ES2289307T3 - Detector de sangre para controlar una unidad electroquirurgica. - Google Patents

Detector de sangre para controlar una unidad electroquirurgica. Download PDF

Info

Publication number
ES2289307T3
ES2289307T3 ES03741779T ES03741779T ES2289307T3 ES 2289307 T3 ES2289307 T3 ES 2289307T3 ES 03741779 T ES03741779 T ES 03741779T ES 03741779 T ES03741779 T ES 03741779T ES 2289307 T3 ES2289307 T3 ES 2289307T3
Authority
ES
Spain
Prior art keywords
electrosurgical
energy
light energy
blood
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
ES03741779T
Other languages
English (en)
Inventor
Ronald J. Podhajsky
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Covidien AG
Original Assignee
Covidien AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Covidien AG filed Critical Covidien AG
Application granted granted Critical
Publication of ES2289307T3 publication Critical patent/ES2289307T3/es
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/04Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
    • A61B18/12Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
    • A61B18/14Probes or electrodes therefor
    • A61B18/1402Probes for open surgery
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/04Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
    • A61B18/12Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
    • A61B18/1206Generators therefor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B2017/00017Electrical control of surgical instruments
    • A61B2017/00022Sensing or detecting at the treatment site
    • A61B2017/00057Light
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00636Sensing and controlling the application of energy
    • A61B2018/00642Sensing and controlling the application of energy with feedback, i.e. closed loop control
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/0059Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence
    • A61B5/0071Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence by measuring fluorescence emission
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/0059Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence
    • A61B5/0075Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence by spectroscopy, i.e. measuring spectra, e.g. Raman spectroscopy, infrared absorption spectroscopy
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/0059Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence
    • A61B5/0082Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence adapted for particular medical purposes
    • A61B5/0084Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence adapted for particular medical purposes for introduction into the body, e.g. by catheters
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/0059Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence
    • A61B5/0082Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence adapted for particular medical purposes
    • A61B5/0084Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence adapted for particular medical purposes for introduction into the body, e.g. by catheters
    • A61B5/0086Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence adapted for particular medical purposes for introduction into the body, e.g. by catheters using infrared radiation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/02042Determining blood loss or bleeding, e.g. during a surgical procedure

Landscapes

  • Health & Medical Sciences (AREA)
  • Surgery (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Plasma & Fusion (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Physics & Mathematics (AREA)
  • Otolaryngology (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Surgical Instruments (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

Un sistema electroquirúrgico (10) que comprende: medios (17, 34, 151) para generar y dirigir energía luminosa sobre el tejido; medios (18) para generar energía electroquirúrgica y transmitir la misma por medio de un electrodo al tejido; y medios (17) para analizar características de la energía luminosa para determinar la cantidad de sangre presente en la proximidad del electrodo y para controlar los medios para generar energía electroquirúrgica consecuentemente.

