRAS mutado para el cual el TCR original tiene especificidad antigénica o al cual se une específicamente el polipéptido o proteína original, en un grado similar, el mismo grado o a un grado mayor, que el TCR, polipéptido o proteína original. En referencia al TCR, polipéptido o proteína original, la variante funcional puede ser, por ejemplo, al menos aproximadamente el 30%, 50%, 75%, 80%, 90%, 95%, 96%, 97%, 98%, 99% o más idéntica en la secuencia de aminoácidos al TCR, polipéptido o proteína original.
La variante funcional puede comprender, por ejemplo, la secuencia de aminoácidos del TCR, polipéptido o proteína original con al menos una sustitución de aminoácido conservativa. Las sustituciones de aminoácido conservativas se conocen en la técnica e incluyen sustituciones de aminoácido en las cuales un aminoácido que tiene ciertas propiedades físicas y/o químicas se intercambia por otro aminoácido que tiene las mismas propiedades químicas o físicas. Por ejemplo, la sustitución de aminoácido conservativa puede ser un aminoácido ácido sustituido por otro aminoácido ácido (por ejemplo, Asp o Glu), un aminoácido con una cadena lateral no polar sustituido por otro aminoácido con una cadena lateral no polar (por ejemplo, Ala, Gly, Val, Ile, Leu, Met, Phe, Pro, Trp, Val, etc.), un aminoácido básico sustituido por otro aminoácido básico (Lys, Arg, etc.), un aminoácido con una cadena lateral polar sustituido por otro aminoácido con una cadena lateral polar (Asn, Cys, Gln, Ser, Thr, Tyr, etc.), etc.
Alternativa o adicionalmente, las variantes funcionales pueden comprender la secuencia de aminoácidos del TCR, polipéptido o proteína original con al menos una sustitución de aminoácido no conservativa. En este caso, es preferible que la sustitución de aminoácido no conservativa no interfiera con, ni inhiba la actividad biológica de la variante funcional. Preferiblemente, la sustitución de aminoácido no conservativa potencia la actividad biológica de la variante funcional, de tal manera que la actividad biológica de la variante funcional se aumenta en comparación con el TCR, polipéptido o proteína original. En una realización de la divulgación, la variante funcional es un TCR, polipéptido o proteína sustituido que comprende (i) la CDR3a sustituida, una región variable de la cadena a o la secuencia de aminoácidos de longitud completa de la cadena a de una cualquiera de SEQ ID Nos.: 46-56 y 207, 70-80 y 208 y 94-104 y 209, respectivamente; (ii) la CDR3p sustituida, una región variable de la cadena p o la secuencia de aminoácidos de longitud completa de la cadena p de una cualquiera de SEQ ID Nos.: 57-69, 81-93 y 105-117, respectivamente; o (iii) un par de una cualquiera de las secuencias de aminoácidos de (i) en combinación con una cualquiera de las secuencias de aminoácidos de (ii).
Por ejemplo, en una realización de la divulgación, un TCR, polipéptido o proteína sustituido puede comprender uno o ambos de (a) una secuencia de aminoácidos de CDR3a sustituida de una cualquiera de SEQ ID Nos.: 46­ 56 y 207 (tabla I) y (b) una secuencia de aminoácidos de CDR3p sustituida de una cualquiera de SEQ ID Nos.: 57-69 (tabla II). Una realización de la divulgación proporciona un TCR, polipéptido o proteína que tiene una cualquiera o más de las secuencias de aminoácidos de CDR1 a , CDR2a , CDR1 p, CDR2p y CDR3p nativas no sustituidas descritas en el presente documento con respecto a otros aspectos de la invención en combinación con una cualquiera de las secuencias de aminoácidos de CDR3a sustituidas de SEQ ID Nos.: 46-56 y 207. En este aspecto, una realización de la divulgación proporciona un TCR sustituido que comprende las secuencias de aminoácidos de todas de SEQ ID Nos.: 149-150, 207 y 152-154. Otra realización de la divulgación proporciona un TCR, polipéptido o proteína que tiene una cualquiera o más de las secuencias de aminoácidos de CDR1a , CDR2a , CDR3a , CDR1 p y CDR2p nativas no sustituidas descritas en el presente documento con respecto a otros aspectos de la invención en combinación con una cualquiera de las secuencias de aminoácidos de CDR3p sustituidas de SEQ ID Nos.: 57-69.
TABLA I
Figure imgf000006_0001
Figure imgf000007_0001
TABLA II
Figure imgf000007_0002
Figure imgf000008_0001
En una realización de la divulgación, cada una de las secuencias de aminoácidos de CDR3a sustituidas de SEQ ID Nos.: 46-56 no comprende la secuencia de aminoácidos de CDR3a nativa no sustituida de SEQ ID NO: 5. En una realización de la divulgación, la secuencia de aminoácidos de CDR3a sustituida de SEQ ID NO: 207 no comprende la secuencia de aminoácidos de CDR3a nativa no sustituida de SEQ ID NO: 151. De manera similar, en una realización de la divulgación, cada una de las secuencias de aminoácidos de CDR3p sustituidas de SEQ ID Nos.: 57-69 no comprende la secuencia de aminoácidos de CDR3p nativa no sustituida de SEQ ID NO: 8.
Una realización de la divulgación proporciona un TCR, polipéptido o proteína sustituido que comprende uno o ambos de (i) una región variable sustituida de una cadena a que comprende la secuencia de aminoácidos de una cualquiera de SEQ ID Nos.: 70-80 y 208 (tabla III) y (ii) una región variable sustituida de una cadena p que comprende la secuencia de aminoácidos de una cualquiera de SEQ ID Nos.: 81-93 (tabla IV). Una realización de la divulgación proporciona un TCR, polipéptido o proteína que tiene cualquiera de las regiones variables nativas no sustituidas de la cadena p descritas en el presente documento con respecto a otros aspectos de la invención en combinación con una cualquiera de las secuencias de aminoácidos de región variable sustituida de cadena a de SEQ ID Nos.: 70-80 y 208. Otra realización de la invención proporciona un TCR, polipéptido o proteína que tiene cualquiera de las regiones variables nativas no sustituidas de la cadena a descritas en el presente documento con respecto a otros aspectos de la invención en combinación con una cualquiera de las secuencias de aminoácidos de región variable sustituida de cadena p de SEQ ID Nos.: 81-93.
TABLA III
Figure imgf000008_0002
Figure imgf000009_0001
TABLA IV
Figure imgf000009_0002
En una realización de la divulgación, cada una de las secuencias de aminoácidos de región variable sustituida de cadena a de SEQ ID Nos.: 70-80 no comprende la secuencia de aminoácidos de región variable nativa no sustituida de cadena a de SEQ ID NO: 9. En una realización de la divulgación, la secuencia de aminoácidos de región variable sustituida de cadena a de SEQ ID NO: 208 no comprende la secuencia de aminoácidos de región variable nativa no sustituida de cadena a de SEQ ID NO: 155. De manera similar, en una realización de la divulgación, cada una de las secuencias de aminoácidos de región variable sustituida de cadena p de SEQ ID Nos.: 81-93 no comprende la secuencia de aminoácidos de región variable nativa no sustituida de cadena p de SEQ ID NO: 10.
Una realización de la invención proporciona un TCR, polipéptido o proteína sustituido que comprende uno o ambos de (i) una cadena a sustituida de longitud completa que comprende la secuencia de aminoácidos de una cualquiera de SEQ ID Nos.: 94-104 y 209 (tabla V) y (ii) una cadena p sustituida de longitud completa que comprende la secuencia de aminoácidos de una cualquiera de SEQ ID Nos.: 105-117 (tabla VI). Una realización de la divulgación proporciona un TCR, polipéptido o proteína que tiene una cualquiera de las secuencias nativas no sustituidas de longitud completa de cadena p descritas en el presente documento con respecto a otros aspectos de la invención en combinación con una cualquiera de las secuencias de aminoácidos sustituidas de longitud completa de cadena a de SEQ ID Nos.: 94-104 y 209. Otra realización de la invención proporciona un TCR, polipéptido o proteína que tiene una cualquiera de las cadenas a nativas no sustituidas de longitud completa descritas en el presente documento con respecto a otros aspectos de la invención en combinación con una cualquiera de las secuencias sustituidas de longitud completa de cadena p de SEQ ID Nos.: 105-117.
TABLA V
Figure imgf000010_0001
Figure imgf000011_0001
TABLA VI
Figure imgf000011_0002
En una realización de la divulgación, cada una de las secuencias de aminoácidos sustituidas de longitud completa de cadena a de SEQ ID Nos.: 94-104 no comprende la secuencia de aminoácidos nativa no sustituida de longitud completa de cadena a de SEQ ID NO: 11. En una realización de la divulgación, la secuencia de aminoácidos sustituida de longitud completa de cadena a de SEQ ID NO: 209 no comprende la secuencia de aminoácidos nativa no sustituida de longitud completa de cadena a de SEQ ID NO: 157. De manera similar, en una realización de la divulgación, cada una de las secuencias de aminoácidos sustituidas de longitud completa de cadena p de SEQ ID Nos.: 105-117 no comprende la secuencia de aminoácidos nativa no sustituida de longitud completa de cadena p de SEQ ID NO: 12.
El TCR, polipéptido o proteína puede consistir esencialmente en la secuencia o secuencias de aminoácidos especificadas descritas en el presente documento, de tal manera que otros componentes del TCR, polipéptido o proteína, por ejemplo, otros aminoácidos, no cambien materialmente la actividad biológica del TCR, polipéptido o proteína. En este aspecto, el TCR, polipéptido o proteína de la invención, por ejemplo, puede consistir esencialmente en la secuencia de aminoácidos de ambas SEQ ID Nos.: 133 y 134. También, por ejemplo, los TCR, polipéptidos o proteínas de la invención pueden consistir esencialmente en las secuencias de aminoácidos de ambas SEQ ID Nos.: 131 y 132. Además, los TCR, polipéptidos o proteínas de la invención pueden consistir esencialmente en la secuencia de aminoácidos de SEQ ID Nos.: 125-130.
También se proporciona por la invención un polipéptido que comprende una porción funcional de cualquiera de los TCR descritos en el presente documento. El término “polipéptido” tal como se usa en el presente documento incluye oligopéptidos y se refiere a una sola cadena de aminoácidos conectada por uno o más enlaces peptídicos.
Con respecto a los polipéptidos dados a conocer, la porción funcional puede ser cualquier porción que comprende los aminoácidos contiguos del TCR del cual es parte, siempre que la porción funcional se una específicamente a la diana mutada, por ejemplo, KRAS mutado. El término “porción funcional” cuando se usa en referencia a un TCR se refiere a cualquier parte o fragmento del TCR de la invención, parte o fragmento que retiene la actividad biológica del TCR del cual es parte (el TCR original). Las porciones funcionales abarcan, por ejemplo, aquellas partes de un TCR que retienen la capacidad para unirse específicamente a la diana mutada, por ejemplo, KRAS mutado, de manera dependiente de HLA-A11, o detectan, tratan o previenen el cáncer, en un grado similar, al mismo grado o a un grado mayor, que el TCR original. En referencia al TCR original, la porción funcional puede comprender, por ejemplo, aproximadamente el 10%, 25%, 30%, 50%, 68%, 80%, 90%, 95%, o más, del TCR original.
La porción funcional puede comprender aminoácidos adicionales en el extremo amino o carboxilo terminal de la porción, o en ambos extremos terminales, aminoácidos adicionales que no se encuentran en la secuencia de aminoácidos del TCR original. De manera deseable, los aminoácidos adicionales no interfieren con la función biológica de la porción funcional, por ejemplo, unirse específicamente a la diana mutada, por ejemplo, KRAS mutado; y/o tener la capacidad para detectar el cáncer, para tratar o prevenir el cáncer, etc. De manera más deseable, los aminoácidos adicionales aumentan la actividad biológica, en comparación con la actividad biológica del TCR original o variante funcional del mismo.
El polipéptido de la invención comprende una porción funcional que comprende las secuencias de aminoácidos de todas de SEQ ID Nos. 125-130.
En una realización de la invención, el polipéptido de la invención puede comprender, por ejemplo, la región variable del TCR de la invención o una variante funcional del mismo que comprende una combinación de las regiones CDR expuestas anteriormente. En este aspecto, el polipéptido puede comprender la secuencia de aminoácidos de SEQ ID Nos.: 131 y 132.
En una realización de la invención, el polipéptido de la invención puede comprender además la región constante del TCR de la invención o una variante funcional del mismo expuesta anteriormente. En este aspecto, el polipéptido puede comprender la secuencia de aminoácidos de SEQ ID NO: 13 (una región constante de cadena a ), SEQ ID NO: 14 (una región constante de cadena p), SEQ ID NO: 135 (una región constante de cadena a ), SEQ ID NO: 136 (una región constante de cadena p), SEQ ID NO: 147 (una región constante de cadena a ), SEQ ID NO: 148 (una región constante de cadena p), SEQ ID NO: 159 (una región constante de cadena a ), SEQ ID NO: 160 (una región constante de cadena p), ambas SEQ ID Nos.: 13 y 14, ambas SEQ ID Nos.: 135 y 136, ambas s Eq ID Nos.: 147 y 148, o ambas s EQ ID Nos.: 159 y 160. Preferiblemente, el polipéptido comprende las secuencias de aminoácidos de ambas SEQ ID Nos.: 13 y 14, ambas SEQ ID Nos.: 135 y 136, ambas SEQ ID Nos.: 147 y 148, o ambas SEQ ID Nos.: 159 y 160.
En una realización de la invención, el polipéptido de la invención puede comprender una combinación de una región variable y una región constante del TCR de la invención o variante funcional del mismo. En este aspecto, el polipéptido puede comprender todas de SEQ ID Nos.: 131, 132, 135 y 136.
En una realización de la invención, el polipéptido de la invención puede comprender una combinación de las regiones CDR descritas en el presente documento y una región constante del TCR de la invención. En este aspecto, el polipéptido puede comprender las secuencias de aminoácidos de todas las SEQ ID Nos.: 125-130 y 135-136.
En una realización de la invención, el polipéptido de la invención puede comprender la longitud completa de una cadena a o p del TCR descrito en el presente documento. En este aspecto, el polipéptido de la invención puede comprender la secuencia de aminoácidos de ambas SEQ ID Nos.: 133 y 134.
La invención proporciona además una proteína que comprende al menos uno de los polipéptidos descritos en el presente documento. Por “proteína” se entiende una molécula que comprende una o más cadenas de polipéptido.
En una realización, la proteína de la invención comprende una primera cadena de polipéptido que comprende las secuencias de aminoácidos de SEQ ID Nos.: 125-127 y una segunda cadena de polipéptido que comprende la secuencia de aminoácidos de SEQ ID Nos.: 128-130. Alternativa o adicionalmente, la proteína de la invención puede comprender una primera cadena de polipéptido que comprende la secuencia de aminoácidos de SEQ ID NO: 131 y una segunda cadena de polipéptidos que comprende la secuencia de aminoácidos de SEQ ID NO: 132. La proteína puede comprender, por ejemplo, una primera cadena de polipéptido que comprende las secuencias de aminoácidos de ambas SEQ ID Nos.: 131 y 135 o todas de SeQ iD Nos.: 125-127 y 135 y una segunda cadena de polipéptido que comprende las secuencias de aminoácidos de ambas SEQ ID Nos.: 132 y 136 o todas de SEQ ID Nos.: 128-130 y 136. Alternativa o adicionalmente, la proteína de la invención puede comprender una primera cadena de polipéptido que comprende la secuencia de aminoácidos de SEQ ID NO: 133 y una segunda cadena de polipéptido que comprende la secuencia de aminoácidos de SEQ ID NO: 134. En este caso, la proteína de la invención puede ser un TCR. Alternativamente, si la primera y/o la segunda cadena(s) de polipéptido de la proteína comprende(n) además otras secuencias de aminoácidos, por ejemplo, una secuencia de aminoácidos que codifica para una inmunoglobulina o una porción de la misma, entonces la proteína de la invención puede ser una proteína de fusión. En este aspecto, la divulgación proporciona también una proteína de fusión que comprende al menos uno de los polipéptidos de la invención descritos en el presente documento junto con al menos otro polipéptido. El otro polipéptido puede existir como un polipéptido separado de la proteína de fusión, o puede existir como un polipéptido, que se expresa en marco (en tándem) con uno de los polipéptidos de la invención descrito en el presente documento. El otro polipéptido puede codificar para cualquier molécula peptídica o proteínica, o una porción de la misma, incluyendo, pero sin limitarse a una inmunoglobulina, CD3, CD4, Cd8, una molécula de MHC, una molécula de CD1, por ejemplo, CD1a, CD1b, CD1c, CD1d, etc.
