ES2384113T9 - Modificación del ARN, que produce unas estabilidad de transcripción y eficiencia de traducción aumentadas - Google Patents

Modificación del ARN, que produce unas estabilidad de transcripción y eficiencia de traducción aumentadas Download PDF

Info

Publication number
ES2384113T9
ES2384113T9 ES06805937T ES06805937T ES2384113T9 ES 2384113 T9 ES2384113 T9 ES 2384113T9 ES 06805937 T ES06805937 T ES 06805937T ES 06805937 T ES06805937 T ES 06805937T ES 2384113 T9 ES2384113 T9 ES 2384113T9
Authority
ES
Spain
Prior art keywords
nucleic acid
acid sequence
sequence
transcribed
rna
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
ES06805937T
Other languages
English (en)
Other versions
ES2384113T3 (es
Inventor
Ugur Sahin
Silke Holtkamp
Özlem TÜRECI
Sebastian Kreiter
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Biontech SE
Original Assignee
Biontech SE
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Biontech SE filed Critical Biontech SE
Application granted granted Critical
Publication of ES2384113T3 publication Critical patent/ES2384113T3/es
Publication of ES2384113T9 publication Critical patent/ES2384113T9/es
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/67General methods for enhancing the expression
    • C12N15/68Stabilisation of the vector
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/0005Vertebrate antigens
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/46Cellular immunotherapy
    • A61K39/461Cellular immunotherapy characterised by the cell type used
    • A61K39/4611T-cells, e.g. tumor infiltrating lymphocytes [TIL], lymphokine-activated killer cells [LAK] or regulatory T cells [Treg]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/46Cellular immunotherapy
    • A61K39/463Cellular immunotherapy characterised by recombinant expression
    • A61K39/4632T-cell receptors [TCR]; antibody T-cell receptor constructs
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/46Cellular immunotherapy
    • A61K39/464Cellular immunotherapy characterised by the antigen targeted or presented
    • A61K39/4643Vertebrate antigens
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/67General methods for enhancing the expression
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/85Vectors or expression systems specially adapted for eukaryotic hosts for animal cells
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/51Medicinal preparations containing antigens or antibodies comprising whole cells, viruses or DNA/RNA
    • A61K2039/53DNA (RNA) vaccination

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Zoology (AREA)
  • Biomedical Technology (AREA)
  • Biotechnology (AREA)
  • General Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Wood Science & Technology (AREA)
  • General Health & Medical Sciences (AREA)
  • Microbiology (AREA)
  • Biochemistry (AREA)
  • Plant Pathology (AREA)
  • Molecular Biology (AREA)
  • Biophysics (AREA)
  • Physics & Mathematics (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Medicinal Chemistry (AREA)
  • Mycology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Epidemiology (AREA)
  • Veterinary Medicine (AREA)
  • Immunology (AREA)
  • Cell Biology (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Saccharide Compounds (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Breeding Of Plants And Reproduction By Means Of Culturing (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Description