Description

Detector de sangre para controlar una unidad electroquirúrgica.
Antecedentes 1. Campo técnico
La descripción se refiere a la electrocirugía combinada con la detección óptica de sangre y más particularmente al control automático del nivel de energía electroquirúrgica que ha de ser suministrado a los tejidos de acuerdo con la cantidad de sangre detectada ópticamente.
2. Descripción de la técnica anterior
La electrocirugía implica la aplicación de energía de radiofrecuencia para lograr un efecto de tejido. Un generador electroquirúrgico se usa en procedimientos quirúrgicos para suministrar energía eléctrica a los tejidos de un paciente. Un generador electroquirúrgico incluye a menudo u generador de radiofrecuencia y sus controles. Cuando un electrodo está conectado al generador, el electrodo puede ser usado para cortar o coagular el tejido de un paciente con energía eléctrica de alta frecuencia. Durante el funcionamiento normal, la corriente eléctrica alterna del generador circula entre un electrodo activo y un electrodo de retorno pasando a través del tejido y los fluidos corporales de un paciente.
La energía eléctrica usualmente tiene su forma de onda configurada para mejorar su capacidad para cortar y coagular tejido. Diferentes formas de onda corresponden a diferentes modos de funcionamiento del generador, y cada modo proporciona diversas ventajas de funcionamiento al cirujano. Los modos pueden incluir cortar, coagular, una mezcla de ambos, o desecar. Un cirujano puede fácilmente seleccionar y cambiar los modos diferentes de funcionamiento a medida que el procedimiento quirúrgico progresa.
En cada modo de funcionamiento, es importante regular la energía electroquirúrgica suministrada al paciente para lograr el efecto quirúrgico deseado. Este puede efectuarse, por ejemplo, controlando la energía administrada desde el generador electroquirúrgico para el tipo de tejido que se trata.
Diferentes tipos de tejido se encontrarán a medida que el procedimiento quirúrgico progrese y cada tejido único requerirá más o menos energía en términos de tensión, corriente o potencia en función de la impedancia del tejido que cambia frecuentemente y de otros factores, tales como el nivel de vascularización, es decir, la circulación de sangre dentro del tejido. Por lo tanto, el mismo tejido presentará una diferente impedancia de carga a medida que el tejido se deseque.
Dos tipos convencionales de regulación de la energía se usan en los generadores electroquirúrgicos comerciales. El tipo más común controla el suministro de potencia de corriente continua del generador limitando la cantidad de potencia proporcionada desde la red de corriente alterna a la que está conectado el generador. Un bucle de control de la realimentación regula la tensión de salida comparando una tensión o corriente deseada con la tensión o corriente de salida suministrada por el suministro de potencia. Otro tipo de regulación de potencia en los generadores electroquirúrgicos comerciales controla la ganancia del amplificador de alta frecuencia o radiofrecuencia. Un bucle de control de la realimentación compara la potencia de salida suministrada desde el amplificador de RF para ajustarla a un nivel de potencia deseado.
Las Patentes de EE.UU. Nos. 3.964.487; 3.980.085; 4.188.927 y 4.092.986 tienen circuitos para reducir la corriente alimentada de acuerdo con el incremento de la impedancia de carga. En esas patentes se mantiene constante la tensión de salida y la corriente se disminuye con el incremento de la impedancia de carga.
La Patente de EE.UU. Nº 4.126.137 controla el amplificador de potencia de la unidad electroquirúrgica de acuerdo con un circuito de compensación no lineal aplicado a una señal de re realimentación deducida de una comparación de la señal de referencia del nivel de potencia y el producto matemático de dos señales que incluyen la corriente y la tensión detectadas en la unidad.
La Patente de EE.UU. Nº 4.658.819 tiene un generador electroquirúrgico que incluye un controlador de microprocesador basado en medios para disminuir la potencia de salida en función de los cambios en la impedancia del tejido.
La Patente de EE.UU. Nº 4.727.874 incluye un generador electroquirúrgico con un control de la potencia de realimentación modulado por la anchura de los impulsos de alta frecuencia, en el que cada ciclo del generador se regula en el contenido de potencia modulando la anchura de los impulsos de la energía de accionamiento.
La Patente de EE.UU. Nº 3.601.126 tiene un generador electroquirúrgico que tiene un circuito de realimentación que trata de mantener la corriente de salida con una amplitud constante sobre una amplia variedad de impedancias de tejido.
\newpage
Ninguna de las patentes de EE.UU. anteriormente mencionadas incluye la detección óptica de sangre para regular o controlar la energía producida o salida de formas de onda del generador electroquirúrgico durante diferentes modos operacionales sobre un margen de impedancias de tejido de paciente finito. La detección óptica de sangre durante la electrocirugía permite también que cirujanos con ceguera de color realicen eficazmente electrocirugía. En un estudio que fue publicado en 1997, 18 de 40 cirujanos con ceguera de color informaron sobre dificultades en la detección de sangre en productos del cuerpo humano. Spalding, J. Anthony B., "Doctores con deficiencia en la visión de colores hereditaria: sus dificultades en el trabajo clínico", Cavonius CR. ed., Deficiencias en la Visión de Colores, XII: Debates del Grupo de Investigación Internacional sobre Deficiencias en la Visión de Colores, 1995, Norwell, Mass.: Editores Académicos Kluwer, págs. 483 a 489, 1997.
Consecuentemente, existe una necesidad de un sistema que detecte ópticamente sangre durante la electrocirugía y controle la energía suministrada o la salida de formas de onda de un generador electroquirúrgico de acuerdo con la cantidad de sangre detectada ópticamente.
Sumario
Se proporciona un sistema electroquirúrgico para detectar ópticamente sangre y controlar un generador electroquirúrgico. Un sistema óptico de detección de sangre se usa para detectar ópticamente sangre y puede ser incluido como una parte integral de los circuitos del sistema electroquirúrgico global, o puede ser diseñado como una unidad separada que se conecta y controla a un generador electroquirúrgico. El sistema óptico de detección de sangre puede ser incorporado a través de una diversidad de disposiciones o componentes analógicos, digitales y/o circuitos ópticos, que incluyen el software para hacer funcionar un circuito de cálculo y memoria.
El sistema óptico de detección de sangre controla la energía suministrada por el generador electroquirúrgico de acuerdo con la cantidad de sangre detectada. Esto permite que un cirujano efectúe la electrocirugía sin tener que detenerse a observar la condición del tejido para determinar si es necesaria una electrocirugía adicional.
Más particularmente, el sistema óptico de detección de sangre controla la forma de onda de la salida generada por el generador electroquirúrgico durante la electrocirugía usando una señal de realimentación recibida del sistema óptico de detección de sangre. Por ejemplo, si se desea la coagulación del tejido, el sistema óptico de detección de sangre analiza continuamente el tejido buscando la presencia de sangre y controla la forma de onda de salida consecuentemente.
Aunque el sistema óptico de detección de sangre puede ser usado para controlar generadores electroquirúrgicos de diseños que varíen, se prefiere que el generador electroquirúrgico incluya un sistema de selección de potencia en el que el usuario pueda inicializar, establecer, vigilar y/o controlar el funcionamiento del generador electroquirúrgico. El generador electroquirúrgico preferido no necesita estar limitado a estos cuatro elementos funcionales, por ejemplo el generador electroquirúrgico podría incluir también seguridad adicional, vigilancia, modificación/acondicionamiento de señales, y/o circuito de realimentación o elementos/procedimientos funcionales. El diseño actual de generadores electroquirúrgicos puede incluir el uso de componentes digitales y señalación, componentes analógicos y señalación, y/o componentes ópticos y señalación, o puede estar incorporado, completa o parcialmente dentro de un procedimiento de software que funcione sobre componentes de hardware.
El sistema óptico de detección de sangre incluye un circuito de generación del haz luminoso óptico que tiene componentes ópticos para generar y enfocar un haz luminoso en estrecha proximidad con y/o sobre un electrodo de un instrumento electroquirúrgico; un circuito que tiene componentes ópticos para capturar energía de luz reflejada, tal como un detector fotosensible; un circuito de detección de sangre para analizar la energía de la luz reflejada y/o otras características y que determina la cantidad de sangre presente en la proximidad a y/o sobre el electrodo; y un circuito de corrección de la realimentación.
El circuito de corrección de la realimentación que está conectado eléctricamente para recibir una señal del circuito de detección de sangre funciona para producir una señal de control de realimentación que suministra este al sistema de selección de potencia, dentro del generador electroquirúrgico, para originar que el sistema de selección de potencia controle la cantidad de energía electroquirúrgica creada y/o el tipo de forma de onda de salida generado de acuerdo con la cantidad de sangre presente en la proximidad de y/o sobre el electrodo. El sistema puede detectar también la presencia de cualquier vaso sanguíneo en la proximidad del extremo distal del electrodo y controlar el generador electroquirúrgico consecuentemente o alertar al cirujano para impedir, el corte de vasos sanguíneos importan-
tes.
Preferiblemente, el haz luminoso óptico está enfocado enfrente del extremo distal del electrodo para detectar la sangre presente sobre el tejido que está siendo cortado o coagulado mediante el instrumento electroquirúrgico. El haz luminoso óptico puede tener energía luminosa visible dentro de las longitudes de onda del espectro de luz infrarroja y cerca del infrarrojo.
Está previsto que uno o más de los circuitos anteriormente mencionados pueda ser ejecutado mediante uno o más conjuntos de instrucciones programables configurados para que sean ejecutados mediante al menos un procesador del sistema electroquirúrgico o al menos mediante un procesador situado remotamente del sistema electroquirúrgico. Por ejemplo, los datos correspondientes a la energía de la luz reflejada pueden ser transmitidos, de modo inalámbrico o no inalámbrico, sobre una red, tal como una LAN, WAN o Internet, a un servidor o estación de control remoto para que analice los datos que usa un conjunto de instrucciones programables para determinar la cantidad de sangre presente en la proximidad de y/o sobre el electrodo.
De acuerdo con el análisis realizado, el servidor remoto o la estación de control generan entonces usando el mismo u otro conjunto de instrucciones programables la señal de control de realimentación y aplican la señal al sistema de selección de potencia. Se considera que otra forma de energía electromagnética puede ser usada para detectar la presencia de sangre además del haz luminoso óptico.
En una realización preferida de la presente invención se proporciona un sistema electroquirúrgico que incluye una pieza de mano que tiene un extremo proximal y un extremo distal desde el que se emite la energía luminosa desde el mismo; al menos un electrodo electroquirúrgico sobre la pieza de mano y que se extiende desde el extremo distal desde cual se emite energía electroquirúrgica; una fuente de energía luminosa para generar la energía luminosa y transmitir la misma al extremo distal por medio de al menos una guía de ondas; una fuente de energía electroquirúrgica para generar la energía electroquirúrgica y transmitir la misma mediante al menos un elemento eléctricamente conductor al electrodo; y medios para analizar las características de la energía luminosa para determinar la cantidad de sangre presente en la proximidad del electrodo y para controlar la fuente de energía electroquirúrgica consecuentemente.
Según la presente invención se proporciona un sistema electroquirúrgico que incluye medios para generar y dirigir energía luminosa sobre el tejido; medios para generar energía electroquirúrgica y transmitir la misma por medio de un electrodo al tejido; y medios para analizar las características de la energía luminosa para determinar la cantidad de sangre presente en el electrodo y para controlar los medios para generar energía electroquirúrgica consecuentemente.
Características adicionales de la descripción resultarán evidentes para los expertos en la técnica a partir de la descripción detallada siguiente en combinación con los dibujos.
Breve descripción de los dibujos
Se describirán diversas realizaciones más adelante con referencia a los dibujos, en los que:
la Figura 1 es un diagrama en perspectiva de una realización del presente sistema electroquirúrgico;
la Figura 2 es un diagrama esquemático separado de un instrumento de pieza de mano electroquirúrgica del sistema electroquirúrgico de la Figura 1;
la Figura 3 es un diagrama de bloques del sistema óptico de detección de sangre;
la Figura 4 es un diagrama de flujo que muestra el funcionamiento del sistema óptico de detección de sangre según un primer método;
la Figura 5 es un diagrama de flujo que muestra el funcionamiento del sistema óptico de detección de sangre según un segundo método; y
la Figura 6 es un diagrama esquemático separado de otra realización del instrumento de pieza de mano electroquirúrgico.
Descripción detallada de una realización preferida
Un sistema 10 electroquirúrgico se muestra en perspectiva en la Figura 1 y permite que un cirujano efectúe el corte, la coagulación, y/o una combinación de estos en el tejido de un paciente 11. El sistema electroquirúrgico 10 tiene una pieza 12 de mano con un extremo proximal 13 para que sea mantenida y controlada por el cirujano. Un extremo distal 14 en la pieza de mano tiene un puerto 15 desde el que se dirige un haz luminoso óptico al paciente 11. Un electrodo electroquirúrgico 16 se extiende desde el extremo distal 14 de la pieza 12 de mano.
Un sistema óptico 17 de detección de sangre para generar el haz luminoso óptico está conectado al extremo proximal 13 de la pieza 12 de mano por medio de guías de onda o conductores 34. El sistema óptico 17 de detección de sangre puede ser controlado manualmente por el cirujano o controlado automáticamente para que suministre el haz luminoso óptico desde el extremo distal 14 de la pieza 12 de mano hacia el paciente 11. Un generador electroquirúrgico 18 para generar la energía electroquirúrgica está conectado eléctricamente al extremo proximal 13 de la pieza 12 de mano y puede ser controlado manualmente por el cirujano o controlado automáticamente para transmitir energía electroquirúrgica desde el electrodo electroquirúrgico 16 hacia el paciente 11. El sistema óptico 17 de detección de sangre y el generador electroquirúrgico 18 están conectados por un cable 38 para proporcionar comunicaciones de datos entre ambos y una señal de control de realimentación del sistema óptico 17 de detección de sangre al generador 18 para controlar el generador 18.
Aunque el sistema óptico 17 de detección de sangre puede ser usado para controlar el generador electroquirúrgico 18, se prefiere que el generador electroquirúrgico 18 incluya un sistema de selección de potencia con el cual el usuario pueda inicializar, establecer, vigilar y/o controlar el funcionamiento del generador electroquirúrgico 18. El generador electroquirúrgico preferido no necesita estar limitado a estos cuatro elementos funcionales, por ejemplo, el generador electroquirúrgico 18 podría incluir también seguridad adicional, vigilancia, modificación/acondicionamiento de señales, y/o circuitos de realimentación o elementos/procedimientos funcionales. El diseño de los generadores electroquirúrgicos actuales puede incluir el uso de componentes digitales y señalización, componentes analógicos y señalización, y/o componentes ópticos y señalización, o puede estar incorporado, completa o parcialmente dentro de un procedimiento de software que ejecutan componentes de hardware.
Una trayectoria 19 de retorno se proporciona para la energía electroquirúrgica; la trayectoria 19 de retorno puede ser un circuito monopolar o bipolar. La Figura 1 ilustra un circuito monopolar que tiene una trayectoria 20 de retorno, en lugar de un electrodo de retorno en el caso de un circuito bipolar. La trayectoria 19 de retorno está conectada para recibir al menos una porción de la energía electroquirúrgica transmitida desde la fuente de energía electroquirúrgica 18 y luego al paciente 11. Una entrada 22 de retorno para la fuente de energía electroquirúrgica 18 está conectada a la trayectoria 19 de retorno para proporcionar un circuito completo 23 entre el electrodo electroquirúrgico 16, el paciente 11, y el generador electroquirúrgico 18.
Un botón 24 de control accionado manualmente se proporciona cobre la pieza 12 de mano para que el cirujano controle selectivamente el generador electroquirúrgico 18 para controlar la energía electroquirúrgica suministrada desde el extremo distal 14. El botón 24 de control puede estar situado también en un pedal 26.
Se permite que el cirujano pueda utilizar el haz óptico que emana del puerto 15 para localizar con precisión el tejido objetivo que ha de ser tratado si el haz luminoso óptico tiene energía luminosa dentro del espectro visible. Se considera que el haz óptico luminoso puede tener energía luminosa visible dentro de las longitudes de onda del espectro de luz infrarroja y cercanas al infrarrojo.
Con referencia la Figura 3, el sistema óptico 17 de detección de sangre incluye un circuito 52 de generación de haz óptico luminoso que tiene componentes ópticos para generar y enfocar un haz luminoso, tal como un haz de luz lasérica, como se conoce en la técnica, en estrecha proximidad con y/o sobre un electrodo 16 de la pieza 12 de mano. La guía 34 de ondas, mostrada en la Figura 1, se usa para suministrar la energía luminosa desde el extremo proximal 13 hasta más allá del extremo distal 14. El sistema óptico 17 de detección de sangre incluye además al menos un componente óptico 54 posicionado en el extremo distal 14 de la pieza 12 de mano, para capturar energía luminosa reflejada como se conoce en la técnica. El al menos un componente óptico 54 devuelve señales indicativas de la energía luminosa reflejada en el sistema 17 por medio de guías de onda/conductores 34 al menos a un detector fotosensible.
El sistema óptico 17 de detección de sangre incluye además un circuito 56 de detección de sangre para analizar la energía luminosa reflejada y determinar la cantidad de sangre presente en la proximidad de y/o sobre un electrodo 16; y un circuito 58 de corrección de realimentación.
La energía luminosa reflejada incluye preferiblemente datos correspondientes a las reflexiones de la luz indicativas de dos longitudes de onda diferentes, una primera y una segunda longitudes de onda. En primer lugar, un primer haz luminoso óptico que tiene la primera longitud de onda es generado y emana de la pieza 12 de mano. La energía luminosa reflejada indicativa del primer haz luminoso óptico es capturada y analizada por el sistema óptico 17 de detección de sangre para medir diversos parámetros, tales como recuentos de fotones. En segundo lugar, un segundo haz luminoso óptico que tiene la segunda longitud de onda es generado y emana de la pieza 12 de mano. La energía luminosa reflejada indicativa del segundo haz luminoso óptico es capturada y analizada por el sistema óptico 17 de detección de sangre para medir diversos parámetros, tales como recuentos de fotones.
Alternativamente, un haz luminoso óptico de banda ancha es generado y emana de la pieza 12 de mano. Las energías luminosas reflejadas, indicativas de dos longitudes de onda separadas y distintas, son capturadas y analizadas por el sistema óptico 17 de detección de sangre para medir diversos parámetros, tales como recuentos de fotones. Preferiblemente, en cualquier método, la primera longitud de onda está en el intervalo de 620-700 nanómetros y la segunda longitud de onda está en el intervalo de 540-610 nanómetros o 950-1050 nanómetros.
Una relación se obtiene entonces usando dos valores medidos correspondientes a un parámetro particular; un valor medido es indicativo del primer haz luminoso óptico o longitud de onda y un valor medido es indicativo del segundo haz luminoso óptico o longitud de onda. Una tabla de consulta u otra estructura de datos es usada entonces por un procesador o por un individuo para correlacionar la relación con una cantidad particular o nivel de sangre presente en la proximidad del electrodo 16.
La energía luminosa reflejada puede ser analizada también para determinar la cantidad de sangre presente usando alguno de varios métodos conocidos, tales como Espectroscopia Casi Infrarroja (NIRS), Espectroscopia Infrarroja (IRS), Espectroscopia Fluorescente, Espectroscopia de Raman, Espectroscopia Fotoacústica (donde el sistema 10 está equipado con un micrófono para medir una onda de presión acústica creada por el haz óptico que calienta rápidamente el tejido), flujometría Doppler de láser, mediciones de cambio de dispersión de la luz, y mediciones de cambio de polarización. Estos métodos determinan el nivel de intensidad luminosa, los efectos de dispersión de la luz, el nivel de la energía fluorescente, y otras características de la energía luminosa reflejada. El nivel de intensidad luminosa determinado, los efectos de dispersión de la luz, el nivel de la energía fluorescente, y/o otras características de la energía luminosa reflejada se usan entonces para calcular, usando ecuaciones matemáticas, algoritmos, y/o instrucciones pro-
gramables ejecutadas por al menos un procesador, la cantidad de sangre presente en la proximidad del electrodo 16.
\global\parskip0.880000\baselineskip
Conociendo las características de la señal óptica del haz luminoso generado y el nivel de la intensidad luminosa determinado, los efectos de dispersión de la luz, el nivel de energía fluorescente, y otras características de la energía de la luz reflejada, el sistema 17 es capaz de determinar usando una tabla de consulta u otra estructura de datos la cantidad de sangre presente en la proximidad del electrodo 16. Si el análisis indica que hay una elevada cantidad de sangre presente en la proximidad del electrodo 16, se puede deducir que el tejido no se ha coagulado (en el caso de un procedimiento de coagulación) o ha sido cortado (en el caso de un procedimiento de corte). Si el análisis indica que hay una baja cantidad de sangre presente en la proximidad del electrodo 16, se puede deducir que el tejido se ha coagulado (en el caso de un procedimiento de coagulación) o que no ha sido cortado adecuadamente (en el caso de un procedimiento de corte).
El sistema puede detectar también la presencia de cualquier vaso sanguíneo en la proximidad del extremo distal del electrodo 16 y controlar el generador 18 electroquirúrgico consecuentemente o alertar el cirujano para evitar, por ejemplo, la sección de vasos sanguíneos importantes.
El circuito 58 de corrección de la realimentación que está conectado eléctricamente para recibir una señal del circuito 56 de detección de sangre funciona para producir una señal de control de la realimentación que se suministra entonces al sistema de selección de potencia, dentro del generador electroquirúrgico 18, por medio del conductor 38 para originar que el sistema de selección de potencia controle la cantidad de energía electroquirúrgica creada y/o el tipo de forma de onda de salida generado (forma de onda de coagulación o de división de tejido) de acuerdo con la cantidad de sangre presente en la proximidad de y/o sobre el electrodo 16.
La Figura 4 es un diagrama de flujo que ilustra a modo de ejemplo un método de funcionamiento del sistema óptico 17 de detección de sangre. En la operación 400, se generan el haz luminoso óptico y la energía electroquirúrgica. La energía luminosa reflejada es capturada en la operación 402 y analizada en la operación 404 para determinar la cantidad de sangre presente en la proximidad del electrodo 16 en la operación 406. En la operación 408 se determina si el nivel detectado de sangre en la proximidad del electrodo 16 está por encima de un umbral predeterminado (el valor de umbral predeterminado depende del método que se use para detectar la cantidad de sangre presente). Si el nivel detectado de sangre no está por encima del valor de umbral predeterminado, entonces se determina en la operación 410 si el procedimiento que se está ejecutando es un procedimiento de coagulación. Si no se está ejecutando un procedimiento de coagulación, es decir, se está ejecutando un procedimiento de corte, el procedimiento de corte se continúa en la operación 412, y el procedimiento retorna a la operación 408.
Si en la operación 410 se determina que se está ejecutando un procedimiento de coagulación, el procedimiento continúa con la operación 414 en la que se transmite una señal mediante el circuito 58 de corrección de la realimentación al generador electroquirúrgico 18 para controlar la cantidad de energía electroquirúrgica y/o el tipo de forma de onda de salida generada o la desconexión del generador electroquirúrgico 18, puesto que el procedimiento de coagulación ha sido realizado adecuadamente. Si en la operación 408, se determina que el nivel detectado de sangre es superior al valor de umbral predeterminado, entonces se determina en la operación 416 si el procedimiento que se está realizando es un procedimiento de corte. Si no se está ejecutando un procedimiento de corte, es decir, se está ejecutando un procedimiento de coagulación, el procedimiento de coagulación se continúa en la operación 418, y el procedimiento retorna a la operación 408.
Si en la operación 416 se determina que se está ejecutando un procedimiento de corte, el procedimiento continúa a la operación 414 en la que se transmite una señal mediante el circuito 58 de corrección de la realimentación al circuito electroquirúrgico 18 para controlar la cantidad de energía electroquirúrgica y/o el tipo de forma de onda generada o desconectar el generador electroquirúrgico 18, puesto que el procedimiento de corte ha sido ejecutado adecuadamente.
La Figura 5 es un diagrama de flujo que ilustra otro método a modo de ejemplo de funcionamiento del sistema óptico 17 de detección de sangre. En la operación 500, se generan el haz luminoso óptico y energía electroquirúrgica. La energía luminosa reflejada es capturada en la operación 502 y analizada en la operación 504 para determinar la cantidad de sangre presente en la proximidad del electrodo 16 en la operación 506. La operación 506 determina la cantidad de sangre presente calculando el valor de la relación determinada dividiendo el recuento de fotones en la longitud de onda 1 por el recuento de fotones en la longitud de onda 2. El valor de la relación se analiza en la operación 508.
Si el valor de la relación es bajo (menor que un valor predeterminado de la relación) entonces el procedimiento pasa a la operación 510 en la que una señal es transmitida mediante el circuito 58 de corrección de la realimentación al generador electroquirúrgico 18 para controlar el modo de funcionamiento, es decir, seleccionando un modo de (corte) de división del tejido. Asimismo, la cantidad de energía electroquirúrgica puede ser ajustada.
Si en la operación 508, se determina que el valor de la relación es alto (mayor que el valor predeterminado de la relación), el procedimiento pasa a la operación 512 en la que una señal es transmitida por el circuito 58 de corrección de la realimentación al generador electroquirúrgico 18 seleccionando un modo de hemostasis (coagulación). La cantidad de energía electroquirúrgica puede ser también ajustada.
Si en la operación 508, se determina que el valor de la relación es un valor intermedio (aproximadamente igual al valor predeterminado de la relación), el procedimiento pasa a la operación 514 en la que se transmite una señal mediante el circuito 58 de corrección de la realimentación al generador electroquirúrgico 18 seleccionando un modo mezclado que es proporcional al valor detectado de la relación. A continuación de cualquiera de las operaciones 510, 512 y 514, el procedimiento retorna a la captura de la energía de la luz reflejada en le operación 502 en un bucle continuo.
Se ha de tener en cuenta que dependiendo de cual de los métodos espectroscópicos anteriores y de otros es usado por el sistema óptico 17 de detección de sangre para determinar la cantidad de sangre presente, el sistema óptico 17 de detección de sangre es controlado consecuentemente usando parámetros de medición óptica relativos a la sangre conocidos por cada método, para generar y enfocar un haz luminoso óptico que tiene características adecuadas para el método. El sistema óptico 17 de detección de sangre puede cambiar la longitud de onda del haz luminoso óptico dentro del espectro visible, cerca de las longitudes de onda del espectro de luz infrarroja y cercano a la luz infrarroja, dependiendo de cual de los métodos anteriores se usa para determinar la cantidad de sangre presente en la proximidad del electrodo 16. Por ejemplo, si se usa el método NIRS, el haz luminoso óptico necesita tener una longitud de onda justamente superior a la del espectro visible.
La longitud de onda del haz luminoso óptico puede ser seleccionada manualmente usando un mando de control u otros medios de control en el sistema óptico 17 de detección de sangre. Si la longitud de onda del haz luminoso óptico está en un intervalo particular, la energía luminosa del haz luminoso óptico puede ser usada para crear una trayectoria conductora ionizada a lo largo de la cual la energía electroquirúrgica puede ser guiada.
Cuando ha sido usada la energía luminosa para crear una trayectoria ionizada, la energía luminosa debe ser controlada usando los medios de control para evitar efectos no deseados en el tejido. El ciclo de trabajo del haz luminoso debe ser mantenido en el intervalo de 10^{-5} a 10^{-8}. La densidad de la energía suministrada a cualquier área única de tejido desde el haz luminoso no debe exceder 26 J/cm^{2} para longitudes de onda comprendidas entre 1,06 y 10,6 micrómetros, y 17 J/cm^{2} para longitudes de onda del orden de 0,53 micrómetros e inferiores. Para crear la trayectoria ionizada, la longitud de onda del haz óptico debe estar en el intervalo de 0,3 a 10,6 micrómetros.
Se establece además que uno o más de los circuitos 52, 56 y 58 anteriormente mencionados pueden ser establecidos mediante uno o más conjuntos de instrucciones programables configurados para que sean ejecutados por al menos un procesador del sistema electroquirúrgico 10 o al menos un procesador situado remotamente del sistema electroquirúrgico 10. Por ejemplo, los datos correspondientes a la energía luminosa reflejada pueden ser transmitidos, ya sea de modo inalámbrico o no inalámbrico, sobre una red, tal como una LAN, WAN, o Internet, a una estación de control o servidor remoto para analizar los datos usando un conjunto de instrucciones programables para determinar la cantidad de sangre presente en la proximidad de y/o sobre el electrodo 16 y/o la presencia de vasos sanguíneos en la proximidad del extremo distal del electrodo 16.
De acuerdo con el análisis realizado, la estación de control o el servidor remoto generan entonces usando el mismo u otro conjunto de instrucciones programables la señal de control de realimentación y suministran la señal al sistema de selección de potencia. Se considera que puede ser usada otra forma de energía electromagnética para detectar la presencia de sangre además del haz óptico de luz.
Otra realización de una pieza de mano para un sistema electroquirúrgico 10 se representa en la Figura 6 y se designa en general con el número 12A de referencia. La pieza 12A de mano incluye un extremo proximal 13A que es mantenido y controlado por el cirujano, un extremo distal 14A en la pieza 12A de mano tiene un puerto 15A desde el cual se dirige un haz luminoso óptico al paciente 11. Un electrodo 16A electroquirúrgico se extiende desde el extremo distal 14A de la pieza 12A de mano. El al menos un componente óptico 54 en el extremo distal 14A de la pieza 12A de mano devuelve señales indicativas de la energía luminosa reflejada al sistema óptico 17 de detección de sangre a través de guías de onda o conductores 34A al menos a un detector fotosensible.
Un botón 24A de control variable accionado manualmente se proporciona sobre la pieza 12A de mano para que el cirujano controle selectivamente en tiempo real la intensidad o nivel de la corriente, es decir, la intensidad de la forma de onda de salida, proporcionada por el generador electroquirúrgico 18 de acuerdo con la cantidad de sangre detectada por el sistema óptico 17 de detección de sangre. Consecuentemente, la pieza 12A de mano proporciona al cirujano la capacidad de controlar la cantidad de tejido cortado, coagulado, etc., a medida que el sistema 10 detecta simultáneamente la cantidad de sangre.
En otra realización preferida, con referencia continuada a la Figura 6, la detección óptica de la presencia de sangre controla el modo de generación del generador electroquirúrgico en tiempo real o automáticamente con instrumentos. Con propósitos ilustrativos, si una gran cantidad de sangre se detecta adyacente al electrodo 16A entonces el modo de salida del generador electroquirúrgico se establece automáticamente para una forma de onda de "hemostasis" (coagulación) de alto nivel. Si no se detecta sangre, entonces es seleccionada automáticamente una forma de onda de "división de tejido" (corte) para la salida del generador electroquirúrgico. Si se detecta una cantidad intermedia de sangre entonces es seleccionada una "combinación" en proporción a la cantidad de sangre detectada. Simultáneamente, el cirujano puede usar el botón 24A de control variable accionado manualmente para el control selectivo en tiempo real de la intensidad o nivel de la corriente.
El cirujano selecciona la intensidad que proporciona una velocidad operacional dentro de su zona de comodidad individual. Por tanto, la selección del modo es controlada automáticamente por el circuito 56 de detección de sangre y el cirujano controla la intensidad de la salida en tiempo real o automáticamente con instrumentos. Esta realización simplifica grandemente la interfaz del equipo de cirujano proporcionando una selección de modo automatizada para ayudar al cirujano. Como un resultado existe una mejora en los resultados quirúrgicos, porque el modo apropiado se selecciona en tiempo real, reduciendo de ese modo la expansión térmica dentro del tejido. Adicionalmente, puesto que el cirujano mantiene el control de la intensidad de la corriente, existe una característica de seguridad incorporada.
El esquema de control descrito anteriormente puede ser ofrecido como una característica que puede ser seleccionada, u opción. Es decir, un conmutador que puede ser seleccionado permitiría al cirujano escoger entre el funcionamiento del sistema de la presente invención en un modo completamente automático o en un modo que le permita al cirujano controlar la intensidad de la corriente.
Se considera que el botón 24A de control puede estar situado también en el pedal 26. Se considera además que las funciones del botón 24A de control variable pueden ser automatizadas, para que el sistema 10 controle automáticamente la intensidad de la corriente de acuerdo con la cantidad de sangre detectada por el sistema óptico 17 de detección de sangre.
Está previsto que el cirujano pueda utilizar el haz óptico que emana del puerto 15A para localizar el tejido objetivo que ha de ser tratado si el haz luminoso óptico tiene energía luminosa comprendida dentro del espectro visible. Se considera que el haz luminoso óptico puede tener energía luminosa visible dentro de longitudes de onda del espectro de luz infrarroja y cercanas.
Como se muestra mediante las Figuras 2 y 6, el sistema electroquirúrgico 10 está configurado de modo que el extremo distal 14, 14A y el electrodo electroquirúrgico 16, 16A, están preferiblemente dispuestos geométricamente con relación a la pieza 12, 12A de mano para proporcionar la energía luminosa desde el extremo distal 14, 14A. Esta geometría permite la aplicación simultánea combinada de la energía luminosa y la energía electroquirúrgica. La trayectoria ionizada está configurada por la energía luminosa procedente del extremo distal 14, 14A en el paciente 11 para dirigir la energía electroquirúrgica allí a lo largo.
Un método para proporcionar el corte, la coagulación, y/o una combinación de ambos sobre el tejido del paciente 11 con el sistema electroquirúrgico 10 incluye la operación siguiente de dirigir energía luminosa y energía electroquirúrgica desde la pieza 12, 12A de mano con sus extremos proximal y distal, 13, 13A y 14, 14A, a lo largo de un eje longitudinal de la pieza 12, 12A de mano dirigiendo el extremo distal 14, 14A de la misma a lo largo del eje longitudinal desde el cual la energía luminosa y la energía electroquirúrgica pueden ser al menos en parte dirigidas simultáneamente.
Preferiblemente, como se muestra en las Figuras 2 y 6, el haz óptico luminoso se enfoca enfrente del extremo distal 14, 14A del electrodo 16, 16A para detectar la presencia de sangre sobre el tejido que se está cortando o coagulando mediante la pieza 12, 12A de mano. La energía luminosa emana continuamente desde el extremo distal 14, 14A de la pieza 12, 12A de mano. Alternativamente, el cirujano activa el generador electroquirúrgico 18 usando el botón 24, 24A de control situado sobre la pieza 12, 12A de mano o el conmutador 26 de pie. Cuando se inicia la activación, primeramente, se emite energía luminosa desde el extremo distal 14, 14A de la pieza 12, 12A de mano, seguidamente, después de un breve retardo en el que se detecta la presencia de sangre, se activa la transmisión de energía electroquirúrgica desde el electrodo electroquirúrgico 16, 16A en el extremo distal 14, 14A de la pieza 12, 12A de mano.
En el caso de encontrar un vaso sanguíneo que ha creado un charco de sangre, este método proporciona la detección del charco de sangre y selecciona automáticamente una forma de onda hemostática (coagulación) mediante el generador electroquirúrgico 18 para efectuar un procedimiento de "coagulación por puntos".
Asimismo, si no hay sangre presente, el sistema de detección selecciona una forma de onda de división (corte de tejido. De esta manera, el daño térmico en el tejido se reduce creando un efecto de tejido superior.
El método incluye la operación adicional de guiar la energía electroquirúrgica disponiendo el extremo distal 14, 14A y el electrodo electroquirúrgico 16, 16A geométricamente con relación a la pieza 12, 12A de mano para proporcionar el haz luminoso óptico desde el extremo distal 14, 14A para la aplicación simultánea combinada del haz luminoso óptico y el de energía electroquirúrgico. Entonces se realiza la operación añadida de ionizar una trayectoria conductora con energía luminosa desde el extremo distal 14, 14A en el paciente 11 para dirigir la circulación de energía electroquirúrgica.
El método incluye también la operación adicional de proporcionar un soporte de electrodo electroquirúrgico alargado para soportar el electrodo 16, 16A para uso endoscópico o laparoscópico en el que una cánula se coloca a través de la pared del cuerpo de paciente.
Las reivindicaciones que siguen tratan de cubrir las realizaciones descritas y sus equivalentes. El concepto en su alcance más amplio cubre el sistema para detectar ópticamente la presencia de sangre y/o determinar la cantidad de sangre detectada durante la electrocirugía. Se ha de entender que el concepto está sometido a muchas modificaciones sin salirse del alcance de las reivindicaciones tal como se citan en esta memoria.
Aunque la presente invención ha sido descrita con respecto a realizaciones preferidas, resultará evidente para los expertos de capacidad ordinaria en la técnica a la que esta pertenece que pueden hacerse cambios y modificaciones sin salirse del alcance del aparato, sujeto de la misma, tal como se define mediante las reivindicaciones adjuntas.
\global\parskip1.000000\baselineskip

