ES2373819T3 - Receptor gps perfeccionado que utiliza información de la posición de los satélites para compensar el efecto doppler. - Google Patents

Receptor gps perfeccionado que utiliza información de la posición de los satélites para compensar el efecto doppler. Download PDF

Info

Publication number
ES2373819T3
ES2373819T3 ES07105832T ES07105832T ES2373819T3 ES 2373819 T3 ES2373819 T3 ES 2373819T3 ES 07105832 T ES07105832 T ES 07105832T ES 07105832 T ES07105832 T ES 07105832T ES 2373819 T3 ES2373819 T3 ES 2373819T3
Authority
ES
Spain
Prior art keywords
remote unit
satellites
data
gps
base station
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
ES07105832T
Other languages
English (en)
Inventor
Norman F. Krasner
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SnapTrack Inc
Original Assignee
SnapTrack Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US08/612,582 external-priority patent/US5874914A/en
Application filed by SnapTrack Inc filed Critical SnapTrack Inc
Application granted granted Critical
Publication of ES2373819T3 publication Critical patent/ES2373819T3/es
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/0003Software-defined radio [SDR] systems, i.e. systems wherein components typically implemented in hardware, e.g. filters or modulators/demodulators, are implented using software, e.g. by involving an AD or DA conversion stage such that at least part of the signal processing is performed in the digital domain
    • H04B1/0007Software-defined radio [SDR] systems, i.e. systems wherein components typically implemented in hardware, e.g. filters or modulators/demodulators, are implented using software, e.g. by involving an AD or DA conversion stage such that at least part of the signal processing is performed in the digital domain wherein the AD/DA conversion occurs at radiofrequency or intermediate frequency stage
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/01Satellite radio beacon positioning systems transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/03Cooperating elements; Interaction or communication between different cooperating elements or between cooperating elements and receivers
    • G01S19/05Cooperating elements; Interaction or communication between different cooperating elements or between cooperating elements and receivers providing aiding data
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/01Satellite radio beacon positioning systems transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/03Cooperating elements; Interaction or communication between different cooperating elements or between cooperating elements and receivers
    • G01S19/05Cooperating elements; Interaction or communication between different cooperating elements or between cooperating elements and receivers providing aiding data
    • G01S19/06Cooperating elements; Interaction or communication between different cooperating elements or between cooperating elements and receivers providing aiding data employing an initial estimate of the location of the receiver as aiding data or in generating aiding data
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/01Satellite radio beacon positioning systems transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/03Cooperating elements; Interaction or communication between different cooperating elements or between cooperating elements and receivers
    • G01S19/09Cooperating elements; Interaction or communication between different cooperating elements or between cooperating elements and receivers providing processing capability normally carried out by the receiver
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/01Satellite radio beacon positioning systems transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/13Receivers
    • G01S19/23Testing, monitoring, correcting or calibrating of receiver elements
    • G01S19/235Calibration of receiver components
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/01Satellite radio beacon positioning systems transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/13Receivers
    • G01S19/24Acquisition or tracking or demodulation of signals transmitted by the system
    • G01S19/25Acquisition or tracking or demodulation of signals transmitted by the system involving aiding data received from a cooperating element, e.g. assisted GPS
    • G01S19/252Employing an initial estimate of location in generating assistance data
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/01Satellite radio beacon positioning systems transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/13Receivers
    • G01S19/24Acquisition or tracking or demodulation of signals transmitted by the system
    • G01S19/25Acquisition or tracking or demodulation of signals transmitted by the system involving aiding data received from a cooperating element, e.g. assisted GPS
    • G01S19/254Acquisition or tracking or demodulation of signals transmitted by the system involving aiding data received from a cooperating element, e.g. assisted GPS relating to Doppler shift of satellite signals
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/01Satellite radio beacon positioning systems transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/13Receivers
    • G01S19/24Acquisition or tracking or demodulation of signals transmitted by the system
    • G01S19/25Acquisition or tracking or demodulation of signals transmitted by the system involving aiding data received from a cooperating element, e.g. assisted GPS
    • G01S19/256Acquisition or tracking or demodulation of signals transmitted by the system involving aiding data received from a cooperating element, e.g. assisted GPS relating to timing, e.g. time of week, code phase, timing offset
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/01Satellite radio beacon positioning systems transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/13Receivers
    • G01S19/24Acquisition or tracking or demodulation of signals transmitted by the system
    • G01S19/25Acquisition or tracking or demodulation of signals transmitted by the system involving aiding data received from a cooperating element, e.g. assisted GPS
    • G01S19/258Acquisition or tracking or demodulation of signals transmitted by the system involving aiding data received from a cooperating element, e.g. assisted GPS relating to the satellite constellation, e.g. almanac, ephemeris data, lists of satellites in view
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/01Satellite radio beacon positioning systems transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/13Receivers
    • G01S19/24Acquisition or tracking or demodulation of signals transmitted by the system
    • G01S19/29Acquisition or tracking or demodulation of signals transmitted by the system carrier including Doppler, related
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/01Satellite radio beacon positioning systems transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/13Receivers
    • G01S19/34Power consumption
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/01Satellite radio beacon positioning systems transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/13Receivers
    • G01S19/35Constructional details or hardware or software details of the signal processing chain
    • G01S19/37Hardware or software details of the signal processing chain
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/38Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/38Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system
    • G01S19/39Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system the satellite radio beacon positioning system transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/42Determining position
    • G01S19/45Determining position by combining measurements of signals from the satellite radio beacon positioning system with a supplementary measurement
    • G01S19/46Determining position by combining measurements of signals from the satellite radio beacon positioning system with a supplementary measurement the supplementary measurement being of a radio-wave signal type
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S5/00Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
    • G01S5/0009Transmission of position information to remote stations
    • G01S5/0018Transmission from mobile station to base station
    • G01S5/0036Transmission from mobile station to base station of measured values, i.e. measurement on mobile and position calculation on base station
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S5/00Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
    • G01S5/0009Transmission of position information to remote stations
    • G01S5/009Transmission of differential positioning data to mobile
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/27Adaptation for use in or on movable bodies
    • H01Q1/273Adaptation for carrying or wearing by persons or animals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/28Combinations of substantially independent non-interacting antenna units or systems
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03JTUNING RESONANT CIRCUITS; SELECTING RESONANT CIRCUITS
    • H03J7/00Automatic frequency control; Automatic scanning over a band of frequencies
    • H03J7/02Automatic frequency control
    • H03J7/04Automatic frequency control where the frequency control is accomplished by varying the electrical characteristics of a non-mechanically adjustable element or where the nature of the frequency controlling element is not significant
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03JTUNING RESONANT CIRCUITS; SELECTING RESONANT CIRCUITS
    • H03J7/00Automatic frequency control; Automatic scanning over a band of frequencies
    • H03J7/02Automatic frequency control
    • H03J7/04Automatic frequency control where the frequency control is accomplished by varying the electrical characteristics of a non-mechanically adjustable element or where the nature of the frequency controlling element is not significant
    • H03J7/047Automatic frequency control using an auxiliary signal, e.g. low frequency scanning of the locking range or superimposing a special signal on the input signal
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03JTUNING RESONANT CIRCUITS; SELECTING RESONANT CIRCUITS
    • H03J7/00Automatic frequency control; Automatic scanning over a band of frequencies
    • H03J7/02Automatic frequency control
    • H03J7/04Automatic frequency control where the frequency control is accomplished by varying the electrical characteristics of a non-mechanically adjustable element or where the nature of the frequency controlling element is not significant
    • H03J7/06Automatic frequency control where the frequency control is accomplished by varying the electrical characteristics of a non-mechanically adjustable element or where the nature of the frequency controlling element is not significant using counters or frequency dividers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/06Receivers
    • H04B1/16Circuits
    • H04B1/26Circuits for superheterodyne receivers
    • H04B1/28Circuits for superheterodyne receivers the receiver comprising at least one semiconductor device having three or more electrodes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/38Transceivers, i.e. devices in which transmitter and receiver form a structural unit and in which at least one part is used for functions of transmitting and receiving
    • H04B1/3805Transceivers, i.e. devices in which transmitter and receiver form a structural unit and in which at least one part is used for functions of transmitting and receiving with built-in auxiliary receivers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/01Satellite radio beacon positioning systems transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/03Cooperating elements; Interaction or communication between different cooperating elements or between cooperating elements and receivers
    • G01S19/10Cooperating elements; Interaction or communication between different cooperating elements or between cooperating elements and receivers providing dedicated supplementary positioning signals
    • G01S19/11Cooperating elements; Interaction or communication between different cooperating elements or between cooperating elements and receivers providing dedicated supplementary positioning signals wherein the cooperating elements are pseudolites or satellite radio beacon positioning system signal repeaters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S2205/00Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
    • G01S2205/001Transmission of position information to remote stations
    • G01S2205/008Transmission of position information to remote stations using a mobile telephone network
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S5/00Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
    • G01S5/0009Transmission of position information to remote stations
    • G01S5/0045Transmission from base station to mobile station
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2221/00Indexing scheme relating to security arrangements for protecting computers, components thereof, programs or data against unauthorised activity
    • G06F2221/21Indexing scheme relating to G06F21/00 and subgroups addressing additional information or applications relating to security arrangements for protecting computers, components thereof, programs or data against unauthorised activity
    • G06F2221/2111Location-sensitive, e.g. geographical location, GPS
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03DDEMODULATION OR TRANSFERENCE OF MODULATION FROM ONE CARRIER TO ANOTHER
    • H03D7/00Transference of modulation from one carrier to another, e.g. frequency-changing
    • H03D7/16Multiple-frequency-changing
    • H03D7/161Multiple-frequency-changing all the frequency changers being connected in cascade
    • H03D7/163Multiple-frequency-changing all the frequency changers being connected in cascade the local oscillations of at least two of the frequency changers being derived from a single oscillator
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03JTUNING RESONANT CIRCUITS; SELECTING RESONANT CIRCUITS
    • H03J2200/00Indexing scheme relating to tuning resonant circuits and selecting resonant circuits
    • H03J2200/11Cellular receiver, e.g. GSM, combined with a GPS receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Signal Processing (AREA)
  • Position Fixing By Use Of Radio Waves (AREA)
  • Superheterodyne Receivers (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Circuits Of Receivers In General (AREA)

Abstract

Procedimiento para determinar la posición de una unidad remota (20), que comprende: recibir, en dicha unidad remota (20), datos de almanaque de satélites comprimidos u otra representación de datos de almanaque para una pluralidad de satélites de un sistema de posicionamiento por satélite, desde una estación base situada en una posición separada o desde otro satélite que emula una estación base; determinar la hora del día y la posición aproximada de la unidad remota; obtener la información Doppler para una pluralidad de dichos satélites de dicho sistema de posicionamiento por satélite, a partir de dichos datos de almanaque de satélites comprimidos u otra representación de datos de almanaque, utilizando la hora del día y la posición aproximadas; recibir señales GPS a partir de dichos satélites de dicho sistema de posicionamiento por satélite; calcular, en dicha unidad remota, las pseudodistancias para dicha unidad remota, compensando dicha información Doppler el efecto Doppler de dichas señales GPS que se reciben desde dichos satélites de dicho sistema de posicionamiento por satélite para calcular las pseudodistancias en la unidad remota.