La proteína de fusión puede comprender una o más copias del polipéptido dado a conocer y/o una o más copias del otro polipéptido. Por ejemplo, la proteína de fusión puede comprender 1, 2, 3, 4, 5, o más, copias del polipéptido dado a conocer y/o del otro polipéptido. Los métodos adecuados para producir proteínas de fusión se conocen en la técnica e incluyen, por ejemplo, métodos recombinantes.
En algunas realizaciones de la invención, los TCR, polipéptidos y proteínas de la invención pueden expresarse como una sola proteína que comprende un péptido enlazador que enlaza la cadena a y la cadena p. En este aspecto, los TCR, polipéptidos y proteínas de la invención que comprenden ambas SEQ ID Nos.: 133 y 134, ambas SEQ ID Nos.: 131 y 132, todas de SEQ ID Nos.: 125-130, todas de SEQ ID Nos.: 131, 132, 135 y 136, o todas de SEQ ID Nos.: 125-130 y 135-136, pueden comprender además un péptido enlazador. El péptido enlazador puede facilitar ventajosamente la expresión de un TCR, polipéptido y/o proteína recombinante en una célula huésped. El péptido enlazador puede comprender cualquier secuencia de aminoácidos adecuada. En una realización de la invención, el TCR, polipéptido o proteína comprende un péptido enlazador viral autoescindible. Por ejemplo, el péptido enlazador puede comprender SEQ iD NO: 28. Tras la expresión del constructo que incluye el péptido enlazador por una célula huésped, el péptido enlazador puede escindirse, dando como resultado cadenas a y p separadas. En una realización de la invención, el TCR, polipéptido o proteína puede comprender un secuencia de aminoácidos que comprende una cadena a de longitud completa, una cadena p de longitud completa y un péptido enlazador colocado entre las cadenas a y p (por ejemplo, la secuencia de aminoácidos de SEQ ID NO: 201 (TCR G12V anti-KRAS) o SEQ ID NO: 203 (TCR G12V anti-KRAS)).
La proteína de la divulgación puede ser un anticuerpo recombinante que comprende al menos uno de los polipéptidos de la invención descritos en el presente documento. Tal como se usa en el presente documento, “anticuerpo recombinante” se refiere a una proteína recombinante (por ejemplo, modificada por ingeniería genética) que comprende al menos uno de los polipéptidos de la invención y una cadena de polipéptido de un anticuerpo, o una porción del mismo. El polipéptido de un anticuerpo, o porción del mismo, puede ser una cadena pesada, una cadena ligera, una región variable o constante de cadena pesada o ligera, un fragmento variable de cadena sencilla (scFv), o un fragmento Fc, Fab o F(ab)2' de un anticuerpo, etc. La cadena de polipéptido de un anticuerpo, o porción del mismo, puede existir como un polipéptido separado del anticuerpo recombinante. Alternativamente, la cadena de polipéptido de un anticuerpo, o porción del mismo, puede existir como un polipéptido, que se expresa en marco (en tándem) con el polipéptido de la invención. El polipéptido de un anticuerpo, o porción del mismo, puede ser un polipéptido de cualquier anticuerpo o fragmento de anticuerpo, incluyendo cualquiera de los anticuerpos y fragmentos de anticuerpo descritos en el presente documento.
Los TCR, polipéptidos y proteínas de la divulgación (incluyendo variantes funcionales de los mismos) pueden ser de cualquier longitud, es decir, pueden comprender cualquier número de aminoácidos, siempre que los TCR, polipéptidos o proteínas (o variantes funcionales de los mismos) retengan su actividad biológica, por ejemplo, la capacidad para enlazarse específicamente a la diana mutada, por ejemplo, KRAS mutado; para detectar el cáncer en un mamífero; o tratar o prevenir el cáncer en un mamífero, etc. Por ejemplo, el polipéptido puede encontrarse en el intervalo de desde aproximadamente 50 hasta aproximadamente 5000 aminoácidos de longitud, tal como 50, 70, 75, 100, 125, 150, 175, 200, 300, 400, 500, 600, 700, 800, 900, 1000 o más aminoácidos de longitud. En este aspecto, los polipéptidos de la invención incluyen también oligopéptidos.
Los TCR, polipéptidos y proteínas de la invención pueden comprender aminoácidos sintéticos en lugar de uno o más aminoácidos que se producen de manera natural. Tales aminoácidos sintéticos se conocen en la técnica, e incluyen, por ejemplo, ácido aminociclohexanocarboxílico, norleucina, ácido a -amino-n-decanoico, homoserina, S-acetilaminometil-cisteína, trans-3- y trans-4-hidroxiprolina, 4-aminofenilalanina, 4-nitrofenilalanina, 4-clorofenilalanina, 4-carboxifenilalanina, p-fenilserina p-hidroxifenilalanina, fenilglicina, a -naftilalanina, ciclohexilalanina, ciclohexilglicina, ácido indolina-2-carboxílico, ácido 1,2,3,4-tetrahidroisoquinolina-3-carboxílico, ácido aminomalónico, monoamida de ácido aminomalónico, N'-bencil-N'-metil-lisina, N',N'-dibencil-lisina, 6-hidroxilisina, ornitina, ácido a -aminociclopentanocarboxílico, ácido a -aminociclohexanocarboxílico, ácido a -aminocicloheptanocarboxílico, ácido a -(2-amino-2-norbornano)-carboxílico, ácido a j -diaminobutírico, ácido a ,pdiaminopropiónico, homofenilalanina y a -terc-butilglicina.
Los TCR, polipéptidos y proteínas de la invención (incluyendo variantes funcionales de los mismos) pueden estar glicosilados, amidados, carboxilados, fosforilados, esterificados, N-acilados, ciclados a través de, por ejemplo, un puente bisulfuro, o convertidos en una sal de adición de ácido y/u opcionalmente dimerizados o polimerizados o conjugados.
El TCR, polipéptido y/o proteína de la invención puede obtenerse mediante métodos conocidos en la técnica tales como, por ejemplo, síntesis de novo. Además, los polipéptidos y las proteínas pueden producirse de manera recombinante usando los ácidos nucleicos descritos en el presente documento usando métodos recombinantes convencionales. Véase, por ejemplo, Green y Sambrook, Molecular Cloning: A Laboratory Manual, 4a ed., Cold Spring Harbor Press, Cold Spring Harbor, NY (2012). Alternativamente, los TCR, polipéptidos y/o proteínas descritos en el presente documento (incluyendo variantes funcionales de los mismos) pueden sintetizarse comercialmente por empresas tales como Synpep (Dublín, CA), Peptide Technologies Corp. (Gaithersburg, MD) y Multiple Peptide Systems (San Diego, CA). En este aspecto, los TCR, polipéptidos y proteínas de la invención pueden ser sintéticos, recombinantes, aislados y/o purificados.
Se incluyen en el alcance de la invención conjugados, por ejemplo, bioconjugados, que comprenden cualquiera de los TCR, polipéptidos o proteínas de la invención, ácidos nucleicos, vectores de expresión recombinantes, células huésped y poblaciones de células huésped. Los conjugados, así como los métodos para sintetizar conjugados en general, se conocen en la técnica.
Una realización de la invención proporciona un ácido nucleico que comprende una secuencia de nucleótidos que codifica para cualquiera de los TCR, polipéptidos o proteínas descritos en el presente documento. “Ácido nucleico”, tal como se usa en el presente documento, incluye “polinucleótido”, “oligonucleótido” y “molécula de ácido nucleico”, y significa en general un polímero de ADN o a Rn , que puede ser monocatenario o bicatenario, sintetizado u obtenido (por ejemplo, aislado y/o purificado) a partir de fuentes naturales, que puede contener nucleótidos naturales, no naturales o alterados, y que puede contener un enlace internucleótido natural, no natural o alterado, tal como un enlace fosforamidato o un enlace fosforotioato, en lugar del fosfodiéster encontrado entre los nucleótidos de un oligonucleótido no modificado. En una realización, el ácido nucleico comprende ADN complementario (ADNc). En general, se prefiere que el ácido nucleico no comprenda ninguna inserción, deleción, inversión y/o sustitución. Sin embargo, puede ser adecuado en algunos casos, tal como se comenta en el presente documento, que el ácido nucleico comprenda una o más inserciones, deleciones, inversiones y/o sustituciones.
Preferiblemente, los ácidos nucleicos de la invención son recombinantes. Tal como se usa en el presente documento, el término “recombinante” se refiere a (i) moléculas que se construyen fuera de células vivas uniendo segmentos de ácido nucleico naturales o sintéticos a moléculas de ácido nucleico que pueden replicarse en una célula viva, o (ii) moléculas que son el resultado de la replicación de aquellas descritas en (i) anteriormente. Para los propósitos en el presente documento, la replicación puede ser replicación in vitro o replicación in vivo.
Los ácidos nucleicos pueden construirse basándose en reacciones de síntesis química y/o ligación enzimática utilizando procedimientos conocidos en la técnica. Véase, por ejemplo, Green y Sambrook et al., citado anteriormente. Por ejemplo, un ácido nucleico puede sintetizarse químicamente utilizando nucleótidos que se producen de manera natural o nucleótidos variadamente modificados diseñados para aumentar la estabilidad biológica de las moléculas o para aumentar la estabilidad física del dúplex formado tras la hibridación (por ejemplo, derivados de fosforotioato y nucleótidos sustituidos con acridina). Los ejemplos de nucleótidos modificados que pueden usarse para generar los ácidos nucleicos incluyen, pero no se limitan a, 5-fluorouracilo, 5-bromouracilo, 5-clorouracilo, 5-yodouracilo, hipoxantina, xantina, 4-acetilcitosina, 5-(carboxihidroximetil)uracilo, 5-carboximetilaminometil-2-tiouridina, 5-carboximetilaminometiluracilo, dihidrouracilo, beta-D-galactosilqueosina, inosina, N6-isopenteniladenina, 1-metilguanina, 1-metilinosina, 2,2-dimetilguanina, 2-metiladenina, 2-metilguanina, 3-metilcitosina, 5-metilcitosina, adenina N6-substituida, 7-metilguanina, 5-metilaminometiluracilo, 5-metoxiaminometil-2-tiouracilo, beta-D-manosilqueosina, 5'-metoxicarboximetiluracilo, 5-metoxiuracilo, 2-metiltio-N6-isopenteniladenina, ácido uracil-5-oxiacético (v), wybutoxosina, pseudouracilo, queosina, 2-tiocitosina, 5-metil-2-tiouracilo, 2-tiouracilo, 4-tiouracilo, 5-metiluracilo, metiléster del ácido uracil-5-oxiacético, 3-(3-amino-3-N-2-carboxipropil)uracilo y 2,6-diaminopurina. Alternativamente, uno o más de los ácidos nucleicos de la invención pueden adquirirse de empresas tales como Macromolecular Resources (Fort Collins, CO) y Synthegen (Houston, TX).
El ácido nucleico puede comprender cualquier secuencia de nucleótidos que codifique para cualquiera de los TCR, polipéptidos o proteínas descritos en el presente documento. En una realización de la invención, el ácido nucleico comprende la secuencia de nucleótidos de todas de SEQ ID Nos.: 177-182. En una realización de la invención, el ácido nucleico puede comprender las secuencias de nucleótidos de todas de SEQ ID Nos.: 183 y 184. En otra realización de la invención, el ácido nucleico puede comprender la secuencia de nucleótidos de ambas de SEQ ID Nos.: 185 y 186.
En una realización de la invención, el ácido nucleico comprende además una secuencia de nucleótidos que codifica para la región constante de un TCR de cadena a o p. En este aspecto, cualquiera de los ácidos nucleicos descritos en el presente documento puede comprender además la secuencia de nucleótidos de (a) SEQ ID NO: 19 (la región constante de la cadena a del TCR G12D anti-KRAS); SEQ ID NO: 20 (la región constante de la cadena p del TCR G12D anti-KRAS); o ambas SEQ ID Nos.: 19 y 20; (b) SEQ ID NO: 174 (la región constante de la cadena a del TCR G12D anti-KRAS); SEQ ID NO: 175 (la región constante de la cadena p del TCR G12D anti-KRAS); o ambas SEQ ID Nos.: 174 y 175; (c) SEQ ID No : 187 (la región constante de la cadena a del TCR G12V anti-KRAS); SEQ ID NO: 188 (la región constante de la cadena p del TCR G12V anti-KRAS); o ambas SEQ ID Nos.: 187 y 188; o (d) SEQ ID NO: 199 (la región constante de la cadena a del TCR G12V anti-KRAS); SEQ ID NO: 200 (la región constante de la cadena p del TCR G12V anti-KRAS); o ambas SEQ ID Nos.: 199 y 200. Preferiblemente, el ácido nucleico comprende la secuencia de nucleótidos de todas de SEQ ID Nos.: 183-184 y 187-188; o todas de SEQ ID Nos.: 177-182 y 187-188. En una realización específicamente preferida, el ácido nucleico comprende las secuencias de nucleótidos de todas de.
Cualquiera de los ácidos nucleicos descritos en el presente documento puede comprender además una secuencia de nucleótidos que codifica para un péptido enlazador. La secuencia de nucleótidos que codifica para el péptido enlazador puede comprender cualquier secuencia de nucleótidos adecuada. Por ejemplo, la secuencia de nucleótidos que codifica para un péptido enlazador puede comprender la secuencia de nucleótidos de SEQ ID NO: 44.
En una realización de la invención, un ácido nucleico que comprende la secuencia de nucleótidos de todas de SEQ ID Nos.: 177-182; ambas de SEQ ID Nos.: 183-184; ambas de SEQ ID Nos.: 185-186; todas de SEQ ID Nos.: 177-182 y 187-188; o todas de SEQ ID Nos.: 183-184 y 187-188; codifica para un TCR murino.
La divulgación también proporciona un ácido nucleico que comprende una secuencia de nucleótidos que es complementaria a la secuencia de nucleótidos de cualquiera de los ácidos nucleicos descritos en el presente documento o una secuencia de nucleótidos que se hibrida en condiciones rigurosas con la secuencia de nucleótidos de cualquiera de los ácidos nucleicos descritos en el presente documento.
La secuencia de nucleótidos que se hibrida en condiciones rigurosas se hibrida preferiblemente en condiciones de alta rigurosidad. Por “condiciones de alta rigurosidad” se entiende que la secuencia de nucleótidos se hibrida específicamente con una secuencia diana (la secuencia de nucleótidos de cualquiera de los ácidos nucleicos descritos en el presente documento) en una cantidad que es detectablemente más fuerte que en la hibridación no específica. Las condiciones de alta rigurosidad incluyen condiciones que distinguirían un polinucleótido con una secuencia complementaria exacta, o uno que contiene solamente unos pocos apareamientos erróneos dispersos de una secuencia aleatoria que resulta que tiene unas pocas regiones pequeñas (por ejemplo, 3-10 bases) que coinciden con la secuencia de nucleótidos. Tales regiones de complementariedad pequeñas se funden más fácilmente que un complemento de longitud completa de 14-17 o más bases, y la hibridación de alta rigurosidad las hace fácilmente distinguibles. Las condiciones de rigurosidad relativamente alta incluirían, por ejemplo, condiciones de baja sal y/o alta temperatura, tales como las proporcionadas por NaCl aproximadamente 0,02-0,1 M o el equivalente, a temperaturas de aproximadamente 50-70°C. Tales condiciones de alta rigurosidad toleran pocos apareamientos erróneos, si los hay, entre la secuencia de nucleótidos y la hebra molde o diana, y son particularmente adecuadas para detectar la expresión de cualquiera de los TCR de la invención. Generalmente se aprecia que las condiciones pueden hacerse más rigurosas mediante la adición de cantidades crecientes de formamida.