Claims (15)

1. Un sistema electroquirúrgico (10) que comprende:
medios (17, 34, 151) para generar y dirigir energía luminosa sobre el tejido;
medios (18) para generar energía electroquirúrgica y transmitir la misma por medio de un electrodo al tejido; y
medios (17) para analizar características de la energía luminosa para determinar la cantidad de sangre presente en la proximidad del electrodo y para controlar los medios para generar energía electroquirúrgica consecuentemente.
2. El sistema electroquirúrgico de la reivindicación 1, en el que:
se proporciona una pieza (12) de mano que tiene un extremo proximal (13) y un extremo distal (14) desde el cual se emite energía luminosa;
el electrodo es un electrodo electroquirúrgico proporcionado sobre la pieza de mano y que se extiende desde el extremo distal desde el que se emite energía electroquirúrgica;
se proporciona una fuente de energía luminosa para generar la energía luminosa y que transmite la misma al extremo distal a través de al menos una guía de onda; y
se proporciona una fuente de energía electroquirúrgica para generar la energía electroquirúrgica y transmitir la misma mediante al menos un elemento eléctricamente conductor al electrodo.
3. El sistema electroquirúrgico de las reivindicaciones 1 ó 2, en el que los medios para generar y dirigir energía luminosa general energía luminosa visible en al menos una de las longitudes de onda del espectro de luz infrarroja y de cerca del infrarrojo.
4. El sistema electroquirúrgico de las reivindicaciones 1 ó 2, en el que los medios para generar energía electroquirúrgica generan energía electroquirúrgica que tiene al menos una forma de onda de salida de división de tejido y una de coagulación.
5. El sistema electroquirúrgico de las reivindicaciones 1 ó 2, en el que las características de la energía luminosa se seleccionan del grupo compuesto de nivel de: intensidad de la luz, efectos de dispersión de la luz, y nivel de la energía fluorescente.
6. El sistema electroquirúrgico de las reivindicaciones 1 ó 2, en el que los medios para analizar están situados remotamente con respecto a los medios para generar la energía luminosa y los medios para generar la energía electroquirúrgica.
7. El sistema electroquirúrgico de la reivindicación 2, en el que los medios para analizar comunican con la fuente de energía luminosa a través de una red.
8. El sistema electroquirúrgico de las reivindicaciones 1 ó 2, en el que los medios para analizar las características de la energía luminosa usan un método seleccionado del grupo compuesto de: Espectroscopia Cercana al Infrarrojo, Espectroscopia de Infrarrojos, Espectroscopia de Fluorescencia, Espectroscopia de Raman, Espectroscopia Fotoacústica, Flujometría Doppler de láser, medición de cambios de dispersión de la luz, y medición de cambios de polarización.
9. El sistema electroquirúrgico de las reivindicaciones 1 ó 2, en el que la energía luminosa tiene una longitud de onda adecuada para crear una trayectoria ionizada entre un extremo distal del electrodo y el tejido, y el electrodo está posicionado cerca de la trayectoria ionizada de modo que la energía electroquirúrgica es conducida a lo largo de la trayectoria ionizada.
10. El sistema electroquirúrgico de las reivindicaciones 1 ó 2, en el que los medios para analizar incluyen medios para detectar la presencia de al menos un vaso sanguíneo en la proximidad de un extremo distal del electrodo.
11. El sistema electroquirúrgico de la reivindicación 1, en el que los medios para analizar características de la energía luminosa incluyen medios para determinar un valor de la relación dividiendo un primer parámetro obtenido dirigiendo energía luminosa que tiene una primera longitud de onda por un segundo parámetro obtenido dirigiendo energía luminosa que tiene una segunda longitud de onda.
12. El sistema electroquirúrgico de la reivindicación 2, en el que los medios para analizar características de la energía luminosa incluyen medios para determinar un valor de la relación, dividiendo un primer parámetro obtenido emitiendo energía luminosa desde la pieza de mano que tiene una primera longitud de onda por un segundo parámetro obtenido dirigiendo energía luminosa desde la pieza de mano que tiene una segunda longitud de onda.
13. El sistema electroquirúrgico de las reivindicaciones 11 ó 12, en el que los medios para analizar características de la energía luminosa incluyen medios para determinar si el valor de la relación es inferior que, aproximadamente igual a, o mayor que un valor de la relación predeterminado y para controlar los medios para generar energía electroquirúrgica, consecuentemente.
14. El sistema electroquirúrgico de las reivindicaciones 11 ó 12, en el que la primera longitud de onda está en el intervalo de 620-700 nanómetros y la segunda longitud de onda está en el intervalo de 540- 610 nanómetros o de 950-1050 nanómetros.
15. El sistema electroquirúrgico de las reivindicaciones 1 o 2, en el que los medios para analizar y controlar la fuente de energía electroquirúrgica incluyen medios para controlar de modo variable la intensidad de la corriente generada por el generador electroquirúrgico.
ES03741779T 2002-05-06 2003-05-06 Detector de sangre para controlar una unidad electroquirurgica. Expired - Lifetime ES2289307T3 (es)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US37829002P 2002-05-06 2002-05-06
US378290P 2002-05-06
US39200802P 2002-06-26 2002-06-26
US392008P 2002-06-26

Publications (1)

Publication Number Publication Date
ES2289307T3 true ES2289307T3 (es) 2008-02-01

Family

ID=29406825

Family Applications (1)

Application Number Title Priority Date Filing Date
ES03741779T Expired - Lifetime ES2289307T3 (es) 2002-05-06 2003-05-06 Detector de sangre para controlar una unidad electroquirurgica.

Country Status (9)

Country Link
US (1) US7749217B2 (es)
EP (1) EP1501435B1 (es)
JP (1) JP4490807B2 (es)
AT (1) ATE371413T1 (es)
AU (2) AU2003265331B2 (es)
CA (1) CA2484875C (es)
DE (1) DE60315970T2 (es)
ES (1) ES2289307T3 (es)
WO (1) WO2003092520A1 (es)