Modificación del ARN, que produce unas estabilidad de transcripción y eficiencia de traducción aumentadas.
Las vacunas convencionales, que incluyen los patógenos atenuados o inactivados, son eficaces en muchas áreas, pero no proporcionan una inmunidad protectora eficaz frente a algunos patógenos infecciosos y tumores. Esto hace necesarias vacunas que sean eficaces, versátiles, de producción sencilla y rentable y fáciles de almacenar.
Después de que se hubiera puesto de manifiesto que la inyección intramuscular directa de ADN plasmídico daba lugar a la expresión prolongada de los genes codificados en la superficie celular (Wolff et al, 1990), las vacunas a base de ADN se consideraron una estrategia nueva y prometedora de inmunización. Esto proporcionó un importante incentivo para el desarrollo de vacunas basadas en ácidos nucleicos. Inicialmente, se ensayaron vacunas a base de ADN contra patógenos infecciosos (Cox et al, 1993; Davis et al, 1993; Ulmer et al, 1993; Wang et al, 1993), pero pronto se investigaron más detenidamente también como terapia génica contra los tumores con el fin de inducir una inmunidad antitumoral específica (Conry et al, 1994; Conry et al, 1995a; Spooner et al, 1995; Wang et al, 1995). Esta estrategia de inmunización antitumoral tiene diversas ventajas importantes. Las vacunas de ácidos nucleicos son fáciles de preparar y relativamente económicas. Además, se pueden amplificar a partir de un número reducido de células.
El ADN es más estable que el ARN, pero conlleva algunos riesgos potenciales, tales como la inducción de anticuerpos anti-ADN (Gilkeson et al, 1995) y la integración del transgén en el genoma hospedador. Esto puede desactivar genes celulares y provocar una expresión a largo plazo incontrolable de dicho transgén u oncogénesis, y, por consiguiente, habitualmente no es aplicable a los antígenos asociados a tumores con potencial oncogénico, tal como, por ejemplo, erb-B2 (Bargmann et al, 1986) y p53 (Greenblatt et al, 1994). La utilización de ARN ofrece una alternativa atractiva para evitar estos riesgos potenciales.
Las ventajas de utilizar ARN como una especie de terapia génica reversible incluyen la expresión transitoria y su naturaleza no transformante. El ARN no necesita entrar en el núcleo para ser expresado transgénicamente y, además, no se puede integrar en el genoma hospedador, lo que elimina el riesgo de oncogénesis. Al igual que con el ADN (Condon et al, 1996; Tang et al, 1992), la inyección de ARN también puede inducir respuestas inmunitarias tanto celulares como humorales in vivo (Hoerr et al, 2000; Ying et al, 1999).
La inmunoterapia con ARN transcrito in vitro (IVT-RNA) aplica dos estrategias diferentes que han sido ensayadas con éxito en diversos modelos animales. O bien se inyecta directamente ARN a través de diferentes vías de inmunización (Hoerr et al, 2000), o se transfectan células dendríticas (CD) con ARN transcrito in vitro por lipofección
o electroporación y a continuación se administran (Heiser et al, 2000). Estudios publicados recientemente demuestran que la inmunización con CD transfectadas con ARN induce linfocitos T citotóxicos (CTL) específicos de antígeno in vitro e in vivo (Su et al, 2003; Heiser et al, 2002). Un factor de importancia central para la inducción óptima de las respuestas inmunitarias mediadas por linfocitos T es, entre otros, la dosis, es decir, la densidad de presentación de antígenos en las CD. Se ha intentado estabilizar el IVT-RNA mediante diversas modificaciones con el fin de alcanzar una expresión prolongada del IVT-RNA transferido, y, de este modo, aumentar la presentación de antígenos en las CD. Un requisito básico para la traducción es la presencia de una secuencia 3’ poli(A), estando la eficiencia de traducción correlacionada con la longitud de la poli(A) (Preiss y Hentze, 1998). El casquete 5’ y la secuencia 3’ poli(A) activan sinérgicamente la traducción in vivo (Gallie, 1991). Las regiones no traducidas (UTR) de los genes de globina son otros elementos conocidos que pueden contribuir a estabilizar el ARN y aumentar la eficiencia de traducción (Malone et al, 1989).
En la bibliografía se conocen algunos vectores IVT que se utilizan de un modo estandarizado como plantilla para la transcripción in vitro y que se han modificado genéticamente de tal modo que se producen transcritos de ARN. Los protocolos que se describen actualmente en la bibliografía (Conry et al, 1995b; Teufel et al, 2005; Strong et al, 1997; Carralot et al, 2004; Boczkowski et al, 2000) se basan en un vector plasmídico con la siguiente estructura: un promotor en 5’ de ARN polimerasa que permite la transcripción del ARN, seguido por un gen de interés flanqueado en 3’ y/o en 5’ por regiones no traducidas (UTR), y un casete de 3’ poliadenilo que contiene 50-70 nucleótidos A. Antes de la transcripción in vitro, el plásmido circular se linealiza secuencia abajo con respecto al casete de poliadenilo con enzimas de restricción de tipo II (la secuencia de reconocimiento corresponde al sitio de escisión). De este modo, el casete de poliadenilo corresponde a la posterior secuencia poli(A) en el transcrito. Como resultado de este procedimiento, algunos nucleótidos permanecen como parte del sitio de escisión enzimática tras la linealización y se extienden o enmascaran la secuencia poli(A) en el extremo 3’. No está claro si este saliente no fisiológico afecta a la cantidad de proteína producida intracelularmente a partir de dicho constructo.
Por consiguiente, el ARN parece particularmente adecuado para aplicaciones clínicas. Sin embargo, la utilización de ARN en terapia génica está muy restringido, especialmente por la limitada vida media del mismo, particularmente en el citoplasma, lo que da lugar a una expresión proteínica reducida.
El objetivo de la presente invención consiste en dar a conocer ARN con una mayor estabilidad y una mayor eficiencia de traducción, así como medios para la obtención del mismo. Debería ser posible obtener grados elevados
de expresión mediante la utilización de dicho ARN en estrategias de terapia génica.
Este objetivo se alcanza, según la presente invención, mediante el objetivo de las reivindicaciones.
La presente invención se refiere a la estabilización de ARN, particularmente ARNm, y a un aumento de la traducción de ARNm. Particularmente, la presente invención se refiere a tres modificaciones de ARN, particularmente de ARN transcrito in vitro, que dan lugar a una mayor estabilidad de transcripción y a una mayor eficiencia de traducción.
Según la presente invención, se ha descubierto que el ARN que tiene una secuencia de poli(A) de extremo abierto se traduce de un modo más eficiente que el ARN que tiene una secuencia de poli(A) con un extremo enmascarado. Se ha puesto de manifiesto que una secuencia de poli(A) larga, particularmente de aproximadamente 120 pb, da lugar a una estabilidad de transcripción de ARN y una eficiencia de traducción óptimas. La invención también ha puesto de manifiesto que una doble región 3’ no traducida (UTR), particularmente del gen de la globina beta humana, en una molécula de ARN, mejora la eficiencia de traducción de un modo que supera claramente el efecto total que se espera utilizando dos UTR individuales. Según la presente invención, se ha puesto de manifiesto que una combinación de las modificaciones descritas anteriormente tienen un efecto sinérgico sobre la estabilización del ARN y el aumento de la traducción.
Utilizando RT-PCR cuantitativa y variantes de eGFP para medir las cantidades de transcripción y el rendimiento proteínico, la presente invención también ha puesto de manifiesto que las modificaciones de ARN según la presente invención mejoran independientemente la estabilidad del ARN y la eficiencia de traducción en la transfección de células dendríticas (CD). De este modo, ha sido posible aumentar la densidad de los complejos péptido/CMH específicos de antígeno en las células transfectadas y su capacidad para estimular y expandir los linfocitos T CD4+ y CD8+ específicos de antígeno. Por consiguiente, la presente invención se refiere a una estrategia para la optimización de vacunas de CD transfectadas con ARN utilizando ARN modificado mediante las modificaciones de ARN descritas en la presente invención.
Según la presente invención, la modificación del ARN, y con ello la estabilización y/o aumento de la eficiencia de traducción del mismo, se alcanza mediante la modificación genética de vectores de expresión que actúan preferentemente como plantilla para la transcripción de ARN in vitro.
Los vectores de este tipo están destinados a permitir particularmente la transcripción de ARN con una secuencia de poli(A) que tiene preferentemente un extremo abierto en dicho ARN, es decir, que no hay nucleótidos que no sean nucleótidos A flanqueando dicha secuencia de poli(A) en su extremo 3’. Se puede obtener una secuencia de poli(A) de extremo abierto en el ARN mediante la introducción de un sitio de escisión de restricción de tipo IIS en un vector de expresión que permite que el ARN se transcriba bajo el control de un promotor en 5’ de la ARN polimerasa y que contiene un casete de poliadenilo (secuencia de poli(A)), donde la secuencia de reconocimiento está situada en 3’ de la secuencia de poli(A), mientras que el sitio de escisión se encuentra secuencia arriba y, por lo tanto, dentro de la secuencia de poli(A). La escisión de restricción en el sitio de escisión de restricción de tipo IIS permite linealizar un plásmido dentro de la secuencia de poli(A) (figura 2). A continuación, el plásmido linealizado se puede utilizar como plantilla para la transcripción in vitro, terminando el transcrito resultante en una secuencia de poli(A) sin enmascarar.
Además, se puede alcanzar una modificación del ARN, y con ello la estabilización y/o el aumento de la eficiencia de traducción del mismo, mediante la modificación genética de vectores de expresión, de tal modo que permitan la transcripción del ARN con dos o más regiones no traducidas en 3’ en su extremo 3’, y preferentemente entre la secuencia que codifica un péptido o proteína (marco de lectura abierto) y la secuencia de poli(A).
En un aspecto, la presente invención se refiere a una molécula de ácido nucleico que comprende, en el sentido 5’ 3’ de transcripción: (a) un promotor, (b) una secuencia de ácido nucleico transcribible o una secuencia de ácido nucleico para la introducción de una secuencia de ácido nucleico transcribible, (c-1) una primera secuencia de ácido nucleico, (c-2) una segunda secuencia de ácido nucleico, y , cuando proceda, (c-3) por lo menos otra secuencia de ácido nucleico,
donde las secuencias de ácido nucleico (c-1), (c-2) y, cuando proceda, (c-3), se seleccionan de entre el grupo constituido por:
(I)
una secuencia de ácido nucleico que corresponde a la región 3’ no traducida de un gen de globina, y
(II)
una secuencia de ácido nucleico que es idéntica por lo menos en un 90%, a la secuencia de ácido nucleico de (I),
donde las secuencias de ácido nucleico (c-1), (c-2) y, cuando proceda, (c-3), derivan, independientemente una de otra, de un gen seleccionado dentro del grupo compuesto por el gen de globina alfa 2, el gen de globina alfa 1 y el gen de globina beta, y
donde las secuencias de ácido nucleico (b), (c-1), (c-2) y, cuando proceda, (c-3), bajo el control del promotor (a), se
pueden transcribir para obtener un transcrito común; donde las secuencias de ácido nucleico transcritas a partir de las secuencias de ácido nucleico (c-1), (c-2) y, cuando proceda, (c-3), están activas a fin de aumentar la eficiencia de traducción y/o la estabilidad de la secuencia de ácido nucleico transcrita a partir de la secuencia de ácido nucleico transcribible (b).
Las secuencias de ácido nucleico (c-1), (c-2) y, cuando proceda, (c-3), pueden ser idénticas o distintas.
En una forma de realización, la molécula de ácido nucleico comprende, además, (d) una secuencia de ácido nucleico que, cuando se transcribe bajo el control del promotor (a), codifica una secuencia de nucleótidos de por lo menos 20 nucleótidos A consecutivos en el transcrito.
Las secuencias de ácido nucleico (b), (c-1), (c-2), cuando proceda, (c-3), y (d), bajo el control del promotor (a), se pueden transcribir preferentemente para obtener un transcrito común, en el que las secuencias de ácido nucleico transcritas a partir de las secuencias de ácido nucleico (c-1) y/o (c-2) y/o, cuando proceda, (c-3), y/o (d) están preferentemente activas a fin de aumentar la eficiencia de traducción y/o la estabilidad de la secuencia de ácido nucleico transcrita a partir de la secuencia de ácido nucleico transcribible (b).
En determinadas formas de realización, la secuencia de ácido nucleico (d), cuando se transcribe bajo el control del promotor (a), codifica una secuencia de nucleótidos de por lo menos 40 nucleótidos A consecutivos, preferentemente por lo menos 80 nucleótidos A consecutivos, preferentemente por lo menos 100 nucleótidos A consecutivos, y particularmente de aproximadamente 120 nucleótidos A consecutivos en el transcrito. La secuencia de ácido nucleico (d), cuando se transcribe bajo el control del promotor (a), codifica preferentemente una secuencia de nucleótidos de hasta 500 nucleótidos A consecutivos, preferentemente de hasta 400 nucleótidos A consecutivos, preferentemente de hasta 300 nucleótidos A consecutivos, preferentemente de hasta 200 nucleótidos A consecutivos y particularmente de hasta 150 nucleótidos A consecutivos en el transcrito.
En una forma de realización, la molécula de ácido nucleico está caracterizada porque se puede escindir, preferentemente mediante enzimas u otra manera bioquímica, dentro de la secuencia de ácido nucleico (d), de tal modo que dicha escisión da lugar a una molécula de ácido nucleico que comprende, en el sentido 5’ - 3’ de transcripción, el promotor (a), la secuencia de ácido nucleico (b), las secuencias de ácido nucleico (c-1), (c-2) y, cuando proceda, (c-3) y por lo menos una parte de la secuencia de ácido nucleico (d), donde por lo menos una parte de la secuencia de ácido nucleico (d), cuando se transcribe bajo el control del promotor (a), codifica una secuencia de nucleótidos de por lo menos 20 nucleótidos A consecutivos en el transcrito, y donde el nucleótido 3’-terminal de dicho transcrito es un nucleótido A de dicha secuencia de nucleótidos de por lo menos 20 nucleótidos A consecutivos.
Preferentemente, tras la escisión, dicha molécula de ácido nucleico, en el extremo de la cadena que sirve como plantilla para la secuencia de nucleótidos de por lo menos 20 nucleótidos A consecutivos, tiene un nucleótido T que es parte de la secuencia de nucleótidos que sirve como plantilla para dicha secuencia de nucleótidos de por lo menos 20 nucleótidos A consecutivos en el transcrito.
En determinadas formas de realización, por lo menos una parte de la secuencia de ácido nucleico (d), cuando se transcribe bajo el control del promotor (a), codifica una secuencia de nucleótidos de por lo menos 40 nucleótidos A consecutivos, preferentemente por lo menos 80 nucleótidos A consecutivos, preferentemente por lo menos 100 nucleótidos A consecutivos, y particularmente de aproximadamente 120 nucleótidos A consecutivos en el transcrito. La secuencia de ácido nucleico (d), cuando se transcribe bajo el control del promotor (a), codifica preferentemente una secuencia de nucleótidos de hasta 500 nucleótidos A consecutivos, preferentemente de hasta 400 nucleótidos A consecutivos, preferentemente de hasta 300 nucleótidos A consecutivos, preferentemente de hasta 200 nucleótidos A consecutivos y particularmente de hasta 150 nucleótidos A consecutivos en el transcrito.
La molécula de ácido nucleico según la invención es preferentemente una molécula circular cerrada antes de la escisión y una molécula lineal después de la misma.
Preferentemente, la escisión se lleva a cabo con ayuda de un sitio de escisión de restricción, que es preferentemente un sitio de escisión de restricción para una endonucleasa de restricción de tipo IIS.
En una forma de realización, la secuencia de reconocimiento para la endonucleasa de restricción de tipo IIS se encuentra 5-26 pares de bases, preferentemente 24-26 pares de bases, secuencia abajo con respecto al extremo 3’ de la secuencia de ácido nucleico (d).
En una forma de realización preferida, el gen de la globina beta es un gen de globina beta humana.
En una forma de realización preferida, las secuencias de ácido nucleico (c-1), (c-2) y, cuando proceda, (c-3), independientemente una de otra, corresponden a la secuencia de ácido nucleico según la SEC ID NO: 1 de la lista de secuencias o a una secuencia de ácido nucleico derivada de la misma.
En una molécula de ácido nucleico según la invención, la secuencia de ácido nucleico transcribible comprende preferentemente una secuencia de ácido nucleico que codifica un péptido o proteína y la secuencia de ácido nucleico para la introducción de una secuencia de ácido nucleico transcribible es preferentemente un sitio de clonación múltiple.
5 Una molécula de ácido nucleico según la presente invención puede comprender, además, uno o más miembros seleccionados entre el grupo formado por: (i) un gen indicador; (ii) un marcador seleccionable; y (iii) un origen de replicación.
10 En una forma de realización, una molécula de ácido nucleico según la invención se encuentra en una conformación circular cerrada y, preferentemente, adecuada para la transcripción in vitro del ARN, particularmente ARNm, particularmente tras la linealización.
En otros aspectos, la presente invención se refiere a una molécula de ácido nucleico que se puede obtener por
15 linealización de una molécula de ácido nucleico descrita anteriormente, preferentemente por escisión dentro de la secuencia de ácido nucleico que codifica una secuencia de nucleótidos de por lo menos 20 nucleótidos A consecutivos, y a ARN que se puede obtener por transcripción, preferentemente transcripción in vitro, con las moléculas de ácido nucleico descritas anteriormente bajo el control del promotor (a), en el que, en el ARN, los transcritos de las secuencias de ácido nucleico (b), (c-1), (c-2) y, cuando proceda, (c-3), están presentes en un
20 transcrito común.
En otro aspecto, la presente invención se refiere a un procedimiento de transcripción in vitro de una molécula de ARN seleccionada a fin de aumentar su estabilidad y/o eficiencia de traducción, que comprende: (i) acoplar una primera secuencia de ácido nucleico (b-1) en el extremo 3’ de una secuencia de ácido nucleico (a) que se puede
25 transcribir para obtener dicha molécula de ARN, (ii) acoplar una segunda secuencia de ácido nucleico (b-2) en el extremo 3’ de dicha primera secuencia de ácido nucleico (b-1), y, cuando proceda, (iii) acoplar por lo menos otra secuencia de ácido nucleico (b-3) en el extremo 3’ de dicha segunda secuencia de ácido nucleico (b-2),
en el que las secuencias de ácido nucleico (b-1), (b-2) y, cuando proceda, (b-3), se seleccionan de entre el grupo 30 compuesto por:
(I) una secuencia de ácido nucleico que corresponde a la región 3’ no traducida de un gen de globina, y
(II) una secuencia de ácido nucleico que es idéntica, por lo menos en un 9096, a la secuencia de ácido nucleico de 35 (I),
donde las secuencias de ácido nucleico (b-1), (b-2) y, cuando proceda, (b-3), derivan, independientemente una de otra, de un gen seleccionado dentro del grupo compuesto por el gen de globina alfa 2, el gen de globina alfa 1 y el gen de globina beta, y
(iv) transcribir in vitro el ácido nucleico obtenido
en el que las secuencias de ácido nucleico (a), (b-1), (b-2) y, cuando proceda, (b-3), se pueden transcribir a fin de obtener un transcrito común en el que las secuencias de ácido nucleico transcritas a partir de las secuencias de
45 ácido nucleico (b-1), (b-2) y, cuando proceda, (b-3), están activas a fin de aumentar la eficiencia de traducción y/o la estabilidad de la secuencia de ácido nucleico transcrita a partir de la secuencia de ácido nucleico transcribible (a).
En otro aspecto, la presente invención se refiere a un procedimiento de traducción de una molécula de ARNm seleccionada con el fin de aumentar la expresión de la misma, que comprende: (i) acoplar una primera secuencia de
50 ácido nucleico (b-1) en el extremo 3’ de una secuencia de ácido nucleico (a) que se puede transcribir para obtener dicha molécula de ARNm, (ii) acoplar una segunda secuencia de ácido nucleico (b-2) en el extremo 3’ de dicha primera secuencia de ácido nucleico (b-1), y, cuando proceda, (iii) acoplar por lo menos otra secuencia de ácido nucleico (b-3) en el extremo 3’ de dicha segunda secuencia de ácido nucleico (b-2),
55 en el que las secuencias de ácido nucleico (b-1), (b-2) y, cuando proceda, (b-3), se seleccionan de entre el grupo compuesto por:
(I) una secuencia de ácido nucleico que corresponde a la región 3’ no traducida de un gen de globina, y
60 (II) una secuencia de ácido nucleico que es idéntica, por lo menos en un 90.96, a la secuencia de ácido nucleico de (I),
en el que las secuencias de ácido nucleico (b-1), (b-2) y, cuando proceda, (b-3), derivan, independientemente una de otra, de un gen seleccionado dentro del grupo compuesto por el gen de globina alfa 2, el gen de globina alfa 1 y
65 el gen de globina beta, y
(iv) traducir el ARNm que se puede obtener por transcripción del ácido nucleico obtenido,
donde las secuencias de ácido nucleico (a), (b-1), (b-2) y, cuando proceda, (b-3), se pueden transcribir a fin de obtener un transcrito común en el que las secuencias de ácido nucleico transcritas a partir de las secuencias de ácido nucleico (b-1), (b-2) y, cuando proceda, (b-3), son activas a fin de aumentar la eficiencia de traducción y/o la estabilidad de la secuencia de ácido nucleico transcrita a partir de la secuencia de ácido nucleico transcribible (a). Preferentemente, la transcripción se lleva a cabo in vitro.
Según la presente invención, el término “acoplamiento de una secuencia de ácido nucleico en el extremo 3’ de una secuencia de ácido nucleico” se refiere a un enlace covalente de las dos secuencias de ácido nucleico, de tal modo que la primera secuencia de ácido nucleico está situada en una posición secuencia abajo con respecto a la segunda secuencia de ácido nucleico y puede estar separada de la misma por secuencias de ácido nucleico adicionales.
En otra forma de realización, los procedimientos según la presente invención comprenden, además, acoplar una secuencia de ácido nucleico (c) que, cuando se transcribe, codifica una secuencia de nucleótidos de por lo menos 2 nucleótidos A consecutivos, en el extremo 3’ de la secuencia de ácido nucleico (b-2), o, cuando proceda, de la secuencia de ácido nucleico (b-3).
Las secuencias de ácido nucleico (a), (b-1), (b-2) y, cuando proceda, (b-3), y (c), se pueden transcribir preferentemente a fin de obtener un transcrito común en el que las secuencias de ácido nucleico transcritas a partir de las secuencias de ácido nucleico (b-1) y/o (b-2) y/o, cuando proceda, (b-3), y/o (c), están preferentemente activas a fin de aumentar la eficiencia de traducción y/o la estabilidad de la secuencia de ácido nucleico transcrita a partir de la secuencia de ácido nucleico transcribible (a).
En determinadas formas de realización, la secuencia de ácido nucleico (c), cuando se transcribe, codifica una secuencia de nucleótidos de por lo menos 40 nucleótidos A consecutivos, preferentemente por lo menos 80 nucleótidos A consecutivos, preferentemente por lo menos 100 nucleótidos A consecutivos, y particularmente de aproximadamente 120 nucleótidos A consecutivos en el transcrito. La secuencia de ácido nucleico (c), cuando se transcribe, codifica preferentemente una secuencia de nucleótidos de hasta 500 nucleótidos A consecutivos, preferentemente de hasta 400 nucleótidos A consecutivos, preferentemente de hasta 300 nucleótidos A consecutivos, preferentemente de hasta 200 nucleótidos A consecutivos y particularmente de hasta 150 nucleótidos A consecutivos en el transcrito.
En determinadas formas de realización, los procedimientos según la presente invención comprenden, además, antes de la transcripción del ácido nucleico obtenido, la escisión dentro de la secuencia de ácido nucleico (c) de tal modo que la transcripción del ácido nucleico obtenido de este modo genera un transcrito que tiene las secuencias de ácido nucleico transcritas a partir de las secuencias de ácido nucleico (a), (b-1), (b-2) y, cuando proceda, (b-3), y una secuencia de nucleótidos 3’-terminal de por lo menos 20 nucleótidos A consecutivos, donde el nucleótido 3’-terminal de dicho transcrito es un nucleótido A de la secuencia de nucleótidos de por lo menos 20 nucleótidos A consecutivos.
En determinadas formas de realización, el transcrito presenta, en su extremo 3’, una secuencia de nucleótidos de por lo menos 40 nucleótidos A consecutivos, preferentemente por lo menos 80 nucleótidos A consecutivos, preferentemente por lo menos 100 nucleótidos A consecutivos, y particularmente de aproximadamente 120 nucleótidos A consecutivos en el transcrito. El transcrito presenta preferentemente, en su extremo 3’, una secuencia de nucleótidos de hasta por lo menos 500 nucleótidos A consecutivos, preferentemente de hasta por lo menos 400 nucleótidos A consecutivos, preferentemente de hasta por lo menos 300 nucleótidos A consecutivos, y particularmente de aproximadamente 200 nucleótidos A consecutivos, y particularmente de hasta 150 nucleótidos A consecutivos, en el transcrito.
En una forma de realización preferida, el gen de la globina beta es un gen de globina beta humana.
En una forma de realización preferida, las secuencias de ácido nucleico (b-1), (b-2) y, cuando proceda, (b-3), independientemente una de otra, corresponden a la secuencia de ácido nucleico según la SEC ID NO: 1 de la lista de secuencias o a una secuencia de ácido nucleico derivada de la misma.
En todos los aspectos de los procedimientos según la presente invención, la escisión se lleva a cabo preferentemente con ayuda de un sitio de escisión de restricción que es, preferentemente, un sitio de escisión de restricción para una endonucleasa de restricción de tipo IIS.
En una forma de realización, la secuencia de reconocimiento para la endonucleasa de restricción de tipo IIS se encuentra 5-26 pares de bases, preferentemente 24-26 pares de bases, secuencia abajo con respecto al extremo 3’ de la secuencia de ácido nucleico que, cuando se transcribe, codifica una secuencia de nucleótidos de por lo menos 20 nucleótidos A consecutivos.
La presente invención también se refiere a ARN que se puede obtener por los procedimientos según la presente
invención de transcripción in vitro de una molécula de ARN seleccionado, en el que, en el ARN, los transcritos de las secuencias de ácido nucleico (a), (b-1), (b-2) y, cuando proceda, (b-3), están presentes en un transcrito común. La preparación de ARN que se puede obtener por los procedimientos según la presente invención de transcripción in vitro de una molécula de ARN seleccionada a partir de una molécula de ácido nucleico según la presente invención como plantilla es preferentemente homogénea o esencialmente homogénea con respecto a la longitud de la secuencia de poli(A) del ARN, es decir, que la longitud de la secuencia de poli(A) en más del 90%, preferentemente más del 95%, preferentemente más del 98% o 99%, de las moléculas de ARN de la preparación difiere en no más de 10, preferentemente en no más de 5, 4, 3, 2 o 1, nucleótidos A.