La divulgación también proporciona un ácido nucleico que comprende una secuencia de nucleótidos que es al menos aproximadamente el 70% o más, por ejemplo, aproximadamente el 80%, aproximadamente el 90%, aproximadamente el 91%, aproximadamente el 92%, aproximadamente el 93%, aproximadamente el 94%, aproximadamente el 95%, aproximadamente el 96%, aproximadamente el 97%, aproximadamente el 98%, o aproximadamente el 99% idéntica a cualquiera de los ácidos nucleicos descritos en el presente documento. En este aspecto, el ácido nucleico puede consistir esencialmente en cualquiera de las secuencias de nucleótidos descritas en el presente documento.
Los ácidos nucleicos de la invención pueden incorporarse en un vector de expresión recombinante. En este aspecto, la invención proporciona un vector de expresión recombinante que comprende cualquiera de los ácidos nucleicos de la invención. En una realización de la invención, el vector de expresión recombinante comprende una secuencia de nucleótidos que codifica para la cadena a, la cadena p y el péptido enlazador. Por ejemplo, en una realización, el vector de expresión recombinante comprende la secuencia de nucleótidos de SEQ ID NO: 176 (que codifica para las cadenas a y p de SEQ ID Nos.: 133 y 134 con un enlazador colocado entre las mismas). Para los propósitos en el presente documento, el término “vector de expresión recombinante” significa un constructo genéticamente modificado de oligonucleótido o polinucleótido que permite la expresión de un ARNm, proteína, polipéptido o péptido por una célula huésped, cuando el constructo comprende una secuencia de nucleótidos que codifica para el ARNm, proteína, polipéptido o péptido, y el vector se pone el contacto con la célula en condiciones suficientes para tener el ARNm, proteína, polipéptido o péptido expresado dentro de la célula. Los vectores de la invención no se producen de manera natural en su totalidad. Sin embargo, partes de los vectores pueden producirse de manera natural. Los vectores de expresión recombinantes de la invención pueden comprender cualquier tipo de nucleótido, incluyendo, pero sin limitarse a ADN y ARN, que pueden ser monocatenarios o bicatenarios, sintetizados u obtenidos en parte de fuentes naturales, y que pueden contener nucleótidos naturales, no naturales o alterados. Los vectores de expresión recombinantes pueden comprender enlaces internucleotídicos que se producen de manera natural, de manera no natural o ambos tipos de enlaces. Preferiblemente, los nucleótidos o los enlaces internucleotídicos que se producen de manera no natural o alterados no dificultan la transcripción o la replicación del vector.
El vector de expresión recombinante de la invención puede ser cualquier vector de expresión recombinante adecuado, y puede usarse para transformar o transfectar cualquier célula huésped adecuada. Los vectores adecuados incluyen aquellos diseñados para la propagación y la expansión o para la expresión o ambos, tales como plásmidos y virus. El vector puede seleccionarse del grupo que consiste en la serie pUC (Fermentas Life Sciences), la serie pBluescript (Stratagene, LaJolla, CA), la serie pET (Novagen, Madison, WI), la serie pGEX (Pharmacia Biotech, Uppsala, Suecia) y la serie pEX (Clontech, Palo Alto, CA). También pueden utilizarse vectores de bacteriófagos, tales como XGT10, XGT11, XZapII (Stratagene), XEMBL4 y XNM1149. Los ejemplos de vectores de expresión vegetales incluyen pBI01, pBI101.2, pBI101.3, pBI121 y pBIN19 (Clontech). Los ejemplos de vectores de expresión animales incluyen pEUK-Cl, pMAM y pMAMneo (Clontech). Preferiblemente, el vector de expresión recombinante es un vector viral, por ejemplo, un vector retroviral. En una realización específicamente preferida, el vector de expresión recombinante es un vector MSGV1.
Los vectores de expresión recombinantes de la invención pueden prepararse usando técnicas convencionales de ADN recombinante descritas, por ejemplo, en Green y Sambrook et al., citado anteriormente. Pueden prepararse constructos de vectores de expresión, que son circulares o lineales, para que contengan un sistema de replicación funcional en una célula huésped procariota o eucariota. Los sistemas de replicación pueden derivarse, por ejemplo, de ColEl, plásmido 2 p, X, SV40, virus de papiloma bovino, y similares.
De manera deseable, el vector de expresión recombinante comprende secuencias regulatorias, tales como los codones de iniciación y terminación de la transcripción y traducción, que son específicos para el tipo de célula huésped (por ejemplo, bacteria, hongo, planta o animal) en la cual va a introducirse el vector, según sea apropiado y teniendo en consideración si el vector se basa en ADN o ARN.
El vector de expresión recombinante puede incluir uno o más genes marcadores, lo que permite la selección de células huésped transformadas o transfectadas. Los genes marcador incluyen resistencia a biocidas, por ejemplo, resistencia a antibióticos, metales pesados, etc., complementación en una célula huésped auxotrófica para proporcionar prototrofia, y similares. Los genes marcadores adecuados para los vectores de expresión de la invención incluyen, por ejemplo, genes de resistencia a neomicina/G418, genes de resistencia a higromicina, genes de resistencia a histidinol, genes de resistencia a tetraciclina y genes de resistencia a ampicilina.
El vector de expresión recombinante puede comprender un promotor nativo o no nativo operativamente unido a la secuencia de nucleótidos que codifica para el TCR, polipéptido o proteína, o a la secuencia de nucleótidos que es complementaria a o que se hibrida con la secuencia de nucleótidos que codifica para el TCR, polipéptido o proteína. La selección de promotores, por ejemplo, fuertes, débiles, inducibles, específicos de tejido y específicos del desarrollo, se encuentra dentro de la experiencia habitual del experto. De manera similar, la combinación de una secuencia de nucleótidos con un promotor también se encuentra dentro de la experiencia del experto. El promotor puede ser un promotor no viral o un promotor viral, por ejemplo, un promotor de citomegalovirus (CMV), un promotor de SV40, un promotor de RSV y un promotor encontrado en la repetición de terminal larga del virus de células madres murinas.
Los vectores de expresión recombinantes de la invención pueden diseñarse ya sea para expresión transitoria, para expresión estable o para ambas. Además, los vectores de expresión recombinantes pueden producirse para expresión constitutiva o para expresión inducible.
Además, los vectores de expresión recombinantes pueden producirse para incluir un gen suicida. Tal como se usa en el presente documento, el término “gen suicida” se refiere a un gen que provoca que la célula que expresa el gen suicida muera. El gen suicida puede ser un gen que confiere sensibilidad a un agente, por ejemplo, un fármaco, a la célula en la cual se expresa en gen, y causa que la célula muera cuando la célula se pone el contacto con, o se expone a, el agente. Los genes suicidas se conocen en la técnica e incluyen, por ejemplo, el gen de timidina cinasa (TK) del virus de herpes simple (HSV), citosina daminasa, purina nucleósido fosforilasa y nitrorreductasa.
Otra realización de la invención proporciona además una célula huésped que comprende cualquiera de los vectores de expresión recombinante descritos en el presente documento. Tal como se usa en el presente documento, el término “célula huésped” se refiere a cualquier tipo de célula que pueda contener el vector de expresión recombinante de la invención. La célula huésped puede ser una célula eucariota, por ejemplo, planta, animal, hongo o alga, o puede ser una célula procariota, por ejemplo, bacteria o protozoo. La célula huésped puede ser una célula cultivada o una célula primaria, es decir, aislada directamente de un organismo, por ejemplo, un ser humano. La célula huésped puede ser una célula adherente o una célula suspendida, es decir, una célula que crece en suspensión. Las células huésped adecuadas se conocen en la técnica e incluyen, por ejemplo, células DH5a de E. coli, células de ovario de hámster chino, células VERO de mono, células COS, células HEK293, y similares. Para propósitos de amplificar o replicar el vector de expresión recombinante, la célula huésped es preferiblemente una célula procariota, por ejemplo, una célula DH5a . Para propósitos de producir un TCR, polipéptido o proteína recombinante, la célula huésped es preferiblemente una célula de mamífero. Lo más preferiblemente, la célula huésped es una célula de ser humano. Aunque la célula huésped puede ser de cualquier tipo celular, puede originarse de cualquier tipo de tejido y puede encontrarse en cualquier etapa de desarrollo, la célula huésped es preferiblemente un linfocito de sangre periférica (PBL) o una célula mononuclear de sangre periférica (PBMC). Más preferiblemente, la célula huésped es una célula T.
Para los propósitos en el presente documento, la célula T puede ser cualquier célula T, tal como una célula T cultivada, por ejemplo, una célula T primaria, o una célula T proveniente de una línea de célula T cultivada, por ejemplo, Jurkat, SupT1, etc., o una célula T obtenida de un mamífero. Si se obtiene de un mamífero, la célula T puede obtenerse de numerosas fuentes incluyendo, pero sin limitarse a, sangre, médula espinal, ganglio linfático, el timo, u otros tejidos o fluidos. Las células T también pueden estar enriquecidas o purificadas. Preferiblemente, la célula T es una célula T humana. La célula T puede ser cualquier tipo de célula T y puede encontrarse en cualquier etapa de desarrollo, incluyendo, pero sin limitarse a, células T CD4+/CD8+ positivas dobles, células T CD4+ auxiliares, por ejemplo, células Th1 y Th2, células T CD4+, células T CD8+ (por ejemplo, células T citotóxicas), linfocitos infiltrantes de tumores (TIL), células T de memoria (por ejemplo, células T de memoria centrales y células T de memoria efectoras), células T vírgenes, y similares.
También se proporciona por la invención una población de células que comprende al menos una célula huésped descrita en el presente documento. La población de células puede ser una población heterogénea que comprende la célula huésped que comprende cualquiera de los vectores de expresión recombinantes descritos, además de al menos una célula diferente, por ejemplo, una célula huésped (por ejemplo, una célula T), que no comprende ninguno de los vectores de expresión recombinantes, o una célula diferente de una célula T, por ejemplo, una célula B, un macrófago, un neutrófilo, un eritrocito, un hepatocito, una célula endotelial, una célula epitelial, una célula muscular, una célula cerebral, etc. Alternativamente, la población de células puede ser una población sustancialmente homogénea, en la cual la población comprende principalmente células huésped (por ejemplo, que consiste esencialmente en) que comprenden el vector de expresión recombinante. La población puede ser también una población clonal de células, en la cual todas las células de la población son clones de una sola célula huésped que comprende un vector de expresión recombinante, de tal manera que todas las células de la población comprenden el vector de expresión recombinante. En una realización de la invención, la población de células es una población clonal que comprende células huésped que comprenden un vector de expresión recombinante tal como se describe en el presente documento.
En una realización de la invención, los números de células en la población pueden expandirse rápidamente. La expansión de los números de células T puede llevarse a cabo por medio de cualquiera de varios métodos conocidos en la técnica tal como se describen, por ejemplo, en la patente estadounidense 8.034.334; la patente estadounidense 8.383.099; la publicación de solicitud de patente estadounidense n.° 2012/0244133; Dudley et al., J. Immunother., 26:332-42 (2003); y Riddell et al., J. Immunol. Methods, 128:189 a 201 (1990). En una realización, la expansión de los números de células T se lleva a cabo cultivando las células T con anticuerpo OKT3, IL-2 y PBMC alimentadoras (por ejemplo, PBMC alogénicas irradiadas).
La invención proporciona además un anticuerpo, o porción de unión a antígeno del mismo, que se une específicamente a una porción funcional de cualquiera de los TCR descritos en el presente documento. Preferiblemente, la porción funcional se une específicamente al antígeno del cáncer, por ejemplo, la porción funcional que comprende la secuencia de aminoácidos de SEQ ID NO: 3, 125, 137 o 149 (CDR1 de cadena a ), SEQ ID NO: 4, 126, 138 o 150 (CDR2 de cadena a ), SEQ ID NO: 5, 127, 139, 151 o 207 (CDR3 de cadena a ), SEQ ID NO: 6, 128, 140 o 152 (CDR1 de cadena p), SEQ ID NO: 7, 129, 141 o 153 (CDR2 de cadena p), SEQ ID NO: 8, 130, 142 o 154 (CDR3 de cadena p), SEQ ID NO: 9, 131, 143, 155 o 208 (la región variable de cadena a ), SEQ ID NO: 10, 132, 144 o 156 (la región variable de cadena p), o una combinación de las mismas, por ejemplo, SEQ ID Nos.: 3-5; SEQ ID Nos.: 6-8; SEQ ID Nos.: 3-8; SEQ ID NO: 9; SEQ ID NO: 10; SEQ ID Nos.: 9­ 10; SEQ ID Nos.: 125-127, SEQ ID Nos.: 128-130, SEQ ID Nos.: 125-130, SEQ ID Nos.: 137-139, SEQ ID Nos.: 140-142, SEQ ID Nos.: 137-142, SEQ ID Nos.: 149-151, SEQ ID Nos.: 149-150 y 207, SEQ ID Nos.: 152-154, SEQ ID Nos.: 149-154; SEQ ID Nos.: 149-150, 207 y 152-154; SEQ ID Nos.: 131-132, SEQ ID Nos.: 143-144, SEQ ID Nos.: 155-156; SEQ ID NO: 208; o SEQ ID Nos.: 208 y 156. Más preferiblemente, la porción funcional comprende las secuencias de aminoácidos de SEQ ID Nos.: 3-8, SEQ ID Nos.: 9 y 10, SEQ ID Nos.: 125-130, SEQ ID Nos.: 137-142, SEQ ID Nos.: 149-154, SEQ ID Nos.: 149-150, 207 y 152-154, SEQ ID Nos.: 131-132, SEQ ID Nos.: 143-144, SEQ ID Nos.: 155-156 o SEQ ID Nos.: 208 y 156. En una realización preferida, el anticuerpo, o porción de unión a antígeno del mismo, se une a un epítopo que se forma por las 6 CDR (la CDR1-3 de la cadena a y la CDR1-3 de la cadena p). El anticuerpo puede ser cualquier tipo de inmunoglobulina conocido en la técnica. Por ejemplo, el anticuerpo puede ser de cualquier isotipo, por ejemplo, IgA, IgD, IgE, IgG, IgM, etc. El anticuerpo puede ser monoclonal o policlonal. El anticuerpo puede ser un anticuerpo que se produce de manera natural, por ejemplo, un anticuerpo aislado y/o purificado a partir de un mamífero, por ejemplo, de ratón, conejo, cabra, caballo, pollo, hámster, ser humano, etc. Alternativamente, el anticuerpo puede ser un anticuerpo modificado por ingeniería genética, por ejemplo, un anticuerpo humanizado o un anticuerpo quimérico. El anticuerpo puede encontrarse en forma monomérica o polimérica. Además, el anticuerpo puede tener cualquier nivel de afinidad o avidez para la porción funcional del TCR de la invención. De manera deseable, el anticuerpo es específico para la porción funcional del TCR de la invención, de tal manera que existe una mínima reacción cruzada con otros péptidos o proteínas.
Los métodos para someter a prueba anticuerpos para determinar su capacidad para unirse a cualquier porción funcional o variante funcional del TCR de la invención se conocen en la técnica e incluyen cualquier análisis de unión de anticuerpo-antígeno, tal como, por ejemplo, radioinmunoanálisis (RIA), ELISA, inmunotransferencia de tipo Western, inmunoprecipitación y análisis de inhibición competitiva.
Los métodos adecuados para producir anticuerpos se conocen en la técnica. Por ejemplo, se describen métodos de hibridoma convencionales, por ejemplo, en C.A. Janeway et al. (eds.), Immunobiology, 8a ed., Garland Publishing, Nueva York, NY (2011)). Alternativamente, se conocen en la técnica otros métodos tales como los métodos de EBV-hibridoma, métodos para producir anticuerpos en animales no humanos y sistemas de expresión de vector de bacteriófago.