Families Citing this family (186)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080154257A1 (en) * 2006-12-22 2008-06-26 Shiva Sharareh Real-time optoacoustic monitoring with electophysiologic catheters
US7364577B2 (en) 2002-02-11 2008-04-29 Sherwood Services Ag Vessel sealing system
US20100042093A9 (en) * 1998-10-23 2010-02-18 Wham Robert H System and method for terminating treatment in impedance feedback algorithm
US7137980B2 (en) * 1998-10-23 2006-11-21 Sherwood Services Ag Method and system for controlling output of RF medical generator
US7901400B2 (en) 1998-10-23 2011-03-08 Covidien Ag Method and system for controlling output of RF medical generator
US6300108B1 (en) * 1999-07-21 2001-10-09 The Regents Of The University Of California Controlled electroporation and mass transfer across cell membranes
US6697670B2 (en) * 2001-08-17 2004-02-24 Minnesota Medical Physics, Llc Apparatus and method for reducing subcutaneous fat deposits by electroporation with improved comfort of patients
US6795728B2 (en) 2001-08-17 2004-09-21 Minnesota Medical Physics, Llc Apparatus and method for reducing subcutaneous fat deposits by electroporation
US8251986B2 (en) 2000-08-17 2012-08-28 Angiodynamics, Inc. Method of destroying tissue cells by eletroporation
US6892099B2 (en) 2001-02-08 2005-05-10 Minnesota Medical Physics, Llc Apparatus and method for reducing subcutaneous fat deposits, virtual face lift and body sculpturing by electroporation
JP4499992B2 (ja) 2001-04-06 2010-07-14 コヴィディエン アクチェンゲゼルシャフト 非導電性ストップ部材を有する血管の封着機および分割機
USRE42016E1 (en) 2001-08-13 2010-12-28 Angiodynamics, Inc. Apparatus and method for the treatment of benign prostatic hyperplasia
US6994706B2 (en) 2001-08-13 2006-02-07 Minnesota Medical Physics, Llc Apparatus and method for treatment of benign prostatic hyperplasia
US7130697B2 (en) * 2002-08-13 2006-10-31 Minnesota Medical Physics Llc Apparatus and method for the treatment of benign prostatic hyperplasia
EP1501435B1 (en) 2002-05-06 2007-08-29 Covidien AG Blood detector for controlling an esu
US7931649B2 (en) 2002-10-04 2011-04-26 Tyco Healthcare Group Lp Vessel sealing instrument with electrical cutting mechanism
US7799026B2 (en) 2002-11-14 2010-09-21 Covidien Ag Compressible jaw configuration with bipolar RF output electrodes for soft tissue fusion
US7044948B2 (en) * 2002-12-10 2006-05-16 Sherwood Services Ag Circuit for controlling arc energy from an electrosurgical generator
WO2004098385A2 (en) * 2003-05-01 2004-11-18 Sherwood Services Ag Method and system for programing and controlling an electrosurgical generator system
AU2004237772B2 (en) 2003-05-01 2009-12-10 Covidien Ag Electrosurgical instrument which reduces thermal damage to adjacent tissue
CA2542798C (en) 2003-10-23 2015-06-23 Sherwood Services Ag Thermocouple measurement circuit
EP1675499B1 (en) 2003-10-23 2011-10-19 Covidien AG Redundant temperature monitoring in electrosurgical systems for safety mitigation
US7396336B2 (en) 2003-10-30 2008-07-08 Sherwood Services Ag Switched resonant ultrasonic power amplifier system
US9848938B2 (en) 2003-11-13 2017-12-26 Covidien Ag Compressible jaw configuration with bipolar RF output electrodes for soft tissue fusion
US7367976B2 (en) 2003-11-17 2008-05-06 Sherwood Services Ag Bipolar forceps having monopolar extension
US7131970B2 (en) 2003-11-19 2006-11-07 Sherwood Services Ag Open vessel sealing instrument with cutting mechanism
US7131860B2 (en) 2003-11-20 2006-11-07 Sherwood Services Ag Connector systems for electrosurgical generator
US7300435B2 (en) * 2003-11-21 2007-11-27 Sherwood Services Ag Automatic control system for an electrosurgical generator
US8298222B2 (en) * 2003-12-24 2012-10-30 The Regents Of The University Of California Electroporation to deliver chemotherapeutics and enhance tumor regression
PL1696812T3 (pl) * 2003-12-24 2015-12-31 Univ California Ablacja tkanki nieodwracalną elektroporacją
US7766905B2 (en) * 2004-02-12 2010-08-03 Covidien Ag Method and system for continuity testing of medical electrodes
US7780662B2 (en) 2004-03-02 2010-08-24 Covidien Ag Vessel sealing system using capacitive RF dielectric heating
JP4443278B2 (ja) * 2004-03-26 2010-03-31 テルモ株式会社 拡張体付カテーテル
US7628786B2 (en) 2004-10-13 2009-12-08 Covidien Ag Universal foot switch contact port
US20060122587A1 (en) * 2004-11-17 2006-06-08 Shiva Sharareh Apparatus for real time evaluation of tissue ablation
US20060161148A1 (en) * 2005-01-13 2006-07-20 Robert Behnke Circuit and method for controlling an electrosurgical generator using a full bridge topology
US7909823B2 (en) 2005-01-14 2011-03-22 Covidien Ag Open vessel sealing instrument
US7686804B2 (en) 2005-01-14 2010-03-30 Covidien Ag Vessel sealer and divider with rotating sealer and cutter
US9474564B2 (en) 2005-03-31 2016-10-25 Covidien Ag Method and system for compensating for external impedance of an energy carrying component when controlling an electrosurgical generator
US20060293731A1 (en) * 2005-06-24 2006-12-28 Boris Rubinsky Methods and systems for treating tumors using electroporation
US20060293730A1 (en) 2005-06-24 2006-12-28 Boris Rubinsky Methods and systems for treating restenosis sites using electroporation
US8114070B2 (en) * 2005-06-24 2012-02-14 Angiodynamics, Inc. Methods and systems for treating BPH using electroporation
US20060293725A1 (en) * 2005-06-24 2006-12-28 Boris Rubinsky Methods and systems for treating fatty tissue sites using electroporation
EP1908057B1 (en) * 2005-06-30 2012-06-20 LG Electronics Inc. Method and apparatus for decoding an audio signal
US7722607B2 (en) 2005-09-30 2010-05-25 Covidien Ag In-line vessel sealer and divider
CA2561034C (en) 2005-09-30 2014-12-09 Sherwood Services Ag Flexible endoscopic catheter with an end effector for coagulating and transfecting tissue
US7922953B2 (en) 2005-09-30 2011-04-12 Covidien Ag Method for manufacturing an end effector assembly
ES2381560T3 (es) 2005-09-30 2012-05-29 Covidien Ag Funda aislante para fórceps electroquirúrgicos
US7879035B2 (en) 2005-09-30 2011-02-01 Covidien Ag Insulating boot for electrosurgical forceps
US8734438B2 (en) 2005-10-21 2014-05-27 Covidien Ag Circuit and method for reducing stored energy in an electrosurgical generator
US7947039B2 (en) 2005-12-12 2011-05-24 Covidien Ag Laparoscopic apparatus for performing electrosurgical procedures
US20070156135A1 (en) * 2006-01-03 2007-07-05 Boris Rubinsky System and methods for treating atrial fibrillation using electroporation
US7972328B2 (en) 2006-01-24 2011-07-05 Covidien Ag System and method for tissue sealing
US20070173802A1 (en) * 2006-01-24 2007-07-26 Keppel David S Method and system for transmitting data across patient isolation barrier
US9186200B2 (en) 2006-01-24 2015-11-17 Covidien Ag System and method for tissue sealing
US7513896B2 (en) 2006-01-24 2009-04-07 Covidien Ag Dual synchro-resonant electrosurgical apparatus with bi-directional magnetic coupling
CA2574935A1 (en) 2006-01-24 2007-07-24 Sherwood Services Ag A method and system for controlling an output of a radio-frequency medical generator having an impedance based control algorithm
CA2574934C (en) 2006-01-24 2015-12-29 Sherwood Services Ag System and method for closed loop monitoring of monopolar electrosurgical apparatus
US8685016B2 (en) 2006-01-24 2014-04-01 Covidien Ag System and method for tissue sealing
US8147485B2 (en) 2006-01-24 2012-04-03 Covidien Ag System and method for tissue sealing
US8216223B2 (en) 2006-01-24 2012-07-10 Covidien Ag System and method for tissue sealing
US7651493B2 (en) * 2006-03-03 2010-01-26 Covidien Ag System and method for controlling electrosurgical snares
US7648499B2 (en) * 2006-03-21 2010-01-19 Covidien Ag System and method for generating radio frequency energy
US7651492B2 (en) 2006-04-24 2010-01-26 Covidien Ag Arc based adaptive control system for an electrosurgical unit
US8753334B2 (en) * 2006-05-10 2014-06-17 Covidien Ag System and method for reducing leakage current in an electrosurgical generator
US7731717B2 (en) 2006-08-08 2010-06-08 Covidien Ag System and method for controlling RF output during tissue sealing
US8034049B2 (en) 2006-08-08 2011-10-11 Covidien Ag System and method for measuring initial tissue impedance
US7794457B2 (en) 2006-09-28 2010-09-14 Covidien Ag Transformer for RF voltage sensing
EP2076313A4 (en) * 2006-10-16 2012-07-25 Univ California PREDETERMINED CONDUCTIVITY GELS FOR IRREVERSIBLE ELECTROPORATION OF FABRICS
US20080132884A1 (en) * 2006-12-01 2008-06-05 Boris Rubinsky Systems for treating tissue sites using electroporation
US8690864B2 (en) * 2007-03-09 2014-04-08 Covidien Lp System and method for controlling tissue treatment
US20080249523A1 (en) * 2007-04-03 2008-10-09 Tyco Healthcare Group Lp Controller for flexible tissue ablation procedures
US8777941B2 (en) 2007-05-10 2014-07-15 Covidien Lp Adjustable impedance electrosurgical electrodes
WO2009005850A1 (en) * 2007-06-29 2009-01-08 Tyco Healthcare Group, Lp Method and system for monitoring tissue during an electrosurgical procedure
US7834484B2 (en) 2007-07-16 2010-11-16 Tyco Healthcare Group Lp Connection cable and method for activating a voltage-controlled generator
US8216220B2 (en) 2007-09-07 2012-07-10 Tyco Healthcare Group Lp System and method for transmission of combined data stream
US8512332B2 (en) 2007-09-21 2013-08-20 Covidien Lp Real-time arc control in electrosurgical generators
ATE511787T1 (de) * 2007-12-28 2011-06-15 Koninkl Philips Electronics Nv Gewebeablationsvorrichtung mit photoakustischer läsionsbildungsrückmeldung
US20100004623A1 (en) * 2008-03-27 2010-01-07 Angiodynamics, Inc. Method for Treatment of Complications Associated with Arteriovenous Grafts and Fistulas Using Electroporation
WO2009121017A1 (en) 2008-03-27 2009-10-01 The Regents Of The University Of California Balloon catheter for reducing restenosis via irreversible electroporation
US8257349B2 (en) * 2008-03-28 2012-09-04 Tyco Healthcare Group Lp Electrosurgical apparatus with predictive RF source control
US10238447B2 (en) 2008-04-29 2019-03-26 Virginia Tech Intellectual Properties, Inc. System and method for ablating a tissue site by electroporation with real-time monitoring of treatment progress
US11254926B2 (en) 2008-04-29 2022-02-22 Virginia Tech Intellectual Properties, Inc. Devices and methods for high frequency electroporation
US10272178B2 (en) 2008-04-29 2019-04-30 Virginia Tech Intellectual Properties Inc. Methods for blood-brain barrier disruption using electrical energy
US11272979B2 (en) 2008-04-29 2022-03-15 Virginia Tech Intellectual Properties, Inc. System and method for estimating tissue heating of a target ablation zone for electrical-energy based therapies
WO2009134876A1 (en) 2008-04-29 2009-11-05 Virginia Tech Intellectual Properties, Inc. Irreversible electroporation to create tissue scaffolds
US8992517B2 (en) * 2008-04-29 2015-03-31 Virginia Tech Intellectual Properties Inc. Irreversible electroporation to treat aberrant cell masses
US10702326B2 (en) 2011-07-15 2020-07-07 Virginia Tech Intellectual Properties, Inc. Device and method for electroporation based treatment of stenosis of a tubular body part
US10245098B2 (en) 2008-04-29 2019-04-02 Virginia Tech Intellectual Properties, Inc. Acute blood-brain barrier disruption using electrical energy based therapy
US10117707B2 (en) 2008-04-29 2018-11-06 Virginia Tech Intellectual Properties, Inc. System and method for estimating tissue heating of a target ablation zone for electrical-energy based therapies
US9283051B2 (en) 2008-04-29 2016-03-15 Virginia Tech Intellectual Properties, Inc. System and method for estimating a treatment volume for administering electrical-energy based therapies
US9867652B2 (en) 2008-04-29 2018-01-16 Virginia Tech Intellectual Properties, Inc. Irreversible electroporation using tissue vasculature to treat aberrant cell masses or create tissue scaffolds
US9198733B2 (en) 2008-04-29 2015-12-01 Virginia Tech Intellectual Properties, Inc. Treatment planning for electroporation-based therapies
US20090281477A1 (en) 2008-05-09 2009-11-12 Angiodynamics, Inc. Electroporation device and method
CN104939806B (zh) 2008-05-20 2021-12-10 大学健康网络 用于基于荧光的成像和监测的装置和方法
US8226639B2 (en) * 2008-06-10 2012-07-24 Tyco Healthcare Group Lp System and method for output control of electrosurgical generator
US9173704B2 (en) * 2008-06-20 2015-11-03 Angiodynamics, Inc. Device and method for the ablation of fibrin sheath formation on a venous catheter
US9681909B2 (en) * 2008-06-23 2017-06-20 Angiodynamics, Inc. Treatment devices and methods
US9603652B2 (en) * 2008-08-21 2017-03-28 Covidien Lp Electrosurgical instrument including a sensor
US8142473B2 (en) 2008-10-03 2012-03-27 Tyco Healthcare Group Lp Method of transferring rotational motion in an articulating surgical instrument
US8016827B2 (en) 2008-10-09 2011-09-13 Tyco Healthcare Group Lp Apparatus, system, and method for performing an electrosurgical procedure
US20100125172A1 (en) * 2008-11-14 2010-05-20 Prash Jayaraj Surgical pencil providing an illuminated surgical site
US8690872B2 (en) * 2008-11-14 2014-04-08 Prash Jayaraj Surgical pencil enabling suction
US9907621B2 (en) 2008-11-14 2018-03-06 Prash Jayaraj Surgical pencil
US20100152725A1 (en) * 2008-12-12 2010-06-17 Angiodynamics, Inc. Method and system for tissue treatment utilizing irreversible electroporation and thermal track coagulation
US8262652B2 (en) 2009-01-12 2012-09-11 Tyco Healthcare Group Lp Imaginary impedance process monitoring and intelligent shut-off
US8114122B2 (en) 2009-01-13 2012-02-14 Tyco Healthcare Group Lp Apparatus, system, and method for performing an electrosurgical procedure
WO2010085765A2 (en) * 2009-01-23 2010-07-29 Moshe Meir H Therapeutic energy delivery device with rotational mechanism
WO2010093692A2 (en) * 2009-02-10 2010-08-19 Hobbs Eamonn P Irreversible electroporation and tissue regeneration
US8319953B2 (en) * 2009-03-10 2012-11-27 Spectra Tracker LLC Method and device for spectrally detecting presence of blood
US11638603B2 (en) 2009-04-09 2023-05-02 Virginia Tech Intellectual Properties, Inc. Selective modulation of intracellular effects of cells using pulsed electric fields
WO2010118387A1 (en) * 2009-04-09 2010-10-14 Virginia Tech Intellectual Properties, Inc. Integration of very short electric pulses for minimally to noninvasive electroporation
US11382681B2 (en) 2009-04-09 2022-07-12 Virginia Tech Intellectual Properties, Inc. Device and methods for delivery of high frequency electrical pulses for non-thermal ablation
US8187273B2 (en) 2009-05-07 2012-05-29 Tyco Healthcare Group Lp Apparatus, system, and method for performing an electrosurgical procedure
USD630321S1 (en) 2009-05-08 2011-01-04 Angio Dynamics, Inc. Probe handle
US8903488B2 (en) 2009-05-28 2014-12-02 Angiodynamics, Inc. System and method for synchronizing energy delivery to the cardiac rhythm
US9895189B2 (en) 2009-06-19 2018-02-20 Angiodynamics, Inc. Methods of sterilization and treating infection using irreversible electroporation
US8246618B2 (en) 2009-07-08 2012-08-21 Tyco Healthcare Group Lp Electrosurgical jaws with offset knife
US8983567B1 (en) 2009-08-01 2015-03-17 Nuvasive, Inc. Systems and methods for vessel avoidance during spine surgery
US8133254B2 (en) 2009-09-18 2012-03-13 Tyco Healthcare Group Lp In vivo attachable and detachable end effector assembly and laparoscopic surgical instrument and methods therefor
US8652125B2 (en) * 2009-09-28 2014-02-18 Covidien Lp Electrosurgical generator user interface
US8112871B2 (en) 2009-09-28 2012-02-14 Tyco Healthcare Group Lp Method for manufacturing electrosurgical seal plates
US20110118732A1 (en) 2009-11-19 2011-05-19 The Regents Of The University Of California Controlled irreversible electroporation
DE102010015899B4 (de) * 2010-02-04 2022-07-28 Erbe Elektromedizin Gmbh Elektrochirurgische Anordnung und elektrochirurgisches Instrument
US8961504B2 (en) 2010-04-09 2015-02-24 Covidien Lp Optical hydrology arrays and system and method for monitoring water displacement during treatment of patient tissue
WO2012051433A2 (en) 2010-10-13 2012-04-19 Angiodynamics, Inc. System and method for electrically ablating tissue of a patient
WO2012088149A2 (en) 2010-12-20 2012-06-28 Virginia Tech Intellectual Properties, Inc. High-frequency electroporation for cancer therapy
US9113940B2 (en) 2011-01-14 2015-08-25 Covidien Lp Trigger lockout and kickback mechanism for surgical instruments
US9646375B2 (en) 2011-07-09 2017-05-09 Gauss Surgical, Inc. Method for setting a blood transfusion parameter
US9870625B2 (en) 2011-07-09 2018-01-16 Gauss Surgical, Inc. Method for estimating a quantity of a blood component in a fluid receiver and corresponding error
US10426356B2 (en) 2011-07-09 2019-10-01 Gauss Surgical, Inc. Method for estimating a quantity of a blood component in a fluid receiver and corresponding error
US8897523B2 (en) 2011-07-09 2014-11-25 Gauss Surgical System and method for counting surgical samples
CN104066368B (zh) 2011-09-22 2017-02-22 乔治华盛顿大学 用于使经消融组织可视化的系统和方法
US9078665B2 (en) 2011-09-28 2015-07-14 Angiodynamics, Inc. Multiple treatment zone ablation probe
USD680220S1 (en) 2012-01-12 2013-04-16 Coviden IP Slider handle for laparoscopic device
RU2014134029A (ru) 2012-01-20 2016-03-20 Конинклейке Филипс Н.В. Электрохирургическая система, электрохирургическое устройство и способ для эксплуатации электрохирургической системы
US9414881B2 (en) 2012-02-08 2016-08-16 Angiodynamics, Inc. System and method for increasing a target zone for electrical ablation
US11399898B2 (en) 2012-03-06 2022-08-02 Briteseed, Llc User interface for a system used to determine tissue or artifact characteristics
US9375249B2 (en) 2012-05-11 2016-06-28 Covidien Lp System and method for directing energy to tissue
IN2014DN10121A (es) 2012-05-14 2015-08-21 Gauss Surgical
EP2850559B1 (en) 2012-05-14 2021-02-24 Gauss Surgical, Inc. System and method for estimating a quantity of a blood component in a fluid canister
US9529025B2 (en) 2012-06-29 2016-12-27 Covidien Lp Systems and methods for measuring the frequency of signals generated by high frequency medical devices
US10641644B2 (en) 2012-07-09 2020-05-05 Gauss Surgical, Inc. System and method for estimating an amount of a blood component in a volume of fluid
US9872719B2 (en) 2013-07-24 2018-01-23 Covidien Lp Systems and methods for generating electrosurgical energy using a multistage power converter
US9655670B2 (en) 2013-07-29 2017-05-23 Covidien Lp Systems and methods for measuring tissue impedance through an electrosurgical cable
US11096584B2 (en) 2013-11-14 2021-08-24 The George Washington University Systems and methods for determining lesion depth using fluorescence imaging
JP2017500550A (ja) 2013-11-20 2017-01-05 ザ・ジョージ・ワシントン・ユニバーシティThe George Washingtonuniversity 心臓組織のハイパースペクトル分析のためのシステム及び方法
US10166321B2 (en) 2014-01-09 2019-01-01 Angiodynamics, Inc. High-flow port and infusion needle systems
JP6511471B2 (ja) 2014-03-25 2019-05-15 ブライトシード・エルエルシーBriteseed,Llc 脈管検出器及び検出方法
US9773320B2 (en) 2014-04-15 2017-09-26 Gauss Surgical, Inc. Method for estimating a quantity of a blood component in a fluid canister
WO2015160997A1 (en) 2014-04-15 2015-10-22 Gauss Surgical, Inc. Method for estimating a quantity of a blood component in a fluid canister
CN112807074A (zh) 2014-05-12 2021-05-18 弗吉尼亚暨州立大学知识产权公司 电穿孔系统
ES2894912T3 (es) 2014-07-24 2022-02-16 Univ Health Network Recopilación y análisis de datos con fines de diagnóstico
EP3215001A4 (en) * 2014-11-03 2018-04-04 Luxcath, LLC Systems and methods for assessment of contact quality
JP2017537681A (ja) * 2014-11-03 2017-12-21 ザ・ジョージ・ワシントン・ユニバーシティThe George Washingtonuniversity 損傷評価システム及びその方法
US10694972B2 (en) 2014-12-15 2020-06-30 Virginia Tech Intellectual Properties, Inc. Devices, systems, and methods for real-time monitoring of electrophysical effects during tissue treatment
WO2016117106A1 (ja) * 2015-01-23 2016-07-28 オリンパス株式会社 外科処置装置
EP3258841B1 (en) 2015-02-19 2019-04-10 Briteseed, LLC System for determining vessel size and/or edge
US10820838B2 (en) 2015-02-19 2020-11-03 Briteseed, Llc System for determining vessel size using light absorption
WO2016135735A1 (en) 2015-02-25 2016-09-01 Outsense Diagnostics Ltd. Bodily emission analysis
CN107427246A (zh) 2015-03-25 2017-12-01 奥林巴斯株式会社 血管识别用血流测定方法
JPWO2016171274A1 (ja) * 2015-04-23 2018-03-01 オリンパス株式会社 内視鏡装置
WO2016187071A1 (en) 2015-05-15 2016-11-24 Gauss Surgical, Inc. Systems and methods for assessing fluids from a patient
WO2016187072A1 (en) 2015-05-15 2016-11-24 Gauss Surgical, Inc. Methods and systems for characterizing fluids from a patient
WO2016187070A1 (en) 2015-05-15 2016-11-24 Gauss Surgical, Inc. Method for projecting blood loss of a patient during a surgery
US10779904B2 (en) 2015-07-19 2020-09-22 460Medical, Inc. Systems and methods for lesion formation and assessment
US10987159B2 (en) 2015-08-26 2021-04-27 Covidien Lp Electrosurgical end effector assemblies and electrosurgical forceps configured to reduce thermal spread
WO2017062720A1 (en) 2015-10-08 2017-04-13 Briteseed Llc System and method for determining vessel size
US10213250B2 (en) 2015-11-05 2019-02-26 Covidien Lp Deployment and safety mechanisms for surgical instruments
WO2017112939A1 (en) 2015-12-23 2017-06-29 Gauss Surgical, Inc. Method for estimating blood component quantities in surgical textiles
WO2018042431A1 (en) 2016-08-30 2018-03-08 Outsense Diagnostics Ltd. Bodily emission analysis
JP7058642B2 (ja) 2016-08-30 2022-04-22 ブライトシード・エルエルシー 照射パターンにおける角度変位補償を行うためのシステム
US10905492B2 (en) 2016-11-17 2021-02-02 Angiodynamics, Inc. Techniques for irreversible electroporation using a single-pole tine-style internal device communicating with an external surface electrode
JP7268879B2 (ja) 2017-01-02 2023-05-08 ガウス サージカル,インコーポレイテッド 重複撮像を予測した手術アイテムの追跡
US11229368B2 (en) 2017-01-13 2022-01-25 Gauss Surgical, Inc. Fluid loss estimation based on weight of medical items
US20180317995A1 (en) * 2017-05-02 2018-11-08 C. R. Bard, Inc. Systems And Methods Of An Electrohemostatic Renal Sheath
EP3449815A1 (en) * 2017-08-28 2019-03-06 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Monitoring of tissue coagulation by optical reflectance signals
US11723600B2 (en) 2017-09-05 2023-08-15 Briteseed, Llc System and method used to determine tissue and/or artifact characteristics
US11607537B2 (en) 2017-12-05 2023-03-21 Virginia Tech Intellectual Properties, Inc. Method for treating neurological disorders, including tumors, with electroporation
EP3727140B1 (en) 2017-12-22 2023-11-01 Briteseed, LLC A compact system used to determine tissue or artifact characteristics
US11925405B2 (en) 2018-03-13 2024-03-12 Virginia Tech Intellectual Properties, Inc. Treatment planning system for immunotherapy enhancement via non-thermal ablation
US11311329B2 (en) 2018-03-13 2022-04-26 Virginia Tech Intellectual Properties, Inc. Treatment planning for immunotherapy based treatments using non-thermal ablation techniques
US11950835B2 (en) 2019-06-28 2024-04-09 Virginia Tech Intellectual Properties, Inc. Cycled pulsing to mitigate thermal damage for multi-electrode irreversible electroporation therapy
US20210236189A1 (en) * 2020-01-30 2021-08-05 Kester Julian Batchelor Adaptive blend of electrosurgical cutting and coagulation
US11931098B2 (en) * 2020-02-19 2024-03-19 Boston Scientific Medical Device Limited System and method for carrying out a medical procedure
DE102021101410A1 (de) 2021-01-22 2022-07-28 Olympus Winter & Ibe Gmbh Verfahren und System zur Steuerung eines chirurgischen HF-Generators sowie Softwareprogrammprodukt