La presente invención se puede utilizar, por ejemplo, para aumentar la expresión de proteínas recombinantes en la transcripción y expresión celulares. Más específicamente, es posible, cuando se producen proteínas recombinantes, introducir las modificaciones descritas según la presente invención y una combinación de las mismas en vectores de expresión, y utilizarlos con el propósito de aumentar la transcripción de ácidos nucleicos recombinantes y la expresión de proteínas recombinantes en sistemas basados en células. Esto incluye, por ejemplo, la preparación de anticuerpos, hormonas, citocinas, enzimas y similares recombinantes. Esto permite, entre otras cosas, reducir los costes de producción.
También es posible utilizar las modificaciones descritas en la presente invención y una combinación de las mismas en aplicaciones de terapia génica. Dichas modificaciones se pueden introducir en vectores de terapia génica y utilizarse para aumentar la expresión de un transgén. Con este fin, se puede utilizar cualquier sistema de vectores a base de ácidos nucleicos (ADN/ARN) (por ejemplo, plásmidos, adenovirus, vectores de poxvirus, vectores de virus de la gripe, vectores de alfavirus y similares). Las células se pueden transfectar con estos vectores in vitro, por ejemplo, en linfocitos o células dendríticas, o bien in vivo, por administración directa.
Mediante las modificaciones descritas según la invención y una combinación de las mismas es posible, además, aumentar la estabilidad y/o eficiencia de expresión de los ácidos ribonucleicos y, de este modo, la cantidad de péptidos o proteínas codificados por dichos ácidos ribonucleicos. Se pueden utilizar ácidos ribonucleicos codificantes, por ejemplo, para la expresión transitoria de genes, pudiéndose aplicar en campos como las vacunas a base de ARN que se transfectan en células in vitro o se administran directamente in vivo, para la expresión transitoria de proteínas funcionales recombinantes in vitro, por ejemplo, para iniciar procesos de diferenciación en células o para estudiar las funciones de las proteínas, y la expresión transitoria de proteínas funcionales recombinantes, tales como eritropoyetina, hormonas, inhibidores de la coagulación, etc., in vivo, particularmente como productos farmacéuticos.
El ARN, en particular el ARN transcrito in vitro, modificado según las modificaciones descritas en la presente invención, se puede utilizar, particularmente, para la transfección de células presentadoras de antígeno y, por consiguiente, como herramienta para suministrar el antígeno que se pretende presentar y para cargar células presentadoras de antígeno, correspondiendo dicho antígeno que se pretende presentar al péptido o proteína expresados a partir de dicho ARN o derivados del mismo, particularmente mediante un procesamiento intracelular, tal como escisión, es decir, que el antígeno que se pretende presentar es, por ejemplo, un fragmento del péptido o proteína expresados a partir del ARN. Dichas células presentadoras de antígeno se pueden utilizar para estimular los linfocitos T, particularmente los linfocitos T CD4+ y/o CD8+.
Descripción detallada de la invención
Según la presente invención, se pueden utilizar métodos estándares para preparar ácidos nucleicos recombinantes, cultivar células e introducir ácidos nucleicos, particularmente ARN, en las células, particularmente por electroporación y lipofección. Las reacciones enzimáticas se llevan a cabo según las instrucciones del fabricante o de un modo conocido.
Según la presente invención, una molécula de ácido nucleico o una secuencia de ácido nucleico se refiere a un ácido nucleico que es preferentemente ácido desoxirribonucleico (ADN) o ácido ribonucleico (ARN). Según la presente invención, los ácidos nucleicos comprenden ADN genómico, ADNc, ARNm, moléculas preparadas por recombinación y sintetizadas químicamente. Según la presente invención, un ácido nucleico se puede presentar en forma de molécula monocatenaria o bicatenaria, y lineal o circular cerrada covalentemente.
“ARNm” significa “ARN mensajero”, y se refiere a un “transcrito” producido utilizando ADN como plantilla y que, a su vez, codifica un péptido o proteína. Un ARNm comprende habitualmente una región 5’ no traducida, una región codificadora de proteína y una región 3’ no traducida. El ARNm tiene una vida media limitada, tanto en células como in vitro. Según la presente invención, el ARNm se puede preparar a partir de una plantilla de ADN por transcripción in vitro. Se puede modificar mediante modificaciones estabilizantes adicionales y bloqueo, además de las modificaciones según la presente invención.
Además, el término “ácido nucleico” comprende una derivatización química de un ácido nucleico en una base nucleotídica, en el sacárido o el fosfato, y ácidos nucleicos que contienen nucleótidos no naturales y análogos de nucleótidos.
Según la presente invención, la expresión “secuencia de ácido nucleico que deriva de una secuencia de ácido nucleico” se refiere a un ácido nucleico que contiene, en comparación con el ácido nucleico del cual deriva, simples
o múltiples sustituciones, eliminaciones y/o adiciones de nucleótidos, y que es preferentemente complementario con respecto al ácido nucleico del cual deriva, es decir, que existe cierto grado de homología entre dichos ácidos nucleicos, y las secuencias de nucleótidos de dichos ácidos nucleicos se corresponden significativamente de modo directo o complementario. Según la presente invención, un ácido nucleico derivado de un ácido nucleico tiene propiedades funcionales del ácido nucleico del cual deriva. Dichas propiedades funcionales incluyen, particularmente, la capacidad de aumentar, en una unión funcional con un ácido nucleico que se puede transcribir en ARN (secuencia de ácido nucleico transcribible), la estabilidad y/o la eficiencia de traducción del ARN producido a partir de dicho ácido nucleico en la molécula completa de ARN.
Según la presente invención, las expresiones “vínculo funcional” o “vinculado funcionalmente” se refieren a una conexión dentro de una relación funcional. Un ácido nucleico está “vinculado funcionalmente” si está funcionalmente relacionado con otra secuencia de ácido nucleico. Por ejemplo, un promotor está vinculado funcionalmente a una secuencia codificadora si afecta a la transcripción de dicha secuencia codificadora. Los ácidos nucleicos funcionalmente vinculados son típicamente adyacentes entre sí, estando separados, si procede, por otras secuencias de ácido nucleico, y, en determinadas formas de realización, son transcritos por la ARN polimerasa a fin de obtener una sola molécula de ARN (transcrito común).
Los ácidos nucleicos descritos según la invención son preferentemente aislados. El término “ácido nucleico aislado” significa, según la presente invención, que el ácido nucleico ha sido (i) amplificado in vitro, por ejemplo, por reacción en cadena de la polimerasa (PCR); (ii) producido por recombinación mediante clonación; (iii) purificado, por ejemplo, mediante escisión y fraccionamiento en gel de electroforesis, o (iv) sintetizado, por ejemplo, por síntesis química. Un ácido nucleico aislado es un ácido nucleico disponible para la manipulación por técnicas de ADN recombinante.
Un ácido nucleico es “complementario” a otro ácido nucleico si las dos secuencias se pueden hibridar entre sí y formar un híbrido estable, llevándose a cabo dicha hibridación preferentemente en condiciones que permiten la hibridación específica entre polinucleótidos (condiciones estrictas). Dichas condiciones estrictas se describen, por ejemplo, en Molecular Cloning: A Laboratory Manual, J. Sambrook et al, eds., 2ª edición, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, Nueva York, 1989, o en Current Protocols in Molecular Biology, F.M. Ausubel et al, eds., John Wiley & Sons, Inc., Nueva York, y se refieren, por ejemplo, a una hibridación a 65ºC en tampón de hibridación (3,5 x SSC, Ficoll al 0,02%, polivinilpirrolidona al 0,02%, seroalbúmina bovina al 0,02%, NaH2PO4 2,5 mM (pH 7), SDS al 0,5%, EDTA 2 mM). SSC es cloruro de sodio 0,15 M/citrato de sodio 0,15 M, con un pH de 7.Tras la hibridación, la membrana a la que se ha transferido el ADN se lava, por ejemplo en 2 x SSC a temperatura ambiente y a continuación en 0,1-0,5 x SSC/0,1 x SDS a temperaturas de hasta 68ºC.
Según la presente invención, los ácidos nucleicos complementarios tienen nucleótidos que son idénticos en por lo menos un 60% por lo menos un 70% por lo menos un 80% por lo menos un 90%, y preferentemente por lo menos un 95% por lo menos un 98% o por lo menos un 99%.
El término “idéntico en un %” se refiere al porcentaje de nucleótidos que son idénticos en una alineación óptima entre dos secuencias que se comparan, siendo dicho porcentaje puramente estadístico, y las diferencias entre las dos secuencias pueden estar distribuidas aleatoriamente en toda la longitud de la secuencia, y la secuencia que se compara puede comprender adiciones o eliminaciones con respecto a la secuencia de referencia, a fin de obtener una alineación óptima entre las dos secuencias. Habitualmente, las comparaciones entre dos secuencias se llevan a cabo comparando dichas secuencias, tras una alineación óptima, con respecto a un segmento o “ventana de comparación”, a fin de identificar regiones locales de secuencias correspondientes. La alineación óptima para la comparación se puede llevar a cabo manualmente o utilizando el algoritmo de homología local de Smith y Waterman, 1981, Ads App. Math. 2, 482, utilizando el algoritmo de homología local de Neddleman y Wunsch, 1970,
J. Mol. Biol. 48, 443, y utilizando el algoritmo de búsqueda de similitudes de Pearson y Lipman, 1988, Proc. Natl. Acad. Sci. USA 85, 2444, o mediante programas informáticos que utilizan dichos algoritmos (GAP, BESTFIT, FASTA, BLAST P, BLAST N y TFASTA, en Wisconsin Genetics Software Package, Genetics Computer Group, 575 Science Drive, Madison, Wisconsin, Estados Unidos).
El porcentaje de identidad se obtiene determinando el número de posiciones idénticas en el que se corresponden las secuencias que se comparan, dividiendo este número por el número de posiciones comparadas y multiplicando el resultado por 100.
Por ejemplo, se puede utilizar el programa de BLAST “BLAST 2 sequences”, disponible en la página web http://www.ncbi.nlm.nih.gov/blast/b12seq/wblast2.cgi.
La expresión “extremo 3’ de un ácido nucleico” se refiere, según la presente invención, al extremo que tiene un grupo hidroxilo libre. En la representación esquemática de los ácidos nucleicos bicatenarios, particularmente del ADN, el extremo 3’ está siempre en el lado derecho. La expresión “extremo 5’ de un ácido nucleico” se refiere, según la presente invención, al extremo que tiene un grupo fosfato libre. En la representación esquemática de los ácidos
nucleicos bicatenarios, particularmente del ADN, el extremo 5’ está siempre en el lado izquierdo.
extremo 5’ 5’--P-NNNNNNN-OH-3’ extremo 3’ 3’-HO-NNNNNNN-P--5’
En determinadas formas de realización, un ácido nucleico está vinculado funcionalmente, según la invención, a secuencias de control de la expresión que pueden ser homólogas o heterólogas con respecto al ácido nucleico.
Un ácido nucleico transcribible, particularmente un ácido nucleico que codifica un péptido o proteína, y una secuencia de control de la expresión están “funcionalmente” vinculados si están unidos covalentemente entre sí de tal modo que la transcripción o la expresión del ácido nucleico transcribible, y particularmente codificador, permanece bajo el control o bajo la influencia de la secuencia de control de la expresión. Si el ácido nucleico se debe traducir en un péptido o proteína funcional, la inducción de una secuencia de control de la expresión funcionalmente vinculada a la secuencia codificadora da lugar a la transcripción de dicha secuencia codificadora, sin provocar ningún desplazamiento de marco en la secuencia codificadora ni que la misma sea incapaz de traducirse en el péptido o la proteína deseados.
El término “secuencia de control de la expresión” comprende, de acuerdo con los promotores de la presente invención, secuencias de unión de ribosomas y otros elementos de control que controlan la transcripción de un gen o la traducción del ARN derivado. En formas de realización particulares de la presente invención, las secuencias de control de la expresión se pueden regular. La estructura exacta de las secuencias de control de la expresión puede variar en función de la especie o el tipo de células, pero habitualmente incluye secuencias no transcritas en 5’ y no traducidas en 5’ y 3’ que participan en la iniciación de la transcripción y traducción, respectivamente, tales como la caja TATA, una secuencia de bloqueo, la caja CAAT y similares. Más específicamente, las secuencias de control de la expresión no transcritas en 5’ incluyen una región promotora que comprende una secuencia promotora para el control de la transcripción del gen funcionalmente vinculado. Las secuencias de control de la expresión también pueden incluir secuencias activadoras o secuencias activadoras secuencia arriba.
Los ácidos nucleicos que se especifican en la presente memoria, particularmente los ácidos nucleicos transcribibles y codificadores, se pueden combinar con cualquier secuencia de control de la expresión, particularmente promotoras, que pueden ser homólogas o heterólogas con respecto a dichos ácidos nucleicos, refiriéndose el término “homólogo” al hecho de que un ácido nucleico está también funcionalmente vinculado de forma natural a la secuencia de control de la expresión, y refiriéndose el término “heterólogo” a que un ácido nucleico no está funcionalmente vinculado de forma natural a la secuencia de control de la expresión.
El término “promotor” o “región promotora” se refiere a una secuencia de ADN secuencia arriba (5’) de la secuencia codificadora de un gen, que controla la expresión de dicha secuencia codificadora proporcionándole un sitio de reconocimiento y unión para la ARN polimerasa. La región promotora puede incluir además sitios de reconocimiento
o unión para otros factores implicados en la regulación de la transcripción de dicho gen. Un promotor puede controlar la transcripción de un gen procariótico o eucariótico. Un promotor puede ser “inducible” e iniciar la transcripción en respuesta a un inductor, o puede ser “constitutivo” si la transcripción no está controlada por un inductor. Un promotor inducible se expresa únicamente en un grado muy pequeño o nulo si no está presente un inductor. En presencia del inductor, el gen es “activado” o aumenta el nivel de transcripción. Habitualmente, esto está mediado por la unión de un factor de transcripción específico.
Son ejemplos de promotores preferidos según la presente invención los promotores de la polimerasa SP6, T3 o T7.
Según la presente invención, el término “expresión” se utiliza en su sentido más general y comprende la producción de ARN o de ARN y proteína. También comprende la expresión parcial de ácidos nucleicos. Además, la expresión puede ser transitoria o estable. Con respecto al ARN, el término “expresión” o “traducción” se refiere particularmente a la producción de péptidos o proteínas.
El término “ácidos nucleicos que se pueden transcribir para obtener un transcrito común” se refiere a que dichos ácidos nucleicos están funcionalmente vinculados entre sí, de tal modo que, cuando proceda, después de la linealización, tal como por escisión con enzimas de restricción de la molécula de ácido nucleico que comprende dichos ácidos nucleicos, particularmente de una molécula de ácido nucleico circular cerrada, la transcripción bajo el control de un promotor da lugar a una molécula de ARN que comprende los transcritos de dichos ácidos nucleicos unidos covalentemente entre sí, y cuando sea adecuado separados por secuencias interpuestas.
Según la presente invención, el término “transcripción” comprende “transcripción in vitro”, refiriéndose el término “transcripción in vitro” a un método en el que se sintetiza ARN, particularmente ARNm, in vitro sin células, es decir, preferentemente utilizando extractos celulares adecuadamente preparados. La preparación de transcritos utiliza preferentemente vectores de clonación, que habitualmente se denominan vectores de transcripción y que, en la presente invención, se incluyen dentro del término “vector”.
El término “secuencia de ácido nucleico transcrita a partir de una secuencia de ácido nucleico” se refiere a ARN,
cuando proceda como parte de una molécula completa de ARN, que es un producto de transcripción de la última secuencia de ácido nucleico.
El término “secuencia de ácido nucleico que está activa a fin de aumentar la eficiencia de traducción y/o la estabilidad de una secuencia de ácido nucleico” significa que el primer ácido nucleico es capaz de modificar, en un transcrito común con el segundo ácido nucleico, la eficiencia de traducción y/o la estabilidad de dicho segundo ácido nucleico, de tal modo que dicha eficiencia de traducción y/o estabilidad aumentan en comparación con la eficiencia de traducción y/o la estabilidad de dicho segundo ácido nucleico sin dicho primer ácido nucleico. En este contexto, el término “eficiencia de traducción” se refiere a la cantidad de producto de traducción proporcionada por una molécula de ARN en un período determinado, y el término “estabilidad” se refiere a la vida media de una molécula de ARN.
La región 3’ no traducida se refiere a una región que se encuentra en el extremo 3’ de un gen, secuencia abajo con respecto al codón de terminación de una región codificadora de proteína, y que se transcribe pero no se traduce en una secuencia de aminoácidos.
Según la presente invención, una primera región de polinucleótidos se considera localizada posteriormente o secuencia abajo de una segunda región de polinucleótidos, si el extremo 5’ de dicha primera región de polinucleótidos es la parte de dicha primera región de polinucleótidos más próxima al extremo 3’ de dicha segunda región de polinucleótidos.
Habitualmente, la región 3’ no traducida se extiende desde el codón de terminación para un producto de traducción hasta la secuencia de poli(A) que generalmente se une tras el proceso de transcripción. Habitualmente, las regiones 3’ no traducidas de ARNm de mamíferos tienen una región de homología conocida como secuencia hexanucleotídica AAUAAA. Presumiblemente, esta secuencia es la señal de unión de poli(A), y a menudo se encuentra de 10 a 30 bases secuencia arriba del sitio de unión de poli(A).
Las regiones 3’ no traducidas pueden contener una o más repeticiones invertidas que se puedan plegar para dar lugar a estructuras de horquilla que actúan como barreras para las exorribonucleasas o interactúan con proteínas conocidas porque aumentan la estabilidad del ARN (por ejemplo, proteínas de unión a ARN).
Según la invención, las regiones 3’ y/o 5’ no traducidas pueden estar funcionalmente unidas a un ácido nucleico transcribible y particularmente codificador, de manera que dichas regiones están asociadas con el ácido nucleico de tal modo que aumentan la estabilidad y/o la eficiencia de traducción del ARN transcrito a partir de dicho ácido nucleico transcribible.
Las regiones 3’ no traducidas de los ARNm inmunoglobulínicos son relativamente cortas (menos de aproximadamente 300 nucleótidos), mientras que las regiones 3’ no traducidas de otros genes son relativamente largas. Por ejemplo, la región 3’ no traducida de tPA tiene aproximadamente 800 nucleótidos de longitud, la del factor VIII tiene aproximadamente 1.800 nucleótidos de longitud y la de la eritropoyetina tiene aproximadamente 560 nucleótidos de longitud.
Según la presente invención, se puede determinar si una región 3’ no traducida o una secuencia de ácido nucleico derivada de la misma aumenta la estabilidad y/o la eficiencia de traducción del ARN mediante la incorporación de la región 3’ no traducida o la secuencia de ácido nucleico derivada de la misma en la región 3’ no traducida de un gen y la determinación de si dicha incorporación aumenta la cantidad de proteína sintetizada.
Correspondientemente, esto se aplica al caso en el que, según la invención, un ácido nucleico comprende dos o más regiones 3’ no traducidas que están preferentemente acopladas secuencialmente, con o sin un conector entre ellas, preferentemente en una “relación de cabeza a cola” (es decir, las regiones 3’ no traducidas tienen la misma orientación, preferentemente la orientación natural en un ácido nucleico).
Según la presente invención, el término “gen” se refiere a una secuencia de ácido nucleico particular responsable de producir uno o más productos celulares y/o de alcanzar una o más funciones intercelulares o intracelular. Más concretamente, dicho término se refiere a una sección de ADN que comprende un ácido nucleico que codifica una proteína específica o una molécula de ARN funcional o estructural.
Los términos “casete de poliadenilo” o “secuencia de poli(A)” se refieren a una secuencia de residuos de adenilo que normalmente se encuentra en el extremo 3’ de una molécula de ARN. La presente invención posibilita que una secuencia de este tipo se una durante la transcripción del ARN mediante una plantilla de ADN a base de residuos repetidos de timidilo en la cadena complementaria a la cadena de codificación, no estando codificada normalmente dicha secuencia en el ADN, sino que está unida al extremo 3’ libre del ARN por una ARN polimerasa independiente de la plantilla tras la transcripción en el núcleo. Según la presente invención, un secuencia de poli(A) de este tipo se refiere a una secuencia de nucleótidos de por lo menos 20, preferentemente por lo menos 40, preferentemente por lo menos 80, preferentemente por lo menos 100 y preferentemente de hasta 500, preferentemente hasta 400, preferentemente hasta 300, preferentemente hasta 200, y particularmente de hasta 150 nucleótidos A consecutivos, y particularmente de aproximadamente 120 nucleótidos A consecutivos, refiriéndose el término “nucleótidos A” a
residuos de adenilo.
En una forma de realización preferida, una molécula de ácido nucleico según la presente invención es un vector. En la presente memoria, el término “vector” se utiliza en su sentido más amplio, y comprende cualquier vehículo intermedio para un ácido nucleico que, por ejemplo, permita que dicho ácido nucleico sea introducido en células hospedadoras procarióticas y/o eucarióticas y, según proceda, integrarse en un genoma. Preferentemente, dichos vectores se replican y/o se expresan en la célula. Los vectores comprenden plásmidos, fagémidos o genomas víricos. El término “plásmido”, tal como se utiliza en la presente memoria, se refiere de forma general a un constructo de material genético extracromosómico, habitualmente un híbrido de ADN circular, que se puede replicar independientemente del ADN cromosómico.
Según la presente invención, el término “célula hospedadora” se refiere a cualquier célula que se puede transformar
o transfectar con un ácido nucleico exógeno. El término “célula hospedadora” comprende, según la invención, células procarióticas (por ejemplo, de E. coli) o eucarióticas (por ejemplo, células de levadura y células de insectos). Resultan particularmente preferidas las células de mamíferos, tales como células de seres humanos, ratones, hámsteres, cerdos, cabras o primates. Las células pueden derivar de múltiples tipos de tejido y comprenden células primarias y líneas celulares. Entre los ejemplos específicos se incluyen queratinocitos, leucocitos de sangre periférica, células madre de médula ósea y células madre embrionarias. En otras formas de realización, la célula hospedadora es una célula presentadora de antígeno, particularmente, una célula dendrítica, un monocito o un macrófago. Un ácido nucleico puede estar presente en la célula hospedadora en una sola o en varias copias y, en una forma de realización, se expresa en la célula hospedadora.
Según la presente invención, un péptido o proteína codificados por un ácido nucleico pueden ser un péptido o proteína que se encuentran en el citoplasma, en el núcleo, en la membrana o en orgánulos, o que se secretan. Los mismos incluyen proteínas estructurales, proteínas reguladoras, hormonas, neurotransmisores, factores reguladores del crecimiento, factores de diferenciación, factores reguladores de la expresión génica, proteínas asociadas a ADN, enzimas, proteínas séricas, receptores, medicamentos, inmunomoduladores, oncogenes, toxinas, antígenos tumorales o antígenos. Dichos péptidos o proteínas pueden tener una secuencia de origen natural o una secuencia mutada a fin de mejorar, inhibir, regular o eliminar su actividad biológica.
El término “péptido” se refiere a sustancias que comprenden dos o más, preferentemente 3 o más, preferentemente 4 o más, preferentemente 6 o más, preferentemente 8 o más, preferentemente 10 o más, preferentemente 13 o más, preferentemente 16 o más, preferentemente 20 o más, y hasta preferentemente 50, preferentemente 100 o preferentemente 150, aminoácidos consecutivos enlazados entre sí a través de enlaces peptídicos. El término “proteína” se refiere a péptidos grandes, preferentemente péptidos que tienen por lo menos 151 aminoácidos, pero los términos “péptido” y “proteína” se utilizan en el presente documento de forma general como sinónimos. Según la presente invención, los términos “péptido” y “proteína” comprenden sustancias que contienen no sólo componentes aminoácidos, sino también componentes no aminoácidos, tales como sacáridos y estructuras de fosfato, y también comprenden sustancias que contienen enlaces, por ejemplo, de tipo éster, tioéter o disulfuro.
La presente invención da a conocer ácidos nucleicos, particularmente ARN, para su administración a un paciente. En una forma de realización, los ácidos nucleicos se administran por métodos ex vivo, es decir, mediante la extracción de células de un paciente, la modificación genética de las mismas y la reintroducción de dichas células modificadas en el paciente. El experto en la materia conoce métodos de transfección y transducción. La presente invención también da a conocer ácidos nucleicos para su administración in vivo.