Description

Receptor GPS perfeccionado que utiliza información de la posición de los satélites para compensar el efecto Doppler.
Antecedentes de la invención
i) Campo de la invención
La presente invención se refiere a los receptores capaces de determinar la información de la posición de los satélites y, en particular, se refiere a los receptores que encuentran aplicación en los sistemas de posicionamiento global por satélite (GPS).
ii) Antecedentes de la técnica
Los receptores GPS normalmente determinan su posición calculando los tiempos de llegada relativos de las señales transmitidas simultáneamente desde una pluralidad de satélites GPS (o NAVSTAR). Estos satélites transmiten, como una parte de su mensaje, datos de posicionamiento del satélite y datos sobre la temporización del reloj, es decir, los denominados «datos de efemérides». El procedimiento de búsqueda y adquisición de señales GPS, lectura de los datos de efemérides de una pluralidad de satélites y cálculo de la posición del receptor a partir de estos datos es lento y a menudo se prolonga durante varios minutos. En muchos casos, este tiempo de procesamiento prolongado es inadmisible y, además, limita considerablemente la duración de la batería en las aplicaciones microminiaturizadas portátiles.
Otra de las limitaciones de los receptores GPS actuales es que su funcionamiento se limita a las situaciones en las que existen varios satélites claramente a la vista, sin obstrucciones, y en las que se dispone de una antena de alta calidad correctamente situada para recibir dichas señales. Así pues, estos receptores normalmente no podrán ser utilizados en aplicaciones portátiles montadas sobre el cuerpo del satélite, en áreas donde el nivel de obstrucción por follaje o edificios es significativo, ni en aplicaciones interiores.
Presentan dos funciones principales: (1) el cálculo de las pseudodistancias hasta los diversos satélites GPS y (2) el cálculo de la posición de la plataforma de recepción mediante las pseudodistancias y los datos de temporización y de efemérides de los satélites. Las pseudodistancias son simplemente los retardos de tiempo medidos entre la señal recibida desde cada satélite y el reloj local. Una vez terminada la adquisición y el seguimiento de los datos de efemérides y temporización de los satélites, éstos se extraen de la señal GPS. Como se ha indicado, la recopilación de esta información normalmente se prolonga durante un período de tiempo relativamente largo (de 30 segundos a varios minutos) y debe realizarse con un buen nivel de la señal recibida para obtener tasas de errores bajas.
Prácticamente todos los receptores GPS conocidos utilizan procedimientos de correlación para calcular las pseudodistancias. Los procedimientos de correlación se llevan a cabo en tiempo real y a menudo con correladores de hardware. Las señales GPS contienen señales repetitivas de alta velocidad denominadas «secuencias pseudoaleatorias» (PN). Los códigos disponibles para las aplicaciones civiles se denominan códigos C/A, y presentan una tasa de inversión de fase binaria (o tasa de «segmentación») de 1,023 MHz y un período de repetición de 1023 segmentos para un período de código de 1 ms. Las secuencias de código forman parte de la denominada familia de códigos Gold. Cada satélite GPS emite una señal con un código Gold exclusivo.
Una vez que la señal recibida desde un satélite GPS determinado ha sido sometida al procedimiento de subconversión hasta banda base, el receptor de correlación multiplica la señal recibida por una réplica almacenada del código Gold adecuado contenido en la memoria local y, a continuación, integra o hace pasar el producto por un filtro pasabaja para obtener una indicación de la presencia de la señal. Este procedimiento se denomina operación de «correlación». Ajustando en secuencia la temporización relativa de esta réplica almacenada con respecto a la señal recibida, y observando el resultado de la correlación, el receptor puede determinar el retardo de tiempo entre la señal recibida y el reloj local. La determinación inicial de la presencia de dicho resultado se denomina «adquisición». Después de la adquisición, el procedimiento entra en la etapa de «seguimiento», en la que la temporización de la referencia local es ajustada en pequeñas cantidades para proporcionar una salida de alta correlación.
La salida de correlación durante la etapa de seguimiento puede ser considerada como la señal GPS desprovista del código pseudoaleatorio o, empleando la terminología común, «desensanchada». Esta señal es de banda estrecha, siendo su ancho de banda proporcional a una señal de datos binaria de 50 bits por segundo con modulación por desplazamiento de fase que se superpone a la forma de onda GPS.
El procedimiento de adquisición de correlación es muy lento, en particular cuando las señales recibidas son débiles. Para reducir el tiempo de adquisición, muchos receptores GPS utilizan una pluralidad de correladores (habitualmente, hasta 12), lo cual permite realizar una búsqueda paralela de picos de correlación.
Otra forma de reducir el tiempo de adquisición es la descrita en la patente US nº 4.445.118. En esta propuesta, se utiliza la transmisión de información Doppler desde una estación base de control hasta una unidad receptora GPS remota para facilitar la adquisición de las señales GPS. Aunque esta propuesta permite reducir el tiempo de adquisición, la información Doppler sólo se mantiene precisa durante un corto período de tiempo, puesto que los satélites GPS giran alrededor de la tierra a velocidades relativamente altas.
Por lo tanto, será necesaria otra transmisión de información Doppler para que las unidades remotas puedan disponer de información Doppler precisa.
En la patente US nº 4.445.118, denominada patente de Taylor en la presente memoria. En la patente de Taylor, se transmite una referencia de frecuencia estable a una unidad receptora GPS desde una estación base, para eliminar una fuente de errores debida a un oscilador local de poca calidad situado en la unidad receptora GPS remota. Este procedimiento utiliza una señal con modulación por desplazamiento de fase (FSK) especial, cuya frecuencia debe hallarse muy cerca de la frecuencia de la señal GPS. Como se representa en la Figura 4 de la patente de Taylor, la señal FSK especial se halla aproximadamente a 20 MHz por debajo de la señal GPS de 1575 MHz. Por otra parte, en la propuesta descrita en la patente de Taylor, se utiliza un mecanismo de rechazo en modo común mediante el cual cualquier error del oscilador local (representado como L.O. 52) del receptor aparecerá tanto en el canal GPS como en el canal de referencia y, por lo tanto, quedará contrarrestado. No se describe ningún sistema para detectar
o medir el error. Este tipo de funcionamiento constituye lo que a veces se denomina «funcionamiento homodino». Aunque esta propuesta aporta algunas ventajas, requiere que los dos canales presenten una estrecha correspondencia, incluida una estrecha correspondencia en frecuencia. Por otra parte, esta propuesta requiere que ambas frecuencias permanezcan fijas y, por consiguiente, las técnicas de salto de frecuencia no son compatibles con este enfoque.
Sumario
La presente invención se refiere a un procedimiento para determinar la posición de una unidad remota, que comprende:
recibir, en dicha unidad remota, información de posición de satélites para una pluralidad de satélites de un sistema de posicionamiento por satélite, desde una estación base situada en una posición separada o desde otro satélite que emula una estación base;
determinar la hora del día y la posición aproximada de la unidad remota;
obtener la información Doppler para una pluralidad de dichos satélites de dicho sistema de posicionamiento por satélite, a partir de dicha información de posición de satélites, utilizando la hora del día y la posición aproximada;
recibir señales GPS a partir de dichos satélites de dicho sistema de posicionamiento por satélite;
calcular, en dicha unidad remota, las pseudodistancias para dicha unidad remota, compensando dicha información Doppler el efecto Doppler de dichas señales GPS que se reciben desde dichos satélites de dicho sistema de posicionamiento por satélite para calcular las pseudodistancias en la unidad remota.
Aspectos ventajosos pero no limitativos del procedimiento anterior son los siguientes:
-
dicha información de posición de satélites se obtiene a partir de unos medios de almacenamiento de referencia situados en dicha estación base;
-
el procedimiento comprende asimismo la transmisión de dichas pseudodistancias desde dicha unidad remota hasta dicha estación base; y calculando dicha estación base una latitud y una longitud que indican la posición de dicha unidad remota;
-
el procedimiento comprende asimismo transmitir información de datos de satélites a dicha unidad remota, comprendiendo dicha información de datos de satélite unos datos que representan las efemérides.
Una forma de realización de la presente invención proporciona una unidad remota que utiliza datos que representan señales GPS para proporcionar la posición de dicha unidad remota, comprendiendo dicha unidad remota un primer receptor para recibir dichas señales GPS desde los satélites de un sistema de posicionamiento por satélite y una unidad de procesamiento, en los que:
la unidad remota incluye además un segundo receptor;
dicho segundo receptor puede hacerse funcionar para acoplarse a través de un enlace de comunicaciones y recibir información de posición de satélites para una pluralidad de satélites de dicho sistema de posicionamiento por satélite, a la vista de dicha unidad remota, siendo recibida dicha información de posición de satélites desde una estación base situada en una posición separada o desde otro satélite que emula una estación base;
dicha unidad de procesamiento está acoplada a dicho segundo receptor para recibir dicha información de posición
5 de satélites, para obtener información Doppler para dicha pluralidad de satélites a partir de dicha información de posición de satélites, y para calcular pseudodistancias para dicha unidad remota, compensando dicha información Doppler el efecto Doppler de las señales GPS que se reciben para calcular las pseudodistancias en la unidad remota.
10 Aspectos ventajosos pero no limitativos de la unidad remota anterior son los siguientes:
-
dicho enlace de comunicaciones comprende unos medios de comunicación de radiofrecuencia;
-
la unidad remota comprende asimismo un transmisor acoplado a dicha unidad de procesamiento, estando 15 destinado dicho transmisor a transmitir dichas pseudodistancias;
-
dicha unidad remota comprende un circuito integrado de procesamiento de señales digitales (DSP), y procesando dicho DSP dichas señales GPS y dicha información Doppler utilizando un algoritmo de convolución rápida;
20 - la unidad remota según la reivindicación 8, que comprende asimismo un transmisor acoplado a dicha unidad de procesamiento, estando destinado dicho transmisor a transmitir dichas pseudodistancias;
-
dicho receptor puede utilizarse para recibir información de datos de satélites de dichos satélites a partir de una
fuente distinta a dicho satélite, comprendiendo dicha información de datos de satélites datos que representan las 25 efemérides para dicho satélite.
Breve descripción de los dibujos
La presente invención se ilustra, a título de ejemplo y sin carácter limitativo, en las figuras de los dibujos adjuntos, en 30 los que se utilizan números de referencia similares para identificar elementos similares, y en los cuales:
la Figura 1A es un diagrama de bloques de los componentes principales de un sistema de recepción GPS remoto o móvil que utiliza los procedimientos de la presente invención, en el que se representan los enlaces de datos que pueden existir entre una estación base y la unidad remota;
35 la Figura 1B es un diagrama de bloques de una unidad móvil GPS alternativa;
la Figura 1C es un diagrama de bloques de otra unidad móvil GPS alternativa;
40 las Figuras 2A y 2B presentan dos alternativas para las partes RF e IF de un receptor que constituye una forma de realización de la presente invención;
la Figura 3 representa un diagrama de flujo de las operaciones principales (por ejemplo, operaciones de software) realizadas por el procesador DSP programable según los procedimientos de la presente invención;
45 las Figuras 4A a 4E ilustran las formas de onda de procesamiento de señales en diversas etapas del procesamiento según los procedimientos de la presente invención;
la Figura 5A ilustra un sistema de estación base de una forma de realización de la presente invención; 50 la Figura 5B ilustra un sistema de estación base de una forma de realización alternativa de la presente invención;
la Figura 6A ilustra una unidad móvil GPS que presenta, según un aspecto de la presente invención, calibración del oscilador local;
55 las Figuras 6B y 6C representan otras formas de realización de unidades móviles GPS que presentan calibración del oscilador local;
La Figura 7 es un diagrama de flujo que representa un procedimiento de gestión de energía para una unidad móvil 60 según una forma de realización de la presente invención;
la Figura 8 representa un procedimiento para obtener información Doppler para los satélites a la vista, a partir de los datos de almanaque de los satélites proporcionados a una unidad móvil.
Descripción detallada de la invención
La presente invención se refiere a los aparatos y a los procedimientos para calcular la posición de un objeto móvil o remoto, para que el hardware remoto presente de ese modo una disipación de energía muy baja y la capacidad para trabajar con niveles de señal recibida muy bajos y seguir proporcionando mediciones exactas de la información de posición. Es decir, el consumo de energía se reduce mientras que la sensibilidad y la precisión del receptor se incrementan. Esto también viene determinado por la recepción y la utilización en la unidad remota de una señal de comunicación de frecuencia estable. Esto es posible gracias a la implementación de las funciones de recepción remota, representadas en la Figura 1A, así como a la transmisión de información de almanaque de los satélites, desde una estación base 10 situada en una ubicación separada hasta la unidad remota o la unidad móvil GPS 20.
Debe tenerse en cuenta que es posible utilizar pseudodistancias para calcular la posición geográfica de la unidad remota de muchas formas diferentes. A continuación, se proporcionan tres ejemplos:
1.
Procedimiento 1: Mediante la retransmisión de los mensajes de datos de los satélites a la unidad remota 20 desde la estación base 10, la unidad remota 20 puede combinar esta información con las mediciones de pseudodistancia para calcular su posición. Véase, por ejemplo, la patente US nº 5.365.450. Habitualmente, la unidad remota 20 realiza el cálculo de la posición en la unidad remota 20.
2.
Procedimiento 2: La unidad remota 20 puede recopilar los datos de efemérides de los satélites a partir de la recepción de señales GPS de la forma normalmente empleada en el ámbito de la técnica. Estos datos, que suelen ser válidos durante una o dos horas, pueden combinarse con mediciones de pseudodistancia para completar, habitualmente en la unidad remota, el cálculo de la posición.
3.
Procedimiento 3: A través de un enlace de comunicaciones 16, la unidad remota 20 puede transmitir las pseudodistancias a la estación base 10, donde dicha información puede combinarse con los datos de efemérides de los satélites para completar el cálculo de la posición. Véase, por ejemplo, la patente US nº 5.225.842.
En las propuestas (o procedimientos) 1 y 3, se supone que la estación base 10 y la unidad remota 20 presentan una vista común de todos los satélites deseados y están situadas suficientemente cerca una de otra para resolver la ambigüedad temporal asociada a la frecuencia de repetición de los códigos GPS pseudoaleatorios. Esta condición se cumple cuando la distancia entre la estación base 10 y la unidad remota 20 es igual al producto entre la 1/2 de la velocidad de la luz y el período de repetición PN (1 milisegundo), o alrededor de 150 km.
Para explicar la presente invención, se supone que se utiliza el procedimiento 3 para realizar el cálculo de la posición. No obstante, a partir de la consulta de la presente memoria, los expertos en la materia deducirán que los diversos aspectos y formas de realización de la presente invención pueden ser utilizados con cualquiera de los tres procedimientos indicados, así como con otros procedimientos.
Por ejemplo, en una variante del procedimiento 1, una estación base puede transmitir información de datos de satélites, tales como los datos que representan las efemérides de los satélites, a una unidad remota, y esta información de datos de satélites puede combinarse con las pseudodistancias, calculadas de acuerdo con la presente invención a partir de señales GPS almacenadas en memoria tampón, para proporcionar una latitud y una longitud (y en muchos casos también una altitud) para la unidad remota. Se observará que la información de posición recibida desde la unidad remota puede limitarse a la latitud y la longitud o puede ser información más amplia que incluye la latitud, la longitud, la altitud, la velocidad y el rumbo de la unidad remota.
Asimismo, en esta variante del procedimiento 1, pueden utilizarse los aspectos de la corrección del oscilador local o la gestión de la energía de la presente invención. Además, la información de almanaque de los satélites puede transmitirse a la unidad remota 20, unidad remota 20 que utiliza dicha información de acuerdo con los aspectos de la presente invención.
Según el procedimiento 3, la estación base 10 ordena a la unidad remota 20 que realice una medición por medio de un mensaje transmitido a través de un enlace de comunicación de datos 16 como el representado en la Figura 1A. El mensaje de la estación base 10 que incluye el mandato para la unidad remota 20 también suele identificar los satélites particulares que están a la vista u otros datos de inicialización. La estación base 10 puede enviar también dentro del mensaje (o puede enviar previamente) información de almanaque de los satélites, que constituye una forma de información de datos de satélites. Esta información de almanaque de satélites suele incluir una descripción de la posición aproximada en relación con el tiempo de todos los satélites de la constelación GPS. En la patente US nº 4.445.118, se describen algunos de los datos que pueden incluirse en los datos de almanaque de los satélites. Este mensaje es recibido por un módem separado 22 que forma parte de la unidad remota 20 y es almacenado en una memoria 30 acoplada a un microprocesador de baja potencia 26. La información de almanaque de los satélites puede ser utilizada a continuación para obtener la información Doppler para los satélites a la vista, como se describirá más adelante. Los datos de almanaque pueden ser válidos durante un período máximo de un mes. El microprocesador 26 se ocupa de la transferencia de la información de datos entre los elementos de procesamiento 32 a 48 de la unidad remota y el módem 22, y controla las funciones de gestión de energía dentro del receptor
remoto 20, como se pondrá de manifiesto en la descripción que sigue. Normalmente, el microprocesador 26 determina que la mayor parte o la totalidad del hardware de la unidad remota 20 pase a un estado de baja energía, o de suspensión, salvo cuando se están realizando los cálculos de pseudodistancia u otros cálculos GPS o cuando se dispone de una fuente de alimentación alternativa. No obstante, la parte receptora del módem se activa (con suministro completo de energía) por lo menos periódicamente para determinar si la estación base 10 ha enviado un mandato a la unidad remota para determinar la posición de la unidad remota.
Gracias a la utilización de esta información de almanaque de los satélites para obtener información Doppler de los satélites a la vista de la unidad remota, no es necesario que la unidad remota 20 realice la búsqueda de dicha información Doppler, reduciéndose de ese modo el tiempo de procesamiento de ésta en un factor superior a 10. La utilización de la información Doppler también permite a la unidad móvil GPS 20 procesar con más rapidez una muestra de señales GPS, hecho que tiende a reducir la cantidad de tiempo durante el cual el procesador 32 debe recibir toda la energía para calcular una información de posición. Esto por sí solo reduce la energía consumida por la unidad remota 20 y contribuye a incrementar la sensibilidad. También puede enviarse a la unidad remota 20 información adicional que incluye los intervalos de medición de los datos en el mensaje GPS.
La señal recibida desde el enlace de datos puede utilizar una frecuencia portadora de precisión. El receptor de la unidad remota 20 puede emplear, tal como se representa en la Figura 6 descrita más adelante, un bucle de control automático de frecuencia (AFC) para sincronizarse con esta portadora y calibrar de ese modo todavía más su propio oscilador de referencia (por ejemplo, corrigiendo la frecuencia de salida del L.O. GPS que se utiliza para obtener las señales GPS). Con un tiempo de transmisión del mensaje de 10 ms y una relación señal-ruido recibida de 20 dB, normalmente es posible medir la frecuencia por medio de un AFC, obteniéndose una precisión de 10 Hz o superior. Habitualmente, esto resulta de sobras adecuado para los requisitos de la presente invención. Esta característica, que se describirá más adelante en mayor detalle, también incrementa la precisión de los cálculos de posición realizados, ya sea de la forma convencional o utilizando los procedimientos de convolución rápida de la presente invención.
En una forma de realización de la presente invención, el enlace de comunicación 16 se compone de unos medios de comunicación de radiofrecuencia de ancho de banda reducido disponibles en el mercado, tales como un sistema de radiobúsqueda bidireccional. Este sistema puede utilizarse en formas de realización en las que la cantidad de datos transmitida entre la unidad remota 20 y la estación base 10 es relativamente reducida. La cantidad de datos necesaria para la transmisión de Doppler (en lugar de los datos de almanaque de satélites) y otros datos (por ejemplo, datos de inicalización tales como las identidades de los satélites que están a la vista) es relativamente reducida y de igual modo, la cantidad de datos necesarios para la información de la posición (por ejemplo, pseudodistancias) es relativamente reducida. Por lo tanto, los sistemas de banda estrecha son adecuados para la presente forma de realización. Los datos de almanaque de los satélites pueden comprimirse, de tal manera que la cantidad de datos necesaria para describir la posición aproximada de todos los satélites en la constelación GPS pueda transmitirse con eficacia en un sistema de comunicación de ancho de banda reducido. Los sistemas que requieren la transmisión de grandes cantidades de datos durante un período de tiempo corto tal vez precisen de unos medios de comunicación de radiofrecuencia de mayor ancho de banda.
Estos sistemas de mayor ancho de banda pueden ser necesarios en formas de realización en las que se transmiten datos de almanaque de satélites no comprimidos.
Debe tenerse en cuenta, no obstante, que tal vez resulte eficaz utilizar un sistema de banda estrecha incluso cuando se transmite información de almanaque de satélites no comprimida, porque la información de almanaque mantiene una gran precisión durante largos períodos de tiempo (por ejemplo, un mes, habitualmente). Por lo tanto, esta información puede transmitirse una vez al mes y luego almacenarse en la unidad móvil GPS (por ejemplo, en memoria flash EEPROM) para ser utilizada durante todo el mes. En este caso, habitualmente esta información se almacena junto con un registro temporal que indica la fecha de recepción de los datos de almanaque de los satélites. Entonces, la unidad remota, tras recibir el mandato para proporcionar su información de posición, puede determinar si los datos de almanaque de los satélites son anticuados y si debe recibir o no la transmisión de los datos de almanaque proporcionados por la estación base. Si los datos no están anticuados (por ejemplo, cuando, según el registro temporal, los datos de almanaque tienen una antigüedad inferior a un mes o a cualquier otro período de tiempo predeterminado), entonces pueden utilizarse los datos de la memoria y la recepción de nuevos datos de almanaque de los satélites no es necesaria, haciéndose caso omiso de la transmisión automática de dichos datos. Como alternativa, la estación base puede tomar su decisión de transmitir datos de almanaque de los satélites sirviéndose de una lista de las unidades remotas a las que se han enviado datos de almanaque de satélites y un registro temporal que indica la última transmisión de datos de almanaque de satélites para cada una de dichas unidades remotas. A continuación, la estación base puede determinar si debe transmitir los datos de almanaque de los satélites con un mandato de corrección de la posición dependiendo de lo anticuados que estén los últimos datos de almanaque de los satélites almacenados en la unidad remota particular. Si los datos de almanaque de la unidad remota particular no están anticuados (por ejemplo, su antigüedad es inferior a un mes), se transmite el mandato de corrección de la posición sin los datos de almanaque desde la estación base hasta la unidad remota. Si los datos de almanaque están anticuados, entonces se transmiten los datos de almanaque de satélites actuales a la unidad remota.
Una vez que la unidad remota 20 recibe un mandato (por ejemplo, desde la estación base 10) para el procesamiento GPS junto con la información de almanaque de los satélites (o cuando determina que puede utilizar una versión almacenada localmente de los datos de almanaque de los satélites), el microprocesador 26 activa el convertidor RF-IF 42, el convertidor analógico-digital 44 y la memoria digital de capturas de pantalla 46 por medio de un circuito de batería, regulación de energía y conmutación de energía 36 (y las líneas de energía controlada 21a, 21b, 21c y 21d), proporcionando de ese modo la energía completa a estos componentes.
Esto determina la subconversión hasta una frecuencia IF de la señal del satélite GPS que se recibe por medio de la antena 40, y que posteriormente se somete a digitalización. A continuación, se almacena un conjunto de dichos datos, normalmente los equivalentes a una duración de entre 100 milisegundos y 1 segundo (o incluso superior), en una memoria de capturas de pantalla 46. La cantidad de datos almacenados puede ser controlada por el microprocesador 26, de una forma que permite que se almacenen más datos en la memoria 46 (para lograr una mayor sensibilidad) en las situaciones en que el ahorro de energía no es tan importante como la mejora de la sensibilidad, y se almacenen menos datos en las situaciones en que el ahorro de energía es más importante que la mejora de la sensibilidad. Habitualmente, la sensibilidad es más importante cuando las señales GPS pueden ser parcialmente obstaculizadas, y el ahorro de energía es menos importante cuando se dispone de una copiosa fuente de alimentación (por ejemplo, la batería de un coche). El direccionamiento de la memoria 46 para el almacenamiento de estos datos es controlado por un circuito integrado de matriz de puertas programable in situ 48. La subconversión de la señal GPS se realiza por medio de un sintetizador de frecuencia 38 que suministra la señal del oscilador local 39 al convertidor 42, tal como se describe en mayor detalle más adelante.
Debe observarse que, durante todo este tiempo (mientras se está llenando la memoria 46 de capturas de pantalla con las señales GPS digitalizadas de los satélites a la vista), el microprocesador DSP 32 puede mantenerse en un estado de baja energía. El convertidor RF-IF 42 y el convertidor analógico-digital 44 suelen activarse sólo durante un período de tiempo corto, que es suficiente para reunir y almacenar los datos necesarios para el cálculo de las pseudodistancias. Una vez que la recopilación de datos ha finalizado, el suministro de energía a estos circuitos conversores se interrumpe o se reduce por medio de las líneas de energía controlada 21b y 21c (mientras la memoria 46 continua recibiendo toda la energía), y de ese modo no se provoca un aumento de la disipación de la energía durante el cálculo de las pseudodistancias. A continuación, se realiza el cálculo de las pseudodistancias utilizando, en una forma de realización, un CI (DSP) de procesamiento de señales digitales programable de uso general 32 (por ejemplo, un circuito integrado TMS320C30 de Texas Instruments). El microprocesador 26 y el circuito 36 (por medio de la línea de energía controlada 21e) hacen pasar al DSP 32 al estado de energía activa antes de la realización de dichos cálculos.
Este DSP 32 difiere de los otros utilizados en algunas unidades remotas GPS por ser de uso general y programable, en contraposición con los CI de procesamiento de señales digitales personalizados y especializados. Además, el DSP 32 permite la utilización de un algoritmo de transformada rápida de Fourier (FFT), lo cual a su vez permite un cálculo muy rápido de las pseudodistancias realizando con rapidez un gran número de operaciones de correlación entre una referencia generada localmente y las señales recibidas. Suele ser necesario realizar 2046 de dichas correlaciones para llevar a cabo la búsqueda de los intervalos de medición de cada señal GPS recibida. El algoritmo de transformada rápida de Fourier permite una búsqueda simultánea y paralela de la totalidad de dichas posiciones, aumentando la velocidad del procedimiento de cálculo necesario en un factor de entre 10 y 100 con respecto a los sistemas convencionales.
Una vez que el DSP 32 ha finalizado el cálculo de pseudodistancias para cada uno de los satélites a la vista, esta información se transmite, en una forma de realización de la presente invención, al microprocesador 26, por medio de un bus de interconexión 33. En ese momento, el microprocesador 26 puede determinar que el DSP 32 y la memoria 46 vuelvan a un estado de baja energía, mediante el envío de una señal de control adecuada al circuito de batería y de regulación de energía 36. A continuación, el microprocesador 26 utiliza un módem 22 para transmitir los datos de pseudodistancia a la estación base 10, a través de un enlace de datos 16, para el cálculo de la posición definitiva. Aparte de los datos de pseudodistancia, puede transmitirse simultáneamente a la estación base 10 una etiqueta de tiempo que indica el tiempo transcurrido desde la recopilación de datos inicial en la memoria tampón 46 hasta la hora de transmisión de los datos a través del enlace de datos 16. Esta etiqueta de tiempo aumenta la capacidad de la estación base para calcular la posición, puesto que permite calcular las posiciones de los satélites GPS en el momento de la recopilación de los datos. Otra posibilidad, según el procedimiento 1 mencionado anteriormente, es que el DSP 32 calcule la posición (por ejemplo, latitud, latitud o longitud, longitud y altitud) de la unidad remota y envíe los datos al microprocesador 26, que del mismo modo retransmite estos datos a la estación base 10 por medio del módem 22. En este caso, el cálculo de la posición resulta más fácil porque el DSP hace coincidir la hora de finalización de la recepción de los mensajes de datos de los satélites con la hora de inicio de la recopilación de datos de la memoria tampón. Esto aumenta la capacidad de la unidad remota para calcular la posición, puesto que permite realizar el cálculo de las posiciones de los satélites GPS en el momento de la recopilación de los datos.
Como se representa en la Figura 1A, en una forma de realización, el módem 22 utiliza una antena separada 24 para transmitir y recibir mensajes a través del enlace de datos 16. Se observará que el módem 22 incluye un receptor de comunicación y un transmisor de comunicación que se acoplan de forma alterna a la antena 24. Análogamente, la
estación base 10 puede utilizar una antena separada 14 para transmitir y recibir mensajes del enlace de datos, permitiendo de ese modo la recepción continua de las señales GPS por medio de la antena GPS 12 de la estación base 10.
En un ejemplo común, se espera que la duración de los cálculos de posición realizados en el DSP 32 no sobrepase unos pocos segundos, dependiendo de la cantidad de datos almacenados en la memoria digital de capturas de pantalla 46 y la velocidad del DSP o varios DSP.
A partir de la descripción anterior, resultará obvio que la unidad remota 20 sólo necesita activar sus circuitos de alto consumo de energía durante una pequeña fracción del tiempo, si los mandatos de cálculo de posición de la estación base 10 son poco frecuentes. Se prevé, por lo menos en muchas situaciones, que dichos mandatos provoquen la activación del equipo remoto en su estado de alta disipación de energía sólo alrededor del 1% del tiempo o menos.
De esta forma, la batería podrá tener una duración 100 veces superior a la de los otros casos. Los mandatos de programación necesarios para la ejecución de la operación de gestión de energía se almacenan en EEPROM 28 u otros medios de almacenamiento adecuados. Esta estrategia de gestión de energía puede adaptarse a diferentes situaciones de disponibilidad de energía. Por ejemplo, cuando se dispone de energía primaria, la determinación de la posición puede tener lugar de forma continuada.
Como se ha indicado anteriormente, la memoria digital de capturas de pantalla 46 captura un registro correspondiente a un período de tiempo relativamente largo. El procesamiento eficaz de este gran bloque de datos mediante procedimientos de convolución rápida brinda la capacidad de la presente invención para procesar señales recibidas con bajos niveles (por ejemplo, cuando la recepción es deficiente debido a la obstrucción parcial por los edificios, árboles, etc.). Todas las pseudodistancias para los satélites GPS visibles se calculan utilizando estos mismos datos almacenados en memoria tampón. De esta forma, se obtiene un mayor rendimiento en relación con los receptores GPS de seguimiento continuo, en las situaciones en que la amplitud de la señal cambia de forma rápida (tales como las situaciones de obstrucciones urbanas).
En la Figura 1B, se representa una implementación ligeramente diferente, en la que están ausentes el microprocesador 26 y sus periféricos (RAM 30 y EEPROM 28) y las funciones de éstos son proporcionadas por unos circuitos adicionales contenidos dentro de una FPGA (matriz de puertas programables in situ) 49 más compleja. La estructura y el funcionamiento de la unidad remota representada en la Figura 1B se describen en mayor detalle en la solicitud de patente US con el número de serie 08/612.669, presentada el 8 de marzo de 1996 por Norman F. Krasner, en la actualidad es una patente US nº. En la unidad remota de la Figura 1B, se utiliza el DSP 32a para suministrar energía o reducir el suministro de ésta a los diferentes componentes, de forma selectiva, según un procedimiento de gestión de energía, tal como el representado en la Figura 7.
En la Figura 1C, se representa otra forma de realización según la presente invención de una unidad móvil GPS que contiene muchos de los mismos componentes que las unidades móviles GPS representadas en las Figuras 1A y 1B.
En la Figura 1C, se representa una característica de la presente invención que permite a la unidad móvil GPS aumentar la sensibilidad a expensas del ahorro de energía. Como se ha indicado anteriormente, la sensibilidad de la unidad móvil GPS puede incrementarse aumentando la cantidad de señales GPS de memoria tampón que se almacenan en la memoria 46. Esto se realiza obteniendo y digitalizando más señales GPS y almacenando los datos en la memoria 46. Este incremento del almacenamiento en memoria tampón provoca un mayor consumo de energía, pero aumenta la sensibilidad de la unidad móvil GPS. La estructura y el funcionamiento de la unidad remota representada en la Figura 1C se describe en mayor detalle en la solicitud de patente US con el número de serie 08/612.669, presentada el 8 de marzo de 1996.