Family Cites Families (581)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE179607C (es) 1906-11-12
DE390937C (de) 1922-10-13 1924-03-03 Adolf Erb Vorrichtung zur Innenbeheizung von Wannenoefen zum Haerten, Anlassen, Gluehen, Vergueten und Schmelzen
US1841968A (en) 1924-08-16 1932-01-19 William J Cameron Radio-surgical apparatus
US1863118A (en) 1927-10-31 1932-06-14 Liebel Flarsheim Co Surgeon's instrument
US1813902A (en) 1928-01-18 1931-07-14 Liebel Flarsheim Co Electrosurgical apparatus
US1787709A (en) 1928-06-11 1931-01-06 Wappler Frederick Charles High-frequency surgical cutting device
US1945667A (en) 1929-12-11 1934-02-06 Gen Electric Supervisory system
GB607850A (en) 1946-04-01 1948-09-06 William George Curwain Electric connectors
US2849611A (en) 1955-05-16 1958-08-26 Honeywell Regulator Co Electrical oscillator circuit
US2827056A (en) 1955-06-21 1958-03-18 Thomas H Ballantine Jr Electrode discharge control for surgical apparatus
BE556940A (es) 1956-04-26
GB855459A (en) 1958-04-11 1960-11-30 Keeler Optical Products Ltd Improvements in or relating to electro-surgical apparatus
US2982881A (en) 1958-05-22 1961-05-02 Robert W Reich Portable light source
DE1099658B (de) 1959-04-29 1961-02-16 Siemens Reiniger Werke Ag Selbsttaetige Einschaltvorrichtung fuer Hochfrequenzchirurgiegeraete
GB902775A (en) 1959-05-16 1962-08-09 Kathleen Zilla Rumble Improvements in or relating to electrical plugs
US3089496A (en) 1959-08-19 1963-05-14 Code Inc Control system for surgical apparatus
US3163165A (en) 1960-09-12 1964-12-29 Islkawa Humio Uterotube-closing instrument
FR1275415A (fr) 1960-09-26 1961-11-10 Dispositif détecteur de perturbations pour installations électriques, notamment d'électrochirurgie
DE1139927B (de) 1961-01-03 1962-11-22 Friedrich Laber Hochfrequenz-Chirurgiegeraet
DE1149832C2 (de) 1961-02-25 1977-10-13 Siemens AG, 1000 Berlin und 8000 München Hochfrequenz-chirurgieapparat
FR1347865A (fr) 1962-11-22 1964-01-04 Perfectionnements aux appareils de diathermo-coagulation
US3252052A (en) 1963-08-23 1966-05-17 Jacuzzi Bros Inc Leakage detection and control circuit
DE1264513C2 (de) 1963-11-29 1973-01-25 Texas Instruments Inc Bezugspotentialfreier gleichstromdifferenzverstaerker
US3478744A (en) 1964-12-30 1969-11-18 Harry Leiter Surgical apparatus
US3486115A (en) 1965-04-01 1969-12-23 Donald J Anderson Means for measuring the power in an electrical circuit
US3439680A (en) 1965-04-12 1969-04-22 Univ Northwestern Surgical instrument for cataract removal
FR1494065A (fr) 1965-05-10 1967-09-08 Const De Vaux Andigny Atel Détecteur-amplificateur pour signaux de faible niveau et dispositifs en comportant application
US3495584A (en) 1965-06-03 1970-02-17 Gen Electric Lead failure detection circuit for a cardiac monitor
US3436563A (en) 1965-12-27 1969-04-01 Bell Telephone Labor Inc Pulse driver with linear current rise
US3471770A (en) 1966-03-30 1969-10-07 Ibm Pulsed current generating circuits
US3461874A (en) 1966-08-10 1969-08-19 Miguel Martinez Electric cautery
GB1169706A (en) 1966-09-29 1969-11-05 English Electric Co Ltd An Electrical Fault Detector
US3391351A (en) 1966-11-21 1968-07-02 Bell Telephone Labor Inc Circuits using a transistor operated into second breakdown region
US3439253A (en) 1967-04-05 1969-04-15 R I Phelon Inc Alternator rectifier and voltage regulator
NL145136C (es) 1967-07-25 1900-01-01
US3513353A (en) 1967-08-17 1970-05-19 John L Lansch Voltage monitoring circuit
US3551786A (en) 1967-12-05 1970-12-29 Omark Industries Inc Circuit for adjustably increasing or decreasing the charge on a capacitor
US3562623A (en) 1968-07-16 1971-02-09 Hughes Aircraft Co Circuit for reducing stray capacity effects in transformer windings
US3514689A (en) 1968-08-21 1970-05-26 United Aircraft Corp Three-phase ac-operated dc power supply
US3642008A (en) 1968-09-25 1972-02-15 Medical Plastics Inc Ground electrode and test circuit
US3601126A (en) 1969-01-08 1971-08-24 Electro Medical Systems Inc High frequency electrosurgical apparatus
US3571644A (en) 1969-01-27 1971-03-23 Heurtey Sa High frequency oscillator for inductive heating
US3595221A (en) 1969-03-04 1971-07-27 Matburn Holdings Ltd Endoscopic having illumination supply unit
US3611053A (en) 1969-10-10 1971-10-05 Farmer Electric Products Co In Intrinsically safe circuit
US3662151A (en) 1969-11-17 1972-05-09 Codman & Shurtleff Cautery
US3675655A (en) 1970-02-04 1972-07-11 Electro Medical Systems Inc Method and apparatus for high frequency electric surgery
DE2030776A1 (de) 1970-06-23 1971-12-30 Siemens Ag Handstück für Hochfrequenz-Elektroden
US3826263A (en) 1970-08-13 1974-07-30 R Shaw Electrically heated surgical cutting instrument
US3683923A (en) 1970-09-25 1972-08-15 Valleylab Inc Electrosurgery safety circuit
US3641422A (en) 1970-10-01 1972-02-08 Robert P Farnsworth Wide band boost regulator power supply
US3697808A (en) 1970-11-23 1972-10-10 Safety Co The System for monitoring chassis potential and ground continuity
US3693613A (en) 1970-12-09 1972-09-26 Cavitron Corp Surgical handpiece and flow control system for use therewith
FR2123896A5 (es) 1971-02-04 1972-09-15 Radiotechnique Compelec
US3699967A (en) 1971-04-30 1972-10-24 Valleylab Inc Electrosurgical generator
US3766434A (en) 1971-08-09 1973-10-16 S Sherman Safety power distribution system
US3784842A (en) 1972-02-03 1974-01-08 F Kremer Body current activated circuit breaker
US3848600A (en) 1972-02-03 1974-11-19 Ndm Corp Indifferent electrode in electrosurgical procedures and method of use
US3828768A (en) 1972-07-13 1974-08-13 Physiological Electronics Corp Method and apparatus for detecting cardiac arrhythmias
US3783340A (en) 1972-09-07 1974-01-01 Biotek Instr Inc Ground safe system
US3768482A (en) 1972-10-10 1973-10-30 R Shaw Surgical cutting instrument having electrically heated cutting edge
US3812858A (en) 1972-10-24 1974-05-28 Sybron Corp Dental electrosurgical unit
US3885569A (en) 1972-11-21 1975-05-27 Birtcher Corp Electrosurgical unit
US3801800A (en) 1972-12-26 1974-04-02 Valleylab Inc Isolating switching circuit for an electrosurgical generator
JPS5241593B2 (es) 1972-12-29 1977-10-19
US3801766A (en) 1973-01-22 1974-04-02 Valleylab Inc Switching means for an electro-surgical device including particular contact means and particular printed-circuit mounting means
US3971365A (en) 1973-02-12 1976-07-27 Beckman Instruments, Inc. Bioelectrical impedance measuring system
US3815015A (en) 1973-02-20 1974-06-04 Gen Electric Transformer-diode isolated circuits for high voltage power supplies
US3963030A (en) 1973-04-16 1976-06-15 Valleylab, Inc. Signal generating device and method for producing coagulation electrosurgical current
GB1480736A (en) 1973-08-23 1977-07-20 Matburn Ltd Electrodiathermy apparatus
US3933157A (en) 1973-10-23 1976-01-20 Aktiebolaget Stille-Werner Test and control device for electrosurgical apparatus
US3875945A (en) 1973-11-02 1975-04-08 Demetron Corp Electrosurgery instrument
US3870047A (en) 1973-11-12 1975-03-11 Dentsply Res & Dev Electrosurgical device
FR2251864A1 (en) 1973-11-21 1975-06-13 Termiflex Corp Portable input and output unit for connection to a data processor - is basically a calculator with transmitter and receiver
US3901216A (en) 1973-12-20 1975-08-26 Milton R Felger Method for measuring endodontic working lengths
US3897788A (en) 1974-01-14 1975-08-05 Valleylab Inc Transformer coupled power transmitting and isolated switching circuit
DE2407559C3 (de) 1974-02-16 1982-01-21 Dornier System Gmbh, 7990 Friedrichshafen Wärmesonde
US3905373A (en) 1974-04-18 1975-09-16 Dentsply Res & Dev Electrosurgical device
US3913583A (en) 1974-06-03 1975-10-21 Sybron Corp Control circuit for electrosurgical units
JPS5710740B2 (es) 1974-06-17 1982-02-27
US4024467A (en) 1974-07-15 1977-05-17 Sybron Corporation Method for controlling power during electrosurgery
US3923063A (en) 1974-07-15 1975-12-02 Sybron Corp Pulse control circuit for electrosurgical units
US3952748A (en) 1974-07-18 1976-04-27 Minnesota Mining And Manufacturing Company Electrosurgical system providing a fulguration current
US3946738A (en) 1974-10-24 1976-03-30 Newton David W Leakage current cancelling circuit for use with electrosurgical instrument
US4231372A (en) 1974-11-04 1980-11-04 Valleylab, Inc. Safety monitoring circuit for electrosurgical unit
US3964487A (en) 1974-12-09 1976-06-22 The Birtcher Corporation Uncomplicated load-adapting electrosurgical cutting generator
US4237887A (en) 1975-01-23 1980-12-09 Valleylab, Inc. Electrosurgical device
DE2504280C3 (de) 1975-02-01 1980-08-28 Hans Heinrich Prof. Dr. 8035 Gauting Meinke Vorrichtung zum Schneiden und/oder Koagulieren menschlichen Gewebes mit Hochfrequenzstrom
US3978393A (en) 1975-04-21 1976-08-31 Burroughs Corporation High efficiency switching regulator
US4005714A (en) 1975-05-03 1977-02-01 Richard Wolf Gmbh Bipolar coagulation forceps
CA1064581A (en) 1975-06-02 1979-10-16 Stephen W. Andrews Pulse control circuit and method for electrosurgical units
US4074719A (en) 1975-07-12 1978-02-21 Kurt Semm Method of and device for causing blood coagulation
DE2540968C2 (de) 1975-09-13 1982-12-30 Erbe Elektromedizin GmbH, 7400 Tübingen Einrichtung zum Einschalten des Koagulationsstroms einer bipolaren Koagulationspinzette
SE399495B (sv) 1975-11-03 1978-02-13 Lindmark Magnus C W Switchande stromforsorjningsaggregat for omvandling av likspenning till vexelspenning
JPS5275882A (en) 1975-12-20 1977-06-25 Olympus Optical Co High frequency electric knife
US4051855A (en) 1976-02-06 1977-10-04 Ipco Hospital Supply Corporation, Whaledent International Division Electrosurgical unit
US4041952A (en) 1976-03-04 1977-08-16 Valleylab, Inc. Electrosurgical forceps
US4063557A (en) 1976-04-01 1977-12-20 Cavitron Corporation Ultrasonic aspirator
US4191188A (en) 1976-05-07 1980-03-04 Macan Engineering & Manufacturing Company, Inc. Variable crest factor high frequency generator apparatus
US4092986A (en) 1976-06-14 1978-06-06 Ipco Hospital Supply Corporation (Whaledent International Division) Constant output electrosurgical unit
JPS5324173U (es) 1976-08-09 1978-03-01
US4094320A (en) 1976-09-09 1978-06-13 Valleylab, Inc. Electrosurgical safety circuit and method of using same
US4171700A (en) 1976-10-13 1979-10-23 Erbe Elektromedizin Gmbh & Co. Kg High-frequency surgical apparatus
US4114604A (en) * 1976-10-18 1978-09-19 Shaw Robert F Catheter oximeter apparatus and method
US4126137A (en) 1977-01-21 1978-11-21 Minnesota Mining And Manufacturing Company Electrosurgical unit
US4123673A (en) 1977-03-14 1978-10-31 Dentsply Research And Development Corporation Control circuit for an electrical device
US4121590A (en) 1977-03-14 1978-10-24 Dentsply Research And Development Corporation System for monitoring integrity of a patient return circuit
FR2390968A1 (fr) 1977-05-16 1978-12-15 Skovajsa Joseph Dispositif de traitement local d'un patient, notamment pour acupuncture ou auriculotherapie
FR2391588A1 (fr) 1977-05-18 1978-12-15 Satelec Soc Generateur de tension haute frequence
SU727201A2 (ru) 1977-11-02 1980-04-15 Киевский Научно-Исследовательский Институт Нейрохирургии Электрохирургический аппарат
US4200104A (en) 1977-11-17 1980-04-29 Valleylab, Inc. Contact area measurement apparatus for use in electrosurgery
US4188927A (en) 1978-01-12 1980-02-19 Valleylab, Inc. Multiple source electrosurgical generator
DE2803275C3 (de) 1978-01-26 1980-09-25 Aesculap-Werke Ag Vormals Jetter & Scheerer, 7200 Tuttlingen Fernschalteinrichtung zum Schalten eines monopolaren HF-Chirurgiegerätes
US4196734A (en) 1978-02-16 1980-04-08 Valleylab, Inc. Combined electrosurgery/cautery system and method
US4237891A (en) 1978-05-17 1980-12-09 Agri-Bio Corporation Apparatus for removing appendages from avian species by using electrodes to induce a current through the appendage
US4200105A (en) 1978-05-26 1980-04-29 Dentsply Research & Development Corp. Electrosurgical safety circuit
DE2823291A1 (de) 1978-05-27 1979-11-29 Rainer Ing Grad Koch Schaltung zur automatischen einschaltung des hochfrequenzstromes von hochfrequenz-koagulationsgeraeten
US4232676A (en) 1978-11-16 1980-11-11 Corning Glass Works Surgical cutting instrument
US4311154A (en) 1979-03-23 1982-01-19 Rca Corporation Nonsymmetrical bulb applicator for hyperthermic treatment of the body
US4321926A (en) 1979-04-16 1982-03-30 Roge Ralph R Insertion detecting probe and electrolysis system
US4608977A (en) 1979-08-29 1986-09-02 Brown Russell A System using computed tomography as for selective body treatment
DE2946728A1 (de) 1979-11-20 1981-05-27 Erbe Elektromedizin GmbH & Co KG, 7400 Tübingen Hochfrequenz-chirurgiegeraet
US4314559A (en) 1979-12-12 1982-02-09 Corning Glass Works Nonstick conductive coating
US4378801A (en) 1979-12-17 1983-04-05 Medical Research Associates Ltd. #2 Electrosurgical generator
US4287557A (en) 1979-12-17 1981-09-01 General Electric Company Inverter with improved regulation
US4303073A (en) 1980-01-17 1981-12-01 Medical Plastics, Inc. Electrosurgery safety monitor
US4494541A (en) 1980-01-17 1985-01-22 Medical Plastics, Inc. Electrosurgery safety monitor
US4334539A (en) 1980-04-28 1982-06-15 Cimarron Instruments, Inc. Electrosurgical generator control apparatus
EP0040658A3 (en) 1980-05-28 1981-12-09 Drg (Uk) Limited Patient plate for diathermy apparatus, and diathermy apparatus fitted with it
US4343308A (en) 1980-06-09 1982-08-10 Gross Robert D Surgical ground detector
US4372315A (en) 1980-07-03 1983-02-08 Hair Free Centers Impedance sensing epilator
US4411266A (en) 1980-09-24 1983-10-25 Cosman Eric R Thermocouple radio frequency lesion electrode
US4565200A (en) 1980-09-24 1986-01-21 Cosman Eric R Universal lesion and recording electrode system
JPS5764036A (en) 1980-10-08 1982-04-17 Olympus Optical Co Endoscope apparatus
JPS5778844A (en) 1980-11-04 1982-05-17 Kogyo Gijutsuin Lasre knife
US4376263A (en) 1980-11-06 1983-03-08 Braun Aktiengesellschaft Battery charging circuit
DE3045996A1 (de) 1980-12-05 1982-07-08 Medic Eschmann Handelsgesellschaft für medizinische Instrumente mbH, 2000 Hamburg Elektro-chirurgiegeraet
US4436091A (en) 1981-03-20 1984-03-13 Surgical Design Corporation Surgical cutting instrument with release mechanism
FR2502935B1 (fr) 1981-03-31 1985-10-04 Dolley Roger Procede et dispositif de controle de la coagulation de tissus a l'aide d'un courant a haute frequence
DE3120102A1 (de) 1981-05-20 1982-12-09 F.L. Fischer GmbH & Co, 7800 Freiburg Anordnung zur hochfrequenzkoagulation von eiweiss fuer chirurgische zwecke
US4566454A (en) 1981-06-16 1986-01-28 Thomas L. Mehl Selected frequency hair removal device and method
US4429694A (en) 1981-07-06 1984-02-07 C. R. Bard, Inc. Electrosurgical generator
US4582057A (en) 1981-07-20 1986-04-15 Regents Of The University Of Washington Fast pulse thermal cautery probe
US4559496A (en) 1981-07-24 1985-12-17 General Electric Company LCD Hook-on digital ammeter
US4397314A (en) 1981-08-03 1983-08-09 Clini-Therm Corporation Method and apparatus for controlling and optimizing the heating pattern for a hyperthermia system
US4438766A (en) 1981-09-03 1984-03-27 C. R. Bard, Inc. Electrosurgical generator
US4559943A (en) 1981-09-03 1985-12-24 C. R. Bard, Inc. Electrosurgical generator
US4416277A (en) 1981-11-03 1983-11-22 Valleylab, Inc. Return electrode monitoring system for use during electrosurgical activation
US4416276A (en) 1981-10-26 1983-11-22 Valleylab, Inc. Adaptive, return electrode monitoring system
US4437464A (en) 1981-11-09 1984-03-20 C.R. Bard, Inc. Electrosurgical generator safety apparatus
US4452546A (en) 1981-11-30 1984-06-05 Richard Wolf Gmbh Coupling member for coupling an optical system to an endoscope shaft
FR2517953A1 (fr) 1981-12-10 1983-06-17 Alvar Electronic Appareil diaphanometre et son procede d'utilisation
US4463759A (en) 1982-01-13 1984-08-07 Garito Jon C Universal finger/foot switch adaptor for tube-type electrosurgical instrument
DE3325612A1 (de) 1982-07-15 1984-01-19 Tokyo Shibaura Electric Co Ueberspannungsunterdrueckungsvorrichtung
DE3228136C2 (de) 1982-07-28 1985-05-30 Erbe Elektromedizin GmbH, 7400 Tübingen Hochfrequenz-Chirurgiegerät
US5370675A (en) 1992-08-12 1994-12-06 Vidamed, Inc. Medical probe device and method
US4492231A (en) 1982-09-17 1985-01-08 Auth David C Non-sticking electrocautery system and forceps
JPS5957650A (ja) 1982-09-27 1984-04-03 呉羽化学工業株式会社 腔内加熱用プロ−ブ
US4514619A (en) 1982-09-30 1985-04-30 The B. F. Goodrich Company Indirect current monitoring via voltage and impedance monitoring
US4472661A (en) 1982-09-30 1984-09-18 Culver Clifford T High voltage, low power transformer for efficiently firing a gas discharge luminous display
US4492832A (en) 1982-12-23 1985-01-08 Neomed, Incorporated Hand-controllable switching device for electrosurgical instruments
US4644955A (en) 1982-12-27 1987-02-24 Rdm International, Inc. Circuit apparatus and method for electrothermal treatment of cancer eye
US4576177A (en) 1983-02-18 1986-03-18 Webster Wilton W Jr Catheter for removing arteriosclerotic plaque
DE3306402C2 (de) 1983-02-24 1985-03-07 Werner Prof. Dr.-Ing. 6301 Wettenberg Irnich Überwachungsvorrichtung für ein Hochfrequenz-Chirurgiegerät
US4520818A (en) 1983-02-28 1985-06-04 Codman & Shurtleff, Inc. High dielectric output circuit for electrosurgical power source
US4630218A (en) 1983-04-22 1986-12-16 Cooper Industries, Inc. Current measuring apparatus
US4590934A (en) 1983-05-18 1986-05-27 Jerry L. Malis Bipolar cutter/coagulator
DE3378719D1 (en) 1983-05-24 1989-01-26 Chang Sien Shih Electro-surgical unit control apparatus
US4615330A (en) 1983-09-05 1986-10-07 Olympus Optical Co., Ltd. Noise suppressor for electronic endoscope
US4658819A (en) 1983-09-13 1987-04-21 Valleylab, Inc. Electrosurgical generator
US4586120A (en) 1983-12-30 1986-04-29 At&T Bell Laboratories Current limit shutdown circuit with time delay
CA1257165A (en) 1984-02-08 1989-07-11 Paul Epstein Infusion system having plural fluid input ports and at least one patient output port
US4569345A (en) 1984-02-29 1986-02-11 Aspen Laboratories, Inc. High output electrosurgical unit
US5162217A (en) 1984-08-27 1992-11-10 Bio-Technology General Corp. Plasmids for expression of human superoxide dismutase (SOD) analogs containing lambda PL promoter with engineered restriction site for substituting ribosomal binding sites and methods of use thereof
US4651264A (en) 1984-09-05 1987-03-17 Trion, Inc. Power supply with arcing control and automatic overload protection
US4727874A (en) 1984-09-10 1988-03-01 C. R. Bard, Inc. Electrosurgical generator with high-frequency pulse width modulated feedback power control
US4735204A (en) 1984-09-17 1988-04-05 Cordis Corporation System for controlling an implanted neural stimulator
USRE33420E (en) 1984-09-17 1990-11-06 Cordis Corporation System for controlling an implanted neural stimulator
FR2573301B3 (fr) 1984-11-16 1987-04-30 Lamidey Gilles Pince chirurgicale et son appareillage de commande et de controle
US4827927A (en) 1984-12-26 1989-05-09 Valleylab, Inc. Apparatus for changing the output power level of an electrosurgical generator while remaining in the sterile field of a surgical procedure
US4632109A (en) 1984-12-11 1986-12-30 Valleylab, Inc. Circuitry for processing requests made from the sterile field of a surgical procedure to change the output power level of an electrosurgical generator
US4658820A (en) 1985-02-22 1987-04-21 Valleylab, Inc. Electrosurgical generator with improved circuitry for generating RF drive pulse trains
US4739759A (en) 1985-02-26 1988-04-26 Concept, Inc. Microprocessor controlled electrosurgical generator
DE3510586A1 (de) 1985-03-23 1986-10-02 Erbe Elektromedizin GmbH, 7400 Tübingen Kontrolleinrichtung fuer ein hochfrequenz-chirurgiegeraet
DE3516354A1 (de) 1985-05-07 1986-11-13 Werner Prof. Dr.-Ing. 6301 Wettenberg Irnich Ueberwachungsvorrichtung fuer ein hochfrequenz-chirurgiegeraet
DE3689698T2 (de) 1985-05-20 1994-07-21 Matsushita Electric Ind Co Ltd Blutgeschwindigkeitsmesser nach dem Ultraschall-Doppler-Prinzip.
US4712559A (en) 1985-06-28 1987-12-15 Bsd Medical Corporation Local current capacitive field applicator for interstitial array
US4750488A (en) 1986-05-19 1988-06-14 Sonomed Technology, Inc. Vibration apparatus preferably for endoscopic ultrasonic aspirator
DE3544443C2 (de) 1985-12-16 1994-02-17 Siemens Ag HF-Chirurgiegerät
US4887199A (en) 1986-02-07 1989-12-12 Astec International Limited Start circuit for generation of pulse width modulated switching pulses for switch mode power supplies
DE3604823C2 (de) 1986-02-15 1995-06-01 Lindenmeier Heinz Hochfrequenzgenerator mit automatischer Leistungsregelung für die Hochfrequenzchirurgie
US4827911A (en) 1986-04-02 1989-05-09 Cooper Lasersonics, Inc. Method and apparatus for ultrasonic surgical fragmentation and removal of tissue
US4901720A (en) 1986-04-08 1990-02-20 C. R. Bard, Inc. Power control for beam-type electrosurgical unit
US4691703A (en) 1986-04-25 1987-09-08 Board Of Regents, University Of Washington Thermal cautery system
FR2597744A1 (fr) 1986-04-29 1987-10-30 Boussignac Georges Catheter cardio-vasculaire pour tir au rayon laser
DE3775281D1 (de) 1986-06-16 1992-01-30 Siemens Ag Vorrichtung zur steuerung eines herzschrittmachers mittels impedanzmessung an koerpergeweben.
EP0430929B1 (de) 1986-07-17 1994-06-01 Erbe Elektromedizin GmbH Hochfrequenz-Chirurgiegerät für die thermische Koagulation biologischer Gewebe
US5157603A (en) 1986-11-06 1992-10-20 Storz Instrument Company Control system for ophthalmic surgical instruments
JPH0511882Y2 (es) 1987-01-06 1993-03-25
US5024668A (en) 1987-01-20 1991-06-18 Rocky Mountain Research, Inc. Retrograde perfusion system, components and method
DE3878477D1 (de) 1987-04-10 1993-03-25 Siemens Ag Ueberwachungsschaltung fuer ein hf-chirurgiegeraet.
US4788634A (en) 1987-06-22 1988-11-29 Massachusetts Institute Of Technology Resonant forward converter
JPS6410264A (en) 1987-07-03 1989-01-13 Fuji Xerox Co Ltd Electrophotographic developer
