US3595221A - Endoscopic having illumination supply unit - Google Patents

Endoscopic having illumination supply unit Download PDF

Info

Publication number
US3595221A
US3595221A US804075A US3595221DA US3595221A US 3595221 A US3595221 A US 3595221A US 804075 A US804075 A US 804075A US 3595221D A US3595221D A US 3595221DA US 3595221 A US3595221 A US 3595221A
Authority
US
United States
Prior art keywords
circuit
endoscope
primary
oscillator circuit
transformer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US804075A
Inventor
John Harold Blackett
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Smiths Group PLC
Original Assignee
Matburn Holdings Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matburn Holdings Ltd filed Critical Matburn Holdings Ltd
Application granted granted Critical
Publication of US3595221A publication Critical patent/US3595221A/en
Assigned to SMITHS INDUSTRIES PUBLIC LIMITED COMPANY reassignment SMITHS INDUSTRIES PUBLIC LIMITED COMPANY ASSIGNMENT OF ASSIGNORS INTEREST. Assignors: MATBURN (HOLDINGS) LIMITED
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/00002Operational features of endoscopes
    • A61B1/00004Operational features of endoscopes characterised by electronic signal processing
    • A61B1/00006Operational features of endoscopes characterised by electronic signal processing of control signals
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/06Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor with illuminating arrangements
    • A61B1/0661Endoscope light sources
    • A61B1/0676Endoscope light sources at distal tip of an endoscope