Las Figuras 2A y 2B, presentan ejemplos representativos de un sistema de conversión de frecuencia RF-IF y digitalización para la unidad móvil GPS. La estructura y el funcionamiento de los ejemplos representados en las Figuras 2A y 2B se describen en mayor detalle en la solicitud de patente US con el número de serie 08/612.669, presentada el 8 de marzo de 1996.
El diagrama de flujo de la Figura 3 y los gráficos de las Figuras 4A, 4B, 4C, 4D y 4E permitirán comprender los detalles del procesamiento de señales GPS realizado en el DSP 32. Como resultará evidente a los expertos en la materia, el código máquina u otro código adecuado para realizar el procesamiento de señales que se describe a continuación se almacena en memoria EPROM 34. También es posible utilizar otros dispositivos de memoria no volátil. En lo sucesivo, se supone que se emplea el muestreo I/Q de la Figura 2A y que la memoria de capturas de pantalla 46 contiene dos canales de datos digitalizados a 2,048 MHz. El objetivo del procesamiento es determinar la temporización de la forma de onda recibida con respecto a una forma de onda generada localmente. Además, para obtener una sensibilidad alta, se procesa un tramo muy largo de dicha forma de onda, habitualmente, de entre 100 milisegundos y 1 segundo. Asimismo, debe observarse que la información Doppler que se utiliza en este procesamiento de señales puede ser la información Doppler obtenida a partir de los datos de almanaque de los satélites que están almacenados o que han sido transmitidos recientemente (o puede ser información Doppler
transmitida directamente junto con la orden de posición a la unidad remota, de manera que no es necesaria ninguna obtención de Doppler en la unidad remota).
La obtención de la información Doppler a partir de los datos de almanaque de los satélites se describirá en mayor detalle junto con la Figura 8. La solicitud de patente US con el número de serie 08/612.669, presentada el 8 de marzo de 1996 proporciona más detalles relativos al procesamiento de señales representado en las Figuras 3 y 4A a 4E.
A continuación, se proporciona un resumen del procesamiento de señales descrito anteriormente y representado en la Figura 3 y en las Figuras 4A a 4E. Las señales GPS de uno o varios satélites GPS a la vista se reciben en la unidad remota GPS a través de una antena de la unidad remota GPS. Estas señales se digitalizan y almacenan en una memoria tampón de la unidad remota GPS. Después del almacenamiento de estas señales, en una forma de realización, un procesador realiza unas operaciones de preprocesamiento, procesamiento de convolución rápida y postprocesamiento. Estas operaciones de procesamiento comprenden:
a) la separación de los datos almacenados en una serie de bloques cuyas duraciones son iguales a un múltiplo del período de trama de los códigos pseudoaleatorios (PN) contenidos en las señales GPS.
b) para cada bloque, la realización de una etapa de preprocesamiento que genera un bloque de datos comprimidos de una longitud igual a la duración de un período de código pseudoaleatorio, combinando de forma coherente subbloques de datos consecutivos que tienen una duración igual a una trama PN; esta etapa de combinación supone la suma entre los correspondientes números de muestras de cada uno de los subbloques.
c) para cada bloque comprimido, la realización de una operación de filtrado adaptada, en la que se utilizan técnicas de convolución rápida, para determinar la temporización relativa entre el código PN recibido contenido en el bloque de datos y una señal de referencia PN generada localmente (por ejemplo, la secuencia pseudoaleatoria del satélite GPS que se está procesando).
d) la determinación de una pseudodistancia aplicando una operación de elevación al cuadrado de la magnitud a los productos creados a partir de dicha operación de filtrado adaptada y aplicando un postprocesamiento a éstos, en el que se combinan los datos de elevación al cuadrado de la magnitud de todos los bloques en un único bloque de datos sumando los bloques de datos de elevación al cuadrado de la magnitud para generar un pico y
e) la búsqueda de la posición del pico de dicho bloque de datos único con una precisión alta mediante procedimientos de interpolación digital, en la que la posición es la distancia a la que se encuentra dicho pico desde el principio del bloque de datos y representa una pseudodistancia hasta un satélite GPS correspondiente a la secuencia pseudoaleatoria que se está procesando.
Habitualmente, la técnica de convolución rápida utilizada en el procesamiento de las señales GPS almacenadas en memoria tampón es una transformada rápida de Fourier (FTT) y el resultado de la convolución se genera calculando el producto de la transformada directa del bloque comprimido y una representación prealmacenada de la transformada directa de la secuencia pseudoaleatoria, para obtener un primer resultado, y a continuación aplicando a dicho primer resultado una transformada inversa para recuperar el resultado. Asimismo, los efectos de los retardos de tiempo inducidos por el efecto Doppler y los errores de tiempo inducidos por el oscilador local se compensan en cada bloque de datos comprimidos, insertando entre las operaciones directas e inversas de la transformada rápida de Fourier la multiplicación de la FFT directa de los bloques comprimidos por una exponencial compleja cuya relación fase-número de muestras se ajusta para que se corresponda con la compensación de retardo necesaria para el bloque.
En la forma de realización anterior, el procesamiento de señales GPS de cada satélite no se produce de en paralelo, sino de forma secuencial a lo largo del tiempo. En una forma de realización alternativa, las señales GPS de todos los satélites a la vista pueden ser procesadas conjuntamente en paralelo a lo largo del tiempo.
En la presente memoria, se supone que la estación base 10 presenta una vista común de todos los satélites deseados, y que se halla suficientemente cerca de la unidad remota 20 para evitar las ambigüedades asociadas al período de repetición del código PN C/A. Con una distancia de 90 millas se cumplirá este criterio. También se supone que la estación base 10 presenta un receptor GPS y que su posición geográfica es la adecuada para permitir el seguimiento continuo de alta precisión de todos los satélites a la vista.
Aunque en las diversas formas de realización de la estación base 10 que se han descrito se utiliza un componente de procesamiento de datos, tal como un ordenador de estación base que calcula la información de posición, por ejemplo, la latitud y la longitud de la unidad móvil GPS, deberá tenerse en cuenta que cada estación base 10 puede limitarse sólo a retransmitir la información recibida, por ejemplo, las pseudodistancias de una unidad móvil GPS a una ubicación central o varias ubicaciones centrales, que son las que realmente realizan el cálculo de la latitud y la longitud. De esta forma, es posible reducir el coste y la complejidad de estas estaciones base retransmisoras, eliminando la unidad de procesamiento de datos y sus componentes asociados en cada estación base
retransmisora. La ubicación central incluirá receptores (por ejemplo receptores de telecomunicación) y una unidad de procesamiento de datos y los componentes asociados. Por otra parte, en ciertas formas de realización, la estación base puede ser virtual en la medida en que puede ser un satélite que transmite información Doppler o datos de almanaque de los satélites a las unidades remotas, emulando de ese modo una estación base de una célula de transmisión.
En las Figuras 5A y 5B, se representan dos formas de realización de una estación base según la presente invención. En la estación base representada en la Figura 5A, se muestra un receptor GPS 501 que recibe señales GPS a través de una antena GPS 501a. El receptor GPS 501, que puede ser un receptor GPS convencional, proporciona una señal de referencia de tiempo, cuya temporización se mide habitualmente en relación con las señales GPS, y también datos de almanaque para todos los satélites de la constelación de satélites GPS, y puede suministrar información Doppler relativa a los satélites a la vista. Este receptor GPS 501 está acoplado a un oscilador local disciplinado 505 que recibe la señal de referencia de tiempo 510 y engancha su fase a esta referencia. Este oscilador local disciplinado 505 presenta una salida que se envía a un modulador 506. El modulador 506 también recibe los datos de almanaque de los satélites (o las señales de información de datos Doppler para cada satélite a la vista de la unidad móvil GPS) u otro tipo de señales de información de datos de satélites 511. El modulador 506 modula los datos de almanaque de los satélites (o la información Doppler) u otro tipo de información de datos de satélites en la señal del oscilador local recibida desde el oscilador local disciplinado 505 para enviar una señal modulada 513 al transmisor 503. El transmisor 503 está acoplado a la unidad de procesamiento de datos 502 por medio de la interconexión 514, de tal forma que la unidad de procesamiento de datos puede controlar el funcionamiento del transmisor 503 para que se realice la transmisión de la información de datos de satélites, tal como la información de almanaque de los satélites, a una unidad móvil GPS por medio de la antena del transmisor 503a. De esta manera, la unidad móvil GPS puede recibir la información de almanaque de los satélites, la fuente de la cual es el receptor GPS 501, y también puede recibir una señal portadora del oscilador local de alta precisión que puede ser utilizada para calibrar el oscilador local de la unidad móvil GPS como se representa en la Figura 6. Se observará que la estación base puede transmitir automáticamente los datos de almanaque actuales de los satélites cada vez que se transmite un mandato de corrección de posición a la unidad móvil. Como alternativa, como se ha descrito anteriormente, la estación base puede determinar si la versión de los datos de almanaque de los satélites almacenada en la unidad remota está anticuada, y transmitir los datos de almanaque actuales sólo cuando la versión almacenada en la unidad remota está anticuada. Si se utiliza un sistema de comunicación de gran ancho de banda como enlace de comunicación (por ejemplo, un sistema telefónico celular), es preferible utilizar el primer procedimiento. Si se utiliza un sistema de comunicación de ancho de banda reducido, es preferible utilizar el último procedimiento.
La estación base representada en la Figura 5A incluye también un receptor 504 que está acoplado para recibir señales de comunicación desde la unidad remota o móvil GPS por medio de una antena de comunicación 504a. Se observará que la antena 504a y la antena 503a del transmisor pueden ser una misma antena que, entonces, prestará servicio al transmisor y al receptor de la forma convencional.
El receptor 504 está acoplado a la unidad de procesamiento de datos 502 que puede ser un sistema informático convencional. Asimismo, la unidad de procesamiento 502 puede incluir una interconexión 512 para recibir la información Doppler u otro tipo de información de datos de satélites desde el receptor GPS 511. Esta información puede ser utilizada en el procesamiento de la información de pseudodistancias u otro tipo de información recibida desde la unidad móvil por medio del receptor 504. Esta unidad de procesamiento de datos 502 está acoplada a un dispositivo de presentación 508, que puede ser un CRT convencional. La unidad de procesamiento de datos 502 también está acoplada a un dispositivo de almacenamiento masivo 507 que incluye software GIS (sistema de información geográfica), tal como el sistema Atlas GIS de Strategic Mapping, Inc., Santa Clara, California, que se utiliza para presentar mapas en la pantalla 508. Mediante estos mapas, es posible presentar en pantalla la posición de la unidad móvil GPS en relación con un mapa.
En la Figura 5B, se representa una estación base alternativa que incluye muchos de los componentes de la Figura 5A. No obstante, en lugar de obtener los datos de almanaque de los satélites u otro tipo de información de datos de satélites a partir de un receptor GPS, la estación base de la Figura 5B incluye una fuente de datos de almanaque de los satélites u otro tipo de información de datos de satélites 552 que se obtienen a partir de un enlace de telecomunicación o un radioenlace de la manera convencional. Por ejemplo, esta información puede obtenerse a partir de un sitio de servidor de Internet. La información de los satélites se transmite al modulador 506 a través de una interconexión 553. La otra entrada del modulador 506 representada en la Figura 5B es la señal de salida de un oscilador local de referencia de calidad, tal como un oscilador local de cesio estándar. Este oscilador local de referencia 551 proporciona una frecuencia portadora de precisión en la cual se modula la información de datos de los satélites, que a continuación se transmite por medio del transmisor 503 a la unidad móvil GPS.
Aunque la descripción anterior ilustra una estación base que integra todas las funciones de transmisión de datos de satélites y de información de referencia de frecuencia, en la mayoría de situaciones prácticas estas funciones pueden realizarse parcialmente utilizando sistemas de telecomunicación comerciales, tales como los sistemas celulares o de radiobúsqueda. Por ejemplo, la mayoría de sistemas celulares digitales utilizan un oscilador local muy estable para sus señales transmitidas. En este caso, la estación base sólo necesita recopilar los datos de los
satélites, como se hace en los bloques 501 ó 552, y enviar estos datos a través de dicho sistema celular mediante un módem de red fija convencional. Las funciones de modulación concretas, incluida la transmisión de referencia de frecuencia de precisión, son realizadas a continuación por el transmisor del sitio celular.
Este sistema da por resultado una estación base de coste muy bajo que carece de circuitos RF especiales.
Análogamente, en el enlace entre la unidad remota y la estación base, el sistema celular efectúa las funciones de recepción y demodulación del bloque 504, y la estación base sólo necesita utilizar un módem para recibir dichos datos a través de líneas telefónicas fijas normales.
Una característica importante de la presente invención es que la frecuencia de transmisión y el formato de las señales de datos son intrascendentes, siempre que la frecuencia portadora sea muy estable. Asimismo, debe destacarse que la frecuencia portadora puede variar de una transmisión a otra, tal como ocurre comúnmente en los sistemas celulares, en los que se utiliza un gran número de canales de frecuencia para prestar servicio a un gran número de usuarios. En algunos casos, la frecuencia portadora también puede variar dentro de una llamada. Por ejemplo, en algunos sistemas celulares digitales, se utiliza el salto de frecuencia. También en este caso, la presente invención puede utilizar dicha señalización, siempre y cuando el receptor remoto pueda enganchar su frecuencia a las frecuencias estables transmitidas.
En la Figura 6A, se representa una forma de realización de una unidad móvil GPS según la presente invención, en la que se utiliza la señal de frecuencia portadora de precisión recibida a través de la antena del canal de comunicación 601 que es similar a la antena 24 representada en la Figura 1A. La antena 601 está acoplada al módem 602, que es similar al módem 22 de la Figura 1A, y el módem 602 está acoplado a un circuito de control automático de la frecuencia 603 que se engancha a la señal de frecuencia portadora de precisión enviada por la estación base (que puede considerarse que es o que incluye un transmisor de sitio celular de teléfono celular), y que en la presente memoria se describe de acuerdo con una forma de realización de la presente invención. El circuito de control automático de la frecuencia 603 proporciona una señal de salida 604, que habitualmente se engancha en frecuencia a la frecuencia portadora de precisión. El comparador 605 compara esta señal 604 con la salida del oscilador local GPS 606, por medio de la interconexión 608. El resultado de la comparación realizada por el comparador 605 es una señal de corrección de error 610 que se suministra como una señal de corrección al oscilador local GPS 606. De este modo, el sintetizador de frecuencia 609 proporciona una señal de oscilador local calibrada de alta calidad al subconvertidor GPS 614, a través de la interconexión 612. Se observará que el oscilador local GPS 606 y el sintetizador de frecuencia 609 pueden considerarse globalmente como un oscilador local que proporciona una señal de reloj GPS que se suministra al subconvertidor para obtener las señales GPS recibidas a través de la antena GPS
613. En la presente memoria, los términos «calibrado/a», «calibrar» y «calibración» hacen referencia a un sistema que mide y corrige la señal del oscilador local (utilizando una señal de referencia obtenida a partir de la medición del error en un oscilador local), o a un sistema que estabiliza la señal del oscilador local (por ejemplo, suministrando una señal del oscilador local del receptor de comunicación a unos circuitos de síntesis de frecuencia que generan señales de reloj GPS que se utilizan para subconvertir/obtener señales GPS).
Se observará que la señal proporcionada a través de la interconexión 612 es similar a la señal del oscilador local proporcionada al convertidor 42 a través de la interconexión 39 de la Figura 1A; asimismo, el convertidor 42 es similar al subconvertidor GPS 614 que está acoplado a la antena GPS 613 para recibir señales GPS.
En una forma de realización alternativa, la señal 604 proporcionada por la unidad de AFC del receptor de comunicación es un LO que, a la frecuencia adecuada, sirve de referencia al sintetizador de frecuencia 609. En este caso, no se necesita ningún oscilador local GPS (representado en la Figura 6A como opcional por esta razón) y la señal 604 se pasa directamente al sintetizador 609 en sustitución de la señal 607 del oscilador local GPS. De esta forma, se proporciona una señal de reloj de oscilador local estable y precisa al subconvertidor GPS, para que éste obtenga las señales GPS recibidas a través de una antena GPS.
En otra forma de realización alternativa, el resultado de la comparación realizada por el comparador 605 puede ser suministrado, por medio de la interconexión 610a, como una corrección de error al componente DSP 620 que es similar al chip DSP 32 representado en la Figura 1A.
En este caso, no se suministrará indirectamente ninguna señal de corrección 610 al sintetizador de frecuencia 609. El circuito de control automático de la frecuencia puede implementarse utilizando una serie de técnicas convencionales que incluyen un bucle de enganche de fase, un bucle de enganche de frecuencia o un estimador de fase de bloque.
En la Figura 6B, se representa otra forma de realización de una unidad móvil GPS para calibrar el oscilador local GPS que se utiliza para obtener (por ejemplo, mediante subconversión) las señales GPS en la unidad móvil de la presente invención. El sistema consiste en obtener una frecuencia estable a partir de los circuitos de recepción de un receptor de comunicación. Muchas señales de comunicación, tales como las señales celulares digitales y las señales PCS, presentan una estabilidad de las frecuencias portadoras muy buena (de 0,1 partes por millón). Los receptores para dichas señales proporcionan, como parte de sus funciones, un procedimiento de enganche de fase
que se aplica a la portadora de la señal del receptor, para que de ese modo dicha portadora pueda ser eliminada y pueda realizarse la demodulación de los datos digitales superpuestos a la portadora. El procedimiento de enganche de fase normalmente produce, como parte de sus funciones, un oscilador local estable que puede ser utilizado para estabilizar por separado los osciladores locales de un receptor GPS, eliminando de ese modo los componentes de mayor coste del receptor.
La señal de comunicación recibida por el receptor de comunicación 640 puede presentar una de las frecuencias de una pluralidad de frecuencias portadoras posibles, dependiendo del canal con el que está sintonizada. La primera etapa (convertidor 642) del receptor realiza la subconversión de la señal de entrada en una señal de frecuencia IF única, por ejemplo, de 140 MHz.
Esta subconversión es controlada por el oscilador VCO1 643 que suministra una entrada de señal de oscilador al subconvertidor 642. La salida del VCO1, a su vez, es controlada por el sintetizador de frecuencia 644 que suministra una entrada a los osciladores VCO1 643 y VCO2 647. El mezclador 646 forma una segunda etapa de subconvertidor RF-IF que es controlada por una señal de entrada del oscilador 647. La etapa siguiente (demodulador de bucle de Costas 648 y oscilador de voltaje controlado y temperatura compensada (TCVCXO) 645) del receptor de comunicación es un circuito de enganche de fase cuya finalidad es generar una señal de oscilador local que esté enganchada en fase a la frecuencia portadora de la señal de entrada. Para una señal con modulación por desplazamiento de fase, el bucle de Costas (véase por ejemplo el documento de Gardner, «Phaselock Techniques», 2ª edición, John Wiley & Sons, 1979) es un circuito común muy conocido dentro de la técnica para realizar este circuito. El bucle de Costas representado en la Figura 6B suministra un voltaje de corrección de frecuencia al generador de frecuencia de referencia TCVCXO 645, hecho que determina que la salida del TCVCXO 645 esté alineada en fase y en frecuencia con la frecuencia portadora de la señal IF.
A continuación, la salida del VCO 645a (del TCVCXO 645) puede ser suministrada como una frecuencia de referencia a un sintetizador de frecuencia 654 utilizado con el subconvertidor GPS 652 de la parte del receptor GPS
650. De esta manera, el sintetizador de frecuencia genera entradas para los osciladores locales (VCO3 653 y VCO4 655), que serán utilizadas en el sistema GPS que tiene la misma estabilidad de frecuencia que la señal de comunicación recibida. El oscilador 653 controla la primera etapa de la subconversión RF-IF, y el oscilador 655 controla la segunda etapa de la subconversión RF-IF. El mezclador 656 forma una segunda etapa de subconversión RF-IF que recibe una primera frecuencia intermedia desde el subconvertidor 652 y suministra una segunda frecuencia intermedia a los circuitos digitalizadores (representados junto con la memoria tampón y el procesador GPS en el bloque 657).
Debe observarse que el sistema anterior es aplicable, aunque la frecuencia de la señal de comunicación recibida varíe de un tiempo de recepción al siguiente cuando la señal es asignada a un canal de frecuencia diferente.
En la Figura 6C, se representa un sistema alternativo al anterior. En este caso se proporciona, al circuito integrado de un sintetizador digital directo (DDS) 677, una palabra de sintonización digital del bucle de Costas 679, que también se implementa como un circuito digital.
La palabra de sintonización también puede proporcionarse al sintetizador de frecuencia 689 que forma parte del receptor GPS, para estabilizar sus osciladores locales. En este caso, el sintetizador de frecuencia puede utilizar también un DDS 689b para ajustar con precisión su frecuencia, lo cual es una característica inherente a los DDS.
Existen combinaciones híbridas alternativas de los sistemas anteriores, tales como un DDS en el receptor de comunicación pero con la salida del LO del DDS aplicada al sistema GPS. El procedimiento general consiste en que un circuito de enganche de frecuencia o enganche de fase del receptor de comunicación genera una señal de voltaje de sintonización o de oscilador local que se suministra a un circuito de síntesis de frecuencia del receptor GPS para estabilizar los osciladores locales dispuestos por este sistema.
Debe tenerse en cuenta que los circuitos de enganche de fase de los receptores 640 y 670 pueden implementarse alternativamente de forma completa o parcial con unos medios de procesamiento de señales digitales en lugar de unos medios analógicos. En este caso, la entrada para estos circuitos puede ser digitalizada por medio de un convertidor A/D, y las funciones de circuito de estos bloques pueden crearse utilizando elementos de procesamiento de señales digitales predefinidos o programables (es decir, unos DSP programables).
En la Figura 7, se ilustra una secuencia particular de la gestión de la energía, según una forma de realización de la presente invención. Se apreciará que existen diversas formas conocidas en la técnica para reducir la energía. Dichas formas incluyen el retardo del reloj proporcionado a un componente sincrónico controlado, así como la interrupción completa del suministro de energía a un componente particular o la desactivación de ciertos circuitos de un componente mientras otros permanecen activos. Debe observarse, por ejemplo, que los bucles de enganche de fase y los circuitos de oscilador requieren unos períodos de arranque y de estabilización y, por lo tanto, los diseñadores pueden decidir no interrumpir totalmente (o no interrumpir en absoluto) el suministro de energía para estos componentes. En el ejemplo representado en la Figura 7, se empieza por la etapa 701, en la que los diversos componentes del sistema se inicializan y pasan a un estado de energía reducida. Ya sea periódicamente o bien
después de un período de tiempo predeterminado, el receptor de comunicación del módem 22 recupera la energía completa para determinar si se están enviando mandatos desde la estación base 10. Esto tiene lugar en la etapa
703. Si en la etapa 705 se recibe una petición de información de posición desde una unidad base, el módem 22 transmite el correspondiente aviso al circuito de gestión de energía en la etapa 707. En ese momento, el receptor de comunicación del módem 22 puede ser desconectado durante un período de tiempo predeterminado o puede ser desconectado para ser conectado de nuevo periódicamente en un momento posterior (etapa 709). Debe tenerse en cuenta, que también es posible mantener el receptor de comunicación en el estado de energía completa en lugar de desconectarlo. A continuación, en la etapa 711, el circuito de gestión de energía determina que la parte del receptor GPS de la unidad móvil vuelva al estado de energía completa suministrando energía al convertidor 42 y los convertidores analógico-digitales 44. Si el oscilador de frecuencia 38 también estaba desconectado, entonces se conecta dicho componente, que entonces pasa al estado de energía completa, y se permite su estabilización durante un período determinado. En la etapa 713, el receptor GPS, que incluye los componentes 38, 42 y 44, recibe la señal GPS. Esta señal GPS se almacena en la memoria tampón 46, que también ha vuelto al estado de energía completa cuando el GPS ha vuelto al estado de energía completa en la etapa 711. Una vez que ha finalizado la recopilación de información de capturas de pantalla, entonces el receptor GPS vuelve a un estado de energía reducida en la etapa 717 (esta etapa suele comprender la reducción de energía para el convertidor 42 y 44, mientras se mantiene la memoria 46 en el estado de energía completa). En la etapa 719, el sistema de procesamiento vuelve al estado de energía completa. En una forma de realización, esto conlleva suministrar la energía completa al chip DSP 32; no obstante, si el chip DSP 32 también presta funciones de gestión de energía, como en el caso de la forma de realización representada en la Figura 1C, entonces el chip DSP 32a habitualmente vuelve al estado de energía completa en la etapa 707. En la forma de realización representada en la Figura 1A, en la que el microprocesador 26 realiza la función de gestión de energía, el sistema de procesamiento (tal como el chip DSP 32) puede volver al estado de energía completa en la etapa 719. En la etapa 721, la señal GPS se procesa según el procedimiento de la presente invención, representado en la Figura 3. A continuación, tras la finalización del procesamiento de la señal GPS, el sistema de procesamiento pasa a un estado de energía reducida como se representa en la etapa 23 (a menos que el sistema de procesamiento también lleve a cabo el control de la gestión de la energía, como se ha indicado anteriormente). A continuación, en la etapa 725, el transmisor de comunicación del módem 22 vuelve al estado de energía completa para transmitir la señal GPS procesada a la estación base 10, en la etapa 727. Una vez transmitida la señal GPS procesada (por ejemplo, información de pseudodistancia o información de latitud y longitud), el transmisor de comunicación vuelve al estado de energía reducida en la etapa 729 y el sistema de gestión de energía permanece a la espera de que se aplique un retardo de un período de tiempo (por ejemplo, un período de tiempo predeterminado) en la etapa 731. Una vez aplicado este retardo, el receptor de comunicación del módem 22 vuelve al estado de energía completa para determinar si se está enviando una petición desde una estación base.
En la Figura 8, se representa un procedimiento para obtener información Doppler para los satélites a la vista a partir de los datos de almanaque de los satélites transmitidos a una unidad remota según la presente invención. La unidad remota recibe, en la etapa 801, los datos de almanaque de los satélites y almacena estos datos en la unidad remota (por ejemplo, en memoria flash EEPROM).
De forma opcional, la unidad remota puede añadir a los datos un registro de la fecha y hora actuales para determinar si los datos de almanaque están o no anticuados como se describe más adelante.
En la etapa 803, la unidad remota determina la hora del día aproximada y su posición aproximada. Utilizando la hora y la posición aproximada con los datos de almanaque de los satélites, la unidad remota determina en la etapa 805 la información Doppler de todos los satélites a la vista. Cuando recibe el mandato de corrección de posición desde la estación base, la unidad remota puede recibir también una identificación de los satélites a la vista y utilizar dicha identificación para calcular sólo la información Doppler de los satélites identificados a partir de los datos de almanaque y del tiempo y la posición aproximada determinados en la etapa 803. Aunque los datos de almanaque se proporcionan en una forma particular dentro de la señal transmitida por los satélites GPS, no es necesario suministrar esta información a través del enlace de comunicación en esa misma forma. Por ejemplo, los datos pueden comprimirse reduciendo la precisión de las diversas cantidades transmitidas. La reducción de la precisión puede reducir la precisión de la información Doppler, aun así dicha reducción puede quedar comprendida dentro de la cuota de errores permitida del receptor GPS. Como alternativa, puede preferirse otra representación de los datos de almanaque, por ejemplo, la representación obtenida ajustando los datos de posición de los satélites a un conjunto de curvas (tales como unos armónicos esféricos). Este procedimiento puede permitir al receptor GPS calcular con más facilidad la información Doppler a partir de los datos de almanaque proporcionados.
Puede obtenerse información Doppler aproximada calculando la distancia desde la unidad remota hasta los satélites deseados en momentos separados por un intervalo de tiempo adecuado (por ejemplo, 1 segundo). Esto se realiza utilizando los datos de almanaque suministrados y la posición aproximada del usuario (por ejemplo, basada en la ubicación fija del sitio celular en un sistema telefónico celular). La diferencia entre esas distancias es la variación de la distancia, que puede dividirse por la velocidad de la luz para obtener el efecto Doppler expresado en segundos por segundo (o en otro conjunto adecuado de unidades; por ejemplo, en nanosegundos por segundo).
Aunque los procedimientos y aparatos de la presente invención se han descrito haciendo referencia a los satélites GPS, se observará que las enseñanzas son igualmente aplicables a unos sistemas de posicionamiento que utilizan pseudolites o una combinación de satélites y pseudolites. Los pseudolites son transmisores situados en tierra que transmiten un código PN (similar a una señal GPS) modulado en una señal portadora de banda en L, generalmente sincronizada con el tiempo GPS. Cada transmisor puede estar asignado a un único código PN para permitir la identificación de un receptor remoto. Los pseudolites son útiles en situaciones en las que es posible que no estén disponibles señales GPS procedentes de un satélite orbitante, tal como túneles, minas, edificios u otras zonas cerradas. El término “satélite”, tal como se utiliza en la presente memoria, incluye pseudolite o equivalentes de pseudolites, y el término señales GPS, tal como se utiliza en la presente memoria, incluye las señales de tipo GPS procedentes de pseudolites o equivalentes de pseudolites.
En la exposición anterior, la invención ha sido descrita haciendo referencia a su aplicación al sistema de posicionamiento global por satélite (GPS) de Estados Unidos. Es evidente, no obstante, que estos procedimientos son asimismo aplicables a sistemas de posicionamiento por satélite similares y, en particular, al sistema ruso Glonass. La diferencia fundamental del sistema Glonass respecto del sistema GPS es que las transmisiones de los diferentes satélites se diferencian entre sí utilizando frecuencias portadoras ligeramente diferentes, en lugar de utilizar códigos pseudoaleatorios diferentes. En esta situación, prácticamente todos los circuitos y algoritmos descritos previamente son aplicables, excepto cuando, durante el procesamiento de la transmisión de un nuevo satélite, se utiliza un multiplicador exponencial diferente para preprocesar los datos. Esta operación puede combinarse con la operación de corrección Doppler del recuadro 108 de la Figura 3, sin necesidad de realizar ninguna otra operación de procesamiento. En esta situación, sólo se necesita un código PN y, por lo tanto, puede eliminarse el bloque 106. El término «GPS» utilizado en la presente memoria incluye dichos sistemas de posicionamiento por satélite alternativos, incluido el sistema ruso Glonass.
Aunque las Figuras 1A, 1B y 1C ilustran una pluralidad de bloques lógicos que procesan señales digitales (por ejemplo, 46, 32, 34, 26, 30 y 28, en la Figura 1A), debe tenerse en cuenta que algunos o todos los bloques pueden combinarse en un solo circuito integrado, sin que ello suponga perder el carácter programable de la parte DSP de dicho circuito. Dicha implementación puede resultar importante para las aplicaciones de muy poco consumo de energía y sensibles a los costes.
Se observará que los diversos aspectos de la presente invención, incluida la utilización de los datos de almanaque de los satélites por la unidad remota para obtener información Doppler e incluida la utilización de una señal de frecuencia portadora de precisión para calibrar la salida de un oscilador local GPS que se utiliza para obtener señales GPS, pueden utilizarse en unidades móviles GPS que presentan arquitecturas como las descritas en la solicitud de patente US con el número de serie 08/652.833, presentada el 23 de mayo de 1996 por Norman F. Krasner.
Debe tenerse en cuenta, además, que una o varias de las operaciones de la Figura 3 pueden ser realizadas por medio de lógica cableada para incrementar la velocidad de procesamiento global, manteniendo el carácter programable del procesador DSP. Por ejemplo, la capacidad de corrección Doppler del bloque 108 puede obtenerse mediante hardware dedicado que puede instalarse entre la memoria digital de capturas de pantallas 46 y el CI del DSP 32. El resto de funciones de software de la Figura 3 pueden ser realizadas, en estos casos, por el procesador DSP. Asimismo, pueden utilizarse varios DSP conjuntamente en una unidad remota para obtener una mayor potencia de procesamiento. Se observará también que es posible recopilar (muestrear) varios conjuntos de tramas de señales de datos GPS y procesar cada conjunto de la manera indicada en la Figura 3, a la vez que se da cuenta del tiempo transcurrido entre la recopilación de cada conjunto de tramas.
En la presente memoria, se ha descrito la presente invención con referencia a ejemplos de formas de realización particulares. No obstante, es evidente que será posible realizar modificaciones y cambios En consecuencia, tanto la memoria como los dibujos adjuntos no deberán interpretarse en sentido limitativo, sino ilustrativo.