DE3728906A1 (de) 1987-08-29 1989-03-09 Asea Brown Boveri Verfahren zur erfassung eines einem phasenleiter und dem mp-leiter ueber den menschlichen koerper fliessenden stromes und schaltungsanordnung zur durchfuehrung des verfahrens
US4931047A (en) 1987-09-30 1990-06-05 Cavitron, Inc. Method and apparatus for providing enhanced tissue fragmentation and/or hemostasis
US5015227A (en) 1987-09-30 1991-05-14 Valleylab Inc. Apparatus for providing enhanced tissue fragmentation and/or hemostasis
JPH0636834Y2 (ja) 1987-10-28 1994-09-28 オリンパス光学工業株式会社 高周波誘電加温用電極
DE3751452D1 (de) 1987-11-17 1995-09-14 Erbe Elektromedizin Hochfrequenz-Chirugiegerät zum Schneiden und/oder Koagulieren biologischer Gewebe.
ATE132047T1 (de) 1988-01-20 1996-01-15 G2 Design Ltd Diathermiegerät
GB8801177D0 (en) 1988-01-20 1988-02-17 Goble N M Diathermy unit
US4848335B1 (en) 1988-02-16 1994-06-07 Aspen Lab Inc Return electrode contact monitor
DE3805179A1 (de) 1988-02-19 1989-08-31 Wolf Gmbh Richard Geraet mit einem rotierend angetriebenen chirurgischen instrument
US5588432A (en) 1988-03-21 1996-12-31 Boston Scientific Corporation Catheters for imaging, sensing electrical potentials, and ablating tissue
US4907589A (en) 1988-04-29 1990-03-13 Cosman Eric R Automatic over-temperature control apparatus for a therapeutic heating device
DE3815835A1 (de) 1988-05-09 1989-11-23 Flachenecker Gerhard Hochfrequenzgenerator zum gewebeschneiden und koagulieren in der hochfrequenzchirurgie
US4890610A (en) 1988-05-15 1990-01-02 Kirwan Sr Lawrence T Bipolar forceps
DE3824970C2 (de) 1988-07-22 1999-04-01 Lindenmeier Heinz Rückgekoppelter Hochfrequenz-Leistungsoszillator
US4903696A (en) 1988-10-06 1990-02-27 Everest Medical Corporation Electrosurgical generator
US4966597A (en) 1988-11-04 1990-10-30 Cosman Eric R Thermometric cardiac tissue ablation electrode with ultra-sensitive temperature detection
US4961047A (en) 1988-11-10 1990-10-02 Smiths Industries Public Limited Company Electrical power control apparatus and methods
US4959606A (en) 1989-01-06 1990-09-25 Uniphase Corporation Current mode switching regulator with programmed offtime
DE3904558C2 (de) 1989-02-15 1997-09-18 Lindenmeier Heinz Automatisch leistungsgeregelter Hochfrequenzgenerator für die Hochfrequenz-Chirurgie
US4938761A (en) 1989-03-06 1990-07-03 Mdt Corporation Bipolar electrosurgical forceps
EP0390937B1 (de) 1989-04-01 1994-11-02 Erbe Elektromedizin GmbH Einrichtung zur Überwachung der Applikation von Neutralelektroden bei der Hochfrequenzchirurgie
DE3911416A1 (de) 1989-04-07 1990-10-11 Delma Elektro Med App Elektrochirurgisches hochfrequenzgeraet
US5151085A (en) 1989-04-28 1992-09-29 Olympus Optical Co., Ltd. Apparatus for generating ultrasonic oscillation
DE4017626A1 (de) 1989-05-31 1990-12-06 Kyocera Corp Blutgefaesskoagulations-/-blutstillungs-einrichtung
US5029588A (en) 1989-06-15 1991-07-09 Cardiovascular Imaging Systems, Inc. Laser catheter with imaging capability
US4992719A (en) 1989-07-24 1991-02-12 Hughes Aircraft Company Stable high voltage pulse power supply
US4931717A (en) 1989-09-05 1990-06-05 Motorola Inc. Load response control and method
ES2064404T3 (es) 1989-09-07 1995-02-01 Siemens Ag Procedimiento y disposicion de circuito para la supervision de varias superficies de electrodos del electrodo neutro de un aparato quirurgico de h.f..
US5531774A (en) 1989-09-22 1996-07-02 Alfred E. Mann Foundation For Scientific Research Multichannel implantable cochlear stimulator having programmable bipolar, monopolar or multipolar electrode configurations
US5249121A (en) 1989-10-27 1993-09-28 American Cyanamid Company Remote control console for surgical control system
DE3942998C2 (de) 1989-12-27 1998-11-26 Delma Elektro Med App Elektrochirurgisches Hochfrequenzgerät
US5290283A (en) 1990-01-31 1994-03-01 Kabushiki Kaisha Toshiba Power supply apparatus for electrosurgical unit including electrosurgical-current waveform data storage
US5031618A (en) 1990-03-07 1991-07-16 Medtronic, Inc. Position-responsive neuro stimulator
US5019176A (en) 1990-03-20 1991-05-28 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Thin solar cell and lightweight array
US5122137A (en) 1990-04-27 1992-06-16 Boston Scientific Corporation Temperature controlled rf coagulation
US5108389A (en) 1990-05-23 1992-04-28 Ioan Cosmescu Automatic smoke evacuator activator system for a surgical laser apparatus and method therefor
US5233515A (en) 1990-06-08 1993-08-03 Cosman Eric R Real-time graphic display of heat lesioning parameters in a clinical lesion generator system
US5540677A (en) * 1990-06-15 1996-07-30 Rare Earth Medical, Inc. Endoscopic systems for photoreactive suturing of biological materials
US5103804A (en) 1990-07-03 1992-04-14 Boston Scientific Corporation Expandable tip hemostatic probes and the like
US5152762A (en) 1990-11-16 1992-10-06 Birtcher Medical Systems, Inc. Current leakage control for electrosurgical generator
DE9117190U1 (de) 1991-01-16 1996-11-14 Erbe Elektromedizin Hochfrequenz-Chirurgiegerät
US5167658A (en) 1991-01-31 1992-12-01 Mdt Corporation Method and apparatus for electrosurgical measurement
US5160334A (en) 1991-04-30 1992-11-03 Utah Medical Products, Inc. Electrosurgical generator and suction apparatus
FI93607C (fi) 1991-05-24 1995-05-10 John Koivukangas Leikkaustoimenpidelaite
US5190517A (en) 1991-06-06 1993-03-02 Valleylab Inc. Electrosurgical and ultrasonic surgical system
US5472443A (en) 1991-06-07 1995-12-05 Hemostatic Surgery Corporation Electrosurgical apparatus employing constant voltage and methods of use
DE4121977C2 (de) 1991-07-03 1994-10-27 Wolf Gmbh Richard Medizinisches Instrument mit einem kontaktlosen Schalter zum Steuern externer Geräte
US5383917A (en) 1991-07-05 1995-01-24 Jawahar M. Desai Device and method for multi-phase radio-frequency ablation
WO1993003677A2 (de) 1991-08-12 1993-03-04 Karl Storz Gmbh & Co. Hochfrequenzchirurgiegenerator zum schneiden von geweben
DE4126608A1 (de) 1991-08-12 1993-02-18 Fastenmeier Karl Anordnung zum schneiden von biologischem gewebe mit hochfrequenzstrom
US5196009A (en) 1991-09-11 1993-03-23 Kirwan Jr Lawrence T Non-sticking electrosurgical device having nickel tips
CA2075319C (en) 1991-09-26 1998-06-30 Ernie Aranyi Handle for surgical instruments
US5207691A (en) 1991-11-01 1993-05-04 Medical Scientific, Inc. Electrosurgical clip applicator
US5713896A (en) 1991-11-01 1998-02-03 Medical Scientific, Inc. Impedance feedback electrosurgical system
US5323778A (en) 1991-11-05 1994-06-28 Brigham & Women's Hospital Method and apparatus for magnetic resonance imaging and heating tissues
CA2106410C (en) 1991-11-08 2004-07-06 Stuart D. Edwards Ablation electrode with insulated temperature sensing elements
US5383874A (en) 1991-11-08 1995-01-24 Ep Technologies, Inc. Systems for identifying catheters and monitoring their use
WO1993008756A1 (en) 1991-11-08 1993-05-13 Ep Technologies, Inc. Radiofrequency ablation with phase sensitive power detection
US5230623A (en) 1991-12-10 1993-07-27 Radionics, Inc. Operating pointer with interactive computergraphics
US6142992A (en) 1993-05-10 2000-11-07 Arthrocare Corporation Power supply for limiting power in electrosurgery
DE9290164U1 (de) 1992-01-21 1994-09-15 Valleylab Inc Elektrochirurgische Steuerung für einen Trokar
US5267994A (en) 1992-02-10 1993-12-07 Conmed Corporation Electrosurgical probe
GB9204218D0 (en) 1992-02-27 1992-04-08 Goble Nigel M A surgical cutting tool
US5201900A (en) 1992-02-27 1993-04-13 Medical Scientific, Inc. Bipolar surgical clip
GB9204217D0 (en) 1992-02-27 1992-04-08 Goble Nigel M Cauterising apparatus
US5330518A (en) 1992-03-06 1994-07-19 Urologix, Inc. Method for treating interstitial tissue associated with microwave thermal therapy
US5254117A (en) 1992-03-17 1993-10-19 Alton Dean Medical Multi-functional endoscopic probe apparatus
US5432459A (en) 1992-03-17 1995-07-11 Conmed Corporation Leakage capacitance compensating current sensor for current supplied to medical device loads with unconnected reference conductor
US5436566A (en) 1992-03-17 1995-07-25 Conmed Corporation Leakage capacitance compensating current sensor for current supplied to medical device loads
US5300070A (en) 1992-03-17 1994-04-05 Conmed Corporation Electrosurgical trocar assembly with bi-polar electrode
US5540681A (en) 1992-04-10 1996-07-30 Medtronic Cardiorhythm Method and system for radiofrequency ablation of tissue
US5573533A (en) 1992-04-10 1996-11-12 Medtronic Cardiorhythm Method and system for radiofrequency ablation of cardiac tissue
US5281213A (en) 1992-04-16 1994-01-25 Implemed, Inc. Catheter for ice mapping and ablation
US5300068A (en) 1992-04-21 1994-04-05 St. Jude Medical, Inc. Electrosurgical apparatus
US5445635A (en) 1992-05-01 1995-08-29 Hemostatic Surgery Corporation Regulated-current power supply and methods for resistively-heated surgical instruments
US5443463A (en) 1992-05-01 1995-08-22 Vesta Medical, Inc. Coagulating forceps
GB9209859D0 (en) 1992-05-07 1992-06-24 Smiths Industries Plc Electrical apparatus
US5318563A (en) 1992-06-04 1994-06-07 Valley Forge Scientific Corporation Bipolar RF generator
US5341807A (en) 1992-06-30 1994-08-30 American Cardiac Ablation Co., Inc. Ablation catheter positioning system
WO1994002077A2 (en) 1992-07-15 1994-02-03 Angelase, Inc. Ablation catheter system
US5762609A (en) * 1992-09-14 1998-06-09 Sextant Medical Corporation Device and method for analysis of surgical tissue interventions
US5478303A (en) 1992-09-18 1995-12-26 Foley-Nolan; Darragh Electromagnetic apparatus for use in therapy
US5414238A (en) 1992-10-02 1995-05-09 Martin Marietta Corporation Resonant power supply for an arcjet thruster
US5370672A (en) 1992-10-30 1994-12-06 The Johns Hopkins University Computer-controlled neurological stimulation system
US5342357A (en) 1992-11-13 1994-08-30 American Cardiac Ablation Co., Inc. Fluid cooled electrosurgical cauterization system
AU5456494A (en) 1992-11-13 1994-06-08 American Cardiac Ablation Co., Inc. Fluid cooled electrosurgical probe
US5334193A (en) 1992-11-13 1994-08-02 American Cardiac Ablation Co., Inc. Fluid cooled ablation catheter
US5348554A (en) 1992-12-01 1994-09-20 Cardiac Pathways Corporation Catheter for RF ablation with cooled electrode
US5342356A (en) 1992-12-02 1994-08-30 Ellman Alan G Electrical coupling unit for electrosurgery
DE4240722C2 (de) 1992-12-03 1996-08-29 Siemens Ag Gerät für die Behandlung von pathologischem Gewebe
US5400267A (en) 1992-12-08 1995-03-21 Hemostatix Corporation Local in-device memory feature for electrically powered medical equipment
US5403312A (en) 1993-07-22 1995-04-04 Ethicon, Inc. Electrosurgical hemostatic device
US5558671A (en) 1993-07-22 1996-09-24 Yates; David C. Impedance feedback monitor for electrosurgical instrument
US5403276A (en) 1993-02-16 1995-04-04 Danek Medical, Inc. Apparatus for minimally invasive tissue removal
US5430434A (en) 1993-02-24 1995-07-04 Lederer; Gabor Portable surgical early warning device
US5403311A (en) 1993-03-29 1995-04-04 Boston Scientific Corporation Electro-coagulation and ablation and other electrotherapeutic treatments of body tissue
GB9306637D0 (en) 1993-03-30 1993-05-26 Smiths Industries Plc Electrosurgery monitor and appartus
US5370645A (en) 1993-04-19 1994-12-06 Valleylab Inc. Electrosurgical processor and method of use
US6235020B1 (en) 1993-05-10 2001-05-22 Arthrocare Corporation Power supply and methods for fluid delivery in electrosurgery
US5395368A (en) 1993-05-20 1995-03-07 Ellman; Alan G. Multiple-wire electrosurgical electrodes
US5396062A (en) 1993-05-27 1995-03-07 The Whitaker Corporation Receptacle having an internal switch with an emitter and a receiver
CA2164860C (en) 1993-06-10 2005-09-06 Mir A. Imran Transurethral radio frequency ablation apparatus
GB9314391D0 (en) 1993-07-12 1993-08-25 Gyrus Medical Ltd A radio frequency oscillator and an electrosurgical generator incorporating such an oscillator
US5817093A (en) 1993-07-22 1998-10-06 Ethicon Endo-Surgery, Inc. Impedance feedback monitor with query electrode for electrosurgical instrument
US5372596A (en) 1993-07-27 1994-12-13 Valleylab Inc. Apparatus for leakage control and method for its use
US5385148A (en) 1993-07-30 1995-01-31 The Regents Of The University Of California Cardiac imaging and ablation catheter
US5921982A (en) 1993-07-30 1999-07-13 Lesh; Michael D. Systems and methods for ablating body tissue
US5749871A (en) 1993-08-23 1998-05-12 Refractec Inc. Method and apparatus for modifications of visual acuity by thermal means
US5417719A (en) 1993-08-25 1995-05-23 Medtronic, Inc. Method of using a spinal cord stimulation lead
US5485312A (en) * 1993-09-14 1996-01-16 The United States Of America As Represented By The Secretary Of The Air Force Optical pattern recognition system and method for verifying the authenticity of a person, product or thing
US5409000A (en) 1993-09-14 1995-04-25 Cardiac Pathways Corporation Endocardial mapping and ablation system utilizing separately controlled steerable ablation catheter with ultrasonic imaging capabilities and method
US5423806A (en) 1993-10-01 1995-06-13 Medtronic, Inc. Laser extractor for an implanted object
US5496312A (en) 1993-10-07 1996-03-05 Valleylab Inc. Impedance and temperature generator control
US6210403B1 (en) 1993-10-07 2001-04-03 Sherwood Services Ag Automatic control for energy from an electrosurgical generator
US5433739A (en) 1993-11-02 1995-07-18 Sluijter; Menno E. Method and apparatus for heating an intervertebral disc for relief of back pain
US5571147A (en) 1993-11-02 1996-11-05 Sluijter; Menno E. Thermal denervation of an intervertebral disc for relief of back pain
US5458597A (en) 1993-11-08 1995-10-17 Zomed International Device for treating cancer and non-malignant tumors and methods
US5472441A (en) 1993-11-08 1995-12-05 Zomed International Device for treating cancer and non-malignant tumors and methods
US5536267A (en) 1993-11-08 1996-07-16 Zomed International Multiple electrode ablation apparatus
US5599345A (en) 1993-11-08 1997-02-04 Zomed International, Inc. RF treatment apparatus
JP3325098B2 (ja) 1993-11-08 2002-09-17 オリンパス光学工業株式会社 高周波焼灼装置
DE4339049C2 (de) 1993-11-16 2001-06-28 Erbe Elektromedizin Einrichtung zur Konfiguration chirurgischer Systeme
US5514129A (en) 1993-12-03 1996-05-07 Valleylab Inc. Automatic bipolar control for an electrosurgical generator
US6241725B1 (en) 1993-12-15 2001-06-05 Sherwood Services Ag High frequency thermal ablation of cancerous tumors and functional targets with image data assistance
US5645059A (en) 1993-12-17 1997-07-08 Nellcor Incorporated Medical sensor with modulated encoding scheme
US5462521A (en) 1993-12-21 1995-10-31 Angeion Corporation Fluid cooled and perfused tip for a catheter
US5422567A (en) 1993-12-27 1995-06-06 Valleylab Inc. High frequency power measurement
WO1995019148A1 (en) 1994-01-18 1995-07-20 Endovascular, Inc. Apparatus and method for venous ligation
US5501703A (en) 1994-01-24 1996-03-26 Medtronic, Inc. Multichannel apparatus for epidural spinal cord stimulator
US5434398A (en) 1994-02-22 1995-07-18 Haim Labenski Magnetic smartcard
US5584830A (en) 1994-03-30 1996-12-17 Medtronic Cardiorhythm Method and system for radiofrequency ablation of cardiac tissue
US5529235A (en) 1994-04-28 1996-06-25 Ethicon Endo-Surgery, Inc. Identification device for surgical instrument
US5458596A (en) 1994-05-06 1995-10-17 Dorsal Orthopedic Corporation Method and apparatus for controlled contraction of soft tissue
US5696441A (en) 1994-05-13 1997-12-09 Distribution Control Systems, Inc. Linear alternating current interface for electronic meters
US6464689B1 (en) 1999-09-08 2002-10-15 Curon Medical, Inc. Graphical user interface for monitoring and controlling use of medical devices
EP0768841B1 (en) 1994-06-27 2003-12-03 Boston Scientific Limited System for controlling tissue ablation using temperature sensors
US6113591A (en) 1994-06-27 2000-09-05 Ep Technologies, Inc. Systems and methods for sensing sub-surface temperatures in body tissue
ES2216016T3 (es) 1994-06-27 2004-10-16 Boston Scientific Limited Sistemas de control no lineal sobre el calentamiento del tejido corporal y los procedimientos de ablacion.
US5594636A (en) 1994-06-29 1997-01-14 Northrop Grumman Corporation Matrix converter circuit and commutating method
GB9413070D0 (en) 1994-06-29 1994-08-17 Gyrus Medical Ltd Electrosurgical apparatus
US5846236A (en) 1994-07-18 1998-12-08 Karl Storz Gmbh & Co. High frequency-surgical generator for adjusted cutting and coagulation
US5625370A (en) 1994-07-25 1997-04-29 Texas Instruments Incorporated Identification system antenna with impedance transformer
US5540684A (en) 1994-07-28 1996-07-30 Hassler, Jr.; William L. Method and apparatus for electrosurgically treating tissue
US8025661B2 (en) * 1994-09-09 2011-09-27 Cardiofocus, Inc. Coaxial catheter instruments for ablation with radiant energy
US5496313A (en) 1994-09-20 1996-03-05 Conmed Corporation System for detecting penetration of medical instruments
US6142994A (en) 1994-10-07 2000-11-07 Ep Technologies, Inc. Surgical method and apparatus for positioning a diagnostic a therapeutic element within the body
US5605150A (en) 1994-11-04 1997-02-25 Physio-Control Corporation Electrical interface for a portable electronic physiological instrument having separable components
US5534018A (en) 1994-11-30 1996-07-09 Medtronic, Inc. Automatic lead recognition for implantable medical device
EP2070486A1 (en) 1994-12-13 2009-06-17 Torben Lorentzen An electrosurgical instrument for tissue ablation, an apparatus, and a method for providing a lesion in damaged and diseased tissue from a mammal
US5613966A (en) 1994-12-21 1997-03-25 Valleylab Inc System and method for accessory rate control
US5695494A (en) 1994-12-22 1997-12-09 Valleylab Inc Rem output stage topology
US5500616A (en) 1995-01-13 1996-03-19 Ixys Corporation Overvoltage clamp and desaturation detection circuit
US5596466A (en) 1995-01-13 1997-01-21 Ixys Corporation Intelligent, isolated half-bridge power module
US5694304A (en) 1995-02-03 1997-12-02 Ericsson Raynet Corporation High efficiency resonant switching converters
US5712772A (en) 1995-02-03 1998-01-27 Ericsson Raynet Controller for high efficiency resonant switching converters
US5540724A (en) 1995-02-03 1996-07-30 Intermedics, Inc. Cardiac cardioverter/defibrillator with in vivo impedance estimation
US6409722B1 (en) 1998-07-07 2002-06-25 Medtronic, Inc. Apparatus and method for creating, maintaining, and controlling a virtual electrode used for the ablation of tissue
US5696351A (en) 1995-03-10 1997-12-09 Ericsson Raynet Cable retention and sealing device
US5647871A (en) 1995-03-10 1997-07-15 Microsurge, Inc. Electrosurgery with cooled electrodes
US5868740A (en) 1995-03-24 1999-02-09 Board Of Regents-Univ Of Nebraska Method for volumetric tissue ablation
US5707369A (en) 1995-04-24 1998-01-13 Ethicon Endo-Surgery, Inc. Temperature feedback monitor for hemostatic surgical instrument
US5626575A (en) 1995-04-28 1997-05-06 Conmed Corporation Power level control apparatus for electrosurgical generators
WO1996034570A1 (en) 1995-05-01 1996-11-07 Ep Technologies, Inc. Systems and methods for obtaining desired lesion characteristics while ablating body tissue
US5688267A (en) 1995-05-01 1997-11-18 Ep Technologies, Inc. Systems and methods for sensing multiple temperature conditions during tissue ablation
US6053912A (en) 1995-05-01 2000-04-25 Ep Techonologies, Inc. Systems and methods for sensing sub-surface temperatures in body tissue during ablation with actively cooled electrodes
EP0957792A4 (en) 1995-05-02 2000-09-20 Heart Rhythm Tech Inc ARRANGEMENT FOR CONTROLLING AN ABLATION ENERGY SUPPLIED TO A PATIENT
US6575969B1 (en) 1995-05-04 2003-06-10 Sherwood Services Ag Cool-tip radiofrequency thermosurgery electrode system for tumor ablation
AU5727096A (en) 1995-05-04 1996-11-21 Eric R. Cosman Cool-tip electrode thermosurgery system
US5613996A (en) 1995-05-08 1997-03-25 Plasma Processing Corporation Process for treatment of reactive fines
AU5841096A (en) 1995-05-31 1996-12-18 Nuvotek Ltd Electrosurgical cutting and coagulation apparatus
US5720744A (en) 1995-06-06 1998-02-24 Valleylab Inc Control system for neurosurgery
US5599344A (en) 1995-06-06 1997-02-04 Valleylab Inc. Control apparatus for electrosurgical generator power output
US5628745A (en) 1995-06-06 1997-05-13 Bek; Robin B. Exit spark control for an electrosurgical generator
US5868737A (en) 1995-06-09 1999-02-09 Engineering Research & Associates, Inc. Apparatus and method for determining ablation
EP0771176B2 (en) 1995-06-23 2006-01-04 Gyrus Medical Limited An electrosurgical instrument
GB9526627D0 (en) 1995-12-29 1996-02-28 Gyrus Medical Ltd An electrosurgical instrument and an electrosurgical electrode assembly
US6293942B1 (en) 1995-06-23 2001-09-25 Gyrus Medical Limited Electrosurgical generator method
DE19534151A1 (de) 1995-09-14 1997-03-20 Storz Endoskop Gmbh Hochfrequenz-Chirurgiegerät
US5827271A (en) 1995-09-19 1998-10-27 Valleylab Energy delivery system for vessel sealing
US5766165A (en) 1995-09-22 1998-06-16 Gentelia; John S. Return path monitoring system
US5772659A (en) 1995-09-26 1998-06-30 Valleylab Inc. Electrosurgical generator power control circuit and method
US5658322A (en) 1995-10-11 1997-08-19 Regeneration Technology Bio-active frequency generator and method
WO1997015348A1 (en) 1995-10-11 1997-05-01 Regeneration Technology Bio-active frequency generator and method
US5660567A (en) 1995-11-14 1997-08-26 Nellcor Puritan Bennett Incorporated Medical sensor connector with removable encoding device
US5718246A (en) 1996-01-03 1998-02-17 Preferential, Inc. Preferential induction of electrically mediated cell death from applied pulses
US5792138A (en) 1996-02-22 1998-08-11 Apollo Camera, Llc Cordless bipolar electrocautery unit with automatic power control
US6458121B1 (en) 1996-03-19 2002-10-01 Diapulse Corporation Of America Apparatus for athermapeutic medical treatments
US5733281A (en) 1996-03-19 1998-03-31 American Ablation Co., Inc. Ultrasound and impedance feedback system for use with electrosurgical instruments