También puede utilizarse presentación en fagos para generar el anticuerpo de la invención. En este aspecto, pueden generarse bibliotecas de fagos que codifican para los dominios variables (V) de unión a antígeno de anticuerpos utilizando técnicas de biología molecular y ADN recombinante convencionales (véase, por ejemplo, Green y Sambrook et al. (eds.), Molecular Cloning, A Laboratory Manual, 4a edición, Cold Spring Harbor Laboratory Press, Nueva York (2012)). El fago que codifica para una región variable con la especificidad deseada se selecciona por su unión específica al antígeno deseado y se reconstituye un anticuerpo completo o parcial que comprende el dominio variable seleccionado. Las secuencias de ácidos nucleicos que codifican para el anticuerpo reconstituido se introducen en una línea celular adecuada tal como una célula de mieloma utilizada para la producción de hibridomas, de tal manera que los anticuerpos que tienen las características de los anticuerpos monoclonales se secretan por la célula (véase, por ejemplo, Janeway et al., citado anteriormente).
Los métodos para generar anticuerpos humanizados se conocen bien en la técnica. Los anticuerpos también pueden producirse por ratones transgénicos que son transgénicos para genes específicos de inmunoglobulina de cadena pesada y ligera. Tales métodos se conocen en la técnica y se describen, por ejemplo, en Janeway et al., citado anteriormente.
La divulgación también proporciona porciones de unión a antígeno de cualquiera de los anticuerpos descritos en el presente documento. La porción de unión a antígeno puede ser cualquier porción que tenga al menos un sitio de unión a antígeno tal como Fab, F(ab')2, dsFv, sFv, diacuerpos y triacuerpos.
Un fragmento de anticuerpo de fragmento de región variable de cadena sencilla (sFv), que consiste en un fragmento Fab truncado que comprende el dominio variable (V) de una cadena pesada de anticuerpo unida a un dominio V de una cadena ligera de anticuerpo a través de un péptido sintético, puede generarse utilizando técnicas rutinarias de tecnología de ADN recombinante (ver, por ejemplo, Janeway et al., citado anteriormente). De manera similar, pueden prepararse fragmentos de región variable estabilizados por disulfuro (dsFv) mediante tecnología de ADN recombinante. Sin embargo, los fragmentos de anticuerpo de la invención no se limitan a estos tipos a modo de ejemplo de fragmentos de anticuerpo.
Además, el anticuerpo, o porción de unión a antígeno del mismo, puede modificarse para comprender un marcador detectable tal como, por ejemplo, un radioisótopo, un fluoróforo (por ejemplo, isotiocianato de fluoresceína (FITC), ficoeritrina (PE)), una enzima (por ejemplo, fosfatasa alcalina, peroxidasa de rábano), y partículas de elementos (por ejemplo, partículas de oro).
Los TCR de la invención, polipéptidos, proteínas, ácidos nucleicos, vectores de expresión recombinantes, células huésped (incluyendo poblaciones de las mismas), pueden aislarse y/o purificarse. El término “aislado” tal como se usa en el presente documento significa que se ha retirado de su ambiente natural. El término “purificado” tal como se usa en el presente documento significa que se ha aumentado su pureza, en donde “pureza” es un término relativo y no debe interpretarse necesariamente como pureza absoluta. Por ejemplo, la pureza puede ser de al menos aproximadamente el 50%, puede ser mayor del 60%, 70%, 80%, 90%, 95%, o puede ser del 100%. Los TCR de la invención, polipéptidos, proteínas, ácidos nucleicos, vectores de expresión recombinantes, células huésped (incluyendo poblaciones de las mismas), todos los cuales se denominan colectivamente “materiales de TCR de la invención” a continuación en el presente documento, pueden formularse en una composición, tal como una composición farmacéutica. En este aspecto, la invención proporciona una composición farmacéutica que comprende cualquiera de los TCR, polipéptidos, proteínas, ácidos nucleicos, vectores de expresión, células huésped (incluyendo poblaciones de las mismas), descritos en el presente documento, y un portador farmacéuticamente aceptable. Las composiciones farmacéuticas de la invención que contienen cualquiera de los materiales de TCR de la invención pueden comprender más de un material de TCR de la invención, por ejemplo, un polipéptido y un ácido nucleico, o dos o más TCR diferentes. Alternativamente, la composición farmacéutica puede comprender un material de TCR de la invención en combinación con otro(s) agente(s) o fármaco(s) farmacéuticamente activo(s), tal(es) como agentes quimioterápicos, por ejemplo, asparaginasa, busulfano, carboplatino, cisplatino, daunorubicina, doxorubicina, fluorouracilo, gemcitabina, hidroxiurea, metotrexato, paclitaxel, rituximab, vinblastina, vincristina, etc.
Preferiblemente, el portador es un portador farmacéuticamente aceptable. Con respecto a las composiciones farmacéuticas, el portador puede ser cualquiera de los convencionalmente utilizados para el material particular de TCR de la invención en consideración. Tales portadores farmacéuticamente aceptables los conocen muy bien los expertos en la técnica y se encuentran fácilmente disponibles al público. Se prefiere que el portador farmacéuticamente aceptable sea uno que no tenga efectos secundarios dañinos ni toxicidad en las condiciones de uso.
La elección del portador se determinará en parte por el material particular de TCR de la invención, así como por el método particular utilizado para administrar el material de TCR de la invención. Por consiguiente, existe una variedad de formulaciones adecuadas de la composición farmacéutica de la invención. Las formulaciones adecuadas pueden incluir cualquiera de aquellas para administración oral, parenteral, subcutánea, intravenosa, intramuscular, intraarterial, intratecal o interperitoneal. Puede utilizarse más de una vía para administrar los materiales de TCR de la invención, y en ciertos casos, una vía particular puede proporcionar una respuesta más inmediata y más efectiva que otra vía.
Preferiblemente, el material de TCR de la invención se administra por medio de inyección, por ejemplo, por vía intravenosa. Cuando el material de TCR de la invención es una célula huésped que expresa el TCR de la invención (o una variante funcional del mismo), el portador farmacéuticamente aceptable para las células para inyección puede incluir cualquier portador isotónico tal como, por ejemplo, solución salina normal (aproximadamente el 0,90% peso/volumen de NaCl en agua, aproximadamente 300 mOsm/l de NaCl en agua, o aproximadamente 9,0 g de NaCl por litro de agua), solución electrolítica NORMOSOL R (Abbott, Chicago, Il), PLASMA-LYTE A (Baxter, Deerfield, IL), aproximadamente el 5% de dextrosa en agua, o lactato de Ringer. En una realización, el portador farmacéuticamente aceptable se suplementa con albúmina sérica humana.
Para los propósitos de la invención, la cantidad o dosis (por ejemplo, el número de células cuando el material de TCR de la invención es una o más células) del material de TCR de la invención administrada debe ser suficiente para efectuar, por ejemplo, una respuesta terapéutica o profiláctica, en el sujeto o animal durante un marco de tiempo razonable. Por ejemplo, la dosis del material de TCR de la invención debe ser suficiente para unirse a un antígeno de cáncer (por ejemplo, KRAS mutado), o para detectar, tratar o prevenir el cáncer en un período de desde aproximadamente 2 horas o más, por ejemplo, de 12 a 24 o más horas, desde el momento de la administración. En ciertas realizaciones, el período de tiempo podría ser incluso más largo. La dosis se determinará por la eficacia del material particular de TCR de la invención y por el estado del animal (por ejemplo, un ser humano), así como por el peso corporal del animal (por ejemplo, un ser humano) que va a tratarse.
Se conocen en la técnica muchos ensayos para determinar la dosis administrada. Para los propósitos de la invención, podría utilizarse un ensayo que comprende comparar el grado al cual se lisan las células diana o al cual se secreta IFN-y por células T que expresan el TCR, polipéptido o proteína de la invención tras la administración de una dosis dada de tales células T a un mamífero entre un conjunto de mamíferos a cada uno de los cuales se proporciona una dosis diferente de las células T, para determinar la dosis inicial que va a administrarse al mamífero. El grado al cual se lisan células diana o se secreta IFN-y tras la administración de cierta dosis puede analizarse mediante métodos conocidos en la técnica.
La dosis del material de TCR de la invención también se determinará por la existencia, la naturaleza y la extensión de cualquier efecto secundario adverso que pudiera acompañar a la administración de un material particular de TCR de la invención. Normalmente, el médico a cargo decidirá la dosificación del material de TCR de la invención con el cual tratar a cada paciente individual, teniendo en consideración una variedad de factores tales como la edad, el peso corporal, la salud general, la dieta, el sexo, el material de TCR de la invención que va a administrarse, la vía de administración y la gravedad del cáncer que se trata. En una realización en la cual el material de TCR de la invención es una población de células, el número de células administradas por infusión puede variar, por ejemplo, desde aproximadamente 1 x 106 hasta aproximadamente 1 x 1012 células o más. En ciertas realizaciones, pueden administrarse menos de 1 x 106 células.
Un experto habitual en la técnica apreciará fácilmente que los materiales de TCR de la invención pueden modificarse en cualquier número de formas, de tal manera que se aumente la eficacia terapéutica o profiláctica de los materiales de TCR de la invención a través de modificación. Por ejemplo, los materiales de TCR de la invención pueden conjugarse ya sea directa o indirectamente a través de un puente a un resto de direccionamiento. La práctica de conjugar los compuestos, por ejemplo, los materiales de TCR de la invención, con restos de direccionamiento se conoce en la técnica. El término “resto de direccionamiento” tal como se utiliza en el presente documento se refiere a cualquier molécula o agente que reconoce específicamente y se une a un receptor de superficie celular, de tal manera que el resto de direccionamiento dirige el suministro de los materiales de TCR de la invención a una población de células en cuya superficie se expresa el receptor. Los restos de direccionamiento incluyen, pero no se limitan a, anticuerpos, o fragmentos de los mismos, péptidos, hormonas, factores de crecimiento, citocinas y cualquier otro ligando natural o no natural que se une a receptores de superficie celular (por ejemplo, receptor del factor de crecimiento epitelial (EGFR), receptor de células T (TCR), receptor de células B (BCR), CD28, receptor del factor de crecimiento derivado de plaquetas (PDGF), receptor de acetilcolina nicotínico (nAChR), etc.). El término “puente” tal como se usa en el presente documento se refiere a cualquier agente o molécula que une los materiales de TCR de la invención al resto de direccionamiento. Un experto habitual en la técnica reconoce que sitios en los materiales de TCR de la invención, que no son necesarios para la función de los materiales de TCR de la invención, son sitios ideales para unir un puente y/o un resto de direccionamiento, siempre que el puente y/o el resto de direccionamiento, una vez unidos a los materiales de TCR de la invención, no interfieran con la función de los materiales de TCR de la invención, es decir, la capacidad de unirse a la diana mutada, por ejemplo, KRAS mutado o de detectar, tratar o prevenir el cáncer.
Se contempla que las composiciones farmacéuticas de la invención, TCR, polipéptidos, proteínas, ácidos nucleicos, vectores de expresión recombinantes, células huésped o poblaciones de células pueden utilizarse en métodos para tratar o prevenir el cáncer. Sin querer restringirse a una teoría en particular, se cree que los TCR de la invención se unen específicamente a la diana mutada, por ejemplo, KRAS mutado, de tal manera que el TCR (o el polipéptido o la proteína de la invención relacionada), cuando se expresa por una célula, tiene la capacidad de mediar en una respuesta inmunitaria contra una célula diana que expresa la diana mutada, por ejemplo, KRAS mutado. En este aspecto, la invención proporciona las células huésped de la invención o poblaciones de células para su uso en un método de tratamiento o prevención del cáncer en un mamífero, que comprende administrar al mamífero cualquier célula huésped o población de células que comprende un vector recombinante que codifica para cualquiera de los TCR, polipéptidos o proteínas descritos en el presente documento, en una cantidad eficaz para tratar o prevenir el cáncer en el mamífero.
Una realización de la invención proporciona cualquier célula huésped o población de células que comprende un vector recombinante que codifica para cualquiera de los TCR, polipéptidos o proteínas descritos en el presente documento, para su uso en el tratamiento o la prevención del cáncer en un mamífero.
Los términos “tratar” y “prevenir” así como palabras derivadas de los mismos, tal como se usan en el presente documento, no implican necesariamente tratamiento o prevención al 100% o completo. Más bien, existen grados variables de tratamiento o prevención que reconoce el experto habitual en la técnica que tienen un beneficio potencial o un efecto terapéutico. En este aspecto, los métodos dados a conocer pueden proporcionar cualquier cantidad o cualquier nivel de tratamiento o prevención del cáncer en un mamífero. Además, el tratamiento o prevención proporcionados por el método dado a conocer pueden incluir el tratamiento o prevención de uno o más estados o síntomas del cáncer que se tratan o se previenen. Por ejemplo, el tratamiento o prevención pueden incluir promover la regresión de un tumor. También, para los propósitos en el presente documento, “prevención” puede abarcar el retraso del inicio del cáncer, o de un síntoma o estado del mismo.
También se proporciona un método in vitro para detectar la presencia del cáncer en un mamífero. El método comprende (i) poner en contacto una muestra que comprende una o más células provenientes del mamífero con cualquiera de las células huésped, poblaciones de células de la invención, formando así un complejo, y detectar el complejo, en donde la detección del complejo es indicativa de la presencia del cáncer en el mamífero.
Con respecto al método in vitro de la invención para detectar el cáncer en un mamífero, la muestra de células puede ser una muestra que comprende células completas, lisados de las mismas, o una fracción de los lisados celulares completos, por ejemplo, una fracción nuclear o citoplásmica, una fracción de proteína completa o una fracción de ácido nucleico.
Para los propósitos del método de detección de la invención, el contacto puede tener lugar in vitro o in vivo con respecto al mamífero.
Además, la detección del complejo puede producirse a través de cualquier número de formas conocidas en la técnica. Por ejemplo, los TCR, polipéptidos, proteínas, ácidos nucleicos, vectores de expresión recombinantes, células huésped, poblaciones de células, descritos en el presente documento, pueden marcarse con un marcador detectable tal como, por ejemplo, un radioisótopo, un fluoróforo (por ejemplo, un isotiocianato de fluoresceína (FITC), una ficoeritrina (PE)), una enzima (por ejemplo, fosfatasa alcalina, peroxidasa de rábano) y partículas de elementos (por ejemplo, partículas de oro).