Claims (10)

  1. REIVINDICACIONES
    1. Procedimiento para determinar la posición de una unidad remota (20), que comprende:
    5 recibir, en dicha unidad remota (20), datos de almanaque de satélites comprimidos u otra representación de datos de almanaque para una pluralidad de satélites de un sistema de posicionamiento por satélite, desde una estación base situada en una posición separada o desde otro satélite que emula una estación base;
    determinar la hora del día y la posición aproximada de la unidad remota;
    10 obtener la información Doppler para una pluralidad de dichos satélites de dicho sistema de posicionamiento por satélite, a partir de dichos datos de almanaque de satélites comprimidos u otra representación de datos de almanaque, utilizando la hora del día y la posición aproximadas;
    15 recibir señales GPS a partir de dichos satélites de dicho sistema de posicionamiento por satélite;
    calcular, en dicha unidad remota, las pseudodistancias para dicha unidad remota, compensando dicha información Doppler el efecto Doppler de dichas señales GPS que se reciben desde dichos satélites de dicho sistema de posicionamiento por satélite para calcular las pseudodistancias en la unidad remota.
  2. 2. Procedimiento según la reivindicación 1, caracterizado porque dichos datos de almanaque de satélites comprimidos u otra representación de datos de almanaque se obtienen a partir de unos medios de almacenamiento de referencia situados en dicha estación base.
    25 3. Procedimiento según la reivindicación 1, caracterizado porque comprende además la transmisión de dichas pseudodistancias desde dicha unidad remota hasta dicha estación base; y porque dicha estación base calcula una latitud y una longitud que indican la posición de dicha unidad remota.
  3. 4. Procedimiento según la reivindicación 1, caracterizado porque la otra representación de datos de almanaque 30 comprende datos de posición de los satélites ajustados a un conjunto de curvas.
  4. 5. Procedimiento según la reivindicación 4, caracterizado porque el conjunto de curvas comprende armónicos esféricos.
    35 6. Unidad remota que utiliza datos que representan señales GPS para proporcionar la posición de dicha unidad remota, comprendiendo dicha unidad remota un primer receptor para recibir dichas señales GPS desde los satélites de un sistema de posicionamiento por satélite y una unidad de procesamiento,
    caracterizada porque:
    40 la unidad remota incluye además un segundo receptor;
    dicho segundo receptor puede utilizarse para acoplarse a través de un enlace de comunicaciones para recibir los datos de almanaque de satélites comprimidos u otra representación de datos de almanaque para una pluralidad de
    45 satélites de dicho sistema de posicionamiento por satélite, a la vista de dicha unidad remota, siendo recibida dicha información de posición de satélites desde una estación base situada en una posición separada o desde otro satélite que emula una estación base;
    dicha unidad de procesamiento está acoplada a dicho segundo receptor para recibir los datos de almanaque de
    50 satélites comprimidos u otra representación de datos de almanaque, para obtener información Doppler para dicha pluralidad de satélites a partir de dichos datos de almanaque de satélites comprimidos u otra representación de datos de almanaque, y para calcular pseudodistancias para dicha unidad remota, compensando dicha información Doppler el efecto Doppler de las señales GPS que se reciben para calcular las pseudodistancias en la unidad remota.
  5. 7. Unidad remota según la reivindicación 6, caracterizada porque dicho enlace de comunicación comprende unos medios de comunicación de radiofrecuencia.
  6. 8. Unidad remota según la reivindicación 6, caracterizada porque comprende además un transmisor acoplado a 60 dicha unidad de procesamiento, estando destinado dicho transmisor a transmitir dichas pseudodistancias.
  7. 9. Unidad remota según la reivindicación 6, caracterizada porque dicha unidad de procesamiento comprende un circuito integrado de procesamiento de señales digitales (DSP), y porque dicho DSP procesa dichas señales GPS y dicha información Doppler utilizando un algoritmo de convolución rápida.
  8. 10.
    Unidad remota según la reivindicación 9, caracterizada porque comprende además un transmisor acoplado a dicha unidad de procesamiento, estando destinado dicho transmisor a transmitir dichas pseudodistancias.
  9. 11.
    Unidad remota según la reivindicación 6, caracterizada porque la otra representación de los datos de almanaque comprende datos de posición de los satélites ajustados a un conjunto de curvas.
  10. 12.
    Unidad remota según la reivindicación 11, caracterizada porque el conjunto de curvas comprende armónicos esféricos.
ES07105832T 1996-03-08 1997-03-07 Receptor gps perfeccionado que utiliza información de la posición de los satélites para compensar el efecto doppler. Expired - Lifetime ES2373819T3 (es)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US08/612,582 US5874914A (en) 1995-10-09 1996-03-08 GPS receiver utilizing a communication link
US612582 1996-03-08
US08/759,523 US5841396A (en) 1996-03-08 1996-12-04 GPS receiver utilizing a communication link
US759523 1996-12-04

Publications (1)

Publication Number Publication Date
ES2373819T3 true ES2373819T3 (es) 2012-02-09

Family

ID=27086799

Family Applications (2)

Application Number Title Priority Date Filing Date
ES97908910T Expired - Lifetime ES2296306T3 (es) 1996-03-08 1997-03-07 Receptor gps perfeccionado que utiliza un enlace de comunicacion.
ES07105832T Expired - Lifetime ES2373819T3 (es) 1996-03-08 1997-03-07 Receptor gps perfeccionado que utiliza información de la posición de los satélites para compensar el efecto doppler.

Family Applications Before (1)

Application Number Title Priority Date Filing Date
ES97908910T Expired - Lifetime ES2296306T3 (es) 1996-03-08 1997-03-07 Receptor gps perfeccionado que utiliza un enlace de comunicacion.