US5925070A (en) 1996-04-04 1999-07-20 Medtronic, Inc. Techniques for adjusting the locus of excitation of electrically excitable tissue
US5702429A (en) 1996-04-04 1997-12-30 Medtronic, Inc. Neural stimulation techniques with feedback
US5797902A (en) 1996-05-10 1998-08-25 Minnesota Mining And Manufacturing Company Biomedical electrode providing early detection of accidental detachment
US5938690A (en) 1996-06-07 1999-08-17 Advanced Neuromodulation Systems, Inc. Pain management system and method
DE19623840A1 (de) 1996-06-14 1997-12-18 Berchtold Gmbh & Co Geb Elektrochirurgischer Hochfrequenz-Generator
US6246912B1 (en) 1996-06-27 2001-06-12 Sherwood Services Ag Modulated high frequency tissue modification
US5983141A (en) 1996-06-27 1999-11-09 Radionics, Inc. Method and apparatus for altering neural tissue function
DE19628482A1 (de) 1996-07-15 1998-01-22 Berchtold Gmbh & Co Geb Verfahren zum Betrieb eines Hochfrequenz-Chirurgiegerätes und Hochfrequenz-Chirurgiegerät
US5931836A (en) 1996-07-29 1999-08-03 Olympus Optical Co., Ltd. Electrosurgery apparatus and medical apparatus combined with the same
US5836943A (en) 1996-08-23 1998-11-17 Team Medical, L.L.C. Electrosurgical generator
US5836909A (en) 1996-09-13 1998-11-17 Cosmescu; Ioan Automatic fluid control system for use in open and laparoscopic laser surgery and electrosurgery and method therefor
US5820568A (en) 1996-10-15 1998-10-13 Cardiac Pathways Corporation Apparatus and method for aiding in the positioning of a catheter
PT1132393E (pt) 1996-10-16 2003-08-29 Ribapharm Inc L-ribavirina e usos da mesma
US5830212A (en) 1996-10-21 1998-11-03 Ndm, Inc. Electrosurgical generator and electrode
US6053910A (en) 1996-10-30 2000-04-25 Megadyne Medical Products, Inc. Capacitive reusable electrosurgical return electrode
US5729448A (en) 1996-10-31 1998-03-17 Hewlett-Packard Company Low cost highly manufacturable DC-to-DC power converter
US5954719A (en) 1996-12-11 1999-09-21 Irvine Biomedical, Inc. System for operating a RF ablation generator
GB9626512D0 (en) 1996-12-20 1997-02-05 Gyrus Medical Ltd An improved electrosurgical generator and system
US6113596A (en) 1996-12-30 2000-09-05 Enable Medical Corporation Combination monopolar-bipolar electrosurgical instrument system, instrument and cable
US6063078A (en) 1997-03-12 2000-05-16 Medtronic, Inc. Method and apparatus for tissue ablation
EP0971637A1 (en) 1997-04-04 2000-01-19 Minnesota Mining And Manufacturing Company Method and apparatus for controlling contact of biomedical electrodes with patient skin
US6033399A (en) 1997-04-09 2000-03-07 Valleylab, Inc. Electrosurgical generator with adaptive power control
DE19714972C2 (de) 1997-04-10 2001-12-06 Storz Endoskop Gmbh Schaffhaus Einrichtung zur Überwachung der Applikation einer Neutralelektrode
US5871481A (en) 1997-04-11 1999-02-16 Vidamed, Inc. Tissue ablation apparatus and method
GB9708268D0 (en) 1997-04-24 1997-06-18 Gyrus Medical Ltd An electrosurgical instrument
DE19717411A1 (de) 1997-04-25 1998-11-05 Aesculap Ag & Co Kg Verfahren und Vorrichtung zur Überwachung der thermischen Belastung des Gewebes eines Patienten
US5948007A (en) 1997-04-30 1999-09-07 Medtronic, Inc. Dual channel implantation neurostimulation techniques
US5797802A (en) 1997-05-12 1998-08-25 Nowak Products, Inc. Die head
US5838558A (en) 1997-05-19 1998-11-17 Trw Inc. Phase staggered full-bridge converter with soft-PWM switching
US5908444A (en) 1997-06-19 1999-06-01 Healing Machines, Inc. Complex frequency pulsed electromagnetic generator and method of use
JP3315623B2 (ja) 1997-06-19 2002-08-19 オリンパス光学工業株式会社 電気メス装置の帰還電極剥離モニタ
DE19730456A1 (de) 1997-07-16 1999-01-21 Berchtold Gmbh & Co Geb Elektrisch betriebene medizinische Vorrichtung
US5961344A (en) 1997-08-26 1999-10-05 Yazaki Corporation Cam-actuated terminal connector
US6055458A (en) 1997-08-28 2000-04-25 Bausch & Lomb Surgical, Inc. Modes/surgical functions
DE19739699A1 (de) 1997-09-04 1999-03-11 Laser & Med Tech Gmbh Elektrodenanordnung zur elektro-thermischen Behandlung des menschlichen oder tierischen Körpers
US5836990A (en) 1997-09-19 1998-11-17 Medtronic, Inc. Method and apparatus for determining electrode/tissue contact
US5954717A (en) 1997-09-25 1999-09-21 Radiotherapeutics Corporation Method and system for heating solid tissue
US6358246B1 (en) 1999-06-25 2002-03-19 Radiotherapeutics Corporation Method and system for heating solid tissue
US6228079B1 (en) 1997-10-06 2001-05-08 Somnus Medical Technology, Inc. Method and apparatus for power measurement in radio frequency electro-surgical generators
US6176857B1 (en) 1997-10-22 2001-01-23 Oratec Interventions, Inc. Method and apparatus for applying thermal energy to tissue asymmetrically
US6068627A (en) 1997-12-10 2000-05-30 Valleylab, Inc. Smart recognition apparatus and method
US6080149A (en) 1998-01-09 2000-06-27 Radiotherapeutics, Corporation Method and apparatus for monitoring solid tissue heating
US5954686A (en) 1998-02-02 1999-09-21 Garito; Jon C Dual-frequency electrosurgical instrument
US6562037B2 (en) 1998-02-12 2003-05-13 Boris E. Paton Bonding of soft biological tissues by passing high frequency electric current therethrough
US6132429A (en) 1998-02-17 2000-10-17 Baker; James A. Radiofrequency medical instrument and methods for luminal welding
US6358245B1 (en) 1998-02-19 2002-03-19 Curon Medical, Inc. Graphical user interface for association with an electrode structure deployed in contact with a tissue region
US6273886B1 (en) 1998-02-19 2001-08-14 Curon Medical, Inc. Integrated tissue heating and cooling apparatus
US6864686B2 (en) 1998-03-12 2005-03-08 Storz Endoskop Gmbh High-frequency surgical device and operation monitoring device for a high-frequency surgical device
US6014581A (en) 1998-03-26 2000-01-11 Ep Technologies, Inc. Interface for performing a diagnostic or therapeutic procedure on heart tissue with an electrode structure
DE19814681B4 (de) 1998-04-01 2008-11-13 Infineon Technologies Ag Current-Mode-Schaltregler
US6383183B1 (en) 1998-04-09 2002-05-07 Olympus Optical Co., Ltd. High frequency treatment apparatus
US6508815B1 (en) 1998-05-08 2003-01-21 Novacept Radio-frequency generator for powering an ablation device
US6188211B1 (en) 1998-05-13 2001-02-13 Texas Instruments Incorporated Current-efficient low-drop-out voltage regulator with improved load regulation and frequency response
US6212433B1 (en) 1998-07-28 2001-04-03 Radiotherapeutics Corporation Method for treating tumors near the surface of an organ
US6123702A (en) 1998-09-10 2000-09-26 Scimed Life Systems, Inc. Systems and methods for controlling power in an electrosurgical probe
US6245065B1 (en) 1998-09-10 2001-06-12 Scimed Life Systems, Inc. Systems and methods for controlling power in an electrosurgical probe
US6402748B1 (en) 1998-09-23 2002-06-11 Sherwood Services Ag Electrosurgical device having a dielectrical seal
JP4136118B2 (ja) 1998-09-30 2008-08-20 オリンパス株式会社 電気手術装置
DE19848540A1 (de) 1998-10-21 2000-05-25 Reinhard Kalfhaus Schaltungsanordnung und Verfahren zum Betreiben eines Wechselrichters
US7137980B2 (en) 1998-10-23 2006-11-21 Sherwood Services Ag Method and system for controlling output of RF medical generator
US7901400B2 (en) 1998-10-23 2011-03-08 Covidien Ag Method and system for controlling output of RF medical generator
US20100042093A9 (en) 1998-10-23 2010-02-18 Wham Robert H System and method for terminating treatment in impedance feedback algorithm
US6398779B1 (en) 1998-10-23 2002-06-04 Sherwood Services Ag Vessel sealing system
US20040167508A1 (en) 2002-02-11 2004-08-26 Robert Wham Vessel sealing system
US6796981B2 (en) 1999-09-30 2004-09-28 Sherwood Services Ag Vessel sealing system
US7364577B2 (en) 2002-02-11 2008-04-29 Sherwood Services Ag Vessel sealing system
US6102497A (en) 1998-11-03 2000-08-15 Sherwood Services Ag Universal cart
US6155975A (en) 1998-11-06 2000-12-05 Urich; Alex Phacoemulsification apparatus with personal computer
US6451015B1 (en) 1998-11-18 2002-09-17 Sherwood Services Ag Method and system for menu-driven two-dimensional display lesion generator
US6436096B1 (en) 1998-11-27 2002-08-20 Olympus Optical Co., Ltd. Electrosurgical apparatus with stable coagulation
SE520276C2 (sv) * 1999-01-25 2003-06-17 Elekta Ab Anordning för kontrollerat förstörande av vävnad
US6464696B1 (en) 1999-02-26 2002-10-15 Olympus Optical Co., Ltd. Electrical surgical operating apparatus
US6398781B1 (en) 1999-03-05 2002-06-04 Gyrus Medical Limited Electrosurgery system
US6582427B1 (en) 1999-03-05 2003-06-24 Gyrus Medical Limited Electrosurgery system
US6645198B1 (en) 1999-03-17 2003-11-11 Ntero Surgical, Inc. Systems and methods for reducing post-surgical complications
US6939346B2 (en) 1999-04-21 2005-09-06 Oratec Interventions, Inc. Method and apparatus for controlling a temperature-controlled probe
US6162217A (en) * 1999-04-21 2000-12-19 Oratec Interventions, Inc. Method and apparatus for controlling a temperature-controlled probe
US6203541B1 (en) 1999-04-23 2001-03-20 Sherwood Services Ag Automatic activation of electrosurgical generator bipolar output
US6258085B1 (en) 1999-05-11 2001-07-10 Sherwood Services Ag Electrosurgical return electrode monitor
GB9911956D0 (en) 1999-05-21 1999-07-21 Gyrus Medical Ltd Electrosurgery system and method
US6547786B1 (en) 1999-05-21 2003-04-15 Gyrus Medical Electrosurgery system and instrument
US20030181898A1 (en) 1999-05-28 2003-09-25 Bowers William J. RF filter for an electrosurgical generator
US6391024B1 (en) 1999-06-17 2002-05-21 Cardiac Pacemakers, Inc. RF ablation apparatus and method having electrode/tissue contact assessment scheme and electrocardiogram filtering
US6692489B1 (en) 1999-07-21 2004-02-17 Team Medical, Llc Electrosurgical mode conversion system
US6666860B1 (en) 1999-08-24 2003-12-23 Olympus Optical Co., Ltd. Electric treatment system
WO2001017452A1 (en) 1999-09-08 2001-03-15 Curon Medical, Inc. System for controlling a family of treatment devices
JP2003508150A (ja) 1999-09-08 2003-03-04 キューロン メディカル,インコーポレイテッド 医療用デバイスの使用を監視および制御するためのシステムおよび方法
US6238388B1 (en) 1999-09-10 2001-05-29 Alan G. Ellman Low-voltage electrosurgical apparatus
US6402741B1 (en) 1999-10-08 2002-06-11 Sherwood Services Ag Current and status monitor
US6517538B1 (en) 1999-10-15 2003-02-11 Harold Jacob Temperature-controlled snare
US6442434B1 (en) 1999-10-19 2002-08-27 Abiomed, Inc. Methods and apparatus for providing a sufficiently stable power to a load in an energy transfer system
US6635057B2 (en) 1999-12-02 2003-10-21 Olympus Optical Co. Ltd. Electric operation apparatus
GB0002607D0 (en) 2000-02-05 2000-03-29 Smiths Industries Plc Cable testing
US6758846B2 (en) 2000-02-08 2004-07-06 Gyrus Medical Limited Electrosurgical instrument and an electrosurgery system including such an instrument
US6623423B2 (en) 2000-02-29 2003-09-23 Olympus Optical Co., Ltd. Surgical operation system
US6689131B2 (en) 2001-03-08 2004-02-10 Tissuelink Medical, Inc. Electrosurgical device having a tissue reduction sensor
US6663623B1 (en) 2000-03-13 2003-12-16 Olympus Optical Co., Ltd. Electric surgical operation apparatus
US6498466B1 (en) 2000-05-23 2002-12-24 Linear Technology Corp. Cancellation of slope compensation effect on current limit
US6558376B2 (en) 2000-06-30 2003-05-06 Gregory D. Bishop Method of use of an ultrasonic clamp and coagulation apparatus with tissue support surface
US6511478B1 (en) 2000-06-30 2003-01-28 Scimed Life Systems, Inc. Medical probe with reduced number of temperature sensor wires
WO2002011634A1 (de) * 2000-08-08 2002-02-14 Erbe Elektromedizin Gmbh Hochfrequenzgenerator für die hochfrequenzchirurgie mit einstellbarer leistungsbegrenzung und verfahren zur steuerung der leistungsbegrenzung
US6730080B2 (en) 2000-08-23 2004-05-04 Olympus Corporation Electric operation apparatus
US6693782B1 (en) 2000-09-20 2004-02-17 Dell Products L.P. Surge suppression for current limiting circuits
US6338657B1 (en) 2000-10-20 2002-01-15 Ethicon Endo-Surgery Hand piece connector
US6843789B2 (en) 2000-10-31 2005-01-18 Gyrus Medical Limited Electrosurgical system
US6893435B2 (en) 2000-10-31 2005-05-17 Gyrus Medical Limited Electrosurgical system
US20030139741A1 (en) 2000-10-31 2003-07-24 Gyrus Medical Limited Surgical instrument
US6560470B1 (en) * 2000-11-15 2003-05-06 Datex-Ohmeda, Inc. Electrical lockout photoplethysmographic measurement system
US6740085B2 (en) 2000-11-16 2004-05-25 Olympus Corporation Heating treatment system
DE10057585A1 (de) 2000-11-21 2002-05-29 Erbe Elektromedizin Vorrichtung und Verfahren zur automatischen Konfiguration von Hochfrequenz-Systemelementen
US6620157B1 (en) 2000-12-28 2003-09-16 Senorx, Inc. High frequency power source
US20020111624A1 (en) 2001-01-26 2002-08-15 Witt David A. Coagulating electrosurgical instrument with tissue dam
US20020107517A1 (en) 2001-01-26 2002-08-08 Witt David A. Electrosurgical instrument for coagulation and cutting
JP2002238919A (ja) 2001-02-20 2002-08-27 Olympus Optical Co Ltd 医療システム用制御装置及び医療システム
US6682527B2 (en) 2001-03-13 2004-01-27 Perfect Surgical Techniques, Inc. Method and system for heating tissue with a bipolar instrument
DE60109328T2 (de) 2001-04-06 2006-04-06 Sherwood Services Ag Gefässdichtungsgerät und gefässtrennungsgerät
US6648883B2 (en) 2001-04-26 2003-11-18 Medtronic, Inc. Ablation system and method of use
US6989010B2 (en) 2001-04-26 2006-01-24 Medtronic, Inc. Ablation system and method of use
US6642376B2 (en) 2001-04-30 2003-11-04 North Carolina State University Rational synthesis of heteroleptic lanthanide sandwich coordination complexes
JP4656755B2 (ja) 2001-05-07 2011-03-23 オリンパス株式会社 電気手術装置
US20040015159A1 (en) * 2001-07-03 2004-01-22 Syntheon, Llc Methods and apparatus for treating the wall of a blood vessel with electromagnetic energy
US6923804B2 (en) 2001-07-12 2005-08-02 Neothermia Corporation Electrosurgical generator
US6740079B1 (en) 2001-07-12 2004-05-25 Neothermia Corporation Electrosurgical generator
US7282048B2 (en) 2001-08-27 2007-10-16 Gyrus Medical Limited Electrosurgical generator and system
US6966907B2 (en) 2001-08-27 2005-11-22 Gyrus Medical Limited Electrosurgical generator and system
US6929641B2 (en) 2001-08-27 2005-08-16 Gyrus Medical Limited Electrosurgical system
US6652514B2 (en) 2001-09-13 2003-11-25 Alan G. Ellman Intelligent selection system for electrosurgical instrument
US6685703B2 (en) 2001-10-19 2004-02-03 Scimed Life Systems, Inc. Generator and probe adapter
US6790206B2 (en) 2002-01-31 2004-09-14 Scimed Life Systems, Inc. Compensation for power variation along patient cables
US6733498B2 (en) 2002-02-19 2004-05-11 Live Tissue Connect, Inc. System and method for control of tissue welding
US20040030330A1 (en) 2002-04-18 2004-02-12 Brassell James L. Electrosurgery systems
DE10218895B4 (de) 2002-04-26 2006-12-21 Storz Endoskop Produktions Gmbh Hochfrequenz-Chirurgiegenerator
EP1501435B1 (en) 2002-05-06 2007-08-29 Covidien AG Blood detector for controlling an esu
US20040015216A1 (en) 2002-05-30 2004-01-22 Desisto Stephen R. Self-evacuating electrocautery device
US7004174B2 (en) 2002-05-31 2006-02-28 Neothermia Corporation Electrosurgery with infiltration anesthesia
US7220260B2 (en) 2002-06-27 2007-05-22 Gyrus Medical Limited Electrosurgical system
US6855141B2 (en) 2002-07-22 2005-02-15 Medtronic, Inc. Method for monitoring impedance to control power and apparatus utilizing same
US6824539B2 (en) 2002-08-02 2004-11-30 Storz Endoskop Produktions Gmbh Touchscreen controlling medical equipment from multiple manufacturers
GB0221707D0 (en) 2002-09-18 2002-10-30 Gyrus Medical Ltd Electrical system
US6860881B2 (en) 2002-09-25 2005-03-01 Sherwood Services Ag Multiple RF return pad contact detection system
US7041096B2 (en) 2002-10-24 2006-05-09 Synergetics Usa, Inc. Electrosurgical generator apparatus
EP1567083A4 (en) 2002-11-13 2008-08-20 Artemis Medical Inc DEVICES AND METHOD FOR CONTROLLING THE INITIAL MOVEMENT OF AN ELECTROSURGIC ELECTRODE
US7799026B2 (en) 2002-11-14 2010-09-21 Covidien Ag Compressible jaw configuration with bipolar RF output electrodes for soft tissue fusion
US20040097912A1 (en) 2002-11-18 2004-05-20 Gonnering Wayne J. Electrosurgical generator and method with removable front panel having replaceable electrical connection sockets and illuminated receptacles
US6948503B2 (en) 2002-11-19 2005-09-27 Conmed Corporation Electrosurgical generator and method for cross-checking output power
US6939347B2 (en) 2002-11-19 2005-09-06 Conmed Corporation Electrosurgical generator and method with voltage and frequency regulated high-voltage current mode power supply
US6942660B2 (en) 2002-11-19 2005-09-13 Conmed Corporation Electrosurgical generator and method with multiple semi-autonomously executable functions
US6830569B2 (en) 2002-11-19 2004-12-14 Conmed Corporation Electrosurgical generator and method for detecting output power delivery malfunction
US6875210B2 (en) 2002-11-19 2005-04-05 Conmed Corporation Electrosurgical generator and method for cross-checking mode functionality
US7255694B2 (en) 2002-12-10 2007-08-14 Sherwood Services Ag Variable output crest factor electrosurgical generator
US7044948B2 (en) 2002-12-10 2006-05-16 Sherwood Services Ag Circuit for controlling arc energy from an electrosurgical generator
JP2004208922A (ja) 2002-12-27 2004-07-29 Olympus Corp 医療装置及び医療用マニピュレータ並びに医療装置の制御方法
CA2512904C (en) 2003-01-09 2011-06-14 Gyrus Medical Limited An electrosurgical generator
WO2004098385A2 (en) 2003-05-01 2004-11-18 Sherwood Services Ag Method and system for programing and controlling an electrosurgical generator system
AU2004237772B2 (en) 2003-05-01 2009-12-10 Covidien Ag Electrosurgical instrument which reduces thermal damage to adjacent tissue
US20050021020A1 (en) 2003-05-15 2005-01-27 Blaha Derek M. System for activating an electrosurgical instrument
JP4231743B2 (ja) 2003-07-07 2009-03-04 オリンパス株式会社 生体組織切除装置
EP1675499B1 (en) 2003-10-23 2011-10-19 Covidien AG Redundant temperature monitoring in electrosurgical systems for safety mitigation
CA2542798C (en) 2003-10-23 2015-06-23 Sherwood Services Ag Thermocouple measurement circuit
US7396336B2 (en) 2003-10-30 2008-07-08 Sherwood Services Ag Switched resonant ultrasonic power amplifier system
AU2003294433B2 (en) 2003-10-30 2010-12-09 Covidien Ag Automatic control system for an electrosurgical generator
US7252667B2 (en) 2003-11-19 2007-08-07 Sherwood Services Ag Open vessel sealing instrument with cutting mechanism and distal lockout
AU2003294390A1 (en) 2003-11-20 2005-07-14 Sherwood Services Ag Electrosurgical pencil with plurality of controls
US7131860B2 (en) 2003-11-20 2006-11-07 Sherwood Services Ag Connector systems for electrosurgical generator
US7300435B2 (en) 2003-11-21 2007-11-27 Sherwood Services Ag Automatic control system for an electrosurgical generator
US7766905B2 (en) 2004-02-12 2010-08-03 Covidien Ag Method and system for continuity testing of medical electrodes
US7780662B2 (en) 2004-03-02 2010-08-24 Covidien Ag Vessel sealing system using capacitive RF dielectric heating
US7250746B2 (en) 2004-03-31 2007-07-31 Matsushita Electric Industrial Co., Ltd. Current mode switching regulator with predetermined on time
US20050251117A1 (en) * 2004-05-07 2005-11-10 Anderson Robert S Apparatus and method for treating biological external tissue
US7282049B2 (en) 2004-10-08 2007-10-16 Sherwood Services Ag Electrosurgical system employing multiple electrodes and method thereof
US7628786B2 (en) 2004-10-13 2009-12-08 Covidien Ag Universal foot switch contact port
US20060161148A1 (en) 2005-01-13 2006-07-20 Robert Behnke Circuit and method for controlling an electrosurgical generator using a full bridge topology
US9474564B2 (en) 2005-03-31 2016-10-25 Covidien Ag Method and system for compensating for external impedance of an energy carrying component when controlling an electrosurgical generator
US7491202B2 (en) 2005-03-31 2009-02-17 Covidien Ag Electrosurgical forceps with slow closure sealing plates and method of sealing tissue
US8734438B2 (en) 2005-10-21 2014-05-27 Covidien Ag Circuit and method for reducing stored energy in an electrosurgical generator
US7947039B2 (en) 2005-12-12 2011-05-24 Covidien Ag Laparoscopic apparatus for performing electrosurgical procedures
US20070173813A1 (en) 2006-01-24 2007-07-26 Sherwood Services Ag System and method for tissue sealing
US7972328B2 (en) 2006-01-24 2011-07-05 Covidien Ag System and method for tissue sealing
US20070173802A1 (en) 2006-01-24 2007-07-26 Keppel David S Method and system for transmitting data across patient isolation barrier
CA2574934C (en) 2006-01-24 2015-12-29 Sherwood Services Ag System and method for closed loop monitoring of monopolar electrosurgical apparatus
US7513896B2 (en) 2006-01-24 2009-04-07 Covidien Ag Dual synchro-resonant electrosurgical apparatus with bi-directional magnetic coupling
CA2574935A1 (en) 2006-01-24 2007-07-24 Sherwood Services Ag A method and system for controlling an output of a radio-frequency medical generator having an impedance based control algorithm
US7651493B2 (en) 2006-03-03 2010-01-26 Covidien Ag System and method for controlling electrosurgical snares
US7648499B2 (en) 2006-03-21 2010-01-19 Covidien Ag System and method for generating radio frequency energy
US7651492B2 (en) 2006-04-24 2010-01-26 Covidien Ag Arc based adaptive control system for an electrosurgical unit
US8753334B2 (en) 2006-05-10 2014-06-17 Covidien Ag System and method for reducing leakage current in an electrosurgical generator
US20070282320A1 (en) 2006-05-30 2007-12-06 Sherwood Services Ag System and method for controlling tissue heating rate prior to cellular vaporization
US7662152B2 (en) * 2006-06-13 2010-02-16 Biosense Webster, Inc. Catheter with multi port tip for optical lesion evaluation
US8034049B2 (en) 2006-08-08 2011-10-11 Covidien Ag System and method for measuring initial tissue impedance
US7731717B2 (en) 2006-08-08 2010-06-08 Covidien Ag System and method for controlling RF output during tissue sealing
US7794457B2 (en) 2006-09-28 2010-09-14 Covidien Ag Transformer for RF voltage sensing