Definitions

  • the disclosure relates to endoscopic instruments.
  • the instrument is supplied through a circuit including a stepdown output transformer.
  • a secondary winding of the transformer is connected with a light source of the endoscope.
  • a push-pull oscillator circuit is connected with the primary winding of the output holdup oscillator circuit is connected to a current source and is arranged to supply current to the primary at a frequency of not less than 15 kHz.
  • Endoscopes are instruments which are used for the examination of body cavities and are of many different types; for example, oesophagoscopes, bronchoscopes, gastroscopes and cystoscopes for viewing the oesophagus, bronchi, stomach and bladder respectively.
  • a conventional endoscope includes a rigid or slightly flexible tube, which can be inserted in a body cavity and which is illuminated by a small lamp at the distal tip of the tube.
  • the tube contains a series of lenses which form an image of the illuminated cavity at the eyepiece fitted to the proximal end of the instrument.
  • the lamp is supplied with an electric current at a low voltage (about 4.5 v.) by means of a wire passing through the instrument tube.
  • the tube of the instrument also forms a conductor to complete the circuit to the lamp.
  • the source of electric current is either a battery, which supplies direct current, or a transformer providing a low voltage at the frequency of the mains supply, normally 50 Hz.
  • Endoscopic instruments of this type in particular cystoscopes, can, under certain conditions, cause the patient undergoing endoscopic examination to receive an electric shock. While this shock is unlikely to be serious, the violent muscular contraction produced can be very disturbing to the surgeon and the theatre staff, particularly as they are often uncertain of the cause of the electric shock and this may, in some cases, result in the endoscopic examination being abandoned.
  • the cause of such an electric shock is often an open circuit, or high resistance at the junction between the tip of the tube and the lamp cap which allows supply voltage to appear between the patients body and any nerve in the tissues with which the tip may be in contact.
  • the low voltages used in endoscopy do not normally produce an electric shock when applied to the skin, which has a fairly high resistance to the flow of electric current comparatively small voltages are sufficient to stimulate muscle contraction when contact is made with an internal organ, for example a nerve within the bladder. Stimulation of this nature may occur whether the endoscopic instrument is supplied from a battery box or from the mains supply via a transformer.
  • An object of this invention is to provide an endoscopic instrument with which there is no risk of the patient receiving a stimulating electric shock during the examination.
  • this invention provides an endoscope with a light source; a stepdown output transformer having primary and secondary windings, the secondary being connected with the light source; and the push-pull oscillator circuit which is connected with the primary of the transformer and also has means by which it can be connected to a source of electric current, the said circuit being arranged to supply currentto the primary at a frequency of not less than 1 5 kHz.
  • This invention is not applicable to endoscopes which employ light conducting fibers to transmit light from an external source to the tip of the instrument, but is only applicable to instruments having a bulb at the tip of the instrument.
  • the oscillator circuit can be supplied from either an electric battery or from an electric mains.
  • the supply generator of an endoscope avoids any electric shock hazard. In addition, it has several other safety factors. Thus, it preferably operates at 100 kHz. to provide a power output of 3.5 watts at 6 v. The light obtained is therefore brighter than that normally obtained from endoscopic lamps, at 4.5 v. if the normally permitted maximum safe voltage with a 50 Hz. supply.
  • FIG. I is a diagram of an endoscope with a mains operated generator or supply unit
  • FIG. 2 is a diagram of a battery-operated generator or supply unit.
  • an endoscope 1 has a light source 2 supplied by a generator which includes a pushpull oscillator circuit with a high frequency output.
  • the circuit includes a pair of low-power silicon transistors Q1 and Q2 and supplies current to the primary SI of a stepdown output transformer T2.
  • the secondary S2 of the output transformer is connected to the electric lamp 2 of the endoscope.
  • the output is preferably at a frequency of kHz. with a power of 3.5 watts at 5 v.
  • the oscillator circuit includes rectifier DI and D2, low power silicon transistors Q1 and Q2, resistors R1. R2, R3 and R4 and a capacitor C2.
  • the circuit is supplied from a supply circuit which includes the secondary S1 of a supply transformer Tl, a full wave rectifier MR1 and an intensity control RVl for varying the voltage of the supply current.
  • the supply voltage is conveniently 15 v. DC
  • the primary P1 of the supply transformer T1 can be connected to a mains supply.
  • the intensity control RVl is arranged to control the power input to the oscillator and thus avoid the power loss which would occur if the control was in the output of the oscillator circuit.
  • lt is important that the secondary S2 of the output transformer T2 has a very low capacitance to earth, when the generator supplies an endoscope used in combination with diathermy apparatus, such as a resectoscope used particularly for carrying out surgery in the bladder. With a high frequency supply this is simply achieved by the small size and small number of turns in the secondary S2.
  • the tissues of a human body are cut by means of a high frequency current passed through a diathermy electrode, and the surgeon can observe the progress of the operation by means of the associated endoscope.
  • the diathermy current passes through a conductor very close to the lamp 2 of the endoscope and therefore has a high capacity to it.
  • Sufficient diathermy current can be passed via this capacity and through the liquid in which both the electrode and the lamp are immersed to cause failure of the lamp.
  • the secondary of the output transformer in this invention has a very low capacitance to earth there is a high impedance to the diathermy current in the lamp circuit sufficient to reduce the current well below that required to blow the lamp. This safety factor is difficult to incorporate into a direct mains powered circuit.
  • a pilot lamp PL] in the supply circuit indicates when the instrument is switched on.
  • the supply circuit includes an inductance L1 in series and a capacitor C1 connected across the circuit.
  • Means are provided for reducing the output current to zero if a short circuit occurs within the endoscope.
  • a short circuit causes the oscillator to stop immediately by reason of the excessive load across the resonant circuit and therefore the output to fall to zero.
  • Such short circuits occur because endoscopic instruments have only small clearances between the inner conductor and the body tube. Therefore damage or misalignment can readily cause such a short circuit. Under these circumstances quite a high current may flow through the instrument, which can produce local heating. This may cause burns inside the body, especially as the patient is usually anesthetized, and
  • PK]. 2 illustrates a modification intended for battery operation.
  • an onoff switch SW1 is connected in series with the terminals ofa battery and the pilot lamp FL] is connected across the circuit.
  • an endoscope as claimed in claim 1 wherein the oscillator circuit is connected with a supply circuit including a primary adapted to be connected to an electric mains and a secondary connected in the supply circuit, a full wave rectifier and a means for controlling the voltage of the current supplied to the oscillator circuit.
  • the oscillator circuit includes a pair of low power silicon transistors.
  • An endoscope as claimed in claim 4 having means for switching off the oscillator when there is a short circuit in the endoscope.

Abstract

The disclosure relates to endoscopic instruments. The instrument is supplied through a circuit including a stepdown output transformer. A secondary winding of the transformer is connected with a light source of the endoscope. A push-pull oscillator circuit is connected with the primary winding of the output holdup oscillator circuit is connected to a current source and is arranged to supply current to the primary at a frequency of not less than 15 kHz.