Según la presente invención, el término “transfección” se refiere a la introducción de uno o más ácidos nucleicos en un organismo o en una célula hospedadora. Se pueden utilizar diversos métodos para introducir in vitro o in vivo los ácidos nucleicos, según la invención, en las células. Entre dichos métodos se incluyen la transfección de precipitados de ácido nucleico-CaPO4, la transfección de ácidos nucleicos asociados con DEAE, la transfección o infección con virus que transportan los ácidos nucleicos de interés, la transfección mediada por liposomas y similares. En determinadas formas de realización, resulta preferido el direccionamiento del ácido nucleico hacia determinadas células. En dichas formas de realización, un portador utilizado para administrar un ácido nucleico a una célula (por ejemplo, un retrovirus o un liposoma) puede tener enlazada una molécula de direccionamiento. Por ejemplo, una molécula tal como un anticuerpo específico para una proteína de superficie de membrana presente en la célula diana, o se puede incorporar o enlazar al portador del ácido nucleico un ligando específico de un receptor presente en la célula diana. Si se desea llevar a cabo la administración de un ácido nucleico mediante liposomas, se pueden incorporar proteínas que se unen a una proteína de membrana de superficie asociada con la endocitosis en la formulación de liposomas a fin de facilitar el direccionamiento y/o la absorción. Entre dichas proteínas se incluyen proteínas de la cápside o fragmentos de las mismas, que son específicas para un tipo determinado de célula, anticuerpos frente a las proteínas internalizadas, proteínas dirigidas a un sitio intracelular y similares.
“Indicador” se refiere a una molécula, habitualmente un péptido o proteína, que está codificada por un gen indicador y se mide en un ensayo de indicador. Habitualmente, los sistemas convencionales utilizan un indicador enzimático y miden la actividad de dicho indicador.
El término “sitio de clonación múltiple” se refiere a una región de ácido nucleico que contiene sitios de enzimas de restricción que se pueden utilizar para la escisión, por ejemplo, de un vector y la inserción de un ácido nucleico.
Según la presente invención, dos elementos, tales como nucleótidos o aminoácidos, son consecutivos si son inmediatamente adyacentes entre sí, sin ninguna interrupción. Por ejemplo, una secuencia de x nucleótidos N consecutivos se indica como secuencia (N)x.
“Endonucleasa de restricción” o “enzima de restricción” se refiere a una clase de enzimas que escinden los enlaces fosfodiéster en las dos cadenas de una molécula de ADN en determinadas secuencias de bases. Dichas enzimas reconocen sitios de unión específicos, que se denominan secuencias de reconocimiento, en una molécula de ADN bicatenaria. Los sitios en los que dichas enzimas escinden dichos enlaces fosfodiéster del ADN se denominan sitios de escisión. En las enzimas de tipo IIS, el sitio de escisión se encuentra a una determinada distancia del sitio de unión al ADN. Según la presente invención, el término “endonucleasa de restricción” comprende, por ejemplo, las enzimas SapI, EciI, BpiI, AarI, AloI, BaeI, BbvCI, PpiI and PsrI, BsrD1, BtsI, EarI, BmrI, BsaI, BsmBI, FauI, BbsI, BciVI, BfuAI, BspMI, BseRI, EciI, BtgZI, BpuEI, BsgI, MmeI, CspCI, BaeI, BsaMI, Mva1269I, PctI, Bse3DI, BseMI, Bst6I, Eam1104I, Ksp632I, BfiI, Bso31I, BspTNI, Eco31I, Esp3I, BfuI, Acc36I, AarI, Eco57I, Eco57MI, GsuI, AloI, Hin4I, PpiI y PsrI.
“Vida media” se refiere al tiempo necesario para eliminar la mitad de la actividad, la cantidad o el número de moléculas.
La presente invención se describe en detalle a partir de las siguientes figuras y ejemplos, que deben considerarse meramente ilustrativos y no limitativos. A partir de la descripción y los ejemplos, resultarán evidentes para el experto en la materia otras formas de realización comprendidas asimismo en el alcance de la presente invención.
Figuras
Figura 1: vectores básicos utilizados según la invención para la clonación adicional
Los vectores permiten la transcripción del ARN bajo el control de un promotor en 5’ de la ARN polimerasa y contienen un casete de poliadenilo.
Figura 2: linealización de vectores mediante enzimas de restricción de tipo II (por ejemplo, SpeI) en comparación con enzimas de restricción de tipo IIS (por ejemplo, SapI)
Mediante la introducción de un sitio de escisión de restricción de tipo IIS, cuya secuencia de reconocimiento está situada en 3’ de la secuencia de poli(A), mientras que el sitio de escisión está 24-26 pares de bases secuencia arriba y, por consiguiente, está situado dentro de la secuencia de poli(A), es posible linealizar un plásmido dentro de la secuencia de poli(A).
Figura 3: vectores preparados según la presente invención como plantilla para la transcripción in vitro
Para estudiar los efectos de las modificaciones de ARN según la invención en su nivel y en la duración de la expresión, se prepararon diversos vectores que posteriormente sirvieron como plantilla para la transcripción in vitro.
a. Vectores con secuencia de poli(A) enmascarada frente a no enmascarada; b. Vectores con secuencias de poli(A) de diferente longitud; c. Vectores con la región 3’ sin traducir de la globina beta humana; d. Vectores SIINFEKL y pp65; bloqueo de caperuza-5’; gen indicador eGFP - GFP; región 3’�g - 3’ sin traducir de globina �; A(x) - x se refiere al número de nucleótidos A presentes en la secuencia de poli(A).
Figura 4: determinación del estado de maduración de las células dendríticas inmaduras frente a maduras mediante los marcadores de superficie indicados
El efecto de las modificaciones de ARN según la invención se analizó en células dendríticas humanas (CD), con un estímulo inmunógeno que desencadena un proceso de maduración de las CD. Las CD se tiñeron con anticuerpos anti-CD80, anti-CD83, anti-CD86 y anti-HLA-DR, que reconocen marcadores específicos de maduración de las CD, y se analizaron por citometría de flujo.
Figura 5: influencia de la secuencia de poli(A) libre frente a enmascarada sobre la eficiencia de traducción y la estabilidad del transcrito
a. Influencia de la secuencia de poli(A) libre frente a enmascarada sobre la eficiencia de traducción de ARN de eGFP en células K562 y células dendríticas mediante la determinación de la intensidad media de fluorescencia [IMF] en FACS-Kalibur; b. Influencia de la secuencia de poli(A) libre frente a enmascarada sobre la estabilidad del transcrito de ARN de eGFP en células dendríticas inmaduras tras 48 h. Tanto en la línea de células tumorales como en las CD inmaduras, el ARN con una secuencia de poli(A) de extremo abierto se traduce más eficientemente y durante un período más prolongado que el ARN con una secuencia de poli(A) de extremo enmascarado. La
eficiencia de traducción de una secuencia de poli(A) de extremo no enmascarado en CD aumenta en un factor de 1,5 para secuencias de poli(A) de la misma longitud. Además, una secuencia de poli(A) de extremo abierto da lugar a una mayor estabilidad del ARN.
Figura 6: influencia de la longitud de la secuencia de poli(A) en la eficiencia de traducción y la estabilidad del transcrito
a. Influencia de la longitud de la secuencia de poli(A) en la eficiencia de traducción de ARN de eGFP en células K562 y células dendríticas; b. Influencia de la longitud de la secuencia de poli(A) en la eficiencia de traducción de ARN de d2eGFP en células K562 y células dendríticas; c. Influencia de la longitud de la secuencia de poli(A) sobre la estabilidad del transcrito de ARN de eGFP en células K562 48 h después de la electroporación. La prolongación de la secuencia de poli(A) hasta 120 nucleótidos A aumenta la estabilidad y la traducción del transcrito. Una prolongación excesiva no tiene ningún efecto positivo. La prolongación de la secuencia de poli(A) de 51 a 120 nucleótidos A da lugar a un aumento en un factor comprendido entre 1,5 y 2 de la eficiencia de traducción. Este efecto también se refleja en la estabilidad del ARN.
Figura 7: influencia de una región 3’ no traducida de la globina beta humana (BgUTR) sobre la eficiencia de traducción en CD inmaduras y maduras
La introducción de una región 3’ no traducida de globina beta humana da lugar a un aumento de la expresión del transcrito de ARN. Una región 3’ no traducida doble de globina beta humana aumenta el nivel de expresión tras 24 h, excediendo significativamente dicho nivel el efecto conjunto de dos regiones 3’ no traducidas individuales de la globina beta humana.
Figura 8: efecto de las modificaciones combinadas según la invención sobre la eficiencia de traducción en CD inmaduras y maduras
La eficiencia de traducción de eGFP en CD inmaduras y maduras se puede aumentar en un factor de más de cinco combinando las modificaciones del transcrito de ARN descritas en la presente invención.
Figura 9: efecto de las modificaciones combinadas según la presente invención sobre la presentación de péptidos por parte de moléculas del CMH en células EL4
La utilización de los constructos de ARN modificados según la presente invención da lugar a una mayor presentación de complejos péptido-CMH en la superficie celular debido a una mayor eficiencia de traducción. En los vectores IVT descritos, eGFP se sustituyó por el epítopo OVA257-264 (SIINFEKL) y las células EL4 (murinas, linfoma de linfocitos T) se utilizaron como células diana para la transfección.
Figura 10: aumento de los complejos péptido/CMH específicos de antígeno utilizando constructos IVT-RNA estabilizados según la presente invención
Las células se sometieron a electroporación con ARN Sec-SIINFEKL-A67-ACUAG o ARN Sec-SIINFEKL-2BgUTR-A120 (células EL4: 10 pmol, 50 pmol; BMDC inmaduras de C57B1/J6 por triplicado: 150 pmol). La electroporación con tampón se utilizó únicamente como control. Las células se tiñeron con anticuerpos 25D1.16 en vistas a los complejos SIINFEKL/Kb. Se calcularon las concentraciones peptídicas de SIINFEKL a partir de los valores medios de fluorescencia de las células vivas utilizando una valoración peptídica como curva estándar. Los datos de BMDC se indican como promedios de tres experimentos ± EEM.
Figura 11: efecto de constructos de IVT-RNA estabilizados según la presente invención sobre la estimulación de linfocitos T in vivo e in vitro
(A)
Expansión in vivo mejorada de linfocitos T mediante la utilización de constructos estabilizados de IVT-RNA. Se transfirieron adoptivamente 1 x 105 linfocitos T OT-I CD8+ transgénicos para TCR en ratones C57B1/J6. Se transfectaron BMDC de ratones C57B1/J6 con 50 pmol de ARN (Sec-SIINFEKL-A67-ACUAG, Sec-SIINFEKL-2BgUTR-A120 o ARN de control), se maduraron con poli(I:C) (50 pg/ml) durante 16 h y se inyectaron por vía i.p. un día después de la transferencia de linfocitos T (n = 3). Se extrajo sangre periférica en el día 4 y se tiñó para detectar linfocitos T CD8+ positivos al tetrámero SIINFEKL. Las transferencias puntuales representan los linfocitos T CD8+, y los números indicados representan el porcentaje de linfocitos T CD8+ positivos al tetrámero.
(B)
Expansión in vitro mejorada de linfocitos T humanos que contienen constructos de IVT-ARN estabilizados. Se cocultivaron linfocitos CD8+ y CD4+ procedentes de donantes sanos seropositivos para HCMV con CD autólogas transfectadas con ARN Sec-pp65-A67-ACUAG, ARN Sec-pp65-2BgUTR-A120, o ARN de control (datos no mostrados) o se cargaron con un grupo de péptidos pp65 (1,75 pg/ml) como control positivo. Tras una expansión de 7 días, se analizó cada población de células efectoras (4 x 104/pocillo) en un IFN-y-ELISpot con CD autólogas (3 x 104/pocillo) cargadas con un grupo de péptidos pp65 o con un grupo de péptidos irrelevante (1,75 !g/ml). El gráfico representa el número promedio de puntos de mediciones por triplicado ± EEM.
Ejemplos
Ejemplo 1: Preparación de vectores y transcripción in vitro de ARN
5 A fin de estudiar los efectos de las modificaciones de ARN según la invención en su nivel y en la duración de la expresión, se prepararon diversos vectores IVT que sirvieron como plantilla para la transcripción in vitro (figura 3).
Los genes indicadores para eGFP y d2eGFP, dos moléculas con diferentes vidas medias (HL), se insertaron en los
10 vectores, facilitándose el análisis de la influencia de las modificaciones de ARN según la presente invención. La fluorescencia disminuye con una HL promedio de 17,3 h para eGFP y de 2 h para d2eGFP. Estos constructos se utilizaron para preparar ARN de eGFP y ARN de d2eGFP transcritos in vitro, respectivamente.
Ejemplo 2: transfección de células con el ARN transcrito in vitro modificado según la invención y efecto 15 sobre la traducción y la estabilidad del ARN
El ARN de eGFP y el ARN de d2eGFP transcritos in vitro se utilizaron para transfectar células K562 (humanas, leucemia) mediante electroporación. La eficiencia de la transfección fue > 90% en las células K562.
20 A esto le siguió el análisis de la acción de las modificaciones de ARN descritas en las células dendríticas humanas (CD), que son los moduladores más importantes del sistema inmunitario. Este enfoque es inmunológicamente relevante, ya que las CD transfectadas con ARN son susceptibles de ser utilizadas para vacunación. Las CD inmaduras se encuentran en la piel y en los órganos periféricos. Se encuentran en un estado inmaduro, que se caracteriza por marcadores de superficie bien estudiados y que se distingue funcionalmente por una elevada
25 actividad endocitósica. Un estímulo inmunógeno, tal como, por ejemplo, una infección con patógenos, desencadena un proceso de maduración de las CD. Al mismo tiempo, dicho estímulo inicia la migración de las CD a los ganglios linfáticos regionales, donde dichas CD son los inductores más eficaces de respuestas inmunitarias de linfocitos T y linfocitos B. El estado maduro de dichas CD también se caracteriza por la expresión de marcadores de superficie y citocinas estudiadas en detalle y por una morfología característica de las CD. Se han establecido sistemas de
30 cultivos celulares para la diferenciación de las CD humanas inmaduras de los monocitos sanguíneos. Se puede desencadenar la maduración de los mismos mediante diversos estímulos.
La eficiencia de transfección en las células dendríticas primarias fue del 70-80%. Las CD se tiñeron con anticuerpos anti-CD80, anti-CD83, anti-CD86 y anti-HLA-DR, que reconocen marcadores específicos de maduración de las CD,
35 y se analizaron por citometría de flujo (figura 4).
El nivel y la duración de la expresión se determinaron con ayuda de FACS-Kalibur a través de la determinación de la intensidad de fluorescencia de eGFP. La cantidad de ARN presente en las células se determinó con ayuda de una RT-PCR cuantitativa.
a. Efecto de una secuencia de poli(A) de extremo abierto en la traducción y la estabilidad del ARN
Se puso de manifiesto que tanto la línea celular tumoral K562 como las CD inmaduras (CDi) traducen ARN con una secuencia de poli(A) de extremo abierto de manera más eficiente y durante un período más largo que ARN con una
45 secuencia de poli(A) de extremo enmascarado (figura 5a). La eficiencia de traducción de una secuencia de poli(A) de extremo no enmascarado en CD inmaduras aumenta en un factor de 1,5 con secuencias de poli(A) de la misma longitud. Además, dicha modificación da lugar a una mayor estabilidad del ARN (figura 5b). Se puede detectar una cantidad de 4 a 5 veces mayor de ARN en CD inmaduras transfectadas con ARN con una secuencia de poli(A) de extremo no enmascarado de 48 h después de la electroporación.
b. Efecto de la longitud de la secuencia de poli(A) en la traducción y la estabilidad del ARN
El análisis de ARN con secuencias de poli(A) de 16 pb, 42 pb, 51 pb, 67 pb, 120 pb, 200 pb, 300 pb y 600 pb de longitud puso de manifiesto que la prolongación de dicha secuencia de poli(A) hasta 120 nucleótidos A aumenta la
55 estabilidad del transcrito y la traducción, y que una prolongación aún mayor no tiene ningún efecto positivo. Este efecto se observa tanto en las células K562 como en las CD inmaduras (CDi) (figuras 6a y 6b). La prolongación de la secuencia de poli(A) de 51 a 120 nucleótidos A da lugar a un aumento en un factor comprendido entre 1,5 y 2 de la eficiencia de traducción. Este efecto también se refleja en la estabilidad del ARN (figura 6c).
60 c. Efecto de la presencia de una región 3’ no traducida en la traducción y la estabilidad del ARN
Un ciclo con células K562 y CD inmaduras confirmó que la introducción de una región 3’ no traducida (UTR) de globina beta humana da lugar a un aumento de la expresión del transcrito de ARN. Además, se puso de manifiesto que una región 3’ no traducida doble (UTR) de globina beta humana da lugar a un mayor nivel de expresión tras 24
65 h, lo que supera significativamente el efecto conjunto de dos UTR individuales (figura 7).
d. Efecto de una combinación de las modificaciones descritas anteriormente sobre la traducción y la estabilidad del ARN
Según la presente invención, se ha puesto de manifiesto que una combinación de las modificaciones descritas anteriormente en un transcrito de ARN aumenta la eficiencia de traducción de eGFP en CD inmaduras y también maduras en un factor mayor de cinco (figura 8).
Ejemplo 3: presentación de un péptido expresado a través de ARN transcrito in vitro con una mayor estabilidad y eficiencia de traducción por parte de moléculas del CMH
Según la presente invención, se ha puesto de manifiesto que la utilización de constructos de ARN modificados según la invención hace aumentar la presentación de complejos péptido-CMH sobre la superficie celular. Con este fin, se sustituyó la secuencia de ácido nucleico que codifica eGFP en los vectores IVT descritos por una secuencia de ácido nucleico que codificaba el epítopo OVA257-264 (SIINFEKL), y los constructos se compararon entre sí. Las células diana utilizadas para la transfección fueron células EL4 (murinas, linfoma de linfocitos T).
A fin de cuantificar los péptidos SIINFEKL presentados por las moléculas del CMH, las células se tiñeron con un anticuerpo anti-H2-Kb-OVA257-264 en diversos instantes tras la electroporación, y se determinó la intensidad de fluorescencia de un anticuerpo secundario con ayuda de FACS-Kalibur (figura 9).
Además, el péptido SIINFEKL se clonó en el vector que reflejaba todas las optimizaciones (pST1-Sec-SIINFEKL2BgUTR-A120-SapI) y en un vector con características estándares (pST1-Sec-SIINFEKL-A67-SpeI). El IVT-RNA procedente de ambos vectores se sometió a electroporación en células EL4 y BMDC. Se detectaron complejos OVApéptido/Kb en la superficie celular en una cantidad considerablemente mayor, y los mismos se mantuvieron durante un período más prolongado tras la electroporación del ARN modificado según la invención, Sec-SIINFEKL-2-BgUTR-A120 (figura 10).
Ejemplo 4: efecto de la transfección de células con ARN transcrito in vitro que codifica un péptido que se presenta en la expansión de linfocitos T específicos de antígeno
A fin de evaluar el efecto sobre la capacidad estimulante, se utilizó OT-I-TCR, muy utilizado en ratones C57BL/J6 (B6) para detectar la presentación en el CMH de clase I del péptido SIINFEKL. Los linfocitos T CD8+ OT-I, que son transgénicos con respecto al receptor de linfocitos T (TCR) y que reconocen el péptido SIINFEKL específico de Kb de ovoalbúmina de pollo (OVA257-264) fueron amablemente proporcionados por H. Schild (Institute of Immunology, University of Mainz, Alemania).
En el día 0, los animales se sometieron a transferencia adoptiva con linfocitos T OT-I-CD8+. Con este objetivo, se prepararon esplenocitos a partir de ratones TCR tg OT-I y se introdujeron en la vena de la cola de ratones receptores C57BL/J6. El número de células se ajustó a 1 x 105 linfocitos T TCR tg CD8+. Al día siguiente, se administraron a los ratones por vía i.p. 1 x 106 BMDC de ratones C57BL/J6 que habían sido sometidos a electroporación con 50 pmol de variantes de constructo de ARN que codificaba SIINFEKL y se habían dejado madurar por medio de poli(I:C) durante 16 horas. En el día 4, se midieron los linfocitos T OT-I-CD8+ en la sangre periférica con ayuda de la tecnología de tetrámero. Con este fin, se tomaron muestras de sangre retroorbital y se tiñeron con anticuerpos anti-CD8 (Caltag Laboratories, Burlingame, Estados Unidos) y tetrámero SIINFEKL (H-2Kb/SIINFEKL 257-264; Beckman Coulter, Fullerton, Estados Unidos).
Se puso de manifiesto que la expansión in vivo de linfocitos T CD8+ transgénicos para TCR específicos de antígeno mejora sustancialmente cuando se utiliza ARN Sec-SIINFEKL-2BgUTR-A120 para el suministro de antígeno en comparación con ARN Sec-SIINFEKL-A67-ACUAG (figura 11A).
A fin de evaluar si los constructos de IVT-RNA para el suministro de antígenos también mejoran la estimulación específica de antígeno de los linfocitos T humanos, se utilizó pp65 del HCMV, el antígeno inmunodominante del citomegalovirus humano que se utiliza a menudo para la validación de la estimulación autóloga de las reacciones de linfocitos T poliepitópicas. Se cocultivaron linfocitos T CD4+ y CD8+, purificados de donantes sanos seropositivos para HCMV por separación magnética celular por medio de microesferas recubiertas de anticuerpos (Miltenyi Biotec, Bergisch-Gladbach, Alemania), con 2 x 105 CD autólogas que se habían sometido a electroporación con las correspondientes variantes de IVT-RNA que codifican pp65. Una expansión de linfocitos T, medida en el día 7 en un IFN-y-ELISpot con CD autólogas cargadas con un grupo de péptidos solapados que abarcan toda la secuencia de la proteína pp65, o con una proteína de control, puso de manifiesto la superioridad del Sec-pp65-2BgUTR-A120, siendo los efectos más pronunciados los correspondientes a la expansión de los linfocitos T CD4+ (figura 11B).
Referencias
Bargmann, C.I., Hung, M.C. y Weinberg, R.A. (1986). The neu oncogene encodes an epidermal growth factor receptor-related protein. Nature 319, 226-230.
Boczkowski, D., Nair, S.K., Nam, J.H., Lyerly H.K. y Gilboa, E. (2000). Induction of tumor immunity and cytotoxic T lymphocyte responses using dendritic cells transfected with messenger RNA amplified from tumor cells. Cancer Res. 60, 1028-1034.
Carralot, J.P., Probst, J., Hoerr, I., Scheel, B., Teufel, R., Jung, G., Rammensee, H.G. y Pascolo, S. (2004). Polarization of immunity induced by direct injection of naked sequence-stabilized mRNA vaccines. Cell Mol. Life Sci. 61, 2418-2424.
Condon, C., Watkins, S.C., Celluzzi, C.M., Thompson, K. y Falo, L.D., Jr. (1996). DNA-based immunization by in vivo transfections of dendritic cells. Nat. Med. 2, 1122-1128.
Conry, R.M., LoBuglio, A.F., Kantor, J., Schlom, J., Loechel, F., Moore, S.E., Sumerel, L.A., Barlow, D.L., Abrams, S. y Curiel, D.T. (1994). Immune response to a carcinoembryonic antigen polynucleotide vaccine. Cancer Res. 54, 1164-1168.
Conry, R.M., LoBuglio, A.F., Loechel, F., Moore, S.E., Sumerel, L.A., Barlow, D.L. y Curiel, D.T. (1995a). A carcinoembryonic antigen polynucleotide vaccine has in vivo antitumor activity. Gene Ther. 2, 59-65.
Conry, R.M., LoBuglio, A.F., Wright, M., Sumerel, L., Pike, M.J., Johanning, F., Benjamin, R., Lu, D. y Curiel, D.T. (1995b). Characterization of a messenger RNA polynucleotide vaccine vector. Cancer Res. 55, 1397-1400.
Cox, G.J., Zamb, T.J. y Babiuk, L.A. (1993). Bovine herpesvirus 1: immune responses in mice and cattle injected with plasmid DNA. J. Viral. 67, 5664-5667.
Davis, H.L., Michel, M.L. y Whalen, R.G. (1993). DNA-based immunization induces continuous secretion of hepatitis B surface antigen and high levels of circulating antibody. Hum. Mol. Genet. 2, 1847-1851.
Gallie, D.R. (1991). The cap and poli(A) tail function synergistically to regulate mRNA translational efficiency. Genes Dev. 5, 2108-2116.
Gilkeson, G.S., Pippen, A.M. y Pisetsky, D.S. (1995). Induction of cross-reactive anti-dsDNA antibodies in preautoimmune NZB/NZW mice by immunization with bacterial DNA. J. Clin. Invest. 95, 1398-1402.
Greenblatt, M.S., Bennett, W.P., Hollstein, M. y Harris, C.C. (1994). Mutations in the p53 tumor suppressor gene: clues to cancer etiology and molecular pathogenesis. Cancer Res. 54, 4855-4878.
Heiser, A., Coleman, D., Dannull, J., Yancey, D., Maurice, M.A., Lallas, C.D., Dahm, P., Niedzwiecki, D., Gilboa, E. y Vieweg, J. (2002). Autologous dendritic cells transfected with prostate-specific antigen RNA stimulate CTL responses against metastatic prostate tumors. J. Clin. Invest 109, 409-417.
Heiser, A., Dahm, P., Yancey, D.R., Maurice, M.A., Boczkowski, D., Nair, S.K., Gilboa, E. y Vieweg, J. (2000). Human dendritic cells transfected with RNA encoding prostate-specific antigen stimulate prostate-specific CTL responses in vitro. J. Immunol. 164, 5508-5514.
Hoerr, I., Obst, R., Rammensee, H.G. y Jung, G. (2000). In vivo application of RNA leads to induction of specific cytotoxic T lymphocytes and antibodies. Eur. J. Immunol. 30, 1-7.
Malone, R.W., Feigner, P.L. y Verma, I.M. (1989). Cationic liposome-mediated RNA transfection. Proc. Natl. Acad. Sci. USA 86, 6077-6081.
Preiss, T. and Hentze, M.W. (1998). Dual function of the messenger RNA cap structure in poli(A)-tail promoted translation in yeast. Nature 392, 516-520.
Spooner, R.A., Deonarain, M.P. y Epenetos, A.A. (1995). DNA vaccination for cancer treatment. Gene Ther. 2, 173
180.
Strong, T.V., Hampton, T.A., Louro, I., Bilbao, G., Conry, R.M. y Curiel, D.T. (1997). Incorporation of beta-globin untranslated regions into a Sindbis virus vector for augmentation of heterologous mRNA expression. Gene Ther. 4, 624-627.
Su, Z., Dannull, J., Heiser, A., Yancey, D., Pruitt, S., Madden, J., Coleman, D., Niedzwiecki, D., Gilboa, E. y Vieweg,
J. (2003). Immunological and clinical responses in metastatic renal cancer patients vaccinated with tumor RNAtransfected dendritic cells. Cancer Res. 63, 2127-2133.
Tang, D.C., DeVit, M. y Johnston, S.A. (1992). Genetic immunization is a simple method for eliciting an immune response. Nature 356, 152-154.
Teufel, R., Carralot, J.P., Scheel, B., Probst, J., Walter, S., Jung, G., Hoerr, I., Rammensee, H.G. y Pascolo, S. (2005). Human peripheral blood monuclear cells transfected with messenger RNA stimulate antigen-specific cytotoxic T-lymphocytes in vitro. Cell Mol. Life Sci. 62, 1755-1762.
5 Ulmer, J.B., Donnelly, J.J., Parker, S.E., Rhodes, G.H., Feigner, P.L., Dwarki, V.J., Gromskowski, S.H., Deck, R.R., DeWitt, C.M., Friedman, A. et al (1993). Heterologous protection against influenza by injection of DNA encoding a viral protein. Science 259, 1745-1749.
10 Wang, B., Merva, M., Dang, K., Ugen, K.E., Williams, W.V. y Weiner, D.B. (1995). Immunization by direct DNA inoculation induces rejection of tumor cell challenge. Hum. Gene Ther. 6, 407-418.
Wang, B., Ugen, K.E., Srikantan, V., Agadjanyan, M.G., Dang, K., Refaeli, Y., Sato, A.I., Boyer, J., Williams, W.V. y Weiner, D.B. (1993). Gene inoculation generates immune responses against human immunodeficiency virus type 1. 15 Proc. Natl. Acad. Sci. USA 90, 4156-4160.
Wolff, J.A., Malone, R.W., Williams, P., Chong, W., Acsadi, G., Jani, A. y Feigner, P.L. (1990). Direct gene transfer into mouse muscle in vivo. Science 247, 1465-1468.
20 Ying, H., Zaks, T.Z., Wang, R.F., Irvine, K.R., Kammula, U.S., Marincola, F.M., Leitner, W.W. y Restifo, N.P. (1999). Cancer therapy using a self-replicating RNA vaccine. Nat. Med. 5, 823-827.
Contenido de las secuencias
25 <110> Johannes Gutenberg-Universität Mainz, representada por los presidentes
<120> Modificación del ARN, que produce una estabilidad de transcripción y eficiencia de traducción aumentadas.
30 <130> 410-4PCT
<150> DE 10 2005 046 490.4
<151> 2005-09-28
35 <160> PatentIn versión 3.1
<210> 1
<211> 142
<212> ADN 40 <213> Homo Sapiens
<400> 1