Also Published As

Publication number Publication date
AU2008202721A1 (en) 2008-07-10
DE60315970T2 (de) 2008-05-21
EP1501435B1 (en) 2007-08-29
JP2005524441A (ja) 2005-08-18
DE60315970D1 (de) 2007-10-11
US20060025760A1 (en) 2006-02-02
ATE371413T1 (de) 2007-09-15
US7749217B2 (en) 2010-07-06
AU2003265331A1 (en) 2003-11-17
EP1501435A1 (en) 2005-02-02
AU2008202721B2 (en) 2011-04-14
CA2484875A1 (en) 2003-11-13
AU2008202721A2 (en) 2008-10-02
CA2484875C (en) 2013-04-23
JP4490807B2 (ja) 2010-06-30
WO2003092520A1 (en) 2003-11-13
AU2003265331B2 (en) 2008-03-20

Similar Documents

Publication Publication Date Title
ES2289307T3 (es) Detector de sangre para controlar una unidad electroquirurgica.
US10722293B2 (en) Surgical device with an end effector assembly and system for monitoring of tissue before and after a surgical procedure
EP2709549B1 (en) System for energy-based sealing of tissue with optical feedback
JP6095863B1 (ja) 医療装置
US5762609A (en) Device and method for analysis of surgical tissue interventions
ES2651687T3 (es) Sistema electroquirúrgico con un módulo de memoria
ES2366450T3 (es) Sistema para controlar la tasa de calentamiento del tejido antes de la vaporización celular.
US20070232871A1 (en) Method and system for determining tissue properties
EP2804556B1 (en) An electro-surgical system, an electro-surgical device
JP7408407B2 (ja) 組織凝固用の装置
JP2005524441A5 (es)
JPH10211209A (ja) 医療用治療装置
BR112020015031A2 (pt) Monitor de estado da pele para aparelhos eletrocirúrgicos e seu método de uso
JP2019517843A (ja) 生体組織の止血を促進するための電気手術装置及び方法
EP3060154A1 (en) Surgical laser treatment temperature monitoring
JPH10225462A (ja) 電気手術装置
KR102634027B1 (ko) 전기 수술 기기에 대한 rf 생성기
EP3943025A2 (en) Surgical devices, systems, and methods providing visual notifications
WO2020220471A1 (zh) 一种内窥成像指导的光热治疗装置
JPH02228974A (ja) 医療用レーザ装置