Description

United States Patent i 72] inventor John Harold Blackett London, England [2]] Appl. No. 804,075 [22] Filed Mar. 4, I969 [45] Patented July 27, I971 [73) Assignee Matburn (Holdings) Limited London, England [54] ENDOSCOPIC HAVING ILLUMINATION SUPPLY UNIT 5 Claims, 2 Drawing Figs.
[52] US. Cl. 128/6 [51] lnt.Cl A6lb 1/06' [50] Field of Search ...l28/6,7,8, 9, l l, l3, l6, l8,22
[56] References Cited I UNITED STATES PATENTS 3,127,115 3/1964 Yellott et al 128/23 UX 3,244,167 4/1966 Ferris et al .7 128/6 FOREIGN PATENTS 975,373 7/1962 Great Britain l28/2.06
2,003,235 1 l/ 1969 France 128/6 Primary Examiner-Channing L. Pace Attomey-William R. Liberman ABSTRACT: The disclosure relates to endoscopic instruments. The instrument is supplied through a circuit including a stepdown output transformer. A secondary winding of the transformer is connected with a light source of the endoscope. A push-pull oscillator circuit is connected with the primary winding of the output holdup oscillator circuit is connected to a current source and is arranged to supply current to the primary at a frequency of not less than 15 kHz.
PATENTEU JULZ'I ls'n SHEET 1 [1f 2 INVENTOR 7'06! Bark AT TORNEY ENDOSCOPIC HAVING ILLUMINATION SUPPLY UNIT This invention relates to endoscopic instruments and to means for supplying such instruments with electric current.
Endoscopes are instruments which are used for the examination of body cavities and are of many different types; for example, oesophagoscopes, bronchoscopes, gastroscopes and cystoscopes for viewing the oesophagus, bronchi, stomach and bladder respectively. I
A conventional endoscope includes a rigid or slightly flexible tube, which can be inserted in a body cavity and which is illuminated by a small lamp at the distal tip of the tube. The tube contains a series of lenses which form an image of the illuminated cavity at the eyepiece fitted to the proximal end of the instrument. The lampis supplied with an electric current at a low voltage (about 4.5 v.) by means of a wire passing through the instrument tube. The tube of the instrument also forms a conductor to complete the circuit to the lamp. The source of electric current is either a battery, which supplies direct current, or a transformer providing a low voltage at the frequency of the mains supply, normally 50 Hz.
Endoscopic instruments of this type, in particular cystoscopes, can, under certain conditions, cause the patient undergoing endoscopic examination to receive an electric shock. While this shock is unlikely to be serious, the violent muscular contraction produced can be very disturbing to the surgeon and the theatre staff, particularly as they are often uncertain of the cause of the electric shock and this may, in some cases, result in the endoscopic examination being abandoned. The cause of such an electric shock is often an open circuit, or high resistance at the junction between the tip of the tube and the lamp cap which allows supply voltage to appear between the patients body and any nerve in the tissues with which the tip may be in contact. Although the low voltages used in endoscopy do not normally produce an electric shock when applied to the skin, which has a fairly high resistance to the flow of electric current comparatively small voltages are sufficient to stimulate muscle contraction when contact is made with an internal organ, for example a nerve within the bladder. Stimulation of this nature may occur whether the endoscopic instrument is supplied from a battery box or from the mains supply via a transformer.
An object of this invention is to provide an endoscopic instrument with which there is no risk of the patient receiving a stimulating electric shock during the examination.
Accordingly, this invention provides an endoscope with a light source; a stepdown output transformer having primary and secondary windings, the secondary being connected with the light source; and the push-pull oscillator circuit which is connected with the primary of the transformer and also has means by which it can be connected to a source of electric current, the said circuit being arranged to supply currentto the primary at a frequency of not less than 1 5 kHz.
It is well known that a high frequency current above kHz. will not produce any sense of electric stimulation in the body tissues.
This invention is not applicable to endoscopes which employ light conducting fibers to transmit light from an external source to the tip of the instrument, but is only applicable to instruments having a bulb at the tip of the instrument.
The oscillator circuit can be supplied from either an electric battery or from an electric mains.
The supply generator of an endoscope according to this invention avoids any electric shock hazard. In addition, it has several other safety factors. Thus, it preferably operates at 100 kHz. to provide a power output of 3.5 watts at 6 v. The light obtained is therefore brighter than that normally obtained from endoscopic lamps, at 4.5 v. if the normally permitted maximum safe voltage with a 50 Hz. supply.
In the accompanying drawings,
FIG. I is a diagram of an endoscope with a mains operated generator or supply unit,
FIG. 2 is a diagram of a battery-operated generator or supply unit.
In the embodiment illustrated in FIG. 1 an endoscope 1 has a light source 2 supplied by a generator which includes a pushpull oscillator circuit with a high frequency output. The circuit includes a pair of low-power silicon transistors Q1 and Q2 and supplies current to the primary SI of a stepdown output transformer T2. The secondary S2 of the output transformer is connected to the electric lamp 2 of the endoscope. The output is preferably at a frequency of kHz. with a power of 3.5 watts at 5 v.