Country Status (9)

Country Link
US (3) US5841396A (es)
EP (3) EP2285018A3 (es)
JP (3) JP2000506348A (es)
AU (1) AU2070297A (es)
DE (1) DE69738213T2 (es)
DK (1) DK0885492T3 (es)
ES (2) ES2296306T3 (es)
PT (1) PT885492E (es)
WO (1) WO1997033382A1 (es)

Families Citing this family (488)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8352400B2 (en) 1991-12-23 2013-01-08 Hoffberg Steven M Adaptive pattern recognition based controller apparatus and method and human-factored interface therefore
US10361802B1 (en) 1999-02-01 2019-07-23 Blanding Hovenweep, Llc Adaptive pattern recognition based control system and method
US6208290B1 (en) 1996-03-08 2001-03-27 Snaptrack, Inc. GPS receiver utilizing a communication link
US5841396A (en) 1996-03-08 1998-11-24 Snaptrack, Inc. GPS receiver utilizing a communication link
US5884214A (en) 1996-09-06 1999-03-16 Snaptrack, Inc. GPS receiver and method for processing GPS signals
US7092369B2 (en) 1995-11-17 2006-08-15 Symbol Technologies, Inc. Communications network with wireless gateways for mobile terminal access
US8090598B2 (en) 1996-01-29 2012-01-03 Progressive Casualty Insurance Company Monitoring system for determining and communicating a cost of insurance
US8140358B1 (en) 1996-01-29 2012-03-20 Progressive Casualty Insurance Company Vehicle monitoring system
US6133874A (en) * 1996-03-08 2000-10-17 Snaptrack, Inc. Method and apparatus for acquiring satellite positioning system signals
GB9615771D0 (en) * 1996-07-26 1996-09-04 Univ Brunel Navigation system
US6236365B1 (en) 1996-09-09 2001-05-22 Tracbeam, Llc Location of a mobile station using a plurality of commercial wireless infrastructures
US9134398B2 (en) 1996-09-09 2015-09-15 Tracbeam Llc Wireless location using network centric location estimators
CA2265875C (en) 1996-09-09 2007-01-16 Dennis Jay Dupray Location of a mobile station
US6169789B1 (en) * 1996-12-16 2001-01-02 Sanjay K. Rao Intelligent keyboard system
US6215442B1 (en) * 1997-02-03 2001-04-10 Snaptrack, Inc. Method and apparatus for determining time in a satellite positioning system
US6377209B1 (en) * 1997-02-03 2002-04-23 Snaptrack, Inc. Method and apparatus for satellite positioning system (SPS) time measurement
US6215441B1 (en) * 1997-04-15 2001-04-10 Snaptrack, Inc. Satellite positioning reference system and method
US6690681B1 (en) 1997-05-19 2004-02-10 Airbiquity Inc. In-band signaling for data communications over digital wireless telecommunications network
CN1310555C (zh) * 1997-05-19 2007-04-11 爱尔比奎特公司 远距离通信设备、无线手持装置及相关方法
US6493338B1 (en) 1997-05-19 2002-12-10 Airbiquity Inc. Multichannel in-band signaling for data communications over digital wireless telecommunications networks
US6771629B1 (en) 1999-01-15 2004-08-03 Airbiquity Inc. In-band signaling for synchronization in a voice communications network
US6560461B1 (en) 1997-08-04 2003-05-06 Mundi Fomukong Authorized location reporting paging system
US6041222A (en) * 1997-09-08 2000-03-21 Ericsson Inc. Systems and methods for sharing reference frequency signals within a wireless mobile terminal between a wireless transceiver and a global positioning system receiver
US6531982B1 (en) 1997-09-30 2003-03-11 Sirf Technology, Inc. Field unit for use in a GPS system
US5949372A (en) * 1997-10-03 1999-09-07 Trimble Navigation Limited Signal injection for calibration of pseudo-range errors in satellite positioning system receivers
US6070078A (en) * 1997-10-15 2000-05-30 Ericsson Inc. Reduced global positioning system receiver code shift search space for a cellular telephone system
US6327471B1 (en) 1998-02-19 2001-12-04 Conexant Systems, Inc. Method and an apparatus for positioning system assisted cellular radiotelephone handoff and dropoff
US6081229A (en) * 1998-03-17 2000-06-27 Qualcomm Incorporated System and method for determining the position of a wireless CDMA transceiver
US5982823A (en) * 1998-03-17 1999-11-09 Northrop Grumman Corp Direct frequency selection and down-conversion for digital receivers
US6348744B1 (en) 1998-04-14 2002-02-19 Conexant Systems, Inc. Integrated power management module
US5999124A (en) * 1998-04-22 1999-12-07 Snaptrack, Inc, Satellite positioning system augmentation with wireless communication signals
US6122506A (en) * 1998-05-04 2000-09-19 Trimble Navigation Limited GSM cellular telephone and GPS receiver combination
US6104338A (en) * 1998-05-04 2000-08-15 Snaptrack, Inc. Method and apparatus for operating a satellite positioning system receiver
US6061018A (en) * 1998-05-05 2000-05-09 Snaptrack, Inc. Method and system for using altitude information in a satellite positioning system
US6324159B1 (en) * 1998-05-06 2001-11-27 Sirius Communications N.V. Method and apparatus for code division multiple access communication with increased capacity through self-noise reduction
US6636740B1 (en) 1998-06-16 2003-10-21 Ericsson Inc. Apparatus and methods for position computation based on broadcast initialization data
US6313786B1 (en) * 1998-07-02 2001-11-06 Snaptrack, Inc. Method and apparatus for measurement processing of satellite positioning system (SPS) signals
US6188351B1 (en) * 1998-08-13 2001-02-13 Ericsson Inc. Method for improving signal acquistion in a global positioning system receiver
US6204808B1 (en) 1998-08-13 2001-03-20 Ericsson Inc. Method and system for aiding GPS receivers via a cellular or PCS network
US6141570A (en) * 1998-08-26 2000-10-31 Ericsson Inc. System and method for conserving battery energy in a wireless telephone with an integral global positioning system
US7711038B1 (en) 1998-09-01 2010-05-04 Sirf Technology, Inc. System and method for despreading in a spread spectrum matched filter
IL131446A0 (en) * 1998-09-01 2001-01-28 Hughes Electronics Corp Communication network initialization apparatus and method for fast gps-based positioning
US6515617B1 (en) * 1998-09-01 2003-02-04 Hughes Electronics Corporation Method and system for position determination using geostationary earth orbit satellite
US6067045A (en) 1998-09-01 2000-05-23 Hughes Electronics Corporation Communication network initialization apparatus and method for fast GPS-based positioning
US7545854B1 (en) 1998-09-01 2009-06-09 Sirf Technology, Inc. Doppler corrected spread spectrum matched filter
US6327473B1 (en) * 1998-09-08 2001-12-04 Qualcomm Incorporated Method and apparatus for increasing the sensitivity of a global positioning satellite receiver
US6323805B1 (en) * 1998-09-09 2001-11-27 Qualcomm, Inc. Data boundary aware base station assisted position location
US6665539B2 (en) * 1998-09-09 2003-12-16 Qualcomm Inc. Position location with low tolerance oscillator
US6208292B1 (en) 1998-09-09 2001-03-27 Qualcomm Incorporated Position location with low tolerance oscillator
US6222483B1 (en) * 1998-09-29 2001-04-24 Nokia Mobile Phones Limited GPS location for mobile phones using the internet
US6693953B2 (en) 1998-09-30 2004-02-17 Skyworks Solutions, Inc. Adaptive wireless communication receiver
US6963626B1 (en) * 1998-10-02 2005-11-08 The Board Of Trustees Of The Leland Stanford Junior University Noise-reducing arrangement and method for signal processing
US6415154B1 (en) * 1998-10-06 2002-07-02 Ericsson Inc. Method and apparatus for communicating auxilliary information and location information between a cellular telephone network and a global positioning system receiver for reducing code shift search time of the receiver
US6229478B1 (en) * 1998-11-05 2001-05-08 Trimble Navigation Limited Near-real time DGPS network and server system
US6321090B1 (en) * 1998-11-06 2001-11-20 Samir S. Soliman Mobile communication system with position detection to facilitate hard handoff
US6205400B1 (en) * 1998-11-27 2001-03-20 Ching-Fang Lin Vehicle positioning and data integrating method and system thereof
US7215967B1 (en) * 1998-12-22 2007-05-08 Telefonaktiebolaget Lm Ericsson (Publ) System and method for fast cold start of a GPS receiver in a telecommunications environment
US6449485B1 (en) 1999-01-22 2002-09-10 International Business Machines Corporation Technique for mobile wireless device location
US7904187B2 (en) 1999-02-01 2011-03-08 Hoffberg Steven M Internet appliance system and method
US6606349B1 (en) 1999-02-04 2003-08-12 Sirf Technology, Inc. Spread spectrum receiver performance improvement
US6448925B1 (en) 1999-02-04 2002-09-10 Conexant Systems, Inc. Jamming detection and blanking for GPS receivers
US6058338A (en) * 1999-02-12 2000-05-02 Qualcomm Incorporated Method and apparatus for efficient GPS assistance in a communication system
GB2347035B (en) * 1999-02-16 2003-10-08 Symmetricom Inc Positioning system
US20020026321A1 (en) * 1999-02-26 2002-02-28 Sadeg M. Faris Internet-based system and method for fairly and securely enabling timed-constrained competition using globally time-sychronized client subsystems and information servers having microsecond client-event resolution
US6067503A (en) * 1999-03-24 2000-05-23 Rockwell Collins, Inc. Method and apparatus for compensating unexpected frequency shifts in positioning receivers
US6577271B1 (en) 1999-03-30 2003-06-10 Sirf Technology, Inc Signal detector employing coherent integration
US6304216B1 (en) 1999-03-30 2001-10-16 Conexant Systems, Inc. Signal detector employing correlation analysis of non-uniform and disjoint sample segments
US6829534B2 (en) 1999-04-23 2004-12-07 Global Locate, Inc. Method and apparatus for performing timing synchronization
US9020756B2 (en) * 1999-04-23 2015-04-28 Global Locate, Inc. Method and apparatus for processing satellite positioning system signals
US6411892B1 (en) * 2000-07-13 2002-06-25 Global Locate, Inc. Method and apparatus for locating mobile receivers using a wide area reference network for propagating ephemeris
US6453237B1 (en) 1999-04-23 2002-09-17 Global Locate, Inc. Method and apparatus for locating and providing services to mobile devices
US7053824B2 (en) * 2001-11-06 2006-05-30 Global Locate, Inc. Method and apparatus for receiving a global positioning system signal using a cellular acquisition signal
JP2000310673A (ja) * 1999-04-26 2000-11-07 Matsushita Electric Ind Co Ltd Gps受信機
US6301545B1 (en) 1999-04-30 2001-10-09 Sirf Technology, Inc. Global positioning system tag system
JP2002544706A (ja) * 1999-05-10 2002-12-24 シリウス コミュニカション エヌ.ヴイ. 高速ソフトウェア再構成可能な符号分割多元接続通信のための方法および装置
US7372888B1 (en) * 1999-05-10 2008-05-13 Agilent Technologies Inc. Method and apparatus for software reconfigurable communication transmission/reception and navigation signal reception
US6351486B1 (en) 1999-05-25 2002-02-26 Conexant Systems, Inc. Accelerated selection of a base station in a wireless communication system
JP2001021637A (ja) * 1999-07-07 2001-01-26 Mitsubishi Electric Corp 位置測定装置および位置測定方法
KR100749711B1 (ko) * 1999-07-20 2007-08-16 퀄컴 인코포레이티드 통신 신호의 변화를 판정하고, 이러한 정보를 이용하여 sps 신호 수신 및 처리를 개선하는 방법
US7327779B1 (en) 1999-07-23 2008-02-05 Agilent Technologies, Inc. Method and apparatus for high-speed software reconfigurable code division multiple access communication
US6321091B1 (en) * 1999-07-29 2001-11-20 Bryan Holland Portable locator system and method
US20050026589A1 (en) 1999-07-29 2005-02-03 Bryan Holland Remote locator system using A E911-enabled wireless system
US6278403B1 (en) 1999-09-17 2001-08-21 Sirf Technology, Inc. Autonomous hardwired tracking loop coprocessor for GPS and WAAS receiver
US6487393B1 (en) * 1999-10-04 2002-11-26 General Electric Company Method for data exchange with a mobile asset considering communication link quality
US6223105B1 (en) * 1999-10-14 2001-04-24 Seagull Technology, Inc. System for determining the orientation in space of a moving body relative to the earth
JP2001116821A (ja) * 1999-10-15 2001-04-27 Sony Corp Gps測位方法およびgps受信装置
US6313787B1 (en) * 1999-11-12 2001-11-06 Motorola, Inc. Method and apparatus for assisted GPS protocol
US6175329B1 (en) * 1999-11-22 2001-01-16 University Of North Carolina - Chapel Hill Automatic emergency and position indicator
US6526322B1 (en) 1999-12-16 2003-02-25 Sirf Technology, Inc. Shared memory architecture in GPS signal processing
US6295023B1 (en) 2000-01-21 2001-09-25 Ericsson Inc. Methods, mobile stations and systems for acquiring global positioning system timing information
US20010039192A1 (en) * 2000-01-27 2001-11-08 Osterling Jacob Kristian Time synchronization of radio networks
AU2001235001A1 (en) 2000-02-11 2001-08-20 Richard A. Geving Device and method for transmitting vehicle position
US6429811B1 (en) 2000-02-15 2002-08-06 Motorola, Inc. Method and apparatus for compressing GPS satellite broadcast message information
US6501420B2 (en) * 2000-02-24 2002-12-31 Koninklijke Philips Electronics N.V. Mobile cellular telephone comprising a GPS receiver
GB0004371D0 (en) * 2000-02-24 2000-04-12 Koninkl Philips Electronics Nv GPS receiver and mobile unit incorporating the same
US7321774B1 (en) 2002-04-24 2008-01-22 Ipventure, Inc. Inexpensive position sensing device
US7905832B1 (en) 2002-04-24 2011-03-15 Ipventure, Inc. Method and system for personalized medical monitoring and notifications therefor
US7366522B2 (en) 2000-02-28 2008-04-29 Thomas C Douglass Method and system for location tracking
US6975941B1 (en) 2002-04-24 2005-12-13 Chung Lau Method and apparatus for intelligent acquisition of position information
US7218938B1 (en) 2002-04-24 2007-05-15 Chung Lau Methods and apparatus to analyze and present location information
US7212829B1 (en) * 2000-02-28 2007-05-01 Chung Lau Method and system for providing shipment tracking and notifications
JP4543480B2 (ja) * 2000-03-02 2010-09-15 ソニー株式会社 Gps受信機、およびgps測位方法
US7173957B2 (en) * 2000-03-13 2007-02-06 Pri Research & Development Corp. Efficient epoch processing in multichannel global positioning system signal receiver
US6965631B2 (en) * 2000-03-13 2005-11-15 Pri Research & Development Corp. Low power passive correlators for multichannel global positioning system signal receiver
US7184461B2 (en) * 2000-03-13 2007-02-27 Pri Research & Development Corp. High speed precision pseudo random noise shift control for fast multiple channel global positioning system signal re-tracking
US6633621B1 (en) 2000-03-20 2003-10-14 Motorola, Inc. Apparatus and method for synchronizing a clock using a phase-locked loop circuit
US6388612B1 (en) * 2000-03-26 2002-05-14 Timothy J Neher Global cellular position tracking device
US6609005B1 (en) * 2000-03-28 2003-08-19 Leap Wireless International, Inc. System and method for displaying the location of a wireless communications device wiring a universal resource locator
US6839547B2 (en) * 2000-03-30 2005-01-04 Cellguide Ltd. Enhanced GPS receiver utilizing wireless infrastructure
US7082292B2 (en) * 2000-04-18 2006-07-25 Sirf Technology, Inc. Mobile communications device with GPS receiver and common clock source
US6788655B1 (en) 2000-04-18 2004-09-07 Sirf Technology, Inc. Personal communications device with ratio counter
US6850557B1 (en) * 2000-04-18 2005-02-01 Sirf Technology, Inc. Signal detector and method employing a coherent accumulation system to correlate non-uniform and disjoint sample segments
US6952440B1 (en) 2000-04-18 2005-10-04 Sirf Technology, Inc. Signal detector employing a Doppler phase correction system
US6650879B1 (en) 2000-04-18 2003-11-18 Sirf Technology, Inc. Personal communications device with GPS receiver and common clock source
US6714158B1 (en) 2000-04-18 2004-03-30 Sirf Technology, Inc. Method and system for data detection in a global positioning system satellite receiver
US6931055B1 (en) 2000-04-18 2005-08-16 Sirf Technology, Inc. Signal detector employing a doppler phase correction system
JP3467226B2 (ja) * 2000-04-20 2003-11-17 埼玉日本電気株式会社 携帯電話システム
US7885314B1 (en) 2000-05-02 2011-02-08 Kenneth Scott Walley Cancellation system and method for a wireless positioning system
US6788251B2 (en) * 2000-05-03 2004-09-07 Thales Navigation, Inc. Method and apparatus for interference reduction in a positioning system
US6665541B1 (en) * 2000-05-04 2003-12-16 Snaptrack, Incorporated Methods and apparatuses for using mobile GPS receivers to synchronize basestations in cellular networks
US6928275B1 (en) * 2000-05-08 2005-08-09 Qualcomm Incorporated Method and apparatus for compensating local oscillator frequency error
FI108580B (fi) * 2000-05-08 2002-02-15 Nokia Corp Menetelmä kohteen sijainnin määrittämiseksi, sijainninmääritysjärjestelmä, vastaanotin ja elektroniikkalaite
US6522871B1 (en) * 2000-05-09 2003-02-18 Qualcomm, Incorporated Method and apparatus for compensating local oscillator frequency error through environmental control
GB0011761D0 (en) * 2000-05-16 2000-07-05 Koninkl Philips Electronics Nv A method of despreading a spread spectrum signal
US6389291B1 (en) 2000-08-14 2002-05-14 Sirf Technology Multi-mode global positioning system for use with wireless networks
US6427120B1 (en) 2000-08-14 2002-07-30 Sirf Technology, Inc. Information transfer in a multi-mode global positioning system used with wireless networks
US6462708B1 (en) 2001-04-05 2002-10-08 Sirf Technology, Inc. GPS-based positioning system for mobile GPS terminals
US7546395B2 (en) * 2002-10-10 2009-06-09 Sirf Technology, Inc. Navagation processing between a tracker hardware device and a computer host based on a satellite positioning solution system
US8116976B2 (en) 2000-05-18 2012-02-14 Csr Technology Inc. Satellite based positioning method and system for coarse location positioning
US7970412B2 (en) 2000-05-18 2011-06-28 Sirf Technology, Inc. Aided location communication system
US6778136B2 (en) 2001-12-13 2004-08-17 Sirf Technology, Inc. Fast acquisition of GPS signal
US6671620B1 (en) * 2000-05-18 2003-12-30 Sirf Technology, Inc. Method and apparatus for determining global position using almanac information
US7929928B2 (en) 2000-05-18 2011-04-19 Sirf Technology Inc. Frequency phase correction system
US7970411B2 (en) 2000-05-18 2011-06-28 Sirf Technology, Inc. Aided location communication system
US7949362B2 (en) 2000-05-18 2011-05-24 Sirf Technology, Inc. Satellite positioning aided communication system selection
US7813875B2 (en) * 2002-10-10 2010-10-12 Sirf Technology, Inc. Layered host based satellite positioning solutions
US8078189B2 (en) 2000-08-14 2011-12-13 Sirf Technology, Inc. System and method for providing location based services over a network
GB0012641D0 (en) * 2000-05-25 2000-07-12 Koninkl Philips Electronics Nv A method of estimating the location of a device
US6804290B1 (en) 2000-05-26 2004-10-12 Motorola, Inc. Method of acquiring signal code phases and geographic positioning receiver
GB0013148D0 (en) 2000-05-31 2000-07-19 Koninkl Philips Electronics Nv A method of despreading GPS stread spectrum signals
US9875492B2 (en) 2001-05-22 2018-01-23 Dennis J. Dupray Real estate transaction system
US10641861B2 (en) 2000-06-02 2020-05-05 Dennis J. Dupray Services and applications for a communications network
US10684350B2 (en) 2000-06-02 2020-06-16 Tracbeam Llc Services and applications for a communications network
GB0014719D0 (en) 2000-06-16 2000-08-09 Koninkl Philips Electronics Nv A method of providing an estimate of a location
KR20010113371A (ko) * 2000-06-19 2001-12-28 지규인 인터넷망을 이용한 dgps와 rtk 서비스 시스템 및그 제어방법
US7126527B1 (en) 2000-06-23 2006-10-24 Intel Corporation Method and apparatus for mobile device location via a network based local area augmentation system
ATE486291T1 (de) * 2000-06-23 2010-11-15 Sportvision Inc Auf gps basierendes verfolgungssystem
US6327533B1 (en) * 2000-06-30 2001-12-04 Geospatial Technologies, Inc. Method and apparatus for continuously locating an object
AU2001275882A1 (en) * 2000-07-26 2002-02-05 Ericsson Inc. Compensation for frequency adjustment to track or acquire one or more positionalsignals
US7616705B1 (en) 2000-07-27 2009-11-10 Sirf Technology Holdings, Inc. Monolithic GPS RF front end integrated circuit
US6856794B1 (en) 2000-07-27 2005-02-15 Sirf Technology, Inc. Monolithic GPS RF front end integrated circuit
US6961019B1 (en) * 2000-08-10 2005-11-01 Sirf Technology, Inc. Method and apparatus for reducing GPS receiver jamming during transmission in a wireless receiver
US7236883B2 (en) 2000-08-14 2007-06-26 Sirf Technology, Inc. Aiding in a satellite positioning system
US7065446B2 (en) * 2000-08-18 2006-06-20 Geospatial Technologies, Inc. Real-time smart mobile device for location information processing
US6331836B1 (en) 2000-08-24 2001-12-18 Fast Location.Net, Llc Method and apparatus for rapidly estimating the doppler-error and other receiver frequency errors of global positioning system satellite signals weakened by obstructions in the signal path
WO2002016960A1 (en) * 2000-08-24 2002-02-28 Sirf Technology, Inc. Apparatus for reducing auto-correlation or cross-correlation in weak cdma signals
US7436907B1 (en) 2000-08-24 2008-10-14 Sirf Technology, Inc. Analog compression of GPS C/A signal to audio bandwidth
US7680178B2 (en) 2000-08-24 2010-03-16 Sirf Technology, Inc. Cross-correlation detection and elimination in a receiver
US6665612B1 (en) * 2000-08-29 2003-12-16 Sirf Technology, Inc. Navigation processing for a satellite positioning system receiver
US6931233B1 (en) 2000-08-31 2005-08-16 Sirf Technology, Inc. GPS RF front end IC with programmable frequency synthesizer for use in wireless phones
US6437735B1 (en) 2000-09-07 2002-08-20 Ericsson Inc. Position detection system integrated into mobile terminal
US6937865B1 (en) * 2000-09-12 2005-08-30 Ericsson Inc. Position detection system integrated into mobile terminal
US6750814B1 (en) 2000-09-18 2004-06-15 Cellguide Ltd. Efficient algorithm for processing GPS signals
WO2002025309A1 (en) 2000-09-20 2002-03-28 Koninklijke Philips Electronics N.V. A method of determining the position of a mobile unit
US7463893B1 (en) 2000-09-22 2008-12-09 Sirf Technology, Inc. Method and apparatus for implementing a GPS receiver on a single integrated circuit
AT4838U1 (de) * 2000-10-04 2001-12-27 Steyr Daimler Puch Ag Achsantriebsblock für ein kraftfahrzeug
US6437734B1 (en) 2000-10-11 2002-08-20 Seiko Epson Corporation Satellite navigation receiver and method
US6417801B1 (en) 2000-11-17 2002-07-09 Global Locate, Inc. Method and apparatus for time-free processing of GPS signals
US7196660B2 (en) * 2000-11-17 2007-03-27 Global Locate, Inc Method and system for determining time in a satellite positioning system
US6542820B2 (en) * 2001-06-06 2003-04-01 Global Locate, Inc. Method and apparatus for generating and distributing satellite tracking information
US6937187B2 (en) * 2000-11-17 2005-08-30 Global Locate, Inc. Method and apparatus for forming a dynamic model to locate position of a satellite receiver
US6560534B2 (en) * 2001-06-06 2003-05-06 Global Locate, Inc. Method and apparatus for distributing satellite tracking information
US7443340B2 (en) * 2001-06-06 2008-10-28 Global Locate, Inc. Method and apparatus for generating and distributing satellite tracking information
US20070200752A1 (en) 2001-06-06 2007-08-30 Global Locate, Inc. Method and apparatus for maintaining integrity of long-term orbits in a remote receiver
US7047023B1 (en) * 2000-12-01 2006-05-16 Sirf Technology, Inc. GPS RF front end IC with frequency plan for improved integrability
US7747236B1 (en) 2000-12-11 2010-06-29 Sirf Technology, Inc. Method and apparatus for estimating local oscillator frequency for GPS receivers
US7113552B1 (en) 2000-12-21 2006-09-26 Sirf Technology, Inc. Phase sampling techniques using amplitude bits for digital receivers
US6427122B1 (en) * 2000-12-23 2002-07-30 American Gnc Corporation Positioning and data integrating method and system thereof
US7671489B1 (en) 2001-01-26 2010-03-02 Sirf Technology, Inc. Method and apparatus for selectively maintaining circuit power when higher voltages are present
JP2002228739A (ja) * 2001-01-29 2002-08-14 Denso Corp ナビゲーションシステム及びgps端末
US6678510B2 (en) * 2001-02-05 2004-01-13 Nokia Mobile Phones Ltd. Method, apparatus and system for GPS time synchronization using cellular signal bursts
US6865380B2 (en) * 2001-02-05 2005-03-08 Nokia Corporation Method, apparatus and system for frequency stabilization using cellular signal bursts
CN1325927C (zh) 2001-02-06 2007-07-11 皇家菲利浦电子有限公司 解扩gps信号的方法
GB0102881D0 (en) 2001-02-06 2001-03-21 Koninkl Philips Electronics Nv A method of despreading GPS signals
US6680703B1 (en) 2001-02-16 2004-01-20 Sirf Technology, Inc. Method and apparatus for optimally tuning a circularly polarized patch antenna after installation
US6703971B2 (en) 2001-02-21 2004-03-09 Sirf Technologies, Inc. Mode determination for mobile GPS terminals
US6583758B2 (en) 2001-02-22 2003-06-24 Motorola, Inc. Memory reduction method for a DSP-based GPS processor
US7003264B2 (en) 2001-02-27 2006-02-21 Agilent Technologies, Inc. System and methods for comparing data quality for multiple wireless communication networks
US7233795B1 (en) 2001-03-19 2007-06-19 Ryden Michael V Location based communications system
US7076256B1 (en) 2001-04-16 2006-07-11 Sirf Technology, Inc. Method and apparatus for transmitting position data using control channels in wireless networks
US6567041B1 (en) 2001-04-18 2003-05-20 Sprint Spectrum, L.P. Network system and method for a remote reference receiver system
US6901265B2 (en) * 2001-04-25 2005-05-31 Parthus (Uk) Limited Mobile communication apparatus
GB0110156D0 (en) * 2001-04-25 2001-06-20 Parthus Uk Ltd Positioning
US7006556B2 (en) * 2001-05-18 2006-02-28 Global Locate, Inc. Method and apparatus for performing signal correlation at multiple resolutions to mitigate multipath interference
US7769076B2 (en) 2001-05-18 2010-08-03 Broadcom Corporation Method and apparatus for performing frequency synchronization
US8244271B2 (en) 2001-05-21 2012-08-14 Csr Technology Inc. Distributed data collection of satellite data
US7925210B2 (en) 2001-05-21 2011-04-12 Sirf Technology, Inc. Synchronizing a radio network with end user radio terminals
US7668554B2 (en) 2001-05-21 2010-02-23 Sirf Technology, Inc. Network system for aided GPS broadcast positioning
US7877104B2 (en) * 2001-05-21 2011-01-25 Sirf Technology Inc. Method for synchronizing a radio network using end user radio terminals
US7072668B2 (en) * 2001-05-22 2006-07-04 Geospatial Technologies, Inc. Durable global asset-tracking device and a method of using the same
KR100448574B1 (ko) * 2001-06-05 2004-09-13 주식회사 네비콤 지피에스 단말기 및 무선통신 단말기에 대한 측위 방법
US7548816B2 (en) 2001-06-06 2009-06-16 Global Locate, Inc. Method and apparatus for generating and securely distributing long-term satellite tracking information
US8212719B2 (en) * 2001-06-06 2012-07-03 Global Locate, Inc. Method and apparatus for background decoding of a satellite navigation message to maintain integrity of long term orbit information in a remote receiver
US8090536B2 (en) * 2001-06-06 2012-01-03 Broadcom Corporation Method and apparatus for compression of long term orbit data
US20080186229A1 (en) * 2001-06-06 2008-08-07 Van Diggelen Frank Method and Apparatus for Monitoring Satellite-Constellation Configuration To Maintain Integrity of Long-Term-Orbit Information In A Remote Receiver
US8358245B2 (en) 2001-06-06 2013-01-22 Broadcom Corporation Method and system for extending the usability period of long term orbit (LTO)
US20080125971A1 (en) * 2001-06-06 2008-05-29 Van Diggelen Frank Method and apparatus for improving accuracy and/or integrity of long-term-orbit information for a global-navigation-satellite system
US7164736B2 (en) 2001-06-22 2007-01-16 Sirf Technology, Inc. Synthesizing coherent correlation sums at one or multiple carrier frequencies using correlation sums calculated at a course set of frequencies
US9052374B2 (en) 2001-07-18 2015-06-09 Fast Location.Net, Llc Method and system for processing positioning signals based on predetermined message data segment
US6515620B1 (en) 2001-07-18 2003-02-04 Fast Location.Net, Llc Method and system for processing positioning signals in a geometric mode
US6882309B2 (en) * 2001-07-18 2005-04-19 Fast Location. Net, Llc Method and system for processing positioning signals based on predetermined message data segment
US6628234B2 (en) 2001-07-18 2003-09-30 Fast Location.Net, Llc Method and system for processing positioning signals in a stand-alone mode
US6529160B2 (en) 2001-07-18 2003-03-04 Fast Location.Net, Llc Method and system for determining carrier frequency offsets for positioning signals
GB0117883D0 (en) 2001-07-21 2001-09-12 Koninkl Philips Electronics Nv Method and apparatus for estimating gps time
US6651000B2 (en) * 2001-07-25 2003-11-18 Global Locate, Inc. Method and apparatus for generating and distributing satellite tracking information in a compact format
US6532251B1 (en) 2001-08-16 2003-03-11 Motorola, Inc. Data message bit synchronization and local time correction methods and architectures
US6775319B2 (en) 2001-08-16 2004-08-10 Motorola, Inc. Spread spectrum receiver architectures and methods therefor
JP4260625B2 (ja) 2001-09-14 2009-04-30 サーフ テクノロジー インコーポレイテッド 衛星測位システムの改良型電力管理
US6965754B2 (en) * 2001-10-09 2005-11-15 Motorola, Inc. Satellite positioning system receiver with reference oscillator circuit and methods therefor
US7656350B2 (en) * 2001-11-06 2010-02-02 Global Locate Method and apparatus for processing a satellite positioning system signal using a cellular acquisition signal
US6756938B2 (en) 2001-11-06 2004-06-29 Motorola, Inc. Satellite positioning system receivers and methods therefor
US6771211B2 (en) * 2001-11-13 2004-08-03 Nokia Corporation Method, system and devices for positioning a receiver
US20030125045A1 (en) * 2001-12-27 2003-07-03 Riley Wyatt Thomas Creating and using base station almanac information in a wireless communication system having a position location capability
US6985903B2 (en) * 2002-01-25 2006-01-10 Qualcomm, Incorporated Method and system for storage and fast retrieval of digital terrain model elevations for use in positioning systems
US6760582B2 (en) 2002-02-04 2004-07-06 Qualcomm Incorporated Method and apparatus for testing assisted position location capable devices
AU2003219841A1 (en) * 2002-02-22 2003-09-09 Global Locate, Inc. Method and apparatus for compensating an oscillator in a location-enabled wireless device
JP2003255040A (ja) * 2002-02-28 2003-09-10 Sony Corp Gps受信機および受信方法
US6944540B2 (en) 2002-03-28 2005-09-13 Motorola, Inc. Time determination in satellite positioning system receivers and methods therefor
US8027697B2 (en) 2007-09-28 2011-09-27 Telecommunication Systems, Inc. Public safety access point (PSAP) selection for E911 wireless callers in a GSM type system
US9154906B2 (en) 2002-03-28 2015-10-06 Telecommunication Systems, Inc. Area watcher for wireless network
US7426380B2 (en) 2002-03-28 2008-09-16 Telecommunication Systems, Inc. Location derived presence information
US8126889B2 (en) 2002-03-28 2012-02-28 Telecommunication Systems, Inc. Location fidelity adjustment based on mobile subscriber privacy profile
US8918073B2 (en) 2002-03-28 2014-12-23 Telecommunication Systems, Inc. Wireless telecommunications location based services scheme selection
US8290505B2 (en) 2006-08-29 2012-10-16 Telecommunications Systems, Inc. Consequential location derived information
US6937872B2 (en) * 2002-04-15 2005-08-30 Qualcomm Incorporated Methods and apparatuses for measuring frequencies of basestations in cellular networks using mobile GPS receivers
US9049571B2 (en) 2002-04-24 2015-06-02 Ipventure, Inc. Method and system for enhanced messaging
US9182238B2 (en) 2002-04-24 2015-11-10 Ipventure, Inc. Method and apparatus for intelligent acquisition of position information
US7460870B2 (en) * 2002-04-25 2008-12-02 Qualcomm Incorporated Method and apparatus for location determination in a wireless assisted hybrid positioning system
US6661371B2 (en) 2002-04-30 2003-12-09 Motorola, Inc. Oscillator frequency correction in GPS signal acquisition
JP4003169B2 (ja) * 2002-05-09 2007-11-07 日本電気株式会社 Gps機能搭載型移動通信端末装置
US20030214432A1 (en) * 2002-05-17 2003-11-20 Tawadrous Sameh W. System and method for frequency management in a communications positioning device
DE60317193T2 (de) * 2002-05-22 2008-08-14 Sirf Technology, Inc., San Jose Hilfe in einem satellitenpositionierungssystem