Para propósitos de los métodos dados a conocer, en donde se administran células huésped o poblaciones de células, las células pueden ser células que son alogénicas o autólogas para el mamífero. Preferiblemente, las células son autólogas para el mamífero.
Con respecto a los métodos de la invención, el cáncer puede ser cualquier cáncer incluyendo cualquiera de cáncer linfocítico agudo, leucemia mieloide aguda, rhabdomiosarcoma alveolar, cáncer de hueso, cáncer cerebral, cáncer de mama, cáncer del ano, del canal anal o ano-recto, cáncer de ojo, cáncer del conducto biliar intrahepático, cáncer de las articulaciones, cáncer de cuello, vesícula biliar o pleura, cáncer de nariz, de cavidad nasal o del oído medio, cáncer de la cavidad oral, cáncer de la vagina, cáncer de la vulva, leucemia linfocítica crónica, cáncer mieloide crónico, cáncer de colon, cáncer colorrectal, cáncer endometrial, cáncer esofágico, cáncer de cuello uterino, tumor carcinoide gastrointestinal, glioma, linfoma de Hodgkin, cáncer hipofaríngeo, cáncer renal, cáncer de laringe, cáncer hepático, cáncer pulmonar, mesotelioma maligno, melanoma, mieloma múltiple, cáncer nasofaríngeo, linfoma no Hodgkin, cáncer de la orofaringe, cáncer ovárico, cáncer de pene, cáncer pancreático, del peritoneo, omentum y cáncer de mesenterio, cáncer faríngeo, cáncer de próstata, cáncer rectal, cáncer renal, cáncer de piel, cáncer de intestino delgado, cáncer de tejido blando, cáncer de estómago, cáncer testicular, cáncer de tiroides, cáncer del útero, cáncer del uréter y cáncer de vejiga urinaria. Un cáncer preferido es el cáncer pancreático, colorrectal, pulmonar, endometrial, ovárico o de próstata. Preferiblemente, el cáncer pulmonar es adenocarcinoma pulmonar, el cáncer ovárico es cáncer ovárico epitelial y el cáncer pancreático es carcinoma pancreático. En otra realización preferida, el cáncer es un cáncer que expresa la secuencia de aminoácidos mutada de VVVGAVGVGK (SEQ ID NO: 33) o VVGAVGVGK (SEQ ID NO: 35), que se encuentran presentes en KRAS mutado humano, NRAS mutado humano y HRAS mutado humano.
El mamífero al que se hace referencia en los métodos de la invención puede ser cualquier mamífero. Tal como se usa en el presente documento, el término “mamífero” se refiere a cualquier mamífero incluyendo, pero sin limitarse a, mamíferos del orden Rodentia, tales como ratones y hámsteres, y mamíferos del orden Logomorpha, tales como conejos. Se prefiere que los mamíferos sean del orden Carnivora, incluyendo felinos (gatos) y caninos (perros). Se prefiere más que los mamíferos sean del orden Artiodactyla, incluyendo bovinos (vacas) y cerdos (puercos) o del orden Perssodactyla, incluyendo equinos (caballos). Lo más preferido es que los mamíferos sean del orden Primates, Ceboides o Simoides (monos) o del orden de los Antropoides (humanos y simios). Un mamífero especialmente preferido es el ser humano.
Los siguientes ejemplos ilustran adicionalmente la invención pero, por supuesto, no deben interpretarse en modo alguno como limitativos de su alcance.
EJEMPLO 1
Este ejemplo demuestra el aislamiento de TCR G12D de 10 meros murinos anti-KRAS7-16.
Se utilizó un algoritmo informático para generar péptidos de KRAS HLA-A11*01 candidatos. Para el algoritmo, el umbral de aglutinante fuerte fue de 50 nM y el umbral de aglutinante débil fue de 500 nM. Los péptidos candidatos se muestran en la tabla 1.
TABLA 1
Figure imgf000021_0001
Figure imgf000022_0002
Se inmunizaron ratones transgénicos para HLA-A11 con el péptido G12D de 10 meros (SEQ ID NO: 2) tres veces. Después de la tercera inmunización, se retiraron el bazo y los ganglios linfáticos y se cultivaron in vitro con el péptido G12D de 10 meros a diversas concentraciones (1 pM, 0,1 pM y 0,01 pM) durante siete días. Las células T aisladas de los cultivos de ganglio linfático (LN) y bazo se sometieron a prueba para determinar su reactividad contra (i) células COS7 transducidas para expresar HLA-A11 (COS7/A11) las cuales se habían pulsado con (a) ningún péptido (COS/A11), (b) péptido WT KRAS7-16 (SEQ ID NO: 30) (COS/A11+ péptido WT), (c) péptido G12d de 10 meros (SEQ ID nO: 2) (COS/A11 péptido G12D) o (d) péptido G12V de 10 meros (SEQ ID NO: 33) (COS/A11 péptido G12V); y (ii) células COS7/A11 transfectadas con un vector que codifica para (a) un minigen KRAS WT (que codifica para SEQ ID NO: 118 de 23 meros) (COS/A11/WT) o (b) minigen G12D (que codifica para SEQ ID NO: 119 de 23 meros) (COS/A11/G12D). Se midió el interferón (IFN)-y. Los resultados se muestran en la tabla 2A (células diana pulsadas) y la tabla 2B (células diana transfectadas). Tal como se muestra en las tablas 2A y 2B, las células T murinas restringidas por HLA-A11 se reactivaron contra el péptido KRAS G12D SEQ ID NO: 2.
TABLA 2A
Figure imgf000022_0001
TABLA 2B
Figure imgf000022_0003
Figure imgf000023_0004
El TCR se aisló de las células en cada pocilio positivo utilizando amplificación rápida en 5' de los extremos del ADNc (RACE). Se identificaron dos cadenas alfa dominantes y cuatro cadenas beta dominantes (tabla 3).
TABLA 3
Figure imgf000023_0003
EJEMPLO 2
Este ejemplo demuestra que PBL transducidas para expresar una cadena a de TCR que comprende SEQ ID NO: 11 y una cadena p de TCR que comprende SEQ ID NO: 12 son reactivas contra dianas HLA-A11+/G12D de 10 meros+.
Las dos cadenas a dominantes y las cuatro cadenas p dominantes de la tabla 3 se clonaron individualmente en vectores retrovirales de MSGV1. Los PBL se cotransdujeron individualmente para expresar uno de varios pares de una cadena a y p, tal como se muestra en la tabla 4. Los PBL transducidos se examinaron para determinar su reactividad contra (i) células T2/A11+ que expresan HLA-A11 (tabla 4A) o COS7/A11+ (tabla 4B) pulsadas con (a) péptido G12D de 10 meros (SEQ ID NO: 2), (b) péptido G12V de 10 meros (SEQ ID NO: 33), (c) péptido k RAs WT de 10 meros (SEQ iD NO: 30) o (d) ningún péptido (ninguno); o (ii) células COS7/A11 transducidas con (a) un minigen de G12D (que codifica para SEQ ID nO: 119 de 23 meros) (COS/A11/G12D), (b) un minigen de G12v (que codifica para s Eq ID NO: 120 de 23 meros) (COS/A11/G12V), (c) un minigen de KRAS WT (que codifica para SEQ ID NO: 118 de 23 meros) (COS/A11/WT) o (d) ninguna célula (solamente el medio) (tabla 4C). Se midió la secreción de IFN-y. Los resultados se muestran en las tablas 4A a C. En las tablas 4A a C, los valores de secreción de IFN-y en negrita indican aquellos pares de cadenas a y p de TCR que demostraron reactividad, y los valores de secreción de IFN-y en negrita con subrayado indican el par de cadenas a y p de TCR que demostraron la mejor reactividad. Tal como se muestra en las tablas 4A a C, los PBL cotransducidos para expresar la cadena a de TCR murino TRAV12N-3*01 (SEQ ID NO: 11) y la cadena p de TCR murino TRBV4*01 (SEQ ID NO: 12) demostraron reactividad contra células COS7 que expresan HLA-A11 pulsadas con células diana G12D de 10 meros o transfectantes de G12D.
TABLA 4A
Figure imgf000023_0001
TABLA 4B
Figure imgf000023_0002
Figure imgf000024_0002
TABLA 4C
Figure imgf000024_0001
EJEMPLO 3
Este ejemplo demuestra que los PBL cotransducidos con una cadena a de TCR que comprende SEQ ID NO: 11 y una cadena p de TCR que comprende SEQ ID NO: 12 son reactivas contra la línea celular de tumor pancreático HLA-A11+/G12D+ FA6-2/A11.
Se cotransdujeron PBL humanas con una cadena a de TCR que comprende SEQ ID NO: 11 y una cadena p de TCR que comprende SEQ ID NO: 12. Las células cotransducidas se cocultivaron con (i) células COS7 transfectadas con (a) HLA-A11 solo (COS7/A11) o HLA-A11 transducido con (b) un minigen de KRAS WT (que codifica para SEQ ID NO: 118 de 23 meros) (COS7/A11/KRAS WT), (c) un minigen de KRAS G12D (que codifica para SEQ ID NO: 119 de 23 meros) (COS7/A11/KRAS G12D), (d) un minigen de KRAS G12V (que codifica para SEQ ID NO: 120 de 23 meros) (COS7/A11/KRAS G12V); (ii) líneas celulares de tumor pancreático Mia-Paca2/A11, T3m4/A11, AsPC-1, FA6-2/A11, MDA-Panc-48/A11, PANC-1, PK-45p/A11, SK.PC.3/A11, x135m1/A11 o (iii) el medio solo. Se midió la secreción de IFN-y. Los resultados se muestran en la tabla 5. Las mutaciones de KRAS de las líneas celulares de tumor se indican entre paréntesis. Tal como se muestra en la tabla 5, PBL cotransducidas con una cadena a de TCR TRAV12N-3*01 (SEQ ID NO: 11) y una cadena p de TCR TRBV4*01 (SEQ ID NO: 12) demostraron reactividad contra la línea celular de tumor pancreático HLA-A11+/G12D+ FA6-2/A11.
TABLA 5
Figure imgf000024_0003
EJEMPLO 4
Este ejemplo demuestra que los PBL que se transdujeron con un vector retroviral que codifica para una cadena a de TCR TRAV12N-3*01 (SEQ ID NO: 11) y una cadena p de TCR TRBV4*01 (SEQ ID NO: 12) demostraron reactividad contra células COS7/A11 pulsadas con péptido KRAS G12D de 10 meros (SEQ ID NO: 2).
Se transdujeron PBL humanas con un vector retroviral que codifica para la cadena a de TCR TRAV12N-3*01 (SEQ ID NO: 11) y la cadena p de TCR TRBV4*01 (SEQ ID NO: 12). Los PBL transducidos se cocultivaron con células COS7/A11 que se pulsaron con péptido KRAS G12D de 10 meros (SEQ ID NO: 2), péptido KRAS G12D de 9 meros (SEQ ID NO: 34), péptido KRAS G12D de 9 meros (SEQ ID NO: 124), péptido KRAS G12V de 10 meros (SEQ ID NO: 33) o péptido KRAS WT de 10 meros (SEQ ID NO: 30) a diversas concentraciones mostradas en la tabla 6. Se midió la secreción de IFN-y. Los resultados se muestran en la tabla 16. Tal como se muestra en la tabla 6, los PBL humanos transducidos para expresar una cadena a de TCR TRAV12N-3*01 (SEQ ID NO: 11) y una cadena p de TCR TRBV4*01 (SEQ ID NO: 12) demostraron reactividad contra células COS7/A11 pulsadas con péptido KRAS G12D de 10 meros (SEQ ID nO: 2).
TABLA 6
Figure imgf000025_0001
EJEMPLO 5
Este ejemplo demuestra que los PBL que se transdujeron con un vector retroviral que codifica para una cadena a de TCR TRAV12N-3*01 (SEQ ID NO: 11) y una cadena p de TCR TRBV4*01 (SEQ ID NO: 12) demostraron reactividad contra la línea de tumor pancreático FA6-2/A11 que expresa HLA-A11.
Se transdujeron PBL humanas con un vector retroviral que codifica para la cadena a de TCR TRAV12N-3*01 (SEQ ID NO: 11) y la cadena p de TCR TRBV4*01 (SEQ ID NO: 12). PBL de control no transducidas o PBL transducidas se cocultivaron con las células diana expuestas en la tabla 7. Se midió la secreción de IFN-y. Los resultados se muestran en la tabla 7. Las mutaciones de KRAS de líneas celulares de tumor se indican entre paréntesis. Tal como se muestra en la tabla 7, los PBL humanos transducidos para expresar una cadena a de TCR TRAV12N-3*01 (SEQ ID NO: 11) y una cadena p de TCR TRBV4*01 (SEQ ID NO: 12) demostraron reactividad contra la línea celular de tumor FA6-2/A11. Los PBL no transducidos secretaron menos de 100 pg/ml de IFN-y tras cocultivarse con cada célula diana expuesta en la tabla 7.
TABLA 7
Figure imgf000025_0002
EJEMPLO 6
Este ejemplo demuestra el aislamiento de TCR G12V anti-KRAS7-i6 murinos de 10 meros.
Se inmunizaron ratones transgénicos para HLA-A11 con el péptido G12V de 10 meros (SEQ ID NO: 33) dos veces. Después de la segunda inmunización, se retiraron el bazo y los ganglios linfáticos y se cultivaron in vitro con el péptido G12V de 10 meros a diversas concentraciones (1 pM, 0,1 pM y 0,01 pM) durante siete días. Se sometieron a prueba células T aisladas de los cultivos de ganglios linfáticos y bazo para determinar su reactividad contra (i) células COS7/A11 transfectadas con un vector que codifica para (a) un minigen de G12V (que codifica para SEQ ID NO: 120 de 23 meros) (COSA11/G12V); (b) un minigen de KRAS WT (que codifica para SEQ ID NO: 118 de 23 meros) (COSA11/WT); (c) un minigen de G12D (que codifica para SeQ ID NO: 119 de 23 meros) (COSA11/G12D); (ii) líneas celulares de tumor pancreático G12V+ KRAS que expresan HLA-A11, Paca44/A11, SKPC3/A11 o x135m1/A11; o (iii) ninguna célula diana (medio) (tabla 8). Los resultados se muestran en la tabla 8. En la tabla 8, los valores de secreción de IFN-y subrayados indican aquellas células que demostraron reactividad contra transfectantes y tumores.
TABLA 8
Figure imgf000026_0002
Se aislaron TCR oligoclonales a partir de las células que demostraron alta reactividad específica con péptido G12V y transfectante utilizando 5' RACE. Se identificaron dos cadenas alfa dominantes y tres cadenas beta dominantes (tabla 9).
TABLA 9
Figure imgf000026_0001
EJEMPLO 7
Este ejemplo demuestra que los PBL transducidos para expresar (i) una cadena a de TCR que comprende SEQ ID NO: 133 y una cadena p de TCR que comprende SEQ ID NO: 134 o (ii) una cadena a de TCR que comprende SEQ ID NO: 145 y una cadena p de TCR que comprende SEQ ID NO: 146 son reactivas contra dianas de HLA-A11+/G12V de 10 meros+.
Las dos cadenas a dominantes y las tres cadenas p dominantes de la tabla 9 se clonaron individualmente en vectores retrovirales de MSGV1. Se cotransdujeron PBL estimulados anti-CD3 individualmente para expresar uno de diversos pares de una cadena a y una p, tal como se muestra en las tablas 10A-10B. Los PBL transducidos se examinaron para determinar su reactividad contra (i) células COS7/A11+ pulsadas con (a) péptido G12D de 10 meros (SEQ ID NO: 2), (b) péptido G12V de 10 meros (SEQ ID NO: 33) o (c) péptido KRAS WT de 10 meros (SEQ ID NO: 30) (tabla 10a ) o (ii) células COS7/A11 transducidas con (a) un minigen de G12D (que codifica para SEQ ID NO: 119 de 23 meros) (COS/A11/G12D), (b) un minigen de G12V (que codifica para SEQ ID NO: 120 de 23 meros) (COS/A11/G12V) o (c) un minigen de KRAS WT (que codifica para SEQ ID NO: 118 de 23 meros) (COS/A11/WT) (tabla 10B). Células COS7/A11 no transfectadas que no se pulsaron con péptido (COS7/A11) y medio sin células (medio) sirvieron como controles negativos. PBL pulsados o transducidos con GFP sirvieron como control positivo. Se midió la secreción de IFN-y.
Los resultados se muestran en las tablas 10A-10B. En las tablas 10A-10B, los valores de secreción de IFN-y en negrita indican aquellos pares de cadenas a y p de TCR que demostraron reactividad. Tal como se muestra en las tablas 10A-10B, los PBL cotransducidos para expresar (i) tanto la cadena a de TCR murino TRAV19*01 (SEQ ID NO: 145) como la cadena p de TCR murino TRBV13-1*02 (SEQ ID NO: 146) o (ii) tanto la cadena a de TCR murino TRAV3-3*01 (SEQ ID NO: 133) como la cadena p de TCR murino TRBV4*01 (SEQ ID NO: 134) demostraron reactividad contra células COS7 que expresan HLA-A11 pulsadas con células diana G12V de 10 meros o G12V transfectantes, pero no péptidos de control o transfectantes de control.
TABLA 10A
Figure imgf000027_0001
TABLA 10B
Figure imgf000027_0002
EJEMPLO 8
Este ejemplo demuestra que el TCR G12V anti-KRAS murino TRAV3-3*01/TRBV4*01 (SEQ ID Nos.: 133 y 134) tiene una afinidad más alta para el péptido diana pulsado en comparación con el TCR G12V anti-KRAS murino TRAV19*01/TRBV13-1 *02 (SEQ ID Nos.: 145 y 146).
Se transdujeron PBL ya sea con (i) TCR G12V anti-KRAS murino TRAV3-3*01/TRBV4*01 (SEQ ID Nos.: 133 y 134) o (ii) TCR G12V anti-KRAS murino TRAV19*01/TRBV13-1*02 (SEQ ID Nos.: 145 y 146). Las células transducidas se cocultivaron con células Cos7/A11 pulsadas con (a) péptido G12D de 10 meros (SEQ ID NO: 2), (b) péptido G12V de 10 meros (SEQ ID NO: 33), (c) péptido KRAS WT de 10 meros (SEQ ID NO: 30), (d) péptido g 12d de 9 meros (SEQ ID NO: 34) o (e) péptido g 12V de 9 meros (SEQ ID NO: 35) a las concentraciones mostradas en las tablas 11A y 11B. Se midió la secreción de IFN-y.