The oscillator circuit includes rectifier DI and D2, low power silicon transistors Q1 and Q2, resistors R1. R2, R3 and R4 and a capacitor C2. The circuit is supplied from a supply circuit which includes the secondary S1 of a supply transformer Tl, a full wave rectifier MR1 and an intensity control RVl for varying the voltage of the supply current. The supply voltage is conveniently 15 v. DC The primary P1 of the supply transformer T1 can be connected to a mains supply.
The intensity control RVl is arranged to control the power input to the oscillator and thus avoid the power loss which would occur if the control was in the output of the oscillator circuit.
With this arrangement there is double electrical isolation between the mains supply and secondary winding S2 of the output transformer T2 by reason of the normal electrical isolation between the primary and secondary of each transformer thereby eliminating any possibility of a dangerous voltage occurring at the output even under fault conditions. With conventional transformers used for providing low voltage current at the mains frequency, there is only one insulation between the mains voltage and the output.
lt is important that the secondary S2 of the output transformer T2 has a very low capacitance to earth, when the generator supplies an endoscope used in combination with diathermy apparatus, such as a resectoscope used particularly for carrying out surgery in the bladder. With a high frequency supply this is simply achieved by the small size and small number of turns in the secondary S2.
The tissues of a human body are cut by means of a high frequency current passed through a diathermy electrode, and the surgeon can observe the progress of the operation by means of the associated endoscope. In such instruments, the diathermy current passes through a conductor very close to the lamp 2 of the endoscope and therefore has a high capacity to it. Sufficient diathermy current can be passed via this capacity and through the liquid in which both the electrode and the lamp are immersed to cause failure of the lamp. When this happens, as is frequent with resectoscopes, it is necessary to remove the instrument from the patient, and change the lamp, which is very time consuming and inconvenient during the examination procedure. As the secondary of the output transformer in this invention has a very low capacitance to earth there is a high impedance to the diathermy current in the lamp circuit sufficient to reduce the current well below that required to blow the lamp. This safety factor is difficult to incorporate into a direct mains powered circuit.
A pilot lamp PL] in the supply circuit indicates when the instrument is switched on. The supply circuit includes an inductance L1 in series and a capacitor C1 connected across the circuit.
Means are provided for reducing the output current to zero if a short circuit occurs within the endoscope. As is inherent in the present oscillator circuit such a short circuit causes the oscillator to stop immediately by reason of the excessive load across the resonant circuit and therefore the output to fall to zero. Such short circuits occur because endoscopic instruments have only small clearances between the inner conductor and the body tube. Therefore damage or misalignment can readily cause such a short circuit. Under these circumstances quite a high current may flow through the instrument, which can produce local heating. This may cause burns inside the body, especially as the patient is usually anesthetized, and
therefore the burning may be undetected for some time. Normally, there is a current limiting lamp in the circuit if the current is provided from the mains via a transformer, but this invention provides greater safety as the current limiting is more effective. Another danger associated with the occurrence ofa short circuit is that a spark may be produced which may cause an explosion if a flammable anesthetic gas is being used. The results of this explosion may be extremely serious to the patient, particularly if an endoscopic examination of the lungs is being carried out when the explosion occurs.
PK]. 2 illustrates a modification intended for battery operation. In this arrangement an onoff switch SW1 is connected in series with the terminals ofa battery and the pilot lamp FL] is connected across the circuit.
What we claim is:
1. An endoscope with a light source; a stepdown output transformer having primary and secondary windings, the secondary being connected with the light source; and a pushpull oscillator circuit of a frequency not less than kHz. which is connected with the primary of the transformer and also has means by which it can be connected to a source of electric current.
2. An endoscope as claimed in claim 1 wherein the oscillator circuit is connected with a supply circuit including a primary adapted to be connected to an electric mains and a secondary connected in the supply circuit, a full wave rectifier and a means for controlling the voltage of the current supplied to the oscillator circuit.
3. An endoscope as claimed in claim 1 wherein the oscillator circuit is connected with a supply circuit energized by an electric battery, the said circuit including a switch connected in series with the battery and a capacitor and a pilot light, connected across the circuit 4. An endoscope as claimed in claim 1 wherein the oscillator circuit includes a pair of low power silicon transistors.
5. An endoscope as claimed in claim 4 having means for switching off the oscillator when there is a short circuit in the endoscope.