Claims (39)

  1. REIVINDICACIONES
    1. Molécula de ácido nucleico que comprende, en el sentido 5’ - 3’ de transcripción:
    (a)
    un promotor,
    (b)
    una secuencia de ácido nucleico transcribible o una secuencia de ácido nucleico para la introducción de una secuencia de ácido nucleico transcribible,
    (c-1) una primera secuencia de ácido nucleico,
    (c-2) una segunda secuencia de ácido nucleico y, cuando resulte apropiado,
    (c-3) por lo menos otra secuencia de ácido nucleico,
    en la que las secuencias de ácido nucleico (c-1), (c-2) y, cuando resulte apropiado, (c-3), se seleccionan de entre el grupo constituido por:
    (I)
    una secuencia de ácido nucleico que corresponde a la región 3’ no traducida de un gen de globina y
    (II)
    una secuencia de ácido nucleico que es idéntica por lo menos en un 90% a la secuencia de ácido nucleico de (I),
    en la que las secuencias de ácido nucleico (c-1), (c-2) y, cuando resulte apropiado, (c-3), derivan, independientemente una de otra, de un gen seleccionado de entre el grupo constituido por el gen de globina alfa 2, el gen de globina alfa 1 y el gen de globina beta, y
    en la que las secuencias de ácido nucleico (b), (c-1), (c-2) y, cuando resulte apropiado, (c-3), bajo el control del promotor (a), se pueden transcribir para proporcionar un transcrito común en el que las secuencias de ácido nucleico transcritas a partir de las secuencias de ácido nucleico (c-1), (c-2) y, cuando resulte apropiado, (c-3), están activas a fin de aumentar la eficiencia de traducción y/o la estabilidad de la secuencia de ácido nucleico transcrita a partir de la secuencia de ácido nucleico transcribible (b).
  2. 2.
    Molécula de ácido nucleico según la reivindicación 1, en la que las secuencias de ácido nucleico (c-1), (c-2) y, cuando resulte apropiado, (c-3), pueden ser idénticas o diferentes.
  3. 3.
    Molécula de ácido nucleico según la reivindicación 1 o 2, que comprende además (d) una secuencia de ácido nucleico que, cuando se transcribe bajo el control del promotor (a), codifica una secuencia de nucleótidos de por lo menos 20 nucleótidos A consecutivos en el transcrito.
  4. 4.
    Molécula de ácido nucleico según la reivindicación 3, en la que las secuencias de ácido nucleico (b), (c-1), (c-2), cuando resulte apropiado, (c-3), y (d), bajo el control del promotor (a), se pueden transcribir para proporcionar un transcrito común en el que las secuencias de ácido nucleico transcritas a partir de las secuencias de ácido nucleico (c-1), (c-2), cuando resulte apropiado, (c-3), y (d) son activas a fin de aumentar la eficiencia de traducción y/o la estabilidad de la secuencia de ácido nucleico transcrita a partir de la secuencia de ácido nucleico transcribible (b).
  5. 5.
    Molécula de ácido nucleico según la reivindicación 3 o 4, en la que la secuencia de ácido nucleico (d), cuando se transcribe bajo el control del promotor (a), codifica una secuencia de nucleótidos de por lo menos 40 nucleótidos A consecutivos en el transcrito.
  6. 6.
    Molécula de ácido nucleico según la reivindicación 5, en la que la secuencia de ácido nucleico (d), cuando se transcribe bajo el control del promotor (a), codifica una secuencia de nucleótidos de por lo menos 80 nucleótidos A consecutivos en el transcrito.
  7. 7.
    Molécula de ácido nucleico según la reivindicación 6, en la que la secuencia de ácido nucleico (d), cuando se transcribe bajo el control del promotor (a), codifica una secuencia de nucleótidos de por lo menos 100 nucleótidos A consecutivos en el transcrito.
  8. 8.
    Molécula de ácido nucleico según la reivindicación 7, en la que la secuencia de ácido nucleico (d), cuando se transcribe bajo el control del promotor (a), codifica una secuencia de nucleótidos de aproximadamente 120 nucleótidos A consecutivos en el transcrito.
  9. 9.
    Molécula de ácido nucleico según cualquiera de las reivindicaciones 3 a 8, caracterizada porque se puede escindir, preferentemente enzimáticamente o de otra manera bioquímica, dentro de la secuencia de ácido nucleico (d), de tal modo que dicha escisión da lugar a una molécula de ácido nucleico que comprende, en el sentido 5’ -3’ de transcripción, el promotor (a), la secuencia de ácido nucleico (b), las secuencias de ácido nucleico (c-1), (c-2),
    cuando resulte apropiado, (c-3) y por lo menos una parte de la secuencia de ácido nucleico (d), en la que por lo menos una parte de la secuencia de ácido nucleico (d), cuando se transcribe bajo el control del promotor (a), codifica una secuencia de nucleótidos de por lo menos 20 nucleótidos A consecutivos en el transcrito, y en la que en el transcrito el nucleótido 3’-terminal es un nucleótido A de dicha secuencia de nucleótidos de por lo menos 20 nucleótidos A consecutivos.
  10. 10.
    Molécula de ácido nucleico según la reivindicación 9, en la que, tras la escisión, dicha molécula de ácido nucleico, en el extremo de la cadena que sirve como plantilla para la secuencia de nucleótidos de por lo menos 20 nucleótidos A consecutivos, tiene un nucleótido T que es parte de la secuencia de nucleótidos que sirve como plantilla para dicha secuencia de nucleótidos de por lo menos 20 nucleótidos A consecutivos en el transcrito.
  11. 11.
    Molécula de ácido nucleico según la reivindicación 9 o 10, en la que dicha por lo menos una parte de la secuencia de ácido nucleico (d), cuando se transcribe bajo el control del promotor (a), codifica una secuencia de nucleótidos de por lo menos 40 nucleótidos A consecutivos en el transcrito.
  12. 12.
    Molécula de ácido nucleico según la reivindicación 11, en la que dicha por lo menos una parte de la secuencia de ácido nucleico (d), cuando se transcribe bajo el control del promotor (a), codifica una secuencia de nucleótidos de por lo menos 80 nucleótidos A consecutivos en el transcrito.
  13. 13.
    Molécula de ácido nucleico según la reivindicación 12, en la que por lo menos una parte de la secuencia de ácido nucleico (d), cuando se transcribe bajo el control del promotor (a), codifica una secuencia de nucleótidos de por lo menos 100 nucleótidos A consecutivos en el transcrito.
  14. 14.
    Molécula de ácido nucleico según la reivindicación 13, en la que dicha por lo menos una parte de la secuencia de ácido nucleico (d), cuando se transcribe bajo el control del promotor (a), codifica una secuencia de nucleótidos de aproximadamente 120 nucleótidos A consecutivos en el transcrito.
  15. 15.
    Molécula de ácido nucleico según cualquiera de las reivindicaciones 9 a 14, caracterizada porque es una molécula circular cerrada antes de la escisión y una molécula lineal después de la escisión.
  16. 16.
    Molécula de ácido nucleico según cualquiera de las reivindicaciones 9 a 15, en la que la escisión se lleva a cabo con ayuda de un sitio de escisión de restricción.
  17. 17.
    Molécula de ácido nucleico según la reivindicación 16, en la que el sitio de escisión de restricción es un sitio de escisión de restricción para una endonucleasa de restricción de tipo IIS.
  18. 18.
    Molécula de ácido nucleico según la reivindicación 17, en la que la secuencia de reconocimiento para la endonucleasa de restricción de tipo IIS está situada 5-26 pares de bases secuencia abajo con respecto al extremo 3’ de la secuencia de ácido nucleico (d).
  19. 19.
    Molécula de ácido nucleico según la reivindicación 18, en la que la secuencia de reconocimiento para la endonucleasa de restricción de tipo IIS está situada 24-26 pares de bases secuencia abajo con respecto al extremo 3’ de la secuencia de ácido nucleico (d).
  20. 20.
    Molécula de ácido nucleico según cualquiera de las reivindicaciones 1 a 19, en la que el gen de globina beta es un gen de globina beta humana.
  21. 21.
    Molécula de ácido nucleico según cualquiera de las reivindicaciones 1 a 20, en la que la secuencia de ácido nucleico transcribible comprende una secuencia de ácido nucleico que codifica un péptido o proteína y la secuencia de ácido nucleico para la introducción de una secuencia de ácido nucleico transcribible es un sitio de clonación múltiple.
  22. 22.
    Molécula de ácido nucleico según cualquiera de las reivindicaciones 1 a 21, que comprende además uno o más miembros seleccionados de entre el grupo constituido por: (i) un gen indicador; (ii) un marcador seleccionable; y (iii) un origen de replicación.
  23. 23.
    Molécula de ácido nucleico según cualquiera de las reivindicaciones 1 a 22, en la que la molécula de ácido nucleico se encuentra en una conformación circular cerrada.
  24. 24.
    Molécula de ácido nucleico según cualquiera de las reivindicaciones 1 a 23, que resulta adecuada, particularmente tras su linealización, para la transcripción in vitro de ARN, particularmente ARNm.
  25. 25.
    Molécula de ácido nucleico que se puede obtener por linealización de la molécula de ácido nucleico según cualquiera de las reivindicaciones 1 a 24.
  26. 26.
    ARN que se puede obtener mediante transcripción, preferentemente mediante transcripción in vitro, con una
    molécula de ácido nucleico según cualquiera de las reivindicaciones 1 a 25 bajo el control del promotor (a), en el que, en el ARN, los transcritos de las secuencias de ácido nucleico (b), (c-1), (c-2) y, cuando resulte apropiado, (c3), están presentes en un transcrito común.
    5 27. Procedimiento de transcripción in vitro de una molécula de ARN seleccionada con el fin de aumentar su estabilidad y/o eficiencia de traducción, que comprende:
    (i) acoplar una primera secuencia de ácido nucleico (b-1) en el extremo 3’ de una secuencia de ácido nucleico (a)
    que se puede transcribir para proporcionar dicha molécula de ARN, 10
    (ii) acoplar una segunda secuencia de ácido nucleico (b-2) en el extremo 3’ de dicha primera secuencia de ácido nucleico (b-1), y, cuando resulte apropiado,
    (iii) acoplar por lo menos otra secuencia de ácido nucleico (b-3) en el extremo 3’ de dicha segunda secuencia de 15 ácido nucleico (b-2),
    en el que las secuencias de ácido nucleico (b-1), (b-2) y, cuando resulte apropiado, (b-3), se seleccionan de entre el grupo constituido por:
    20 (I) una secuencia de ácido nucleico que corresponde a la región 3’ no traducida de un gen de globina, y
    (II) una secuencia de ácido nucleico que es idéntica por lo menos en un 90% a la secuencia de ácido nucleico de (I),
    en el que las secuencias de ácido nucleico (b-1), (b-2) y, cuando resulte apropiado, (b-3), derivan,
    25 independientemente una de otra, de un gen seleccionado de entre el grupo constituido por el gen de globina alfa 2, el gen de globina alfa 1 y el gen de globina beta, y
    (iv) transcribir in vitro el ácido nucleico obtenido
    30 en el que las secuencias de ácido nucleico (a), (b-1), (b-2) y, cuando resulte apropiado, (b-3), se pueden transcribir a fin de proporcionar un transcrito común en el que las secuencias de ácido nucleico transcritas a partir de las secuencias de ácido nucleico (b-1), (b-2) y, cuando resulte apropiado, (b-3), son activas a fin de aumentar la eficiencia de traducción y/o la estabilidad de la secuencia de ácido nucleico transcrita a partir de la secuencia de ácido nucleico transcribible (a).
  27. 28. Procedimiento de traducción de una molécula de ARNm seleccionada con el fin de aumentar la expresión de la misma, que comprende:
    (i) acoplar una primera secuencia de ácido nucleico (b-1) en el extremo 3’ de una secuencia de ácido nucleico (a) 40 que se puede transcribir para proporcionar dicha molécula de ARNm,
    (ii) acoplar una segunda secuencia de ácido nucleico (b-2) en el extremo 3’ de dicha primera secuencia de ácido nucleico (b-1), y, cuando resulte apropiado,
    45 (iii) acoplar por lo menos otra secuencia de ácido nucleico (b-3) en el extremo 3’ de dicha segunda secuencia de ácido nucleico (b-2),
    en el que las secuencias de ácido nucleico (b-1), (b-2) y, cuando resulte apropiado, (b-3), se seleccionan de entre el grupo constituido por:
    (I)
    una secuencia de ácido nucleico que corresponde a la región 3’ no traducida de un gen de globina, y
    (II)
    una secuencia de ácido nucleico que es idéntica por lo menos en un 90% a la secuencia de ácido nucleico de (I),
    55 en el que las secuencias de ácido nucleico (b-1), (b-2) y, cuando resulte apropiado, (b-3), derivan, independientemente una de otra, de un gen seleccionado de entre el grupo constituido por el gen de globina alfa 2, el gen de globina alfa 1 y el gen de globina beta, y
    (iv) traducir el ARNm que se puede obtener por transcripción del ácido nucleico obtenido,
    60 en el que las secuencias de ácido nucleico (a), (b-1), (b-2) y, cuando resulte apropiado, (b-3), se pueden transcribir a fin de proporcionar un transcrito común en el que las secuencias de ácido nucleico transcritas a partir de las secuencias de ácido nucleico (b-1), (b-2) y, cuando resulte apropiado, (b-3), son activas a fin de aumentar la eficiencia de traducción y/o la estabilidad de la secuencia de ácido nucleico transcrita a partir de la secuencia de
    65 ácido nucleico transcribible (a).
  28. 29.
    Procedimiento según la reivindicación 28, en el que la transcripción se lleva a cabo in vitro.
  29. 30.
    Procedimiento según cualquiera de las reivindicaciones 27 a 29, que comprende además acoplar una secuencia de ácido nucleico (c) que, cuando se transcribe, codifica una secuencia de nucleótidos de por lo menos 20 nucleótidos A consecutivos, en el extremo 3’ de la secuencia de ácido nucleico (b-2), o, cuando resulte apropiado, de la secuencia de ácido nucleico (b-3).
  30. 31.
    Procedimiento según la reivindicación 30, en el que las secuencias de ácido nucleico (a), (b-1), (b-2) y, cuando resulte apropiado, (b-3) y (c) se pueden transcribir a fin de proporcionar un transcrito común en el que las secuencias de ácido nucleico transcritas a partir de las secuencias de ácido nucleico (b-1), (b-2) y, cuando resulte apropiado, (b-3), y (c), son activas a fin de aumentar la eficiencia de traducción y/o la estabilidad de la secuencia de ácido nucleico transcrita a partir de la secuencia de ácido nucleico (a).
  31. 32.
    Procedimiento según la reivindicación 30 o 31, caracterizado porque comprende además antes de la transcripción del ácido nucleico obtenido, la escisión dentro de la secuencia de ácido nucleico (c) de tal modo que la transcripción del ácido nucleico así obtenido genera un transcrito que tiene las secuencias de ácido nucleico transcritas a partir de las secuencias de ácido nucleico (a), (b-1), (b-2) y, cuando resulte apropiado, (b-3), y una secuencia de nucleótidos 3’-terminal de por lo menos 20 nucleótidos A consecutivos, en el que el nucleótido 3’terminal de dicho transcrito es un nucleótido A de la secuencia de nucleótidos de por lo menos 20 nucleótidos A consecutivos.
  32. 33.
    Procedimiento según cualquiera de las reivindicaciones 27 a 32, en el que el gen de globina beta es un gen de globina beta humana.
  33. 34.
    Procedimiento según la reivindicación 32, en el que la escisión se lleva a cabo con ayuda de un sitio de escisión de restricción.
  34. 35.
    Procedimiento según la reivindicación 34, en el que el sitio de escisión de restricción es un sitio de escisión de restricción para una endonucleasa de restricción de tipo IIS.
  35. 36.
    Procedimiento según la reivindicación 35, en el que la secuencia de reconocimiento para la endonucleasa de restricción de tipo IIS está situada 5-26 pares de bases secuencia abajo con respecto al extremo 3’ de la secuencia de ácido nucleico que, cuando se transcribe, codifica una secuencia de nucleótidos de por lo menos 20 nucleótidos A consecutivos.
  36. 37.
    Procedimiento según la reivindicación 36, en el que la secuencia de reconocimiento para la endonucleasa de restricción de tipo IIS está situada 24-26 pares de bases secuencia abajo con respecto al extremo 3’ de la secuencia de ácido nucleico que, cuando se transcribe, codifica una secuencia de nucleótidos de por lo menos 20 nucleótidos A consecutivos.
  37. 38.
    ARN que se puede obtener mediante un procedimiento de transcripción in vitro de una molécula de ARN seleccionada según cualquiera de las reivindicaciones 27 y 30-37, en el que en el ARN, los transcritos de las secuencias de ácido nucleico (a), (b-1), (b-2) y, cuando resulte apropiado, (b-3), están presentes en un transcrito común.
  38. 39.
    Utilización del ARN según la reivindicación 26 o 38 para transfectar una célula hospedadora.
  39. 40.
    Utilización según la reivindicación 39, en la que la célula hospedadora es una célula presentadora de antígeno, particularmente una célula dendrítica, un monocito o un macrófago.
ES06805937T 2005-09-28 2006-09-28 Modificación del ARN, que produce unas estabilidad de transcripción y eficiencia de traducción aumentadas Active ES2384113T3 (es)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE102005046490A DE102005046490A1 (de) 2005-09-28 2005-09-28 Modifikationen von RNA, die zu einer erhöhten Transkriptstabilität und Translationseffizienz führen
DE102005046490 2005-09-28
PCT/EP2006/009448 WO2007036366A2 (de) 2005-09-28 2006-09-28 Modifikationen von rna, die zu einer erhöhten transkriptstabilität und translationseffizienz führen