DE60324672D1 (de) * 2002-05-29 2008-12-24 Thomson Licensing Verfahren und vorrichtung zur ermöglichung der übertragung des signals eines drahtlosen rückkanals in einem satellitenkommunikationssystem
US6725157B1 (en) 2002-06-10 2004-04-20 Trimble Navigation Limited Indoor GPS clock
WO2004001439A1 (en) * 2002-06-20 2003-12-31 Sirf Technology, Inc. Generic satellite positioning system receivers with programmable inputs and selectable inputs and outputs
US6738013B2 (en) * 2002-06-20 2004-05-18 Sirf Technology, Inc. Generic satellite positioning system receivers with selective inputs and outputs
US6747596B2 (en) * 2002-06-20 2004-06-08 Sirf Technology, Inc. Generic satellite positioning system receivers with programmable inputs
EP1518432B1 (en) * 2002-06-28 2007-08-01 Nokia Corporation Communicating information associated with provisioning of a service, over a user plane connection
US20040010368A1 (en) * 2002-07-10 2004-01-15 Logan Scott Assisted GPS signal detection and processing system for indoor location determination
US20040073363A1 (en) * 2002-07-23 2004-04-15 Eliezer Sanchez Electronic localizing protection device
US7239271B1 (en) 2002-08-15 2007-07-03 Sirf Technology, Inc. Partial almanac collection system
CN100409029C (zh) * 2002-08-15 2008-08-06 SiRF技术公司 用于全球定位系统的接口
GB2393611B8 (en) * 2002-09-26 2006-05-11 Qualcomm Inc Method of and apparatus for reducing frequency errors associated with an inter-system scan
US7233798B2 (en) * 2002-09-30 2007-06-19 Motorola, Inc. Method and apparatus for determining location of a remote unit using GPS
US6697016B1 (en) 2002-09-30 2004-02-24 Motorola, Inc. Self adjustment of a frequency offset in a GPS receiver
US7158080B2 (en) * 2002-10-02 2007-01-02 Global Locate, Inc. Method and apparatus for using long term satellite tracking data in a remote receiver
EP1835300B1 (en) * 2002-10-02 2014-05-21 Global Locate, Inc. Method and apparatus for using long term satellite tracking data in a remote receiver
US7595752B2 (en) * 2002-10-02 2009-09-29 Global Locate, Inc. Method and apparatus for enhanced autonomous GPS
AU2003279161A1 (en) * 2002-10-04 2004-05-04 Sigtec Navigation Pty Ltd Satellite-based positioning system improvement
US20040198382A1 (en) * 2002-10-15 2004-10-07 Hammond Wong GPS children locator
US7660588B2 (en) 2002-10-17 2010-02-09 Qualcomm Incorporated Method and apparatus for improving radio location accuracy with measurements
US7289541B2 (en) * 2002-12-04 2007-10-30 Raytheon Company Method for locating and tracking communication units in a synchronous wireless communication system
US7202801B2 (en) * 2002-12-11 2007-04-10 Geospatial Technologies, Inc. Method and apparatus for an automated location-based, dynamic notification system (ALDNS)
RU2005121553A (ru) * 2002-12-11 2006-01-20 Квэлкомм Инкорпорейтед (US) Способ и устройство для планирования поиска и захвата спутников глобального местоопределения
US6816111B2 (en) * 2002-12-13 2004-11-09 Qualcomm Incorporated Calibration and correction system for satellite position location systems
US7505757B2 (en) * 2003-01-31 2009-03-17 Qualcomm Incorporated Location based service (LBS) system, method and apparatus for triggering of mobile station LBS applications
US7359716B2 (en) * 2003-01-31 2008-04-15 Douglas Rowitch Location based service (LBS) system, method and apparatus for authorization of mobile station LBS applications
US7170447B2 (en) 2003-02-14 2007-01-30 Qualcomm Incorporated Method and apparatus for processing navigation data in position determination
GB2399966A (en) 2003-03-27 2004-09-29 Nokia Corp Temperature-insensitive GPS receiver
US7062240B2 (en) 2003-04-22 2006-06-13 Motorola, Inc. Automatic frequency control processing in multi-channel receivers
WO2004097446A2 (en) * 2003-04-25 2004-11-11 New Jersey Institute Of Technology Wireless network assisted gps system
US7324797B2 (en) * 2003-06-12 2008-01-29 Raytheon Company Bragg-cell application to high probability of intercept receiver
CA2570417A1 (en) * 2003-06-13 2004-12-23 A. Stephen Harvey Security system including a method and system for acquiring gps satellite position
US20040263386A1 (en) * 2003-06-26 2004-12-30 King Thomas M. Satellite positioning system receivers and methods
US8483717B2 (en) 2003-06-27 2013-07-09 Qualcomm Incorporated Local area network assisted positioning
RU2372750C2 (ru) 2003-06-27 2009-11-10 Квэлкомм Инкорпорейтед Способ и устройство для гибридного определения местоположения в беспроводной сети связи
US8971913B2 (en) 2003-06-27 2015-03-03 Qualcomm Incorporated Method and apparatus for wireless network hybrid positioning
US6915210B2 (en) * 2003-07-17 2005-07-05 Motorola, Inc. Method of updating GPS almanac data for satellites not in view
US7123928B2 (en) 2003-07-21 2006-10-17 Qualcomm Incorporated Method and apparatus for creating and using a base station almanac for position determination
US20050101346A1 (en) * 2003-11-07 2005-05-12 Steve Wozniak Receiver device and method using GPS baseband correlator circuitry for despreading both GPS and local wireless baseband signals
US7283046B2 (en) * 2003-08-01 2007-10-16 Spectrum Tracking Systems, Inc. Method and system for providing tracking services to locate an asset
US7224950B2 (en) * 2003-08-27 2007-05-29 Seiko Epson Corporation Estimating GPS reference frequency drift from PDC-handset VCO-bursts
US8138972B2 (en) 2003-09-02 2012-03-20 Csr Technology Inc. Signal processing system for satellite positioning signals
US8164517B2 (en) 2003-09-02 2012-04-24 Csr Technology Inc. Global positioning system receiver timeline management
US7822105B2 (en) 2003-09-02 2010-10-26 Sirf Technology, Inc. Cross-correlation removal of carrier wave jamming signals
EP1680686A1 (en) 2003-09-02 2006-07-19 Sirf Technology, Inc. Signal processing system for satellite positioning signals
US20050052317A1 (en) * 2003-09-04 2005-03-10 Eride, Inc. Combination navigation satellite receivers and communications devices
US7424293B2 (en) 2003-12-02 2008-09-09 Telecommunication Systems, Inc. User plane location based service using message tunneling to support roaming
GB2409376B (en) * 2003-12-17 2006-06-28 Motorola Inc A subscriber unit, a cellular communication system and a method for determining a location therefor
US7260186B2 (en) 2004-03-23 2007-08-21 Telecommunication Systems, Inc. Solutions for voice over internet protocol (VoIP) 911 location services
US20080126535A1 (en) 2006-11-28 2008-05-29 Yinjun Zhu User plane location services over session initiation protocol (SIP)
US20080090546A1 (en) 2006-10-17 2008-04-17 Richard Dickinson Enhanced E911 network access for a call center using session initiation protocol (SIP) messaging
US7020555B1 (en) 2003-12-23 2006-03-28 Trimble Navigation Limited Subscription GPS information service system
US7580794B2 (en) * 2003-12-23 2009-08-25 Trimble Navigation Limited Remote subscription unit for GNSS information
US7158885B1 (en) 2003-12-23 2007-01-02 Trimble Navigation Limited Remote subscription unit for GPS information
US7133324B2 (en) * 2003-12-24 2006-11-07 Samsung Electronics Co., Ltd. Synchronous dynamic random access memory devices having dual data rate 1 (DDR1) and DDR2 modes of operation and methods of operating same
US7181228B2 (en) * 2003-12-31 2007-02-20 Corporation For National Research Initiatives System and method for establishing and monitoring the relative location of group members
FR2865605B1 (fr) * 2004-01-26 2006-04-28 Cit Alcatel Procede de localisation assistee de terminaux mobiles de communication d'un reseau cellulaire, par utilisation d'un canal de transport ussd
US7365680B2 (en) * 2004-02-10 2008-04-29 Sirf Technology, Inc. Location services system that reduces auto-correlation or cross-correlation in weak signals
JP4315832B2 (ja) * 2004-02-17 2009-08-19 三菱電機株式会社 熱型赤外センサ素子および熱型赤外センサアレイ
US7477906B2 (en) * 2004-02-27 2009-01-13 Research In Motion Limited Methods and apparatus for facilitating the determination of GPS location information for a mobile station without disrupting communications of a voice call
US20050202829A1 (en) * 2004-03-01 2005-09-15 Texas Instruments Incorporated Satellite positioning system receiver utilizing time-aiding information from an independent source
US7941164B2 (en) * 2004-03-01 2011-05-10 Texas Instruments Incorporated Satellite positioning system receiver utilizing broadcast doppler information
US20050209762A1 (en) * 2004-03-18 2005-09-22 Ford Global Technologies, Llc Method and apparatus for controlling a vehicle using an object detection system and brake-steer
US9137771B2 (en) 2004-04-02 2015-09-15 Qualcomm Incorporated Methods and apparatuses for beacon assisted position determination systems
US7256731B2 (en) * 2004-05-27 2007-08-14 Northrop Grumman Corporation Power cycling for a global positioning system
US7319878B2 (en) 2004-06-18 2008-01-15 Qualcomm Incorporated Method and apparatus for determining location of a base station using a plurality of mobile stations in a wireless mobile network
US20060021231A1 (en) * 2004-07-28 2006-02-02 Carey Nancy D Adaptive scissors
JP2006038734A (ja) * 2004-07-29 2006-02-09 Seiko Epson Corp 測位システム、端末装置、端末装置の制御方法、端末装置の制御プログラム、端末装置の制御プログラムを記録したコンピュータ読み取り可能な記録媒体
GB0418766D0 (en) * 2004-08-23 2004-09-22 Koninkl Philips Electronics Nv A computer programmed with gps signal processing programs
US7012563B1 (en) 2004-09-10 2006-03-14 Motorola, Inc. Method and system for frequency drift prediction
US7411546B2 (en) 2004-10-15 2008-08-12 Telecommunication Systems, Inc. Other cell sites used as reference point to cull satellite ephemeris information for quick, accurate assisted locating satellite location determination
US7113128B1 (en) 2004-10-15 2006-09-26 Telecommunication Systems, Inc. Culled satellite ephemeris information for quick, accurate assisted locating satellite location determination for cell site antennas
US7629926B2 (en) 2004-10-15 2009-12-08 Telecommunication Systems, Inc. Culled satellite ephemeris information for quick, accurate assisted locating satellite location determination for cell site antennas
US6985105B1 (en) 2004-10-15 2006-01-10 Telecommunication Systems, Inc. Culled satellite ephemeris information based on limiting a span of an inverted cone for locating satellite in-range determinations
ATE551620T1 (de) * 2004-10-21 2012-04-15 Nokia Corp Positionsbestimmung auf satellitenbasis
US8254512B2 (en) * 2004-11-17 2012-08-28 Qualcomm Incorporated Method and apparatus for increasing coherent integration length while receiving a positioning signal
US20060116131A1 (en) * 2004-11-30 2006-06-01 Morgan Scott D Reporting satellite positioning system assistance integrity information in wireless communication networks
EP1677476B1 (fr) * 2004-12-28 2007-11-21 Alcatel Lucent GPS/OFDM terminal with shared FFT/IFFT calculation means
US7508810B2 (en) 2005-01-31 2009-03-24 Airbiquity Inc. Voice channel control of wireless packet data communications
US7019689B1 (en) * 2005-01-31 2006-03-28 Seiko Epson Corporation Skipping z-counts and accurate time in GPS receivers
US7353034B2 (en) 2005-04-04 2008-04-01 X One, Inc. Location sharing and tracking using mobile phones or other wireless devices
US7545316B2 (en) * 2005-04-22 2009-06-09 Texas Instruments Incorporated Apparatus and methods to share time and frequency data between a host processor and a satellite positioning system receiver
US8139685B2 (en) * 2005-05-10 2012-03-20 Qualcomm Incorporated Systems, methods, and apparatus for frequency control
US7961717B2 (en) 2005-05-12 2011-06-14 Iposi, Inc. System and methods for IP and VoIP device location determination
US8660573B2 (en) 2005-07-19 2014-02-25 Telecommunications Systems, Inc. Location service requests throttling
US7620403B2 (en) * 2005-07-29 2009-11-17 Motorola, Inc. Method and apparatus for providing reference frequency aiding among peers operating in a direct communication mode
US7295156B2 (en) * 2005-08-08 2007-11-13 Trimble Navigation Limited Cellphone GPS positioning system
US7283091B1 (en) 2005-08-08 2007-10-16 Trimble Navigation Limited Radio positioning system for providing position and time for assisting GPS signal acquisition in mobile unit
US8099106B2 (en) 2005-08-24 2012-01-17 Qualcomm Incorporated Method and apparatus for classifying user morphology for efficient use of cell phone system resources
US7257413B2 (en) 2005-08-24 2007-08-14 Qualcomm Incorporated Dynamic location almanac for wireless base stations
JP4215036B2 (ja) * 2005-09-06 2009-01-28 セイコーエプソン株式会社 端末装置
US9282451B2 (en) 2005-09-26 2016-03-08 Telecommunication Systems, Inc. Automatic location identification (ALI) service requests steering, connection sharing and protocol translation
US7825780B2 (en) 2005-10-05 2010-11-02 Telecommunication Systems, Inc. Cellular augmented vehicle alarm notification together with location services for position of an alarming vehicle
US7907551B2 (en) * 2005-10-06 2011-03-15 Telecommunication Systems, Inc. Voice over internet protocol (VoIP) location based 911 conferencing
US8467320B2 (en) 2005-10-06 2013-06-18 Telecommunication Systems, Inc. Voice over internet protocol (VoIP) multi-user conferencing
JP2009513069A (ja) 2005-10-20 2009-03-26 クゥアルコム・インコーポレイテッド 外部デバイスの位置決めを自動的にトリガする方法および装置
RU2390791C2 (ru) 2005-11-07 2010-05-27 Квэлкомм Инкорпорейтед Позиционирование для wlan и других беспроводных сетей
US7893869B2 (en) * 2006-01-05 2011-02-22 Qualcomm Incorporated Global navigation satellite system
EP2423710A1 (en) 2006-01-10 2012-02-29 Qualcomm Incorporated Global navigation satellite system
US8150363B2 (en) 2006-02-16 2012-04-03 Telecommunication Systems, Inc. Enhanced E911 network access for call centers
US8059789B2 (en) 2006-02-24 2011-11-15 Telecommunication Systems, Inc. Automatic location identification (ALI) emergency services pseudo key (ESPK)
US9167553B2 (en) 2006-03-01 2015-10-20 Telecommunication Systems, Inc. GeoNexus proximity detector network
US7899450B2 (en) 2006-03-01 2011-03-01 Telecommunication Systems, Inc. Cellular augmented radar/laser detection using local mobile network within cellular network
US7471236B1 (en) 2006-03-01 2008-12-30 Telecommunication Systems, Inc. Cellular augmented radar/laser detector
US7925320B2 (en) 2006-03-06 2011-04-12 Garmin Switzerland Gmbh Electronic device mount
US7683831B2 (en) * 2006-03-15 2010-03-23 Qualcomm Incorporated Global navigation satellite system
GB0606466D0 (en) * 2006-03-31 2006-05-10 Qinetiq Ltd Geolocation methods and apparatus
EP2002277B1 (en) * 2006-04-04 2012-04-25 Cambridge Positioning Systems Limited Associating a universal time with a received signal
US7924934B2 (en) 2006-04-07 2011-04-12 Airbiquity, Inc. Time diversity voice channel data communications
US7548200B2 (en) * 2006-04-24 2009-06-16 Nemerix Sa Ephemeris extension method for GNSS applications
US7511662B2 (en) * 2006-04-28 2009-03-31 Loctronix Corporation System and method for positioning in configured environments
US9097783B2 (en) 2006-04-28 2015-08-04 Telecommunication Systems, Inc. System and method for positioning using hybrid spectral compression and cross correlation signal processing
US8208605B2 (en) 2006-05-04 2012-06-26 Telecommunication Systems, Inc. Extended efficient usage of emergency services keys
US8296051B2 (en) * 2006-05-18 2012-10-23 The Boeing Company Generalized high performance navigation system
US7583225B2 (en) * 2006-05-18 2009-09-01 The Boeing Company Low earth orbit satellite data uplink
US7579987B2 (en) * 2006-05-18 2009-08-25 The Boeing Company Low earth orbit satellite providing navigation signals
US7554481B2 (en) 2006-05-18 2009-06-30 The Boeing Company Localized jamming of navigation signals
US20070299609A1 (en) * 2006-06-23 2007-12-27 Nemerix Sa Method and system for ephemeris extension for GNSS applications
US7724186B2 (en) * 2006-06-30 2010-05-25 Sirf Technology, Inc. Enhanced aiding in GPS systems
US8121238B2 (en) * 2006-06-30 2012-02-21 Csr Technology Inc. System and method for synchronizing digital bits in a data stream
TWI381711B (zh) * 2006-07-05 2013-01-01 Mstar Semiconductor Inc 具有定位功能之行動通訊裝置及其相關之全球衛星定位系統接收器
US8725162B2 (en) * 2006-07-05 2014-05-13 Mstar Semiconductor, Inc. Mobile communication device with positioning capability and related GPS receiver
US7970534B2 (en) 2006-08-24 2011-06-28 Blackbird Technologies, Inc. Mobile unit and system having integrated mapping, communications and tracking
JP5446062B2 (ja) * 2006-09-14 2014-03-19 セイコーエプソン株式会社 サーチレンジの更新方法、端末装置の制御プログラム、記録媒体及び端末装置
JP4172513B2 (ja) 2006-09-14 2008-10-29 セイコーエプソン株式会社 衛星信号のサーチレンジ更新方法、および測位装置
WO2008057477A2 (en) 2006-11-03 2008-05-15 Telecommunication Systems, Inc. Roaming gateway enabling location based services (lbs) roaming for user plane in cdma networks without requiring use of a mobile positioning center (mpc)
US9226257B2 (en) 2006-11-04 2015-12-29 Qualcomm Incorporated Positioning for WLANs and other wireless networks
TWI415039B (zh) * 2007-01-04 2013-11-11 Mstar Semiconductor Inc 具有rfid功能的導航系統及其方法
US7466209B2 (en) * 2007-01-05 2008-12-16 Sirf Technology, Inc. System and method for providing temperature correction in a crystal oscillator
US7586382B2 (en) * 2007-01-30 2009-09-08 Sirf Technology, Inc. Methods and systems for temperature related frequency drift compensation
US7477189B2 (en) * 2007-01-30 2009-01-13 Sirf Technology Holdings, Inc. Methods and systems for acquisition, reacquisiton and tracking of weak navigational signals
US8497801B2 (en) * 2007-02-05 2013-07-30 Qualcomm Incorporated Prediction refresh method for ephemeris extensions
US8050386B2 (en) 2007-02-12 2011-11-01 Telecommunication Systems, Inc. Mobile automatic location identification (ALI) for first responders
US20080204130A1 (en) * 2007-02-28 2008-08-28 Wheat International Communications Corporation Oscillator bias injector
US7843335B2 (en) * 2007-03-13 2010-11-30 Blackbird Technologies, Inc. Mobile asset tracking unit, system and method
WO2008120381A1 (ja) * 2007-03-29 2008-10-09 Panasonic Corporation 信号捕捉装置及び信号捕捉方法
US7724612B2 (en) * 2007-04-20 2010-05-25 Sirf Technology, Inc. System and method for providing aiding information to a satellite positioning system receiver over short-range wireless connections
US8160617B2 (en) * 2007-06-22 2012-04-17 Nokia Corporation Apparatus and method for use in location determination
US20090016167A1 (en) * 2007-07-09 2009-01-15 Seiko Epson Corporation Time Adjustment Device, Timekeeping Device with a Time Adjustment Device, and a Time Adjustment Method
KR100912808B1 (ko) * 2007-07-11 2009-08-18 한국전자통신연구원 위성항법수신기를 이용한 차량용 시각동기
US8249616B2 (en) * 2007-08-23 2012-08-21 Texas Instruments Incorporated Satellite (GPS) assisted clock apparatus, circuits, systems and processes for cellular terminals on asynchronous networks
US8185087B2 (en) 2007-09-17 2012-05-22 Telecommunication Systems, Inc. Emergency 911 data messaging
US8331898B2 (en) * 2007-10-03 2012-12-11 Texas Instruments Incorporated Power-saving receiver circuits, systems and processes
US7979095B2 (en) 2007-10-20 2011-07-12 Airbiquity, Inc. Wireless in-band signaling with in-vehicle systems
US7995683B2 (en) * 2007-10-24 2011-08-09 Sirf Technology Inc. Noise floor independent delay-locked loop discriminator
US7642957B2 (en) * 2007-11-27 2010-01-05 Sirf Technology, Inc. GPS system utilizing multiple antennas
US9130963B2 (en) 2011-04-06 2015-09-08 Telecommunication Systems, Inc. Ancillary data support in session initiation protocol (SIP) messaging
US7929530B2 (en) 2007-11-30 2011-04-19 Telecommunication Systems, Inc. Ancillary data support in session initiation protocol (SIP) messaging
CN101953177A (zh) 2007-12-19 2011-01-19 福尔肯纳米有限公司 用于提高通信速度、频谱效率并实现其他益处的公共波形和边带抑制通信系统和方法
US8144053B2 (en) * 2008-02-04 2012-03-27 Csr Technology Inc. System and method for verifying consistent measurements in performing GPS positioning
US20110205115A1 (en) * 2008-02-25 2011-08-25 Sirf Technology, Inc. Always on GPS Device
US8699984B2 (en) 2008-02-25 2014-04-15 Csr Technology Inc. Adaptive noise figure control in a radio receiver
US7616064B2 (en) * 2008-02-28 2009-11-10 Noshir Dubash Digital synthesizer for low power location receivers
DE602008001107D1 (de) 2008-03-12 2010-06-10 Research In Motion Ltd Mehrfachtaktsignal-Erzeugung aus einem gemeinsamen Oszillator
US7903025B2 (en) * 2008-03-12 2011-03-08 Research In Motion Limited Multiple clock signal generation from a common oscillator
US8478305B2 (en) * 2008-04-09 2013-07-02 Csr Technology Inc. System and method for integrating location information into an internet phone system
CA2724994C (en) * 2008-05-22 2014-08-12 Novatel Inc. Gnss receiver using signals of opportunity and assistance information to reduce the time to first fix
US8542147B2 (en) 2008-05-30 2013-09-24 The Boeing Company Precise absolute time transfer from a satellite system
US8035558B2 (en) * 2008-05-30 2011-10-11 The Boeing Company Precise absolute time transfer from a satellite system
US7952518B2 (en) 2008-05-30 2011-05-31 The Boeing Company Internet hotspots localization using satellite systems
US8897801B2 (en) 2008-06-13 2014-11-25 Qualcomm Incorporated Transmission of location information by a transmitter as an aid to location services
US20090312036A1 (en) 2008-06-16 2009-12-17 Skyhook Wireless, Inc. Methods and systems for improving the accuracy of expected error estimation in location determinations using a hybrid cellular and wlan positioning system
US8013786B2 (en) * 2008-06-17 2011-09-06 Trimble Navigation Limited Method and communication system for limiting the functionality of an electronic device
US8200238B2 (en) 2008-06-17 2012-06-12 Trimble Navigation Limited System having doppler-based control of a mobile device
US20090310593A1 (en) * 2008-06-17 2009-12-17 Qualcomm Incorporated Self-positioning access points
US8476982B2 (en) * 2008-06-18 2013-07-02 Qualcomm Incorporated Reference oscillator management for wireless devices having position determination functionality
US8073414B2 (en) * 2008-06-27 2011-12-06 Sirf Technology Inc. Auto-tuning system for an on-chip RF filter
US8072376B2 (en) * 2008-06-27 2011-12-06 Sirf Technology Inc. Method and apparatus for mitigating the effects of cross correlation in a GPS receiver
US8068587B2 (en) 2008-08-22 2011-11-29 Telecommunication Systems, Inc. Nationwide table routing of voice over internet protocol (VOIP) emergency calls
US7983310B2 (en) 2008-09-15 2011-07-19 Airbiquity Inc. Methods for in-band signaling through enhanced variable-rate codecs
US8594138B2 (en) 2008-09-15 2013-11-26 Airbiquity Inc. Methods for in-band signaling through enhanced variable-rate codecs
US8892128B2 (en) 2008-10-14 2014-11-18 Telecommunication Systems, Inc. Location based geo-reminders
EP2347395A4 (en) 2008-10-14 2016-11-02 Telecomm Systems Inc Location Based Approach Alert
US8478228B2 (en) 2008-10-20 2013-07-02 Qualcomm Incorporated Mobile receiver with location services capability
US8200239B2 (en) * 2008-11-11 2012-06-12 Trueposition, Inc. Femto-cell location by proxy methods
US8180368B2 (en) * 2008-11-11 2012-05-15 Trueposition, Inc. Femto-cell location by direct methods
US7859455B2 (en) * 2009-01-06 2010-12-28 The Boeing Company Local clock frequency calibration using low earth orbit (LEO) satellites
US8433283B2 (en) 2009-01-27 2013-04-30 Ymax Communications Corp. Computer-related devices and techniques for facilitating an emergency call via a cellular or data network using remote communication device identifying information
US8036600B2 (en) 2009-04-27 2011-10-11 Airbiquity, Inc. Using a bluetooth capable mobile phone to access a remote network
US9301191B2 (en) 2013-09-20 2016-03-29 Telecommunication Systems, Inc. Quality of service to over the top applications used with VPN
US8867485B2 (en) 2009-05-05 2014-10-21 Telecommunication Systems, Inc. Multiple location retrieval function (LRF) network having location continuity
CN101566678A (zh) * 2009-05-27 2009-10-28 刘建 一种更新星历的方法及系统
US8390512B2 (en) * 2009-06-05 2013-03-05 Qualcomm Incorporated On demand positioning
US9916625B2 (en) 2012-02-02 2018-03-13 Progressive Casualty Insurance Company Mobile insurance platform system
US8301098B2 (en) * 2009-06-24 2012-10-30 Marvell World Trade Ltd. System and transceiver clocking to minimize required number of reference sources in multi-function cellular applications including GPS
US8600297B2 (en) 2009-07-28 2013-12-03 Qualcomm Incorporated Method and system for femto cell self-timing and self-locating
US8418039B2 (en) 2009-08-03 2013-04-09 Airbiquity Inc. Efficient error correction scheme for data transmission in a wireless in-band signaling system
US20110039578A1 (en) 2009-08-14 2011-02-17 Qualcomm Incorporated Assistance data for positioning in multiple radio access technologies
US20110109506A1 (en) * 2009-09-24 2011-05-12 Coherent Navigation, Inc. Simulating Phase-Coherent GNSS Signals
US9633327B2 (en) 2009-09-25 2017-04-25 Fedex Corporate Services, Inc. Sensor zone management
US8239169B2 (en) 2009-09-25 2012-08-07 Gregory Timothy L Portable computing device and method for asset management in a logistics system
US8299920B2 (en) 2009-09-25 2012-10-30 Fedex Corporate Services, Inc. Sensor based logistics system
US8249865B2 (en) 2009-11-23 2012-08-21 Airbiquity Inc. Adaptive data transmission for a digital in-band modem operating over a voice channel
US9651675B2 (en) * 2010-02-12 2017-05-16 Avago Technologies General Ip (Singapore) Pte. Ltd. Estimating frequency of a GNSS enabled device based on time stamps
US9063222B2 (en) * 2010-05-28 2015-06-23 Qualcomm Incorporated Almanac maintenance for mobile station positioning
US8532670B2 (en) 2010-06-02 2013-09-10 Deutsche Telekom Ag Apparatus, method, and system for sensing suppression for location-based applications
WO2012005769A1 (en) 2010-07-09 2012-01-12 Telecommunication Systems, Inc. Location privacy selector
US8336664B2 (en) 2010-07-09 2012-12-25 Telecommunication Systems, Inc. Telematics basic mobile device safety interlock
US8732697B2 (en) 2010-08-04 2014-05-20 Premkumar Jonnala System, method and apparatus for managing applications on a device
US9538493B2 (en) 2010-08-23 2017-01-03 Finetrak, Llc Locating a mobile station and applications therefor
US8688087B2 (en) 2010-12-17 2014-04-01 Telecommunication Systems, Inc. N-dimensional affinity confluencer
US8942743B2 (en) 2010-12-17 2015-01-27 Telecommunication Systems, Inc. iALERT enhanced alert manager
WO2012087353A1 (en) 2010-12-22 2012-06-28 Telecommunication Systems, Inc. Area event handling when current network does not cover target area
US20120183023A1 (en) * 2011-01-14 2012-07-19 Qualcomm Incorporated Implementations for wireless signal processing
US8682321B2 (en) 2011-02-25 2014-03-25 Telecommunication Systems, Inc. Mobile internet protocol (IP) location
US8538373B2 (en) 2011-05-25 2013-09-17 Blackbird Technologies, Inc. Methods and apparatus for emergency tracking
US8649806B2 (en) 2011-09-02 2014-02-11 Telecommunication Systems, Inc. Aggregate location dynometer (ALD)
US9479344B2 (en) 2011-09-16 2016-10-25 Telecommunication Systems, Inc. Anonymous voice conversation
US8848825B2 (en) 2011-09-22 2014-09-30 Airbiquity Inc. Echo cancellation in wireless inband signaling modem
WO2013048551A1 (en) 2011-09-30 2013-04-04 Telecommunication Systems, Inc. Unique global identifier for minimizing prank 911 calls
US8847819B2 (en) * 2011-10-25 2014-09-30 Texas Instruments Incorporated Clock drift profile determination in navigation system receivers
US9264537B2 (en) 2011-12-05 2016-02-16 Telecommunication Systems, Inc. Special emergency call treatment based on the caller
US9313637B2 (en) 2011-12-05 2016-04-12 Telecommunication Systems, Inc. Wireless emergency caller profile data delivery over a legacy interface
US8984591B2 (en) 2011-12-16 2015-03-17 Telecommunications Systems, Inc. Authentication via motion of wireless device movement
US9151845B2 (en) * 2012-01-05 2015-10-06 Cambridge Silicon Radio Limited Reverse frequency and time aiding
US9384339B2 (en) 2012-01-13 2016-07-05 Telecommunication Systems, Inc. Authenticating cloud computing enabling secure services
US8688174B2 (en) 2012-03-13 2014-04-01 Telecommunication Systems, Inc. Integrated, detachable ear bud device for a wireless phone
US9307372B2 (en) 2012-03-26 2016-04-05 Telecommunication Systems, Inc. No responders online
US9544260B2 (en) 2012-03-26 2017-01-10 Telecommunication Systems, Inc. Rapid assignment dynamic ownership queue
US9338153B2 (en) 2012-04-11 2016-05-10 Telecommunication Systems, Inc. Secure distribution of non-privileged authentication credentials
WO2014028712A1 (en) 2012-08-15 2014-02-20 Telecommunication Systems, Inc. Device independent caller data access for emergency calls
US9208346B2 (en) 2012-09-05 2015-12-08 Telecommunication Systems, Inc. Persona-notitia intellection codifier
US9456301B2 (en) 2012-12-11 2016-09-27 Telecommunication Systems, Inc. Efficient prisoner tracking
US9612341B2 (en) * 2012-12-28 2017-04-04 Trimble Inc. GNSS receiver positioning system
US9743373B2 (en) 2012-12-28 2017-08-22 Trimble Inc. Concurrent dual processing of pseudoranges with corrections
US9880286B2 (en) 2012-12-28 2018-01-30 Trimble Inc. Locally measured movement smoothing of position fixes based on extracted pseudoranges
US8983047B2 (en) 2013-03-20 2015-03-17 Telecommunication Systems, Inc. Index of suspicion determination for communications request
US9408034B2 (en) 2013-09-09 2016-08-02 Telecommunication Systems, Inc. Extended area event for network based proximity discovery
US9516104B2 (en) 2013-09-11 2016-12-06 Telecommunication Systems, Inc. Intelligent load balancer enhanced routing
US9479897B2 (en) 2013-10-03 2016-10-25 Telecommunication Systems, Inc. SUPL-WiFi access point controller location based services for WiFi enabled mobile devices
US9548744B2 (en) 2014-08-18 2017-01-17 Qualcomm Incorporated Compensating for hysteretic characteristics of crystal oscillators
RU2586076C1 (ru) * 2014-12-29 2016-06-10 Федеральное государственное бюджетное учреждение "4 Центральный научно-исследовательский институт Министерства обороны Российской Федерации" Способ обнаружения несанкционированного воздействия на точностные характеристики космических навигационных систем
CA2978714C (en) 2015-03-06 2019-04-02 Gatekeeper Systems, Inc. Low-energy consumption location of movable objects
US10001541B2 (en) 2015-09-04 2018-06-19 Gatekeeper Systems, Inc. Magnetometer and accelerometer calibration for cart navigation system
EP3344514B1 (en) 2015-09-04 2020-11-11 Gatekeeper Systems, Inc. Estimating motion of wheeled carts
US11125888B2 (en) 2016-06-06 2021-09-21 Brian G. Agee Multi-subband methods for reduced complexity, wideband blind resilient detection and geo-observable estimation of global navigation satellite signals
US10775510B2 (en) 2016-06-06 2020-09-15 Brian G. Agee Blind despreading of civil GNSS signals for resilient PNT applications
US10232869B2 (en) 2017-03-08 2019-03-19 Gatekeeper Systems, Inc. Navigation systems for wheeled carts
US10725185B2 (en) * 2017-05-23 2020-07-28 Accord Ideation Private Limited Sharing of a global navigation satellite system antenna with multiple global navigation satellite system receivers
FR3068140B1 (fr) * 2017-06-26 2019-08-16 Ubiscale Procede de mise a jour d'un jeu de parametres orbitaux stocke dans une balise de geolocalisation, produit programme d'ordinateur, dispositif de mise a jour et balise correspondants.
RU2697811C2 (ru) * 2018-01-22 2019-08-20 Российская Федерация, от имени которой выступает Министерство обороны Российской Федерации Имитатор навигационных радиосигналов
DE102019203331A1 (de) * 2019-03-12 2020-09-17 Robert Bosch Gmbh Verfahren zum Kalibrieren eines Oszillators einer Empfangseinrichtung, Vorrichtung
US10560898B1 (en) 2019-05-30 2020-02-11 Snap Inc. Wearable device location systems
US10582453B1 (en) 2019-05-30 2020-03-03 Snap Inc. Wearable device location systems architecture
US10575131B1 (en) 2019-05-30 2020-02-25 Snap Inc. Wearable device location accuracy systems
EP3865913A1 (en) * 2020-02-14 2021-08-18 Semtech Corporation Ultralow power gnss receiver
EP4174527A1 (en) * 2021-10-27 2023-05-03 Semtech Corporation Global navigation satellite system receiver