Claims (5)

1. An endoscope with a light source; a stepdown output transformer having primary and secondary windings, the secondary being connected with the light source; and a push-pull oscillator circuit of a frequency not less than 15 kHz. which is connected with the primary of the transformer and also has means by which it can be connected to a source of electric current.
2. An endoscope as claimed in claim 1 wherein the oscillator circuit is connected with a supply circuit including a primary adapted to be connected to an electric mains and a secondary connected in the supply circuit, a full wave rectifier and a means for controlling the voltage of the current supplied to the oscillator circuit.
3. An endoscope as claimed in claim 1 wherein the oscillator circuit is connected with a supply circuit energized by an electric battery, the said circuit including a switch connected in series with the battery and a capacitor and a pilot light, connected across the circuit.
4. An endoscope as claimed in claim 1 wherein the oscillator circuit includes a pair of low power silicon transistors.
5. An endoscope as claimed in claim 4 having means for switching off the oscillator when there is a short circuit in the endoscope.
US804075A 1969-03-04 1969-03-04 Endoscopic having illumination supply unit Expired - Lifetime US3595221A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US80407569A 1969-03-04 1969-03-04

Publications (1)

Publication Number Publication Date
US3595221A true US3595221A (en) 1971-07-27

Family

ID=25188133

Family Applications (1)

Application Number Title Priority Date Filing Date
US804075A Expired - Lifetime US3595221A (en) 1969-03-04 1969-03-04 Endoscopic having illumination supply unit

Country Status (1)

Country Link
US (1) US3595221A (en)