Los resultados se muestran en la tabla 11A (TRAV3-3*01/TRBV4*01 (SEQ ID Nos.: 133 y 134)) y en la tabla 11B (TRAV19*01 /TRBV13-1 *02 (SEQ ID Nos.: 145 y 146)). En las tablas 11A-11B, los valores de secreción de INF-y en negrita indican aquellas concentraciones de péptido diana a las que el TCR demostró reactividad. Tal como se muestra en las tablas 11A-11B, células T transducidas con el TCR TRAV3-3*01/TRBV4*01 (SEQ ID Nos.: 133 y 134) reconocieron a las Cos7/A11 pulsadas con péptidos tanto de 9 meros como de 10 meros y reconocieron las de 9 meros en el pulsado en una concentración de 0,01 nM. Por consiguiente, el TCR TRAV3-3*01/TRBV4*01 (SEQ ID Nos.: 133 y 134) reconoció el péptido diana pulsado con mayor avidez en comparación con el TCR TRAV19*01/TRBV13-1*02 (SEQ ID Nos.: 145 y 146). La reactividad aumentada del TCR TRAV3-3*01/TRBV4*01 (SEQ ID Nos.: 145 y 146) contra el péptido G12V de 9 meros en comparación con el péptido de 10 meros también sugirió que el péptido de 9 meros es el determinante mínimo.
TABLA 11A
Figure imgf000028_0001
TABLA 11B
Figure imgf000028_0002
EJEMPLO 9
Este ejemplo demuestra que el TCR G12V anti-KRAS murino TRAV3-3*01/TRBV4*01 (SEQ ID Nos.: 133 y 134) reconoce las líneas celulares de tumor pancreático HLA-A11+ KRAS G12V+.
Se transdujeron PBL ya sea con (i) TCR G12V anti-KRAS murino TRAV3-3*01/TRBV4*01 (SEQ ID Nos.: 133 y 134) o con (ii) TCR G12V anti-KRAS murino TRAV19*01/TRBV13-1*02 (SEQ ID Nos.: 145 y 146). Las células transducidas se cocultivaron con (i) células COS7/A11 transducidas con (a) un minigen de G12D (que codifica para SEQ ID NO: 119 de 23 meros) (COS/A11/G12D), (b) un minigen de G12V (que codifica para SEQ ID NO: 120 de 23 meros) (COS/A11/G12V) o (c) un minigen de KRAS WT (que codifica para SEQ ID NO: 118 de 23 meros) (COS/A11/WT); (ii) líneas celulares de tumor pancreático negativas para KRAS G12V transducidas con HLA-A11; (iii) líneas celulares de tumor pancreático KRAS G12V+ transducidas con HLA-A11; o (iv) líneas celulares de tumor pancreático originales (no transducidas), tal como se muestra en la tabla 12. Se midió la secreción de IFN-y.
Los resultados se muestran en la tabla 12. En la tabla 12, los valores de secreción de IFN-y en negrita indican aquellas células diana para las cuales el TCR demostró reactividad. Como se muestra en la tabla 12, el TCR g 12V anti-KRAS murino TRAV3-3*01/TRBV4*01 (SEQ ID Nos.: 133 y 134) reconocieron más líneas celulares de tumor pancreático HLA-A11+ KRAS G12V+ en comparación con el TCR G12V anti-KRAS murino TRAV19*01/TRBV13-1 *02 (SEQ ID Nos.: 145 y 146).
TABLA 12
Figure imgf000028_0003
Figure imgf000029_0001
EJEMPLO 10
Este ejemplo demuestra la correlación entre la producción de IFN-y y la expresión de KRAS mutado para el TCR G12V anti-KRAS murino TRAV3-3*01/BV4*01 (SEQ ID Nos.: 133 y 134).
El número de copias de ARNm de KRAS G12V expresado por cada una de las líneas celulares de tumor pancreático mostradas en la tabla 13 se midió y se comparó con el número de copias del ARNm de p-actina expresado por la línea celular indicada (tabla 13). La cantidad de IFN-y secretado por los PBL transducidos con el TCR G12V anti-KRAS murino TRAV3-3*01/Bv 4*01 (SEQ ID Nos.: 133 y 134) tras cocultivarse con cada línea celular medida en el ejemplo 9 se reproduce en la tabla 13. La reactividad de TCR G12V anti-KRAS murino TRAV3-3*01/BV4*01 (SEQ ID Nos.: 133 y 134) (en cuanto a la secreción de IFN-y tras cocultivarse con células diana) se correlacionó con el número de copias del ARNm de KRAS G12V.
TABLA 13
Figure imgf000029_0002
EJEMPLO 11
Este ejemplo demuestra que el TCR G12V anti-KRAS murino TRAV3-3*01/BV4*01 (SEQ ID Nos.: 133 y 134) reconoce KRAS mutado ya sea (i) en presencia de CD4 y en ausencia de CD8 o (ii) en presencia de CD8 y en ausencia de CD4.
Se transdujeron PBL con una secuencia de nucleótidos que codifica para el TCR G12V anti-KRAS murino TRAV3-3*01/BV4*01 (SEQ ID Nos.: 133 y 134). Las células transducidas se clasificaron en las poblaciones mostradas en la tabla 14 mediante citometría de flujo. Las poblaciones clasificadas de células se cocultivaron con (i) células COS7/A11 transducidas con (a) un minigen de G12D (que codifica para 163 meros) (COS/A11/G12D), (b) un minigen de G12V (que codifica para 163 meros) (COS/A11/G12V) o (c) un minigen de KRAS WT (que codifica para 163 meros) (COS/A11/WT); o (ii) la línea celular de tumor pancreático SK.PC3 no transducida o transducida con HLA-A11. El medio sin células sirvió como control negativo. Se midió la secreción de IFN-y. Los resultados se muestran en la tabla 14. En la tabla 14, los valores de secreción de IFN-y en negrita indican aquellas células diana para las cuales el TCR demostró reactividad. Tal como se muestra en la tabla 14, el TCR g 12V anti-KRAS murino TRAV3-3*01/BV4*01 (SEQ ID Nos.: 133 y 134) reconoce las células diana ya sea (i) en presencia de CD4 y en ausencia de CD8 o (ii) en presencia de CD8 y en ausencia de CD4. Por consiguiente, el TCR G12V anti-KRAS murino TRAV3-3*01/BV4*01 (SEQ ID Nos.: 133 y 134) proporciona un reconocimiento de alta avidez de la diana.
TABLA 14
Figure imgf000030_0002
EJEMPLO 12
Este ejemplo demuestra el aislamiento de los TCR G12D anti-KRAS7-16 murinos de 10 meros.
Se inmunizaron ratones transgénicos para HLA-A11 con el péptido G12D de 10 meros (SEQ ID NO: 2) tres veces. Después de la tercera inmunización, se retiraron el bazo y los ganglios linfáticos y se cultivaron in vitro con el péptido G12D de 10 meros a diversas concentraciones (1 pM, 0,1 pM y 0,01 pM) durante siete días. Las células T aisladas a partir de los cultivos de LN y bazo se sometieron a prueba para determinar su reactividad contra (i) células COS7 transducidas para expresar HLA-A11 (COS7/A11) que se habían pulsado con (a) ningún péptido (ninguno), (b) péptido KRAS7-16 WT (SEQ ID NO: 30) (péptido COS/A11+ WT), (c) péptido G12D de 10 meros (SEQ ID NO: 2) (péptido COS/A11+ G12D), (d) péptido G12V de 10 meros (SEQ ID NO: 33) (péptido COS/A11 G12V), (e) péptido G12V de 9 meros (SEQ ID NO: 35) o (f) péptido G12D de 9 meros (SEQ ID NO: 34); e (ii) células COS7/A11 transfectadas con un vector que codifica para (a) un minigen de KRAS WT (que codifica para SEQ ID NO: 118 de 23 meros) (COS/A11/WT), (b) un minigen de G12D (que codifica para SeQ ID NO: 119 de 23 meros) (COS/A11/G12D) o (c) (b) un minigen de G12V (que codifica para SEQ ID NO: 120 de 23 meros) (COS/A11/G12D). Se midió el interferón (IFN)-y.
Los resultados se muestran en la tabla 15A (pulso con péptido) y la tabla 15B (transfectantes). En las tablas 15A y 15B, los valores de secreción de IFN-y en negrita indican aquellos péptidos diana y células diana para las cuales el TCR demostró reactividad. Tal como se muestra en las tablas 15A y 15B, las células T murinas restringidas por HLA-A11 eran reactivas contra el péptido G12D de KRAS SEQ ID No : 2.
TABLA 15A
Figure imgf000030_0001
Figure imgf000031_0001
TABLA 15B
Figure imgf000031_0004
Las células T aisladas de los cultivos de LN y bazo también se estimularon también in vitro con diversas concentraciones de péptidos G12D durante 6-7 días y después se cocultivaron con las líneas celulares pancreáticas G12D+ KRAS que expresan HLA-A11 mostradas en la tabla 16. Se midió el IFN-y.
Los resultados se muestran en la tabla 16. En la tabla 16, los valores de secreción de IFN-y en negrita indican aquellas células diana para las cuales el TCR demostró reactividad. Tal como se muestra en la tabla 16, las células T aisladas a partir de los cultivos de LN y de bazo eran reactivas con las líneas celulares pancreáticas G12D+ KRAS que expresan HLA-A11.
TABLA 16
Figure imgf000031_0002
El TCR se aisló a partir de las células reactivas utilizando 5' RACE. Se identificaron dos cadenas alfa dominantes y una cadena beta dominante (tabla 17).
TABLA 17
Figure imgf000031_0003
EJEMPLO 13
Este ejemplo demuestra que los PBL transducidos para expresar una cadena a de TCR que comprende SEQ ID NO: 157 y una cadena p de TCR que comprende SEQ ID NO: 158 son reactivos contra dianas de HLA-A11+/G12D de 10 meros+.
Las dos cadenas a y las cadenas p dominantes de la tabla 17 se clonaron individualmente en vectores retrovirales de MSGV1. Los PBL se cotransdujeron individualmente para expresar uno de los dos pares de la cadena a y p, tal como se muestra en la tabla 18. Los PBL transducidos se examinaron para determinar su reactividad contra (i) células COS7/A11 transducidas con (a) un minigen de G12D (que codifica para SEQ ID NO: 119 de 23 meros) (COS/A11/G12D), (b) un minigen de G12v (que codifica para SEq ID NO: 120 de 23 meros) (COS/A11/G12V), (c) un minigen de KRAS WT (que codifica para SEQ ID NO: 118 de 23 meros) (COS/A11/WT) o (d) sin células (solamente el medio) (tabla 18). Se midió la secreción de IFN-y.
Los resultados se muestran en la tabla 18. Tal como se muestra en la tabla 18, los PBL cotransducidos para expresar la cadena a de TCR murino TRAV4-4*01(1) (SEQ ID NO: 157) y la cadena p de TCR murino TRBV12-2*01 (SEQ ID NO: 158) demostraron reactividad contra células diana transfectantes de G12D que expresan HLA-A11.
TABLA 18
Figure imgf000032_0001
Se transdujeron PBL para expresar el TCR TRAV4-4*01(1)/TRBV12-2*01 (SEQ ID Nos.: 157 y 158) y se examinaron para determinar su reactividad contra células COS7/A11 transducidas con (a) un minigen de G12D (que codifica para SEQ ID NO: 119 de 23 meros) (COS/A11/G12D), (b) un minigen de g 12V (que codifica para SEQ ID NO: 120 de 23 meros) (COS/A11/G12V), (c) un minigen de k Ra S WT (que codifica para SEQ ID NO: 118 de 23 meros) (COS/A11/WT), (d) las líneas de tumor pancreático mostradas en la tabla 19 que no se transdujeron o se transdujeron para expresar HLA-A11 y la mutación de KRAS indicada. En la tabla 19, se indica la mutación de KRAS expresada por cada línea celular de tumor pancreático. Se midió la secreción de IFN-y.
Los resultados se muestran en la tabla 19. Tal como se muestra en la tabla 19, los PBL transducidos con el TCR TRAV4-4*01(1)/TRBV12-2*01 (SEQ ID Nos.: 157 y 158) reconocieron las líneas de tumor pancreático HLA-A11+G12D+.
TABLA 19
Figure imgf000032_0002
EJEMPLO 14
Este ejemplo demuestra la correlación entre la producción de IFN-y y la expresión de KRAS mutado para el TCR de G12D anti-KRAS murino TRAV4-4*01(1)/TRBV12-2*01 (SEQ ID Nos.: 157 y 158).
El número de copias de ARNm G12D de KRAS expresado por cada una de las líneas celulares de tumor pancreático mostradas en la tabla 20 se midió y se comparó con el número de copias de ARNm de p-actina expresado por cada línea celular (tabla 20). La cantidad de IFN-y secretado por los PBL transducidos con el TCR G12D anti-KRAS murino TRAV4-4*01(1)/TRBV12-2*01 (SEQ ID Nos.: 157 y 158) tras cocultivarse con cada línea celular se muestra en la tabla 13. La reactividad del TCR G12D anti-KRAS murino TRAV4-4*01(1)/TRBV12-2*01 (SEQ ID Nos.: 157 y 158) (en cuanto a la secreción de IFN-y tras cocultivarse con células diana) se correlacionó con el número de copias de ARNm G12D de KRAS.
TABLA 20
Figure imgf000033_0001
EJEMPLO 16
Este ejemplo demuestra que el TCR G12D anti-KRAS murino TRAV4-4/DV10*01/BV12-2*01 (SEQ ID Nos.: 157 y 158) tiene una afinidad más alta para el péptido diana pulsado en comparación con el TCR G12D anti-KRAS murino TRAV12N-3*01/BV4*01 (SEQ ID Nos.: 11 y 12).
Se transdujeron PBL ya sea con (i) TCR G12D anti-KRAS murino T TRAV4-4/DV10*01/BV12-2*01 (SEQ ID Nos.: 157 y 158) o (ii) TCR G12D anti-KRAS murino TRAV12N-3*01/BV4*01 (SEQ ID Nos.: 11 y 12). Las células transducidas se cocultivaron con células Cos7/A11 pulsadas con (a) péptido G12D de 10 meros (SEQ ID NO: 2), (b) péptido KRAS WT de 10 meros (SEQ ID NO: 30), (c) péptido G12D de 9 meros (SEQ ID NO: 34) o (d) péptido k RAs WT de 9 meros (SEQ ID NO: 31) a las concentraciones mostradas en las tablas 21A y 21B. Se midió la secreción de IFN-y.
Los resultados se muestran en la tabla 21A (TRAV4-4/DV10*01/BV12-2*0 (SEQ ID Nos.: 157 y 158)) y tabla 21B (TRAV12N-3*01 /BV4*01 (SEQ ID Nos.: 11 y 12)). Tal como se muestra en las tablas 21A-21B, las células T transducidas con el TRAV4-4/DV10*01/BV12-2*0 (SEQ ID Nos.: 157 y 158) reconocieron 10 meros al pulsarse a una concentración de 1 x 10'9 M. Por consiguiente, el TRAV4-4/Dv 10*01/bV12-2*0 (SEQ ID Nos.: 157 y 158) reconoció el péptido diana pulsado con una avidez más alta en comparación con el TCR TRAV12N-3*01/BV4*01 (SEQ ID Nos.: 11 y 12).
TABLA21A
Figure imgf000033_0002
TABLA 21B
Figure imgf000034_0002
EJEMPLO 16
Este ejemplo demuestra que el TCR G12D anti-KRAS murino TRAV4-4/DV10*01/BV12-2*01 (SEQ ID Nos.: 157 y 158) tiene una afinidad más alta para las líneas celulares de tumor pancreático G12D+ en comparación con el TCR G12D anti-KRAS murino TRAV12N-3*01/BV4*01 (SEQ ID Nos.: 11 y 12).
Se transdujeron PBL ya sea con (i) TCR G12D anti-KRAS murino TRAV4-4/DV10*01/BV12-2*01 (SEQ ID Nos.: 157 y 158) o (ii) TCR G12D anti-KRAS murino TRAV12N-3*01/BV4*01 (SEQ ID Nos.: 11 y 12). Las células transducidas se cocultivaron con líneas celulares pancreáticas que no se transdujeron o se transdujeron con HLA-A11 y KRAS mutado tal como se muestra en la tabla 22. Se midió la secreción de IFN-y.
Los resultados se muestran en la tabla 22. Tal como se muestra en la tabla 22, las células T transducidas con el TRAV4-4/DV10*01/BV12-2*0 (SEQ ID Nos.: 157 y 158) reconocieron las líneas celulares de tumor pancreático G12D+ con una avidez más alta en comparación con el TCR TRAV12N-3*01/BV4*01 (SEQ ID Nos.: 11 y 12). TABLA 22
Figure imgf000034_0001
Figure imgf000035_0001
EJEMPLO 17
Este ejemplo demuestra un estudio en fase I/II administrando PBL transducidos con un vector que codifica para el TCR murino que reconoce KRAS mutado a pacientes con cáncer que expresan KRAS mutado.
Para ser elegibles para su inclusión en el estudio, los pacientes cumplen los criterios normales para terapia celular adoptiva (ACT)/IL-2 y tienen lo siguiente:
• un tumor HLA-A11+, que expresa KRAS mutado (medido por inmunohistoquímica);
• cáncer refractario a radioyodo; y
• un tumor con avidez por tomografía de emisión de positrones (PET) o que demuestra progresión del tumor en el plazo de los últimos 6 meses.
Los PBL autólogos se transducen retroviralmente con un vector que codifica para las cadenas alfa y beta del TCR anti-KRAS mutado murino (SEQ ID Nos.: 11 y 12). El paciente se trata con ciclofosfamida (Cy) y fludarabina (Flu) de preparación, no mieloblativas en alta dosis. El paciente se trata con una alta dosis de IL-2 cada ocho horas hasta su tolerancia. En la fase I, el paciente se trata con una dosis inicial de 1 x 108 células transducidas retroviralmente. La dosis se aumenta semilogarítmicamente, con un paciente por cohorte hasta una dosis de 1 x 1010 células, seguido por tres pacientes por cohorte. La fase II tiene un diseño de dos etapas con una tasa de respuesta objetivo del 20%.
EJEMPLO 18
Este ejemplo demuestra la frecuencia de las mutaciones de KRAS en cánceres humanos.
La frecuencia (%) de las mutaciones de KRAS en diversos cánceres humanos se expone en la tabla 23. La tabla 23 muestra también la frecuencia (%) de mutaciones de KRAS específicas entre todas las mutaciones de KRAS. TABLA 23
Figure imgf000035_0002
EJEMPLO 19
Este ejemplo demuestra que una sustitución del residuo de glicina en la región CDR3a del TCR TRAV4-4/DV10*01/BV12-2*01 proporciona una reactividad anti-KRAS potenciada en comparación con el TCR TRAV4-4/DV10*01/BV12-2*01 de tipo natural.
El residuo de glicina en la región CDR3a del TCR TRAV4-4/DV10*01/BV12-2*01 se remplazó con un residuo de alanina para proporcionar un TCR TRAV4-4/DV10*01/BV12-2*01 sustituido (CDR3alfa G112A). Se transdujeron PBL ya sea con (i) TCR TRAV4-4/DV10*01/BV12-2*01 de tipo natural (SEQ ID Nos.: 157 y 158) o (ii) TCR TRAV4-4/DV10*01/BV12-2*01 sustituido (SEQ ID Nos.: 209 y 158). Las células transducidas se cocultivaron con células Cos transducidas con HLA-A11 y KRAS WT (Cos/A11/WT), células Cos transducidas con HLA-A11 y KRAS G12D (Cos/A11/G12D), línea celular de tumor pancreático fA6-2 transducida con HLA-A11 (FA6-2/A11), o la línea celular de tumor pancreático Panc-1. Células transducidas cultivadas solas (medio) sirvieron como control. Se midió la secreción de IFN-y (pg/ml). Los resultados se muestran en la tabla 24.