Family Cites Families (75)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4445118A (en) * 1981-05-22 1984-04-24 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Navigation system and method
US4457006A (en) * 1981-11-16 1984-06-26 Sperry Corporation Global positioning system receiver
DE3278915D1 (en) * 1981-12-31 1988-09-22 Secr Defence Brit Receivers for navigation satellite systems
US4797677A (en) * 1982-10-29 1989-01-10 Istac, Incorporated Method and apparatus for deriving pseudo range from earth-orbiting satellites
US4785463A (en) * 1985-09-03 1988-11-15 Motorola, Inc. Digital global positioning system receiver
US4701934A (en) * 1985-09-03 1987-10-20 Motorola, Inc. Method of doppler searching in a digital GPS receiver
JPH0744485B2 (ja) * 1987-05-22 1995-05-15 三菱電機株式会社 自動車電話装置
US4910752A (en) 1987-06-15 1990-03-20 Motorola, Inc. Low power digital receiver
FI85636C (fi) * 1988-08-19 1992-05-11 Nokia Mobira Oy Foerfarande och koppling foer automatisk, pao en raeknare baserad reglering av frekvensen i en radiotelefon.
JPH0271184A (ja) * 1988-09-06 1990-03-09 Anritsu Corp Gps測位装置
JPH02196976A (ja) * 1989-01-26 1990-08-03 Matsushita Electric Works Ltd Gps測位システム
US4959656A (en) * 1989-10-31 1990-09-25 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Efficient detection and signal parameter estimation with application to high dynamic GPS receiver
US4998111A (en) * 1989-11-27 1991-03-05 Motorola, Inc. CPS transform correlation receiver and method
WO1991009375A1 (en) * 1989-12-11 1991-06-27 Caterpillar Inc. Integrated vehicle positioning and navigation system, apparatus and method
GB2241623A (en) * 1990-02-28 1991-09-04 Philips Electronic Associated Vehicle location system
JPH03269385A (ja) * 1990-03-20 1991-11-29 Pioneer Electron Corp Gps受信機
GB2245445A (en) * 1990-06-18 1992-01-02 Philips Electronic Associated Method of and apparatus for obtaining vehicle heading information
US5103459B1 (en) * 1990-06-25 1999-07-06 Qualcomm Inc System and method for generating signal waveforms in a cdma cellular telephone system
US5043736B1 (en) * 1990-07-27 1994-09-06 Cae Link Corp Cellular position location system
EP0508405B1 (en) 1991-04-12 1997-07-09 Sharp Kabushiki Kaisha System for measuring position by using global positioning system and receiver for global positioning system
US5225842A (en) * 1991-05-09 1993-07-06 Navsys Corporation Vehicle tracking system employing global positioning system (gps) satellites
US5202829A (en) * 1991-06-10 1993-04-13 Trimble Navigation Limited Exploration system and method for high-accuracy and high-confidence level relative position and velocity determinations
US5271034A (en) * 1991-08-26 1993-12-14 Avion Systems, Inc. System and method for receiving and decoding global positioning satellite signals
US5385173A (en) * 1991-09-03 1995-01-31 American Pipe & Plastics, Inc. Pipe liner composition
US5365447A (en) * 1991-09-20 1994-11-15 Dennis Arthur R GPS and satelite navigation system
US5153598A (en) * 1991-09-26 1992-10-06 Alves Jr Daniel F Global Positioning System telecommand link
US5379224A (en) * 1991-11-29 1995-01-03 Navsys Corporation GPS tracking system
JPH05155397A (ja) * 1991-12-02 1993-06-22 Toshiba Corp 軌道推定装置
US5280744A (en) 1992-01-27 1994-01-25 Alliedsignal Inc. Method for aiming towed field artillery pieces
US5448773A (en) * 1992-02-05 1995-09-05 Trimble Navigation Limited Long life portable global position system receiver
JPH05232210A (ja) * 1992-02-20 1993-09-07 Kokusai Denshin Denwa Co Ltd <Kdd> Gps衛星を利用した測位方法及び移動体管理方法
US5323322A (en) * 1992-03-05 1994-06-21 Trimble Navigation Limited Networked differential GPS system
US5245634A (en) * 1992-03-23 1993-09-14 Motorola, Inc. Base-site synchronization in a communication system
US5223844B1 (en) * 1992-04-17 2000-01-25 Auto Trac Inc Vehicle tracking and security system
JPH05297105A (ja) * 1992-04-21 1993-11-12 Japan Radio Co Ltd Gps受信処理装置
CA2098660C (en) * 1992-06-23 1999-08-03 Gen Suganuma Automatic frequency control circuit
IL104264A (en) * 1992-08-20 1996-07-23 Nexus Telecomm Syst Remote location determination system
US5430759A (en) * 1992-08-20 1995-07-04 Nexus 1994 Limited Low-power frequency-hopped spread spectrum reverse paging system
US5311194A (en) * 1992-09-15 1994-05-10 Navsys Corporation GPS precision approach and landing system for aircraft
US5418537A (en) * 1992-11-18 1995-05-23 Trimble Navigation, Ltd. Location of missing vehicles
US5430654A (en) * 1992-12-01 1995-07-04 Caterpillar Inc. Method and apparatus for improving the accuracy of position estimates in a satellite based navigation system
CA2106534A1 (en) 1992-12-07 1994-06-08 Kristine Patricia Maine Intelligent position tracking
US5365450A (en) * 1992-12-17 1994-11-15 Stanford Telecommunications, Inc. Hybrid GPS/data line unit for rapid, precise, and robust position determination
FR2699713B1 (fr) 1992-12-17 1995-03-24 Hubert Thomas Procédé et dispositif de contrôle à distance d'un engin sous marin inhabité.
US5523761A (en) 1993-01-12 1996-06-04 Trimble Navigation Limited Differential GPS smart antenna device
US5323163A (en) * 1993-01-26 1994-06-21 Maki Stanley C All DOP GPS optimization
US5317323A (en) * 1993-03-05 1994-05-31 E-Systems, Inc. Passive high accuracy geolocation system and method
US5379320A (en) * 1993-03-11 1995-01-03 Southern California Edison Company Hitless ultra small aperture terminal satellite communication network
US5334987A (en) 1993-04-01 1994-08-02 Spectra-Physics Laserplane, Inc. Agricultural aircraft control system using the global positioning system
US5420592A (en) * 1993-04-05 1995-05-30 Radix Technologies, Inc. Separated GPS sensor and processing system for remote GPS sensing and centralized ground station processing for remote mobile position and velocity determinations
US5420883A (en) * 1993-05-17 1995-05-30 Hughes Aircraft Company Train location and control using spread spectrum radio communications
US5418538A (en) * 1993-05-21 1995-05-23 Trimble Navigation Limited Rapid satellite signal acquisition in a satellite positioning system
WO1994028379A1 (en) 1993-05-28 1994-12-08 Trimble Navigation Limited Combined pc/104 and satellite positioning system
US5389934A (en) 1993-06-21 1995-02-14 The Business Edge Group, Inc. Portable locating system
US5412388A (en) * 1993-08-11 1995-05-02 Motorola, Inc. Position ambiguity resolution
US5515062A (en) * 1993-08-11 1996-05-07 Motorola, Inc. Location system and method with acquisition of accurate location parameters
US5554993A (en) 1994-01-04 1996-09-10 Panasonic Technologies, Inc. Global position determining system and method
US5483549A (en) * 1994-03-04 1996-01-09 Stanford Telecommunications, Inc. Receiver having for charge-coupled-device based receiver signal processing
US5512902A (en) 1994-04-18 1996-04-30 Northrop Grumman Corporation Stock locator system using GPS translator
US5491486A (en) * 1994-04-25 1996-02-13 General Electric Company Mobile tracking units employing motion sensors for reducing power consumption therein
US5519760A (en) * 1994-06-22 1996-05-21 Gte Laboratories Incorporated Cellular network-based location system
DE4424412A1 (de) * 1994-07-12 1996-01-18 Esg Elektroniksystem Und Logis Funktelekommunikationssystem mit Satelliten-Navigation
US5592173A (en) 1994-07-18 1997-01-07 Trimble Navigation, Ltd GPS receiver having a low power standby mode
US5626630A (en) 1994-10-13 1997-05-06 Ael Industries, Inc. Medical telemetry system using an implanted passive transponder
US5650770A (en) 1994-10-27 1997-07-22 Schlager; Dan Self-locating remote monitoring systems
US5594453A (en) 1994-11-01 1997-01-14 Trimble Navigation, Ltd GPS receiver having a rapid acquisition of GPS satellite signals
US5913170A (en) * 1994-11-16 1999-06-15 Highwaymaster Communications, Inc. Locating system and method using a mobile communications network
US5574469A (en) 1994-12-21 1996-11-12 Burlington Northern Railroad Company Locomotive collision avoidance method and system
US5600329A (en) * 1995-06-30 1997-02-04 Honeywell Inc. Differential satellite positioning system ground station with integrity monitoring
CN1155835C (zh) * 1995-10-09 2004-06-30 快速追踪有限公司 使用共享电路的合成gps定位系统及通信系统
US5841396A (en) 1996-03-08 1998-11-24 Snaptrack, Inc. GPS receiver utilizing a communication link
DE69638293D1 (de) * 1995-10-09 2010-12-30 Snaptrack Inc LO-Korrektur in einem GPS-Empfänger
GB9524754D0 (en) * 1995-12-04 1996-04-24 Symmetricom Inc Mobile position determination
ATE222000T1 (de) 1996-04-25 2002-08-15 Sirf Tech Inc Spreizspektrumempfänger mit multibitkorrelation
US5663735A (en) 1996-05-20 1997-09-02 Trimble Navigation Limited GPS receiver using a radio signal for improving time to first fix