Cited By (48)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3943407A (en) * 1973-08-01 1976-03-09 Scientific Enterprises, Inc. Method and apparatus for producing increased quantities of ions and higher energy ions
US20030023260A1 (en) * 1990-03-02 2003-01-30 Bonutti Peter M. Method and apparatus for dissecting tissue layers
US7044948B2 (en) 2002-12-10 2006-05-16 Sherwood Services Ag Circuit for controlling arc energy from an electrosurgical generator
US7131860B2 (en) 2003-11-20 2006-11-07 Sherwood Services Ag Connector systems for electrosurgical generator
US7137980B2 (en) 1998-10-23 2006-11-21 Sherwood Services Ag Method and system for controlling output of RF medical generator
US7255694B2 (en) 2002-12-10 2007-08-14 Sherwood Services Ag Variable output crest factor electrosurgical generator
US7300435B2 (en) 2003-11-21 2007-11-27 Sherwood Services Ag Automatic control system for an electrosurgical generator
US7303557B2 (en) 1998-10-23 2007-12-04 Sherwood Services Ag Vessel sealing system
US7364577B2 (en) 2002-02-11 2008-04-29 Sherwood Services Ag Vessel sealing system
USRE40388E1 (en) 1997-04-09 2008-06-17 Covidien Ag Electrosurgical generator with adaptive power control
US7396336B2 (en) 2003-10-30 2008-07-08 Sherwood Services Ag Switched resonant ultrasonic power amplifier system
US7513896B2 (en) 2006-01-24 2009-04-07 Covidien Ag Dual synchro-resonant electrosurgical apparatus with bi-directional magnetic coupling
US7628786B2 (en) 2004-10-13 2009-12-08 Covidien Ag Universal foot switch contact port
US7637907B2 (en) 2006-09-19 2009-12-29 Covidien Ag System and method for return electrode monitoring
US7648499B2 (en) 2006-03-21 2010-01-19 Covidien Ag System and method for generating radio frequency energy
US7651492B2 (en) 2006-04-24 2010-01-26 Covidien Ag Arc based adaptive control system for an electrosurgical unit
US7651493B2 (en) 2006-03-03 2010-01-26 Covidien Ag System and method for controlling electrosurgical snares
US20100094288A1 (en) * 2008-10-10 2010-04-15 Tyco Healthcare Group Lp System and Method for Delivering High Current to Electrosurgical Device
US7722601B2 (en) 2003-05-01 2010-05-25 Covidien Ag Method and system for programming and controlling an electrosurgical generator system
US7731717B2 (en) 2006-08-08 2010-06-08 Covidien Ag System and method for controlling RF output during tissue sealing
US7749217B2 (en) 2002-05-06 2010-07-06 Covidien Ag Method and system for optically detecting blood and controlling a generator during electrosurgery
US7766905B2 (en) 2004-02-12 2010-08-03 Covidien Ag Method and system for continuity testing of medical electrodes
US7780662B2 (en) 2004-03-02 2010-08-24 Covidien Ag Vessel sealing system using capacitive RF dielectric heating
US7794457B2 (en) 2006-09-28 2010-09-14 Covidien Ag Transformer for RF voltage sensing
US7834484B2 (en) 2007-07-16 2010-11-16 Tyco Healthcare Group Lp Connection cable and method for activating a voltage-controlled generator
US20110037484A1 (en) * 2009-08-12 2011-02-17 Tyco Healthcare Group Lp System and Method for Augmented Impedance Sensing
US7901400B2 (en) 1998-10-23 2011-03-08 Covidien Ag Method and system for controlling output of RF medical generator
US7927328B2 (en) 2006-01-24 2011-04-19 Covidien Ag System and method for closed loop monitoring of monopolar electrosurgical apparatus
US7947039B2 (en) 2005-12-12 2011-05-24 Covidien Ag Laparoscopic apparatus for performing electrosurgical procedures
US7972328B2 (en) 2006-01-24 2011-07-05 Covidien Ag System and method for tissue sealing
US8034049B2 (en) 2006-08-08 2011-10-11 Covidien Ag System and method for measuring initial tissue impedance
US8104956B2 (en) 2003-10-23 2012-01-31 Covidien Ag Thermocouple measurement circuit
US8147485B2 (en) 2006-01-24 2012-04-03 Covidien Ag System and method for tissue sealing
US8216220B2 (en) 2007-09-07 2012-07-10 Tyco Healthcare Group Lp System and method for transmission of combined data stream
US8216223B2 (en) 2006-01-24 2012-07-10 Covidien Ag System and method for tissue sealing
US8226639B2 (en) 2008-06-10 2012-07-24 Tyco Healthcare Group Lp System and method for output control of electrosurgical generator
US8486061B2 (en) 2009-01-12 2013-07-16 Covidien Lp Imaginary impedance process monitoring and intelligent shut-off
US8512332B2 (en) 2007-09-21 2013-08-20 Covidien Lp Real-time arc control in electrosurgical generators
US8663214B2 (en) 2006-01-24 2014-03-04 Covidien Ag Method and system for controlling an output of a radio-frequency medical generator having an impedance based control algorithm
US8685016B2 (en) 2006-01-24 2014-04-01 Covidien Ag System and method for tissue sealing
US8734438B2 (en) 2005-10-21 2014-05-27 Covidien Ag Circuit and method for reducing stored energy in an electrosurgical generator
US8753334B2 (en) 2006-05-10 2014-06-17 Covidien Ag System and method for reducing leakage current in an electrosurgical generator
US8777941B2 (en) 2007-05-10 2014-07-15 Covidien Lp Adjustable impedance electrosurgical electrodes
US8808161B2 (en) 2003-10-23 2014-08-19 Covidien Ag Redundant temperature monitoring in electrosurgical systems for safety mitigation
US9186200B2 (en) 2006-01-24 2015-11-17 Covidien Ag System and method for tissue sealing
US9474564B2 (en) 2005-03-31 2016-10-25 Covidien Ag Method and system for compensating for external impedance of an energy carrying component when controlling an electrosurgical generator
US9636165B2 (en) 2013-07-29 2017-05-02 Covidien Lp Systems and methods for measuring tissue impedance through an electrosurgical cable
US9872719B2 (en) 2013-07-24 2018-01-23 Covidien Lp Systems and methods for generating electrosurgical energy using a multistage power converter