Claims (15)

  1. REIVINDICACIONES
    i. Receptor de células T (TCR) aislado que tiene especificidad antigénica para un epítopo mutado presentado en el contexto de una molécula de HLA-A11, consistiendo el epítopo mutado en VVVGAVGVGK (SEQ ID NO: 33) o VVGAVGVGK (SEQ ID NO: 35), en el que el TCR comprende una CDR1 de cadena a que comprende la secuencia de aminoácidos de SEQ ID NO: 125, una CDR2 de cadena a que comprende la secuencia de aminoácidos de SEQ ID NO: 126, una CDR3 de cadena a que comprende la secuencia de aminoácidos de SEQ ID NO: 127, una CDR1 de cadena p que comprende la secuencia de aminoácidos de SEQ ID NO: 128, una CDR2 de cadena p que comprende la secuencia de aminoácidos de SEQ ID NO: 129 y una CDR3 de cadena p que comprende la secuencia de aminoácidos de SEQ ID NO: 130.
  2. 2. TCR aislado según la reivindicación 1, que comprende una región variable de cadena a que comprende la secuencia de aminoácidos de SEQ ID NO: 131 y una región variable de cadena p que comprende la secuencia de aminoácidos de SEQ ID NO: 132.
  3. 3. TCR aislado según la reivindicación 1 o 2, que comprende además una región constante de cadena a que comprende la secuencia de aminoácidos de SEQ ID NO: 135 y una región constante de cadena p que comprende la secuencia de aminoácidos de SEQ ID NO: 136.
  4. 4. TCR aislado según una cualquiera de las reivindicaciones 1-3, que comprende una cadena a que comprende la secuencia de aminoácidos de SEQ ID NO: 133 y una cadena p que comprende la secuencia de aminoácidos de SEQ ID NO: 134.
  5. 5. Polipéptido aislado que comprende una porción funcional del TCR según una cualquiera de las reivindicaciones 1-4, en el que la porción funcional comprende las secuencias de aminoácidos SEQ ID Nos.: 125-130,
    o en el que la porción funcional comprende la secuencia de aminoácidos de ambas de SEQ ID Nos.: 131 y 132;
    o en el que la porción funcional comprende la secuencia de aminoácidos de ambas de SEQ ID Nos.: 133 y 134.
  6. 6. Proteína aislada que comprende una primera cadena de polipéptido que comprende las secuencias de aminoácidos de SEQ ID Nos.: 125-127 y una segunda cadena de polipéptido que comprende las secuencias de aminoácidos de SEQ ID Nos.: 128-130.
  7. 7. Proteína aislada según la reivindicación 6, que comprende una primera cadena de polipéptido que comprende la secuencia de aminoácidos de SEQ ID NO: 131 y una segunda cadena de polipéptido que comprende la secuencia de aminoácidos de SEQ ID NO: 132.
  8. 8. Proteína aislada según la reivindicación 6 o 7, que comprende una primera cadena de polipéptido que comprende la secuencia de aminoácidos de SEQ ID NO: 133 y una segunda cadena de polipéptido que comprende la secuencia de aminoácidos de SEQ ID NO: 134.
  9. 9. Ácido nucleico aislado que comprende una secuencia de nucleótidos que codifica para el TCR según una cualquiera de las reivindicaciones 1-4, el polipéptido según la reivindicación 5 o la proteína según una cualquiera de las reivindicaciones 6-8.
  10. 10. Vector de expresión recombinante que comprende el ácido nucleico según la reivindicación 9.
  11. 11. Célula huésped aislada que comprende el vector de expresión recombinante según la reivindicación 10 o una población de células que comprende al menos una célula huésped aislada que comprende el vector de expresión recombinante según la reivindicación 10, opcionalmente en la que la célula es humana.
  12. 12. Composición farmacéutica que comprende el TCR según una cualquiera de las reivindicaciones 1-4, el polipéptido según la reivindicación 5, la proteína según una cualquiera de las reivindicaciones 6-8, el ácido nucleico según la reivindicación 9, el vector de expresión recombinante según la reivindicación 10, la célula huésped o la población de células según la reivindicación 11 y un portador farmacéuticamente aceptable.
  13. 13. Célula huésped o población de células según la reivindicación 11, para su uso en el tratamiento o la prevención del cáncer en un mamífero, opcionalmente en la que el cáncer es cáncer pancreático, colorrectal, pulmonar, endometrial, ovárico o prostático.
  14. 14. Método in vitro para la detección de cáncer en un mamífero, comprendiendo el método poner en contacto una muestra que comprende una o más células provenientes del mamífero con la célula huésped o la población de células según la reivindicación 11, formando así un complejo, y detectar el complejo, en donde la detección del complejo es indicativa de la presencia del cáncer en el mamífero, opcionalmente en el que el cáncer es cáncer pancreático, colorrectal, pulmonar, endometrial, ovárico o prostático.
  15. 15. Método in vitro según la reivindicación 14, en el que la muestra es una muestra que comprende células completas, lisados de las mismas o una fracción de los lisados celulares completos.
ES15807756T 2014-11-26 2015-11-24 Receptores de células T anti-KRAS mutado Active ES2784261T3 (es)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201462084654P 2014-11-26 2014-11-26
US201562171321P 2015-06-05 2015-06-05
PCT/US2015/062269 WO2016085904A1 (en) 2014-11-26 2015-11-24 Anti-mutated kras t cell receptors