Publications (2)

Publication Number Publication Date
ES2384113T3 ES2384113T3 (es) 2012-06-29
ES2384113T9 true ES2384113T9 (es) 2012-10-16

Family

ID=37685276

Family Applications (2)

Application Number Title Priority Date Filing Date
ES10014763.6T Active ES2467678T3 (es) 2005-09-28 2006-09-28 Modificación del ARN, que produce unas estabilidad de transcripción y eficiencia de traducción aumentadas
ES06805937T Active ES2384113T3 (es) 2005-09-28 2006-09-28 Modificación del ARN, que produce unas estabilidad de transcripción y eficiencia de traducción aumentadas

Family Applications Before (1)

Application Number Title Priority Date Filing Date
ES10014763.6T Active ES2467678T3 (es) 2005-09-28 2006-09-28 Modificación del ARN, que produce unas estabilidad de transcripción y eficiencia de traducción aumentadas

Country Status (18)

Country Link
US (4) US9476055B2 (es)
EP (2) EP1934345B9 (es)
JP (3) JP5435949B2 (es)
AT (1) ATE550427T1 (es)
AU (1) AU2006296702B2 (es)
CA (2) CA3023101C (es)
CY (2) CY1113526T1 (es)
DE (1) DE102005046490A1 (es)
DK (2) DK2357230T3 (es)
ES (2) ES2467678T3 (es)
HK (1) HK1155477A1 (es)
HR (2) HRP20120480T1 (es)
IN (1) IN2014CN02116A (es)
PL (2) PL1934345T3 (es)
PT (2) PT1934345E (es)
RS (2) RS52353B (es)
SI (2) SI1934345T1 (es)
WO (1) WO2007036366A2 (es)