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3127115A (en) * 1964-02-10 1964-03-31 Diagnostic instrument
GB975373A (en) * 1961-07-10 1964-11-18 Hitachi Ltd Measuring instrument for bio-electrical signals and the like
US3244167A (en) * 1963-06-11 1966-04-05 Bausch & Lomb Endoscope with intermittent illumination and means to vary the intensity and rate of illumination for visual or photographic observation
FR2003235A1 (en) * 1968-03-05 1969-11-07 Matburn Ltd

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB975373A (en) * 1961-07-10 1964-11-18 Hitachi Ltd Measuring instrument for bio-electrical signals and the like
US3244167A (en) * 1963-06-11 1966-04-05 Bausch & Lomb Endoscope with intermittent illumination and means to vary the intensity and rate of illumination for visual or photographic observation
US3127115A (en) * 1964-02-10 1964-03-31 Diagnostic instrument
FR2003235A1 (en) * 1968-03-05 1969-11-07 Matburn Ltd

Cited By (91)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3943407A (en) * 1973-08-01 1976-03-09 Scientific Enterprises, Inc. Method and apparatus for producing increased quantities of ions and higher energy ions
US20030023260A1 (en) * 1990-03-02 2003-01-30 Bonutti Peter M. Method and apparatus for dissecting tissue layers
USRE40388E1 (en) 1997-04-09 2008-06-17 Covidien Ag Electrosurgical generator with adaptive power control
US8105323B2 (en) 1998-10-23 2012-01-31 Covidien Ag Method and system for controlling output of RF medical generator
US7901400B2 (en) 1998-10-23 2011-03-08 Covidien Ag Method and system for controlling output of RF medical generator
US7137980B2 (en) 1998-10-23 2006-11-21 Sherwood Services Ag Method and system for controlling output of RF medical generator
US8287528B2 (en) 1998-10-23 2012-10-16 Covidien Ag Vessel sealing system
US9113900B2 (en) 1998-10-23 2015-08-25 Covidien Ag Method and system for controlling output of RF medical generator
US7303557B2 (en) 1998-10-23 2007-12-04 Sherwood Services Ag Vessel sealing system
US9168089B2 (en) 1998-10-23 2015-10-27 Covidien Ag Method and system for controlling output of RF medical generator
US7364577B2 (en) 2002-02-11 2008-04-29 Sherwood Services Ag Vessel sealing system
US7749217B2 (en) 2002-05-06 2010-07-06 Covidien Ag Method and system for optically detecting blood and controlling a generator during electrosurgery
US7255694B2 (en) 2002-12-10 2007-08-14 Sherwood Services Ag Variable output crest factor electrosurgical generator
US8523855B2 (en) 2002-12-10 2013-09-03 Covidien Ag Circuit for controlling arc energy from an electrosurgical generator
US7044948B2 (en) 2002-12-10 2006-05-16 Sherwood Services Ag Circuit for controlling arc energy from an electrosurgical generator
US7824400B2 (en) 2002-12-10 2010-11-02 Covidien Ag Circuit for controlling arc energy from an electrosurgical generator
US8298223B2 (en) 2003-05-01 2012-10-30 Covidien Ag Method and system for programming and controlling an electrosurgical generator system
US8080008B2 (en) 2003-05-01 2011-12-20 Covidien Ag Method and system for programming and controlling an electrosurgical generator system
US8303580B2 (en) 2003-05-01 2012-11-06 Covidien Ag Method and system for programming and controlling an electrosurgical generator system
US7722601B2 (en) 2003-05-01 2010-05-25 Covidien Ag Method and system for programming and controlling an electrosurgical generator system
US8267929B2 (en) 2003-05-01 2012-09-18 Covidien Ag Method and system for programming and controlling an electrosurgical generator system
US8012150B2 (en) 2003-05-01 2011-09-06 Covidien Ag Method and system for programming and controlling an electrosurgical generator system
US8104956B2 (en) 2003-10-23 2012-01-31 Covidien Ag Thermocouple measurement circuit