Also Published As

Publication number Publication date
EP2285018A3 (en) 2012-07-18
EP2267920A2 (en) 2010-12-29
EP0885492A1 (en) 1998-12-23
DE69738213D1 (de) 2007-11-29
US5841396A (en) 1998-11-24
AU2070297A (en) 1997-09-22
EP0885492B1 (en) 2007-10-17
EP2285018A2 (en) 2011-02-16
ES2296306T3 (es) 2008-04-16
US6064336A (en) 2000-05-16
EP0885492A4 (es) 1999-02-03
EP2267920A3 (en) 2012-07-25
JP5688115B2 (ja) 2015-03-25
JP2008003104A (ja) 2008-01-10
JP2013190437A (ja) 2013-09-26
US6400314B1 (en) 2002-06-04
PT885492E (pt) 2007-12-31
DK0885492T3 (da) 2008-02-11
WO1997033382A1 (en) 1997-09-12
DE69738213T2 (de) 2008-07-17
JP2000506348A (ja) 2000-05-23

Similar Documents

Publication Publication Date Title
ES2373819T3 (es) Receptor gps perfeccionado que utiliza información de la posición de los satélites para compensar el efecto doppler.
ES2314981T3 (es) Receptor gps y procedimiento para el procesamiento de señales gps.
ES2365242T3 (es) Receptor gps y procedimiento para el procesamiento de señales gps.
US7298321B2 (en) Satellite positioning system receivers and methods
US6225945B1 (en) GPS receiver using coarse orbital parameters for achieving a fast time to first fix
CN103777217B (zh) 用于减少首次定位时间的gnss接收器和系统
JPH1031061A (ja) 位置検出装置
EP1798564B1 (en) An improved GPS receiver utilizing satellite position information for compensating Doppler
JP2007017184A (ja) 測位信号を送信するための装置、その装置を備える測位システムおよび測位信号を送信するシステム
KR20100062678A (ko) Gps 콜드 스타트 시간을 줄이는 시스템 및 방법
JP2010139507A (ja) 通信リンクを利用した改良型gps受信器
JP5455542B2 (ja) Gps受信機とgps信号を処理する方法