Families Citing this family (234)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10254601A1 (de) 2002-11-22 2004-06-03 Ganymed Pharmaceuticals Ag Differentiell in Tumoren exprimierte Genprodukte und deren Verwendung
DE102008061522A1 (de) 2008-12-10 2010-06-17 Biontech Ag Verwendung von Flt3-Ligand zur Verstärkung von Immunreaktionen bei RNA-Immunisierung
RU2399667C1 (ru) * 2009-04-10 2010-09-20 Общество С Ограниченной Ответственностью "Лаборатория Клеточных Технологий" Способ получения плюрипотентных клеток
EP2281579A1 (en) 2009-08-05 2011-02-09 BioNTech AG Vaccine composition comprising 5'-Cap modified RNA
EP2590670B1 (en) 2010-07-06 2017-08-23 GlaxoSmithKline Biologicals SA Methods of raising an immune response by delivery of rna
PL2590626T3 (pl) 2010-07-06 2016-04-29 Glaxosmithkline Biologicals Sa Liposomy z lipidami o korzystnej wartości pka do dostarczania rna
ES2586580T3 (es) 2010-07-06 2016-10-17 Glaxosmithkline Biologicals Sa Inmunización de mamíferos grandes con dosis bajas de ARN
EP3578205A1 (en) 2010-08-06 2019-12-11 ModernaTX, Inc. A pharmaceutical formulation comprising engineered nucleic acids and medical use thereof
WO2012019630A1 (en) 2010-08-13 2012-02-16 Curevac Gmbh Nucleic acid comprising or coding for a histone stem-loop and a poly(a) sequence or a polyadenylation signal for increasing the expression of an encoded protein
ES2938866T3 (es) 2010-08-31 2023-04-17 Glaxosmithkline Biologicals Sa Liposomas pegilados para la administración de ARN que codifica para inmunógeno
WO2012045082A2 (en) 2010-10-01 2012-04-05 Jason Schrum Engineered nucleic acids and methods of use thereof
JP2013544504A (ja) 2010-10-11 2013-12-19 ノバルティス アーゲー 抗原送達プラットフォーム
AU2012236099A1 (en) 2011-03-31 2013-10-03 Moderna Therapeutics, Inc. Delivery and formulation of engineered nucleic acids
HUE062102T2 (hu) 2011-05-24 2023-09-28 BioNTech SE Individualizált vakcinák a rák ellen
WO2013006838A1 (en) 2011-07-06 2013-01-10 Novartis Ag Immunogenic combination compositions and uses thereof
US9464124B2 (en) 2011-09-12 2016-10-11 Moderna Therapeutics, Inc. Engineered nucleic acids and methods of use thereof
EP3682905B1 (en) 2011-10-03 2021-12-01 ModernaTX, Inc. Modified nucleosides, nucleotides, and nucleic acids, and uses thereof
DK2791160T3 (da) 2011-12-16 2022-05-30 Modernatx Inc Modificerede mrna-sammensætninger
DK3178488T3 (da) 2012-02-15 2019-06-24 Curevac Ag Nukleinsyre omfattende eller kodende for en histonhårnålestruktur og en poly(A)-sekvens eller et polyadenyleringssignal til forøgelse af ekspressionen af et kodet tumorantigen
WO2013120498A1 (en) 2012-02-15 2013-08-22 Curevac Gmbh Nucleic acid comprising or coding for a histone stem-loop and a poly(a) sequence or a polyadenylation signal for increasing the expression of an encoded allergenic antigen or an autoimmune self-antigen
PL2814962T3 (pl) 2012-02-15 2018-11-30 Curevac Ag Kwas nukleinowy zawierający lub kodujący histonowy trzonek-pętlę i sekwencję poli(A) lub sygnał poliadenylacji do zwiększania ekspresji zakodowanego antygenu patogennego
EP3404103B1 (en) 2012-02-15 2021-03-24 CureVac AG Nucleic acid comprising or coding for a histone stem-loop and a poly(a) sequence or a polyadenylation signal for increasing the expression of an encoded allergenic antigen or an autoimmune self-antigen
WO2013120499A1 (en) 2012-02-15 2013-08-22 Curevac Gmbh Nucleic acid comprising or coding for a histone stem-loop and a poly (a) sequence or a polyadenylation signal for increasing the expression of an encoded pathogenic antigen
WO2013120497A1 (en) 2012-02-15 2013-08-22 Curevac Gmbh Nucleic acid comprising or coding for a histone stem-loop and a poly(a) sequence or a polyadenylation signal for increasing the expression of an encoded therapeutic protein
WO2013120500A1 (en) 2012-02-15 2013-08-22 Curevac Gmbh Nucleic acid comprising or coding for a histone stem-loop and a poly(a) sequence or a polyadenylation signal for increasing the expression of an encoded tumour antigen
DE18200782T1 (de) 2012-04-02 2021-10-21 Modernatx, Inc. Modifizierte polynukleotide zur herstellung von proteinen im zusammenhang mit erkrankungen beim menschen
US9283287B2 (en) 2012-04-02 2016-03-15 Moderna Therapeutics, Inc. Modified polynucleotides for the production of nuclear proteins
US9572897B2 (en) 2012-04-02 2017-02-21 Modernatx, Inc. Modified polynucleotides for the production of cytoplasmic and cytoskeletal proteins
CA2868391A1 (en) 2012-04-02 2013-10-10 Stephane Bancel Polynucleotides comprising n1-methyl-pseudouridine and methods for preparing the same
US9878056B2 (en) 2012-04-02 2018-01-30 Modernatx, Inc. Modified polynucleotides for the production of cosmetic proteins and peptides
US9512456B2 (en) 2012-08-14 2016-12-06 Modernatx, Inc. Enzymes and polymerases for the synthesis of RNA
BR122020024124B1 (pt) 2012-11-13 2024-01-30 Biontech Ag Agentes para tratamento de doenças cancerosas expressando claudina
RU2678127C2 (ru) 2012-11-13 2019-01-23 Бионтех Аг Агенты для лечения экспрессирующих клаудин раковых заболеваний
HRP20220607T1 (hr) 2012-11-26 2022-06-24 Modernatx, Inc. Terminalno modificirana rna
WO2014082729A1 (en) 2012-11-28 2014-06-05 Biontech Ag Individualized vaccines for cancer
WO2014113089A2 (en) 2013-01-17 2014-07-24 Moderna Therapeutics, Inc. Signal-sensor polynucleotides for the alteration of cellular phenotypes
US20160024181A1 (en) 2013-03-13 2016-01-28 Moderna Therapeutics, Inc. Long-lived polynucleotide molecules
US10258698B2 (en) 2013-03-14 2019-04-16 Modernatx, Inc. Formulation and delivery of modified nucleoside, nucleotide, and nucleic acid compositions
US8980864B2 (en) 2013-03-15 2015-03-17 Moderna Therapeutics, Inc. Compositions and methods of altering cholesterol levels
PL3019619T3 (pl) 2013-07-11 2022-01-10 Modernatx, Inc. Kompozycje zawierające syntetyczne polinkleotydy kodujące białka powiązane z crispr i syntetyczne sgrna oraz sposoby ich stosowania
JP2016530294A (ja) 2013-09-03 2016-09-29 モデルナ セラピューティクス インコーポレイテッドModerna Therapeutics,Inc. キメラポリヌクレオチド
US20160194368A1 (en) 2013-09-03 2016-07-07 Moderna Therapeutics, Inc. Circular polynucleotides
WO2015048744A2 (en) 2013-09-30 2015-04-02 Moderna Therapeutics, Inc. Polynucleotides encoding immune modulating polypeptides
EP3052521A1 (en) 2013-10-03 2016-08-10 Moderna Therapeutics, Inc. Polynucleotides encoding low density lipoprotein receptor
US20160367638A1 (en) 2013-12-19 2016-12-22 Crystal BYERS LEPTIN mRNA COMPOSITIONS AND FORMULATIONS
RU2746406C2 (ru) 2014-04-23 2021-04-13 МОДЕРНАТиЭкс, ИНК. Вакцины на основе нуклеиновых кислот
WO2016005004A1 (en) 2014-07-11 2016-01-14 Biontech Rna Pharmaceuticals Gmbh Stabilization of poly(a) sequence encoding dna sequences
CA2955250A1 (en) 2014-07-16 2016-01-21 Moderna Therapeutics, Inc. Chimeric polynucleotides
US9943612B2 (en) 2014-10-09 2018-04-17 Seattle Children's Hospital Long poly(A) plasmids and methods for introduction of long poly(A) sequences into the plasmid
ES2946969T3 (es) * 2014-12-12 2023-07-28 CureVac SE Moléculas de ácido nucleico artificiales para una expresión proteica mejorada
EP3334828B1 (en) * 2015-08-10 2020-10-28 CureVac Real Estate GmbH Method of increasing the replication of a circular dna molecule
ES2810701T5 (es) 2015-10-05 2024-07-11 Modernatx Inc Procedimientos para la administración terapéutica de medicamentos de ácido ribonucleico mensajero
WO2017059902A1 (en) * 2015-10-07 2017-04-13 Biontech Rna Pharmaceuticals Gmbh 3' utr sequences for stabilization of rna
WO2017066797A1 (en) 2015-10-16 2017-04-20 Modernatx, Inc. Trinucleotide mrna cap analogs
DK3362461T3 (da) 2015-10-16 2022-05-09 Modernatx Inc Mrna-cap-analoger med modificeret phosphatbinding
US20190225644A1 (en) * 2015-10-16 2019-07-25 Modernatx, Inc. Mrna cap analogs and methods of mrna capping
SI3394093T1 (sl) 2015-12-23 2022-05-31 Modernatx, Inc. Metode uporabe liganda OX40, ki kodira polinukleotid
US20190241658A1 (en) 2016-01-10 2019-08-08 Modernatx, Inc. Therapeutic mRNAs encoding anti CTLA-4 antibodies
WO2017127750A1 (en) 2016-01-22 2017-07-27 Modernatx, Inc. Messenger ribonucleic acids for the production of intracellular binding polypeptides and methods of use thereof
EP3443001A4 (en) 2016-04-11 2020-04-29 Obsidian Therapeutics, Inc. REGULATED BIOCIRCUIT SYSTEMS
WO2017180917A2 (en) 2016-04-13 2017-10-19 Modernatx, Inc. Lipid compositions and their uses for intratumoral polynucleotide delivery
DK3445850T3 (da) 2016-04-22 2021-11-15 BioNTech SE Fremgangsmåder til tilvejebringelse af enkeltstrenget rna
US20190343942A1 (en) 2016-04-22 2019-11-14 Curevac Ag Rna encoding a tumor antigen
US11078247B2 (en) 2016-05-04 2021-08-03 Curevac Ag RNA encoding a therapeutic protein
WO2017201332A1 (en) 2016-05-18 2017-11-23 Modernatx, Inc. Polynucleotides encoding acyl-coa dehydrogenase, very long-chain for the treatment of very long-chain acyl-coa dehydrogenase deficiency
EP3458107B1 (en) 2016-05-18 2024-03-13 ModernaTX, Inc. Polynucleotides encoding jagged1 for the treatment of alagille syndrome
JP7194594B2 (ja) 2016-05-18 2022-12-22 モデルナティエックス インコーポレイテッド 免疫調節ポリペプチドをコードするmRNAの組み合わせ及びその使用
MA45036A (fr) 2016-05-18 2019-03-27 Modernatx Inc Polynucléotides codant pour la citrine pour le traitement de la citrullinémie de type 2
AU2017266932B2 (en) 2016-05-18 2023-04-20 Modernatx, Inc. Polynucleotides encoding alpha-galactosidase A for the treatment of Fabry disease
EP3458105B1 (en) 2016-05-18 2024-01-17 Modernatx, Inc. Polynucleotides encoding galactose-1-phosphate uridylyltransferase for the treatment of galactosemia type 1
LT3458083T (lt) 2016-05-18 2023-02-10 Modernatx, Inc. Polinukleotidai, koduojantys interleukiną-12 (il12), ir jų naudojimas
WO2017201346A1 (en) 2016-05-18 2017-11-23 Modernatx, Inc. Polynucleotides encoding porphobilinogen deaminase for the treatment of acute intermittent porphyria
AU2017296195A1 (en) 2016-07-11 2019-01-24 Translate Bio Ma, Inc. Nucleic acid conjugates and uses thereof
US10907165B2 (en) 2016-10-31 2021-02-02 Cornell University Methods of enhancing translation ability and stability of RNA molecules, treatments, and kits
US11485972B2 (en) 2017-05-18 2022-11-01 Modernatx, Inc. Modified messenger RNA comprising functional RNA elements
JP7285220B2 (ja) 2017-05-18 2023-06-01 モデルナティエックス インコーポレイテッド 連結したインターロイキン-12(il12)ポリペプチドをコードするポリヌクレオチドを含む脂質ナノ粒子
US20200131498A1 (en) 2017-06-14 2020-04-30 Modernatx, Inc. Polynucleotides encoding methylmalonyl-coa mutase
MA49395A (fr) 2017-06-14 2020-04-22 Modernatx Inc Polynucléotides codant pour le facteur viii de coagulation
WO2019036670A2 (en) 2017-08-18 2019-02-21 Modernatx, Inc. EFFECTIVE MRNA VACCINES
WO2019104152A1 (en) 2017-11-22 2019-05-31 Modernatx, Inc. Polynucleotides encoding ornithine transcarbamylase for the treatment of urea cycle disorders
MA50802A (fr) 2017-11-22 2020-09-30 Modernatx Inc Polynucléotides codant pour des sous-unités alpha et bêta de propionyl-coa carboxylase pour le traitement de l'acidémie propionique
EP3714047A2 (en) 2017-11-22 2020-09-30 ModernaTX, Inc. Polynucleotides encoding phenylalanine hydroxylase for the treatment of phenylketonuria
JP2021508490A (ja) 2017-12-15 2021-03-11 フラッグシップ パイオニアリング イノベーションズ シックス,エルエルシー 環状ポリリボヌクレオチドを含む組成物及びその使用
EP3735270A1 (en) 2018-01-05 2020-11-11 Modernatx, Inc. Polynucleotides encoding anti-chikungunya virus antibodies
MA54676A (fr) 2018-01-29 2021-11-17 Modernatx Inc Vaccins à base d'arn contre le vrs
WO2019175356A1 (en) 2018-03-15 2019-09-19 Biontech Rna Pharmaceuticals Gmbh 5'-cap-trinucleotide- or higher oligonucleotide compounds and their uses in stabilizing rna, expressing proteins and in therapy
WO2019200171A1 (en) 2018-04-11 2019-10-17 Modernatx, Inc. Messenger rna comprising functional rna elements
EP3806888B1 (en) 2018-06-12 2024-01-31 Obsidian Therapeutics, Inc. Pde5 derived regulatory constructs and methods of use in immunotherapy
US20220184185A1 (en) 2018-07-25 2022-06-16 Modernatx, Inc. Mrna based enzyme replacement therapy combined with a pharmacological chaperone for the treatment of lysosomal storage disorders
EP3846776A1 (en) 2018-09-02 2021-07-14 ModernaTX, Inc. Polynucleotides encoding very long-chain acyl-coa dehydrogenase for the treatment of very long-chain acyl-coa dehydrogenase deficiency
JP2022500436A (ja) 2018-09-13 2022-01-04 モダーナティエックス・インコーポレイテッドModernaTX, Inc. 糖原病を処置するためのグルコース−6−ホスファターゼをコードするポリヌクレオチド
MA53608A (fr) 2018-09-13 2021-07-21 Modernatx Inc Polynucléotides codant pour les sous-unités e1-alpha, e1-beta et e2 du complexe alpha-cétoacide déshydrogénase à chaîne ramifiée pour le traitement de la leucinose
AU2019339430A1 (en) 2018-09-14 2021-04-29 Modernatx, Inc. Polynucleotides encoding uridine diphosphate glycosyltransferase 1 family, polypeptide A1 for the treatment of Crigler-Najjar Syndrome
WO2020056304A1 (en) 2018-09-14 2020-03-19 Modernatx, Inc. Methods and compositions for treating cancer using mrna therapeutics
US20220152225A1 (en) 2018-09-27 2022-05-19 Modernatx, Inc. Polynucleotides encoding arginase 1 for the treatment of arginase deficiency
EP3870600A1 (en) 2018-10-24 2021-09-01 Obsidian Therapeutics, Inc. Er tunable protein regulation
MA54503A (fr) 2018-12-19 2021-10-27 Versameb Ag Arn codant pour une protéine
MX2021008434A (es) 2019-01-14 2021-09-23 Genentech Inc Metodos para tratar el cancer con un antagonista de union al eje de pd-1 y una vacuna de arn.
KR20210135529A (ko) 2019-03-01 2021-11-15 플래그쉽 파이어니어링 이노베이션스 브이아이, 엘엘씨 폴리리보뉴클레오티드 및 이의 미용적 용도
US20220088049A1 (en) 2019-03-01 2022-03-24 Flagship Pioneering Innovations Vi, Llc Compositions, methods, and kits for delivery of polyribonucleotides
WO2020227537A1 (en) 2019-05-07 2020-11-12 Modernatx, Inc Differentially expressed immune cell micrornas for regulation of protein expression
AU2020268388A1 (en) 2019-05-07 2021-12-02 Modernatx, Inc. Polynucleotides for disrupting immune cell activity and methods of use thereof
WO2020227642A1 (en) 2019-05-08 2020-11-12 Modernatx, Inc. Compositions for skin and wounds and methods of use thereof
TWI777160B (zh) * 2019-05-08 2022-09-11 美商百歐恩泰美國公司 T細胞製備組合物及方法
WO2020263883A1 (en) 2019-06-24 2020-12-30 Modernatx, Inc. Endonuclease-resistant messenger rna and uses thereof
WO2020263985A1 (en) 2019-06-24 2020-12-30 Modernatx, Inc. Messenger rna comprising functional rna elements and uses thereof
WO2021008708A1 (en) 2019-07-18 2021-01-21 Biontech Rna Pharmaceuticals Gmbh Method for determining at least one parameter of a sample composition comprising nucleic acid, such as rna, and optionally particles
AU2020366209A1 (en) 2019-10-15 2022-05-19 Board Of Regents Of The University Of Nebraska mRNA encoding granulocyte-macrophage colony stimulating factor for treating Parkinson's disease
US20230108894A1 (en) 2020-01-28 2023-04-06 Moderna TX, Inc Coronavirus rna vaccines
EP4096682A1 (en) 2020-01-29 2022-12-07 Flagship Pioneering Innovations VI, LLC Compositions for translation and methods of use thereof
AU2021212197A1 (en) 2020-01-31 2022-08-04 BioNTech SE Methods of inducing neoepitope-specific T cells with a PD-1 axis binding antagonist and an RNA vaccine
US20240277830A1 (en) 2020-02-04 2024-08-22 CureVac SE Coronavirus vaccine
AU2021215938A1 (en) 2020-02-07 2022-09-01 Modernatx, Inc. Sars-cov-2 mrna domain vaccines
CA3167611A1 (en) 2020-02-13 2021-08-19 Etienne Simon-Loriere Nucleic acid vaccine against the sars-cov-2 coronavirus
MX2022013254A (es) 2020-04-22 2023-01-24 BioNTech SE Vacuna contra el coronavirus.
WO2021222304A1 (en) 2020-04-27 2021-11-04 Modernatx, Inc. Sars-cov-2 rna vaccines
US20230173104A1 (en) 2020-05-14 2023-06-08 Modernatx, Inc. Lnp compositions comprising an mrna therapeutic and an effector molecule
WO2021159130A2 (en) 2020-05-15 2021-08-12 Modernatx, Inc. Coronavirus rna vaccines and methods of use
US20230233475A1 (en) 2020-06-01 2023-07-27 Modernatx, Inc. Lipid nanoparticles containing polynucleotides encoding glucose-6-phosphatase and uses thereof
JP2023527875A (ja) 2020-06-01 2023-06-30 モダーナティエックス・インコーポレイテッド フェニルアラニンヒドロキシラーゼバリアント及びその使用
US20230242908A1 (en) 2020-06-23 2023-08-03 Modernatx, Inc. Lnp compositions comprising mrna therapeutics with extended half-life
CN111893128A (zh) * 2020-06-24 2020-11-06 苏州市泽悦生物技术有限公司 利用原核转录系统制备重组真核mRNA的方法及其应用
WO2022016125A1 (en) 2020-07-17 2022-01-20 Genentech, Inc. Attention-based neural network to predict peptide binding, presentation, and immunogenicity
BR112023004247A2 (pt) 2020-09-08 2023-04-11 Genentech Inc Kits de tubulação para formar uma mistura, sistemas para formar uma composição farmacêutica, métodos para transferir composições farmacêuticas e para fabricar uma composição farmacêutica e amortecedor de pulsação
WO2022067010A1 (en) 2020-09-25 2022-03-31 Modernatx, Inc. Multi-proline-substituted coronavirus spike protein vaccines
WO2022090752A1 (en) 2020-10-26 2022-05-05 Pécsi Tudományegyetem Vaccine platform
CA3199784A1 (en) 2020-11-13 2022-05-19 Modernatx, Inc. Polynucleotides encoding cystic fibrosis transmembrane conductance regulator for the treatment of cystic fibrosis
CA3198309A1 (en) 2020-11-16 2022-05-19 Heinrich Haas Pharmaceutical compositions comprising particles and mrna and methods for preparing and storing the same
WO2022218503A1 (en) 2021-04-12 2022-10-20 BioNTech SE Lnp compositions comprising rna and methods for preparing, storing and using the same
CA3198742A1 (en) 2020-11-16 2022-05-19 Steffen Panzner Lnp compositions comprising rna and methods for preparing, storing and using the same
WO2022106860A1 (en) 2020-11-20 2022-05-27 Pécsi Tudományegyetem Recombinant peptides for use in therapy
EP4251170A1 (en) 2020-11-25 2023-10-04 Akagera Medicines, Inc. Lipid nanoparticles for delivery of nucleic acids, and related methods of use
JP2024502210A (ja) 2020-12-22 2024-01-17 キュアバック エスイー SARS-CoV-2バリアントに対するRNAワクチン
EP4274607A1 (en) 2021-01-11 2023-11-15 ModernaTX, Inc. Seasonal rna influenza virus vaccines
US20240100151A1 (en) 2021-01-15 2024-03-28 Moderna TX, Inc. Variant strain-based coronavirus vaccines
EP4277653A1 (en) 2021-01-15 2023-11-22 ModernaTX, Inc. Variant strain-based coronavirus vaccines
WO2022162027A2 (en) 2021-01-27 2022-08-04 Curevac Ag Method of reducing the immunostimulatory properties of in vitro transcribed rna
AU2022220328A1 (en) 2021-02-12 2023-08-17 Modernatx, Inc. Lnp compositions comprising payloads for in vivo therapy
AU2022237382A1 (en) 2021-03-15 2023-09-28 Modernatx, Inc. Therapeutic use of sars-cov-2 mrna domain vaccines
WO2022204369A1 (en) 2021-03-24 2022-09-29 Modernatx, Inc. Polynucleotides encoding methylmalonyl-coa mutase for the treatment of methylmalonic acidemia
US20240216288A1 (en) 2021-03-24 2024-07-04 Modernatx, Inc. Lipid nanoparticles containing polynucleotides encoding propionyl-coa carboxylase alpha and beta subunits and uses thereof
WO2022204371A1 (en) 2021-03-24 2022-09-29 Modernatx, Inc. Lipid nanoparticles containing polynucleotides encoding glucose-6-phosphatase and uses thereof
EP4314260A1 (en) 2021-03-24 2024-02-07 Modernatx, Inc. Lipid nanoparticles and polynucleotides encoding ornithine transcarbamylase for the treatment of ornithine transcarbamylase deficiency
WO2022204390A1 (en) 2021-03-24 2022-09-29 Modernatx, Inc. Lipid nanoparticles containing polynucleotides encoding phenylalanine hydroxylase and uses thereof
US20240229109A1 (en) 2021-04-01 2024-07-11 Modernatx, Inc. Methods for identification and ratio determination of rna species in multivalent rna compositions
WO2022218891A2 (en) 2021-04-12 2022-10-20 BioNTech SE Rna compositions comprising a buffer substance and methods for preparing, storing and using the same
AU2022258335A1 (en) 2021-04-13 2023-11-23 Modernatx, Inc. Respiratory virus combination vaccines
EP4322994A1 (en) 2021-04-14 2024-02-21 ModernaTX, Inc. Influenza-coronavirus combination vaccines
KR20240006575A (ko) 2021-04-26 2024-01-15 앵스띠뛰 파스퇴르 SARS-CoV-2에 대한 사람 중화 모노클로날 항체 및 이의 용도
EP4334944A1 (en) 2021-05-04 2024-03-13 BioNTech SE Immunogen selection
WO2022246020A1 (en) 2021-05-19 2022-11-24 Modernatx, Inc. Polynucleotides encoding methylmalonyl-coa mutase for the treatment of methylmalonic acidemia
WO2022245888A1 (en) 2021-05-19 2022-11-24 Modernatx, Inc. Seasonal flu rna vaccines and methods of use
EP4355882A2 (en) 2021-06-15 2024-04-24 Modernatx, Inc. Engineered polynucleotides for cell-type or microenvironment-specific expression
WO2022266389A1 (en) 2021-06-17 2022-12-22 Modernatx, Inc. Alternative rna purification strategies
WO2022271776A1 (en) 2021-06-22 2022-12-29 Modernatx, Inc. Polynucleotides encoding uridine diphosphate glycosyltransferase 1 family, polypeptide a1 for the treatment of crigler-najjar syndrome
WO2023287751A1 (en) 2021-07-12 2023-01-19 Modernatx, Inc. Polynucleotides encoding propionyl-coa carboxylase alpha and beta subunits for the treatment of propionic acidemia
WO2023009499A1 (en) 2021-07-27 2023-02-02 Modernatx, Inc. Polynucleotides encoding glucose-6-phosphatase for the treatment of glycogen storage disease type 1a (gsd1a)
CA3223943A1 (en) 2021-07-29 2023-02-02 Ugur Sahin Compositions and methods for treatment of melanoma
TW202321446A (zh) 2021-08-13 2023-06-01 美商現代公司 多管柱層析mRNA純化
CN115216483B (zh) * 2021-08-30 2024-01-23 中国科学院遗传与发育生物学研究所 poly(A)尾巴非A修饰在促进mRNA翻译中的应用
WO2023030635A1 (en) 2021-09-02 2023-03-09 BioNTech SE Potency assay for therapeutic potential of coding nucleic acid
WO2023036960A1 (en) 2021-09-10 2023-03-16 BioNTech SE Lipid-based rna formulations suitable for therapy
WO2023051926A1 (en) 2021-09-30 2023-04-06 BioNTech SE Treatment involving non-immunogenic rna for antigen vaccination and pd-1 axis binding antagonists
EP4408871A1 (en) 2021-10-01 2024-08-07 ModernaTX, Inc. Polynucleotides encoding relaxin for the treatment of fibrosis and/or cardiovascular disease
WO2023064469A1 (en) 2021-10-13 2023-04-20 Modernatx, Inc. Compositions of mrna-encoded il15 fusion proteins and methods of use thereof
EP4285933A1 (en) 2022-05-30 2023-12-06 BioNTech SE Oligosaccharide complexes and uses
EP4286394A1 (en) 2022-05-30 2023-12-06 BioNTech SE Oligosaccharide compounds and complexes
EP4169534A1 (en) 2021-10-22 2023-04-26 BioNTech SE Oligosaccharide complexes and uses
EP4286004A1 (en) 2022-05-30 2023-12-06 BioNTech SE Disulfide oligosaccharide compounds and complexes
CA3234578A1 (en) 2021-10-22 2023-04-27 Advait Vijay Badkar Compositions for administration of different doses of rna
EP4285932A1 (en) 2022-05-30 2023-12-06 BioNTech SE Oligosaccharide complexes and uses
EP4169579A1 (en) 2021-10-22 2023-04-26 BioNTech SE Disulfide oligosaccharide compounds and complexes
EP4401789A1 (en) 2021-10-22 2024-07-24 BioNTech SE Oligosaccharide complexes and uses
EP4402149A1 (en) 2021-10-22 2024-07-24 BioNTech SE Disulfide oligosaccharide compounds and complexes
EP4169580A1 (en) 2021-10-22 2023-04-26 BioNTech SE Oligosaccharide compounds and complexes
WO2023067126A1 (en) 2021-10-22 2023-04-27 BioNTech SE Oligosaccharide compounds and complexes
EP4401838A1 (en) 2021-10-22 2024-07-24 BioNTech SE Oligosaccharide compounds and complexes
EP4169578A1 (en) 2021-10-22 2023-04-26 BioNTech SE Oligosaccharide compounds and complexes
KR20240090727A (ko) 2021-10-22 2024-06-21 세일 바이오메디슨스, 인크. Mrna 백신 조성물
EP4286003A1 (en) 2022-05-30 2023-12-06 BioNTech SE Oligosaccharide compounds and complexes
EP4186528A1 (en) 2021-11-30 2023-05-31 BioNTech SE Oligosaccharide complexes and uses
WO2023067125A1 (en) 2021-10-22 2023-04-27 BioNTech SE Oligosaccharide complexes and uses
WO2023073190A1 (en) 2021-10-28 2023-05-04 BioNTech SE Rna constructs and uses thereof
WO2023077170A1 (en) 2021-11-01 2023-05-04 Modernatx, Inc. Polynucleotides encoding integrin beta-6 and methods of use thereof
EP4426853A1 (en) 2021-11-01 2024-09-11 ModernaTX, Inc. Mass spectrometry of mrna
EP4426855A1 (en) 2021-11-05 2024-09-11 ModernaTX, Inc. Methods of purifying dna for gene synthesis
WO2023083434A1 (en) 2021-11-09 2023-05-19 BioNTech SE Rna encoding peptidoglycan hydrolase and use thereof for treating bacterial infection
WO2023092069A1 (en) 2021-11-18 2023-05-25 Modernatx, Inc. Sars-cov-2 mrna domain vaccines and methods of use
WO2023096858A1 (en) 2021-11-23 2023-06-01 Senda Biosciences, Inc. A bacteria-derived lipid composition and use thereof
WO2023107999A2 (en) 2021-12-08 2023-06-15 Modernatx, Inc. Herpes simplex virus mrna vaccines
WO2023122080A1 (en) 2021-12-20 2023-06-29 Senda Biosciences, Inc. Compositions comprising mrna and lipid reconstructed plant messenger packs
WO2023126053A1 (en) 2021-12-28 2023-07-06 BioNTech SE Lipid-based formulations for administration of rna
WO2023132885A1 (en) 2022-01-04 2023-07-13 Modernatx, Inc. Methods of purifying dna for gene synthesis
WO2023137149A1 (en) 2022-01-14 2023-07-20 Modernatx, Inc. In vitro transcription dna purification and recycling
WO2023141501A2 (en) * 2022-01-19 2023-07-27 Virginia Tech Intellectual Properties, Inc. Nudix overexpressing engineered plants and uses thereof
IL314538A (en) 2022-02-02 2024-09-01 BioNTech SE Materials and methods for targeted delivery of nucleic acids to cells
IL314516A (en) 2022-02-02 2024-09-01 BioNTech SE Materials and methods for cell-directed administration
CN118647718A (zh) 2022-02-03 2024-09-13 摩登纳特斯有限公司 用于mRNA纯化的连续沉淀
TW202345864A (zh) 2022-02-18 2023-12-01 美商現代公司 編碼檢查點癌症疫苗之mRNA及其用途
WO2023165681A1 (en) 2022-03-01 2023-09-07 BioNTech SE Rna lipid nanoparticles (lnps) comprising a polyoxazoline and/or polyoxazine polymer
WO2023183909A2 (en) 2022-03-25 2023-09-28 Modernatx, Inc. Polynucleotides encoding fanconi anemia, complementation group proteins for the treatment of fanconi anemia
WO2023193892A1 (en) 2022-04-05 2023-10-12 BioNTech SE Nucleic acid compositions comprising an inorganic polyphosphate and methods for preparing, storing and using the same
WO2023196399A1 (en) 2022-04-06 2023-10-12 Modernatx, Inc. Lipid nanoparticles and polynucleotides encoding argininosuccinate lyase for the treatment of argininosuccinic aciduria
WO2023196914A1 (en) 2022-04-08 2023-10-12 Modernatx, Inc. Influenza nucleic acid compositions and uses thereof
WO2023201296A1 (en) 2022-04-15 2023-10-19 Modernatx, Inc. Ribosomal engagement potency assay
WO2023215498A2 (en) 2022-05-05 2023-11-09 Modernatx, Inc. Compositions and methods for cd28 antagonism
WO2023230481A1 (en) 2022-05-24 2023-11-30 Modernatx, Inc. Orthopoxvirus vaccines
US12064479B2 (en) 2022-05-25 2024-08-20 Akagera Medicines, Inc. Lipid nanoparticles for delivery of nucleic acids and methods of use thereof
WO2023232747A1 (en) 2022-05-30 2023-12-07 BioNTech SE Complexes for delivery of nucleic acids
WO2023237726A1 (en) 2022-06-10 2023-12-14 Pantarhei Oncology B.V. An intracellular tumor-specific variant of human zona pellucida glycoprotein 3 and nucleic acids coding therefor for use in the treatment of cancer
US11878055B1 (en) 2022-06-26 2024-01-23 BioNTech SE Coronavirus vaccine
WO2024010993A1 (en) 2022-07-06 2024-01-11 Modernatx, Inc. Primer design for cell-free dna production
WO2024015890A1 (en) 2022-07-13 2024-01-18 Modernatx, Inc. Norovirus mrna vaccines
WO2024028325A1 (en) 2022-08-01 2024-02-08 BioNTech SE Nucleic acid compositions comprising amphiphilic oligo ethylene glycol (oeg)-conjugated compounds and methods of using such compounds and compositions
WO2024027910A1 (en) 2022-08-03 2024-02-08 BioNTech SE Rna for preventing or treating tuberculosis
WO2024028445A1 (en) 2022-08-03 2024-02-08 BioNTech SE Rna for preventing or treating tuberculosis
WO2024050483A1 (en) 2022-08-31 2024-03-07 Modernatx, Inc. Variant strain-based coronavirus vaccines and uses thereof
WO2024063788A1 (en) 2022-09-23 2024-03-28 BioNTech SE Compositions for delivery of malaria antigens and related methods
WO2024068674A1 (en) 2022-09-26 2024-04-04 BioNTech SE Nucleic acid complexes and uses thereof
WO2024084462A1 (en) 2022-10-21 2024-04-25 BioNTech SE Nucleic acid complexes and uses thereof
WO2024097874A1 (en) 2022-11-03 2024-05-10 Modernatx, Inc. Chemical stability of mrna
WO2024102434A1 (en) 2022-11-10 2024-05-16 Senda Biosciences, Inc. Rna compositions comprising lipid nanoparticles or lipid reconstructed natural messenger packs
WO2024107754A1 (en) 2022-11-15 2024-05-23 Genentech, Inc. Selection of diverse candidate peptides for peptide therapeutics
WO2024130158A1 (en) 2022-12-16 2024-06-20 Modernatx, Inc. Lipid nanoparticles and polynucleotides encoding extended serum half-life interleukin-22 for the treatment of metabolic disease
WO2024137589A2 (en) 2022-12-20 2024-06-27 Genentech, Inc. Methods of treating pancreatic cancer with a pd-1 axis binding antagonist and an rna vaccine
WO2024151811A1 (en) 2023-01-11 2024-07-18 Modernatx, Inc. Personalized cancer vaccines
WO2024153324A1 (en) 2023-01-18 2024-07-25 BioNTech SE Rna formulations for pharmaceutical use
WO2024159172A1 (en) 2023-01-27 2024-08-02 Senda Biosciences, Inc. A modified lipid composition and uses thereof
WO2024163465A1 (en) 2023-01-30 2024-08-08 Modernatx, Inc. Epstein-barr virus mrna vaccines
WO2024178305A1 (en) 2023-02-24 2024-08-29 Modernatx, Inc. Compositions of mrna-encoded il-15 fusion proteins and methods of use thereof for treating cancer
WO2024182301A2 (en) 2023-02-27 2024-09-06 Modernatx, Inc. Lipid nanoparticles and polynucleotides encoding galactose-1-phosphate uridylyltransferase (galt) for the treatment of galactosemia
WO2024180054A1 (en) 2023-02-28 2024-09-06 BioNTech SE Linker sequence potency assays for multiple coding nucleic acids
WO2024180363A1 (en) 2023-02-28 2024-09-06 BioNTech SE Linker sequence potency assays for multiple coding nucleic acids
WO2024184533A1 (en) 2023-03-09 2024-09-12 BioNTech SE Peptidoglycan hydrolases with bactericidal activity