Publications (1)

Publication Number Publication Date
ES2784261T3 true ES2784261T3 (es) 2020-09-23

Family

ID=54838442

Family Applications (2)

Application Number Title Priority Date Filing Date
ES20150279T Active ES2965689T3 (es) 2014-11-26 2015-11-24 Receptores de células T anti-KRAS mutado
ES15807756T Active ES2784261T3 (es) 2014-11-26 2015-11-24 Receptores de células T anti-KRAS mutado

Family Applications Before (1)

Application Number Title Priority Date Filing Date
ES20150279T Active ES2965689T3 (es) 2014-11-26 2015-11-24 Receptores de células T anti-KRAS mutado

Country Status (17)

Country Link
US (2) US11207394B2 (es)
EP (3) EP3223850B1 (es)
JP (2) JP6863893B2 (es)
KR (1) KR102622784B1 (es)
CN (2) CN107223134B (es)
AU (3) AU2015353720B2 (es)
CA (1) CA2968399A1 (es)
ES (2) ES2965689T3 (es)
HK (1) HK1243642A1 (es)
IL (1) IL252258B (es)
MX (1) MX2017006865A (es)
PL (1) PL3223850T3 (es)
PT (1) PT3223850T (es)
SA (1) SA517381608B1 (es)
SG (2) SG11201704155UA (es)
SI (1) SI3223850T1 (es)
WO (1) WO2016085904A1 (es)

Families Citing this family (41)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3350213B1 (en) 2015-09-15 2021-03-31 The United States Of America, As Represented By The Secretary, Department Of Health And Human Services T cell receptors recognizing hla-cw8 restricted mutated kras
US10611816B2 (en) 2016-08-02 2020-04-07 The United States Of America, As Represented By The Secretary, Department Of Health And Human Services Anti-KRAS-G12D T cell receptors
WO2018069871A2 (en) * 2016-10-13 2018-04-19 Sorrento Therapeutics, Inc. Anti-kras binding proteins
CN108395479B (zh) * 2017-02-06 2021-07-16 高军 一种有关kras基因突变的t细胞受体
TW202333779A (zh) 2017-05-08 2023-09-01 美商磨石生物公司 阿爾法病毒新抗原載體
US11041011B2 (en) * 2017-05-12 2021-06-22 Augusta University Research Institute, Inc. Human alpha fetoprotein-specific murine T cell receptors and uses thereof
US11807662B2 (en) 2017-05-16 2023-11-07 The Johns Hopkins University MANAbodies and methods of using
EP3684799A1 (en) * 2017-09-20 2020-07-29 The U.S.A. as represented by the Secretary, Department of Health and Human Services Hla class ii restricted t cell receptors against mutated ras
US20200316121A1 (en) * 2017-09-29 2020-10-08 The United States Of America,As Represented By The Secretary,Department Of Health And Human Services Methods of isolating t cells having antigenic specificity for a p53 cancer-specific mutation
AU2018378200A1 (en) * 2017-12-04 2020-07-02 The United States Of America, As Represented By The Secretary, Department Of Health And Human Services HLA class I-restricted T cell receptors against mutated RAS
CN110016074B (zh) * 2018-01-08 2021-03-30 中国科学院广州生物医药与健康研究院 Mage-a3人源化t细胞受体
JP2021527426A (ja) * 2018-06-19 2021-10-14 ビオンテック ユーエス インコーポレイテッド ネオ抗原およびその使用
CN112888707A (zh) * 2018-08-16 2021-06-01 百欧恩泰美国公司 T细胞受体构建体及其用途
AU2020211922A1 (en) * 2019-01-22 2021-08-12 The United States Of America, As Represented By The Secretary, Department Of Health And Human Services HLA class II-restricted T cell receptors against RAS with G12R mutation
CA3127673A1 (en) * 2019-01-25 2020-07-30 The Trustees Of The University Of Pennsylvania Compositions and methods for targeting mutant ras
JP2022521513A (ja) 2019-02-20 2022-04-08 フレッド ハッチンソン キャンサー リサーチ センター Rasネオ抗原に特異的な結合タンパク質およびその使用
US20220175899A1 (en) * 2019-04-11 2022-06-09 The Board Of Trustees Of The Leland Stanford Junior University Cytotoxic t lymphocytes specific for mutated forms of epidermal growth factor receptor for use in treating cancer
JP2022534051A (ja) * 2019-05-27 2022-07-27 プロビンシャル・ヘルス・サービシーズ・オーソリティ Kras抗原を標的とする免疫療法コンストラクト
BR122024002387A2 (pt) 2019-05-30 2024-03-12 Gritstone Bio, Inc. Vetores de adenovírus, composição farmacêutica, sequência de nucleotídeo isolada, célula isolada, vetor, kit, usos de um vetor, método para fabricar o vetor, métodos para produzir um vírus e vetor viral
CN112110995A (zh) * 2019-06-19 2020-12-22 上海交通大学医学院 肿瘤新抗原多肽及其用途
CN112646024B (zh) * 2019-10-10 2023-03-24 香雪生命科学技术(广东)有限公司 一种识别kras突变的t细胞受体及其编码序列
CN112759641B (zh) * 2019-11-01 2023-01-20 香雪生命科学技术(广东)有限公司 一种识别Kras G12V的高亲和力TCR
CN114651001A (zh) * 2019-11-07 2022-06-21 武汉华大吉诺因生物科技有限公司 肿瘤免疫治疗多肽及其应用
KR20220098379A (ko) * 2019-11-15 2022-07-12 그릿스톤 바이오, 인코포레이티드 공유 네오항원을 표적으로 하는 항원-결합 단백질
CN115279784A (zh) * 2020-02-12 2022-11-01 美国卫生和人力服务部 针对含有g12d突变的ras的hla i类限制性t细胞受体
WO2021242961A1 (en) * 2020-05-27 2021-12-02 Vanderbilt University Human monoclonal antibodies to venezuelan equine encephalitis virus and uses therefor
AU2021320896A1 (en) 2020-08-06 2023-03-23 Gritstone Bio, Inc. Multiepitope vaccine cassettes
CN112300269B (zh) * 2020-09-29 2022-12-09 中国科学院微生物研究所 Kras突变特异性t细胞受体筛选及抗肿瘤用途
WO2022072760A1 (en) * 2020-10-02 2022-04-07 The United States Of America, As Represented By The Secretary, Department Of Health And Human Services Hla class ii-restricted dq t cell receptors against ras with g13d mutation
IL305393A (en) 2021-02-25 2023-10-01 Alaunos Therapeutics Inc Recombinant vectors containing polycistronic cassettes and methods for using them
CA3212382A1 (en) * 2021-03-19 2022-09-22 Ronald D. Seidel Iii T-cell modulatory polypeptides and methods of use thereof
CN116063511B (zh) * 2021-09-30 2023-10-03 北京可瑞生物科技有限公司 抗原结合蛋白及其应用
KR20230068627A (ko) * 2021-11-11 2023-05-18 의료법인 명지의료재단 Kras 특이적 활성화 t 세포 유도용 항원 조성물을 이용한 항원 특이적 t 세포 유도방법
KR20230068628A (ko) * 2021-11-11 2023-05-18 의료법인 명지의료재단 Kras 특이적 활성화 t 세포 유도용 항원 조성물
WO2023139257A1 (en) 2022-01-21 2023-07-27 T-Knife Gmbh Antigen recognizing construct that binds specific peptide with determinable affinity and t cell receptor having antigenic specificity for kras as well as corresponding nucleic acid sequence, vector, host cell, pharmaceutical composition and kit
WO2023150562A1 (en) 2022-02-01 2023-08-10 Alaunos Therapeutics, Inc. Methods for activation and expansion of t cells
CN114591443A (zh) * 2022-03-07 2022-06-07 皖南医学院第一附属医院(皖南医学院弋矶山医院) 一种基于scTv的嵌合受体CSR及其应用
CN114835800B (zh) * 2022-05-27 2023-10-13 重庆医科大学 Tcr或其抗原结合片段及其应用
CN114920824B (zh) * 2022-05-27 2023-12-05 重庆医科大学 Tcr或其抗原结合片段及其应用
WO2024055003A1 (en) * 2022-09-08 2024-03-14 The Regents Of The University Of California Binding agent recognition of drug-peptide conjugates
CN116574748B (zh) * 2023-07-10 2023-09-12 昆明医科大学 一种用于靶向KRAS高频突变肿瘤的嵌合型nTCR-T构建方法

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7709002B1 (en) * 1996-04-19 2010-05-04 The United States Of America As Represented By The Department Of Health And Human Services Mutated ras peptides for generation of CD8+Cytotoxic T lymphocytes
GB2328689A (en) * 1997-08-27 1999-03-03 Norsk Hydro As Peptides based on the p21 ras proto-oncogene protein for the treatment of cancer
NO315238B1 (no) 1998-05-08 2003-08-04 Gemvax As Peptider som stammer fra leserammeforskyvingsmutasjoner i TBF<beta>II- eller BAX-genet, og farmasöytiske sammensetninger inneholdende disse,nukleinsyresekvenser som koder for slike peptider, plasmider og virusvektoreromfattende slikenukleinsy
DK1545204T3 (en) 2002-09-06 2016-11-14 The Government Of The Us Secretary Dept Of Health And Human Services Immunotherapy with in vitro selected antigen-specific lymphocytes following non-myeloablative lymphodepletive chemotherapy
AU2008206442B2 (en) * 2007-01-12 2012-10-18 Government Of The United States Of America, Represented By The Secretary, Department Of Health And Human Services gp100-specific T cell receptors and related materials and methods of use
US8383099B2 (en) 2009-08-28 2013-02-26 The United States Of America, As Represented By The Secretary, Department Of Health And Human Services Adoptive cell therapy with young T cells
US9938582B2 (en) 2009-09-17 2018-04-10 The Regents Of The University Of Michigan Recurrent gene fusions in prostate cancer
WO2012129201A1 (en) 2011-03-22 2012-09-27 The United States Of America, As Represented By The Secretary, Department Of Health And Human Services Methods of growing tumor infiltrating lymphocytes in gas-permeable containers
CN104131034B (zh) * 2014-06-19 2017-04-05 中山大学 一种嵌合载体及其制备方法和应用
CN105802909B (zh) * 2014-12-31 2021-01-01 中国医学科学院基础医学研究所 具有her2特异性tcr的t细胞制备物及其用途
CN108395479B (zh) 2017-02-06 2021-07-16 高军 一种有关kras基因突变的t细胞受体
CN113621070A (zh) * 2020-05-06 2021-11-09 华夏英泰(北京)生物技术有限公司 一种t细胞抗原受体、其多聚体复合物及其制备方法和应用

Also Published As

Publication number Publication date
WO2016085904A1 (en) 2016-06-02
AU2023200614A1 (en) 2023-03-09
PL3223850T3 (pl) 2020-08-24
MX2017006865A (es) 2018-01-11
EP4286407A3 (en) 2024-03-06
CN107223134B (zh) 2021-11-16
IL252258A0 (en) 2017-07-31
AU2020203465B2 (en) 2022-11-17
US20220088164A1 (en) 2022-03-24
SG11201704155UA (en) 2017-06-29
SI3223850T1 (sl) 2020-09-30
SA517381608B1 (ar) 2021-03-11
CN107223134A (zh) 2017-09-29
US11207394B2 (en) 2021-12-28
ES2965689T3 (es) 2024-04-16
HK1243642A1 (zh) 2018-07-20
EP4286407A2 (en) 2023-12-06
JP7297807B2 (ja) 2023-06-26
JP2021104044A (ja) 2021-07-26
EP3666288B1 (en) 2023-09-27
EP3223850B1 (en) 2020-01-08
PT3223850T (pt) 2020-04-13
JP2017536825A (ja) 2017-12-14
CN113956349A (zh) 2022-01-21
US20170304421A1 (en) 2017-10-26
KR102622784B1 (ko) 2024-01-09
SG10201913978RA (en) 2020-03-30
IL252258B (en) 2021-12-01
JP6863893B2 (ja) 2021-04-21
EP3223850A1 (en) 2017-10-04
CA2968399A1 (en) 2016-06-02
EP3666288A1 (en) 2020-06-17
AU2015353720A1 (en) 2017-06-08
AU2020203465A1 (en) 2020-06-18
KR20170099905A (ko) 2017-09-01
AU2015353720B2 (en) 2020-02-27

Similar Documents

Publication Publication Date Title
ES2784261T3 (es) Receptores de células T anti-KRAS mutado
US11697676B2 (en) Anti-human papillomavirus 16 E6 T cell receptors
ES2784237T3 (es) Receptores de células T anti-papilomavirus 16 E7 humano
ES2774931T3 (es) Receptores de linfocitos t que reconocen MAGE-A3 restringida al MHC de clase II
US20220389093A1 (en) Anti-thyroglobulin t cell receptors