Family Cites Families (98)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4897355A (en) 1985-01-07 1990-01-30 Syntex (U.S.A.) Inc. N[ω,(ω-1)-dialkyloxy]- and N-[ω,(ω-1)-dialkenyloxy]-alk-1-yl-N,N,N-tetrasubstituted ammonium lipids and uses therefor
US5804381A (en) 1996-10-03 1998-09-08 Cornell Research Foundation Isolated nucleic acid molecule encoding an esophageal cancer associated antigen, the antigen itself, and uses thereof
US5703055A (en) 1989-03-21 1997-12-30 Wisconsin Alumni Research Foundation Generation of antibodies through lipid mediated DNA delivery
US5264618A (en) 1990-04-19 1993-11-23 Vical, Inc. Cationic lipids for intracellular delivery of biologically active molecules
US6235525B1 (en) 1991-05-23 2001-05-22 Ludwig Institute For Cancer Research Isolated nucleic acid molecules coding for tumor rejection antigen precursor MAGE-3 and uses thereof
US5824497A (en) * 1995-02-10 1998-10-20 Mcmaster University High efficiency translation of mRNA molecules
US7422902B1 (en) 1995-06-07 2008-09-09 The University Of British Columbia Lipid-nucleic acid particles prepared via a hydrophobic lipid-nucleic acid complex intermediate and use for gene transfer
AU738649B2 (en) 1996-04-26 2001-09-20 Rijksuniversiteit Te Leiden Methods for selecting and producing T cell peptide epitopes and vaccines incorporating said selected epitopes
ES2305157T3 (es) 1996-09-13 2008-11-01 Lipoxen Technologies Limited Liposomas.
EP0839912A1 (en) 1996-10-30 1998-05-06 Instituut Voor Dierhouderij En Diergezondheid (Id-Dlo) Infectious clones of RNA viruses and vaccines and diagnostic assays derived thereof
US6074645A (en) 1996-11-12 2000-06-13 City Of Hope Immuno-reactive peptide CTL epitopes of human cytomegalovirus
AU9319398A (en) 1997-09-19 1999-04-05 Sequitur, Inc. Sense mrna therapy
WO1999024566A1 (en) 1997-11-06 1999-05-20 Roche Diagnostics Gmbh Tumor-specific antigens, methods for their production and their use for immunization and diagnosis
US6432925B1 (en) 1998-04-16 2002-08-13 John Wayne Cancer Institute RNA cancer vaccine and methods for its use
EP1117430A1 (en) 1998-10-05 2001-07-25 Genzyme Corporation Genes differentially expressed in cancer cells to design cancer vaccines
BR0010322A (pt) 1999-05-06 2002-04-09 Univ Wake Forest Vetor de expressão, vacina e seu método de uso para eliciar uma resposta imune dirigida contra um antìgeno em um mamìfero
AU4903101A (en) 1999-11-30 2001-07-09 Cornell Research Foundation Inc. Isolated nucleic acid molecules encoding cancer associated antigens, the antigens per se, and uses thereof
US7462354B2 (en) 1999-12-28 2008-12-09 Pharmexa Inc. Method and system for optimizing minigenes and peptides encoded thereby
CN1437476A (zh) 1999-12-28 2003-08-20 埃皮缪纳股份有限公司 优化的小基因及其编码的肽
JP2004530629A (ja) 2000-06-07 2004-10-07 バイオシネクサス インコーポレーテッド 免疫刺激rna/dnaハイブリッド分子
US6472176B2 (en) 2000-12-14 2002-10-29 Genvec, Inc. Polynucleotide encoding chimeric protein and related vector, cell, and method of expression thereof
EP1373528B1 (en) * 2001-03-09 2008-08-13 Gene Stream Pty Ltd. Novel expression vectors
GB0111015D0 (en) * 2001-05-04 2001-06-27 Norsk Hydro As Genetic material
ES2340532T3 (es) 2001-06-05 2010-06-04 Curevac Gmbh Arnm con un contenido g/c aumentado que codifica para un antigeno bacteriano y utilizacion del mismo.
DE10162480A1 (de) 2001-12-19 2003-08-07 Ingmar Hoerr Die Applikation von mRNA für den Einsatz als Therapeutikum gegen Tumorerkrankungen
AUPS054702A0 (en) 2002-02-14 2002-03-07 Immunaid Pty Ltd Cancer therapy
US7399753B2 (en) * 2002-02-25 2008-07-15 Virxsys Corporation Trans-splicing mediated photodynamic therapy
EP1361277A1 (en) * 2002-04-30 2003-11-12 Centre National De La Recherche Scientifique (Cnrs) Optimization of transgene expression in mammalian cells
ATE519115T1 (de) 2002-06-13 2011-08-15 Merck Patent Gmbh Verfahren für die identifizierung von allo- antigenen und ihre verwendung für krebstherapie und transplantation
DE10229872A1 (de) 2002-07-03 2004-01-29 Curevac Gmbh Immunstimulation durch chemisch modifizierte RNA
DE10344799A1 (de) 2003-09-26 2005-04-14 Ganymed Pharmaceuticals Ag Identifizierung von Oberflächen-assoziierten Antigenen für die Tumordiagnose und -therapie
AU2004283464B8 (en) 2003-10-15 2011-04-14 Syncore Biotechnology Co., Ltd Method of administering cationic liposomes comprising an active drug
NZ546873A (en) 2003-10-24 2010-09-30 Immunaid Pty Ltd Method of analysing immune system cycling to monitor and/or treat diseases characterised by the production of regulator T cells
US7303881B2 (en) 2004-04-30 2007-12-04 Pds Biotechnology Corporation Antigen delivery compositions and methods of use
DE102004023187A1 (de) 2004-05-11 2005-12-01 Ganymed Pharmaceuticals Ag Identifizierung von Oberflächen-assoziierten Antigenen für die Tumordiagnose und -therapie
DE102004057303A1 (de) 2004-11-26 2006-06-01 Merck Patent Gmbh Stabile Kristallmodifikationen von DOTAP Chlorid
AU2005321905A1 (en) 2004-12-29 2006-07-06 Mannkind Corporation Methods to bypass CD+4 cells in the induction of an immune response
NZ563193A (en) 2005-05-09 2010-05-28 Ono Pharmaceutical Co Human monoclonal antibodies to programmed death 1(PD-1) and methods for treating cancer using anti-PD-1 antibodies alone or in combination with other immunotherapeutics
SI1907424T1 (sl) 2005-07-01 2015-12-31 E. R. Squibb & Sons, L.L.C. Humana monoklonska protitelesa proti programiranem smrtnem ligandu 1 (PD-L1)
EP4332227A1 (en) 2005-08-23 2024-03-06 The Trustees of the University of Pennsylvania Rna containing modified nucleosides and methods of use thereof
DE102005041616B4 (de) 2005-09-01 2011-03-17 Johannes-Gutenberg-Universität Mainz Melanom-assoziierte MHC Klasse I assoziierte Oligopeptide und für diese kodierende Polynukleotide und deren Verwendungen
EP1762575A1 (en) 2005-09-12 2007-03-14 Ganymed Pharmaceuticals AG Identification of tumor-associated antigens for diagnosis and therapy
WO2007101227A2 (en) 2006-02-27 2007-09-07 Arizona Board Of Regents For And On Behalf Of Arizona State University Identification and use of novopeptides for the treatment of cancer
WO2008085562A2 (en) 2006-09-20 2008-07-17 The Johns Hopkins University Combinatorieal therapy of cancer and infectious diseases with anti-b7-h1 antibodies
DE102006060824B4 (de) 2006-12-21 2011-06-01 Johannes-Gutenberg-Universität Mainz Nachweis von individuellen T-Zell-Reaktionsmustern gegen Tumor-assoziierte Antigene (TAA) in Tumorpatienten als Basis für die individuelle therapeutische Vakzinierung von Patienten
SG183663A1 (en) 2006-12-27 2012-09-27 Univ Emory Compositions and methods for the treatment of infections and tumors
US8877206B2 (en) 2007-03-22 2014-11-04 Pds Biotechnology Corporation Stimulation of an immune response by cationic lipids
US8140270B2 (en) 2007-03-22 2012-03-20 National Center For Genome Resources Methods and systems for medical sequencing analysis
ES2437327T3 (es) 2007-06-18 2014-01-10 Merck Sharp & Dohme B.V. Anticuerpos para el receptor PD-1 humano de muerte programada
EP2060583A1 (en) 2007-10-23 2009-05-20 Ganymed Pharmaceuticals AG Identification of tumor-associated markers for diagnosis and therapy
MX344330B (es) 2008-03-24 2016-12-13 4Sc Ag Imidazoquinolinas substituidas novedosas.
JP5971945B2 (ja) 2008-04-17 2016-08-17 ピーディーエス バイオテクノロジー コーポレイションPds Biotechnology Corporation カチオン性脂質の鏡像異性体による免疫応答の刺激
DE102008061522A1 (de) 2008-12-10 2010-06-17 Biontech Ag Verwendung von Flt3-Ligand zur Verstärkung von Immunreaktionen bei RNA-Immunisierung
EP3581197A1 (de) 2009-07-31 2019-12-18 ethris GmbH Rna mit einer kombination aus unmodifizierten und modifizierten nucleotiden zur proteinexpression
WO2013040142A2 (en) 2011-09-16 2013-03-21 Iogenetics, Llc Bioinformatic processes for determination of peptide binding
BR112012029066A2 (pt) 2010-05-14 2020-09-01 The General Hospital Corporation composições e processos de identificação de neoantígenos específicos de tumor.
WO2012045082A2 (en) 2010-10-01 2012-04-05 Jason Schrum Engineered nucleic acids and methods of use thereof
AU2012236099A1 (en) 2011-03-31 2013-10-03 Moderna Therapeutics, Inc. Delivery and formulation of engineered nucleic acids
DE102011102734A1 (de) 2011-05-20 2012-11-22 WMF Württembergische Metallwarenfabrik Aktiengesellschaft Vorrichtung zum Aufschäumen von Milch, Getränkebereiter mit dieser Vorrichtung und Verfahren zum Aufschäumen von Milch
EP3682905B1 (en) 2011-10-03 2021-12-01 ModernaTX, Inc. Modified nucleosides, nucleotides, and nucleic acids, and uses thereof
DK2791160T3 (da) 2011-12-16 2022-05-30 Modernatx Inc Modificerede mrna-sammensætninger
WO2013106496A1 (en) 2012-01-10 2013-07-18 modeRNA Therapeutics Methods and compositions for targeting agents into and across the blood-brain barrier
WO2013124701A2 (en) 2012-02-20 2013-08-29 Universita' Degli Studi Di Milano New homo- and heterodimeric smac mimetic compounds as apoptosis inducers
US20130255281A1 (en) 2012-03-29 2013-10-03 General Electric Company System and method for cooling electrical components
DE18200782T1 (de) 2012-04-02 2021-10-21 Modernatx, Inc. Modifizierte polynukleotide zur herstellung von proteinen im zusammenhang mit erkrankungen beim menschen
EP2834357B1 (en) * 2012-04-04 2017-12-27 Life Technologies Corporation Tal-effector assembly platform, customized services, kits and assays
EP3511425A1 (en) 2012-07-12 2019-07-17 Persimmune, Inc. Personalized cancer vaccines and adoptive immune cell therapies
WO2014093924A1 (en) 2012-12-13 2014-06-19 Moderna Therapeutics, Inc. Modified nucleic acid molecules and uses thereof
EP3786298A1 (en) 2012-11-01 2021-03-03 Factor Bioscience Inc. Methods and products for expressing proteins in cells
HRP20220607T1 (hr) 2012-11-26 2022-06-24 Modernatx, Inc. Terminalno modificirana rna
US20160022840A1 (en) 2013-03-09 2016-01-28 Moderna Therapeutics, Inc. Heterologous untranslated regions for mrna
US20160024181A1 (en) 2013-03-13 2016-01-28 Moderna Therapeutics, Inc. Long-lived polynucleotide molecules
WO2014160243A1 (en) 2013-03-14 2014-10-02 The Trustees Of The University Of Pennsylvania Purification and purity assessment of rna molecules synthesized with modified nucleosides
US10258698B2 (en) 2013-03-14 2019-04-16 Modernatx, Inc. Formulation and delivery of modified nucleoside, nucleotide, and nucleic acid compositions
US20160017313A1 (en) 2013-03-15 2016-01-21 Moderna Therapeutics, Inc. Analysis of mrna heterogeneity and stability
WO2014152027A1 (en) 2013-03-15 2014-09-25 Moderna Therapeutics, Inc. Manufacturing methods for production of rna transcripts
US20160032273A1 (en) 2013-03-15 2016-02-04 Moderna Therapeutics, Inc. Characterization of mrna molecules
EP2983804A4 (en) 2013-03-15 2017-03-01 Moderna Therapeutics, Inc. Ion exchange purification of mrna
EP2971165A4 (en) 2013-03-15 2016-11-23 Moderna Therapeutics Inc DISSOLUTION OF DNA FRAGMENTS IN MRNA MANUFACTURING METHODS
US11377470B2 (en) 2013-03-15 2022-07-05 Modernatx, Inc. Ribonucleic acid purification
KR102341899B1 (ko) 2013-04-07 2021-12-21 더 브로드 인스티튜트, 인코퍼레이티드 개인맞춤화 신생물 백신을 위한 조성물 및 방법
WO2015014375A1 (en) 2013-07-30 2015-02-05 Biontech Ag Tumor antigens for determining cancer therapy
US20160194368A1 (en) 2013-09-03 2016-07-07 Moderna Therapeutics, Inc. Circular polynucleotides
JP2016530294A (ja) 2013-09-03 2016-09-29 モデルナ セラピューティクス インコーポレイテッドModerna Therapeutics,Inc. キメラポリヌクレオチド
US9925277B2 (en) 2013-09-13 2018-03-27 Modernatx, Inc. Polynucleotide compositions containing amino acids
AU2013401479B2 (en) 2013-09-26 2019-04-04 BioNTech SE Particles comprising a shell with RNA
WO2015051173A2 (en) 2013-10-02 2015-04-09 Moderna Therapeutics, Inc Polynucleotide molecules and uses thereof
WO2015051169A2 (en) 2013-10-02 2015-04-09 Moderna Therapeutics, Inc. Polynucleotide molecules and uses thereof
WO2015058780A1 (en) 2013-10-25 2015-04-30 Biontech Ag Method and kit for determining whether a subject shows an immune response
WO2015085318A2 (en) 2013-12-06 2015-06-11 Moderna Therapeutics, Inc. Targeted adaptive vaccines
EP2918275B1 (en) 2013-12-13 2016-05-18 Moderna Therapeutics, Inc. Alternative nucleic acid molecules and uses thereof
AU2014381849A1 (en) 2014-02-05 2016-08-25 Biontech Ag A cannula, an injection or infusion device and methods of using the cannula or the injection or infusion device
RU2746406C2 (ru) 2014-04-23 2021-04-13 МОДЕРНАТиЭкс, ИНК. Вакцины на основе нуклеиновых кислот
WO2015172843A1 (en) 2014-05-16 2015-11-19 Biontech Diagnostics Gmbh Methods and kits for the diagnosis of cancer
WO2016062323A1 (en) 2014-10-20 2016-04-28 Biontech Ag Methods and compositions for diagnosis and treatment of cancer
ES2946969T3 (es) 2014-12-12 2023-07-28 CureVac SE Moléculas de ácido nucleico artificiales para una expresión proteica mejorada
JP6907116B2 (ja) 2014-12-30 2021-07-21 キュアバック アーゲー 人工核酸分子
WO2016155809A1 (en) 2015-03-31 2016-10-06 Biontech Rna Pharmaceuticals Gmbh Lipid particle formulations for delivery of rna and water-soluble therapeutically effective compounds to a target cell

Also Published As

Publication number Publication date
US10106800B2 (en) 2018-10-23
US20100129877A1 (en) 2010-05-27
WO2007036366A2 (de) 2007-04-05
DK2357230T3 (da) 2014-06-02
AU2006296702B2 (en) 2011-12-08
WO2007036366A8 (de) 2012-05-31
JP2012235786A (ja) 2012-12-06
RS53351B (en) 2014-10-31
PT1934345E (pt) 2012-06-21
SI1934345T1 (sl) 2012-07-31
US9476055B2 (en) 2016-10-25
HRP20120480T1 (hr) 2012-07-31
PL2357230T3 (pl) 2014-08-29
PT2357230E (pt) 2014-07-15
WO2007036366A3 (de) 2007-06-21
CA3023101A1 (en) 2007-04-05
ATE550427T1 (de) 2012-04-15
US20190062762A1 (en) 2019-02-28
US20230193296A1 (en) 2023-06-22
JP6058928B2 (ja) 2017-01-11
DK1934345T3 (da) 2012-07-23
HRP20140561T1 (hr) 2014-07-18
US20170009244A1 (en) 2017-01-12
HK1155477A1 (en) 2012-05-18
JP2009509516A (ja) 2009-03-12
EP2357230A1 (de) 2011-08-17
JP5435949B2 (ja) 2014-03-05
JP2016027811A (ja) 2016-02-25
CA2621444C (en) 2019-11-12
CA3023101C (en) 2022-09-06
SI2357230T1 (sl) 2014-07-31
DE102005046490A1 (de) 2007-03-29
RS52353B (en) 2012-12-31
EP1934345A2 (de) 2008-06-25
AU2006296702A1 (en) 2007-04-05
EP1934345B1 (de) 2012-03-21
CY1113526T1 (el) 2016-06-22
CY1115246T1 (el) 2017-01-04
CA2621444A1 (en) 2007-04-05
IN2014CN02116A (es) 2015-05-29
ES2384113T3 (es) 2012-06-29
ES2467678T3 (es) 2014-06-12
EP2357230B1 (de) 2014-05-07
EP1934345B9 (de) 2012-07-18
PL1934345T3 (pl) 2012-09-28

Similar Documents

Publication Publication Date Title
ES2384113T3 (es) Modificación del ARN, que produce unas estabilidad de transcripción y eficiencia de traducción aumentadas
ES2784711T3 (es) Replicón de ARN para una expresión génica versátil y eficiente
ES2753201T3 (es) Secuencias UTR 3&#39; para la estabilización del ARN
CN109328233B (zh) 反式复制rna
RU2733424C2 (ru) Способ повышения экспрессии кодируемых рнк белков
KR102072013B1 (ko) 암호화된 치료 단백질의 발현을 증가시키기 위한 히스톤 스템-루프 및 폴리(a) 서열 또는 폴리아데닐화 신호를 포함하거나 암호화하는 핵산
Jechlinger Optimization and delivery of plasmid DNA for vaccination
EA027315B1 (ru) Молекула нуклеиновой кислоты и белок для индукции иммунного ответа против антигена рака предстательной железы, плазмида, вектор экспрессии, способ лечения и фармацевтическая композиция
Langer et al. Safety assessment of biolistic DNA vaccination
KR102581491B1 (ko) mRNA의 세포내 안정성과 생합성을 향상시키는 래리엇 캡 구조의 RNA, 및 이의 용도
AU2011253592B2 (en) Modification of RNA, producing an increased transcript stability and translation efficiency
KR101442254B1 (ko) 최적의 진핵 세포 발현 벡터의 개발
CA3234214A1 (en) Methods for determining mutations for increasing modified replicable rna function and related compositions and their use