US8808161B2 (en) 2003-10-23 2014-08-19 Covidien Ag Redundant temperature monitoring in electrosurgical systems for safety mitigation
US8647340B2 (en) 2003-10-23 2014-02-11 Covidien Ag Thermocouple measurement system
US8485993B2 (en) 2003-10-30 2013-07-16 Covidien Ag Switched resonant ultrasonic power amplifier system
US8966981B2 (en) 2003-10-30 2015-03-03 Covidien Ag Switched resonant ultrasonic power amplifier system
US7396336B2 (en) 2003-10-30 2008-07-08 Sherwood Services Ag Switched resonant ultrasonic power amplifier system
US8113057B2 (en) 2003-10-30 2012-02-14 Covidien Ag Switched resonant ultrasonic power amplifier system
US9768373B2 (en) 2003-10-30 2017-09-19 Covidien Ag Switched resonant ultrasonic power amplifier system
US8096961B2 (en) 2003-10-30 2012-01-17 Covidien Ag Switched resonant ultrasonic power amplifier system
US7416437B2 (en) 2003-11-20 2008-08-26 Sherwood Services Ag Connector systems for electrosurgical generator
US7131860B2 (en) 2003-11-20 2006-11-07 Sherwood Services Ag Connector systems for electrosurgical generator
US7766693B2 (en) 2003-11-20 2010-08-03 Covidien Ag Connector systems for electrosurgical generator
US7300435B2 (en) 2003-11-21 2007-11-27 Sherwood Services Ag Automatic control system for an electrosurgical generator
US7766905B2 (en) 2004-02-12 2010-08-03 Covidien Ag Method and system for continuity testing of medical electrodes
US7780662B2 (en) 2004-03-02 2010-08-24 Covidien Ag Vessel sealing system using capacitive RF dielectric heating
US7628786B2 (en) 2004-10-13 2009-12-08 Covidien Ag Universal foot switch contact port
US8025660B2 (en) 2004-10-13 2011-09-27 Covidien Ag Universal foot switch contact port
US9474564B2 (en) 2005-03-31 2016-10-25 Covidien Ag Method and system for compensating for external impedance of an energy carrying component when controlling an electrosurgical generator
US11013548B2 (en) 2005-03-31 2021-05-25 Covidien Ag Method and system for compensating for external impedance of energy carrying component when controlling electrosurgical generator
US9522032B2 (en) 2005-10-21 2016-12-20 Covidien Ag Circuit and method for reducing stored energy in an electrosurgical generator
US8734438B2 (en) 2005-10-21 2014-05-27 Covidien Ag Circuit and method for reducing stored energy in an electrosurgical generator
US8241278B2 (en) 2005-12-12 2012-08-14 Covidien Ag Laparoscopic apparatus for performing electrosurgical procedures
US7947039B2 (en) 2005-12-12 2011-05-24 Covidien Ag Laparoscopic apparatus for performing electrosurgical procedures
US8147485B2 (en) 2006-01-24 2012-04-03 Covidien Ag System and method for tissue sealing
US8475447B2 (en) 2006-01-24 2013-07-02 Covidien Ag System and method for closed loop monitoring of monopolar electrosurgical apparatus
US7513896B2 (en) 2006-01-24 2009-04-07 Covidien Ag Dual synchro-resonant electrosurgical apparatus with bi-directional magnetic coupling
US8216223B2 (en) 2006-01-24 2012-07-10 Covidien Ag System and method for tissue sealing
US10582964B2 (en) 2006-01-24 2020-03-10 Covidien Lp Method and system for controlling an output of a radio-frequency medical generator having an impedance based control algorithm
US8202271B2 (en) 2006-01-24 2012-06-19 Covidien Ag Dual synchro-resonant electrosurgical apparatus with bi-directional magnetic coupling
US8187262B2 (en) 2006-01-24 2012-05-29 Covidien Ag Dual synchro-resonant electrosurgical apparatus with bi-directional magnetic coupling
US8267928B2 (en) 2006-01-24 2012-09-18 Covidien Ag System and method for closed loop monitoring of monopolar electrosurgical apparatus
US8685016B2 (en) 2006-01-24 2014-04-01 Covidien Ag System and method for tissue sealing
US8663214B2 (en) 2006-01-24 2014-03-04 Covidien Ag Method and system for controlling an output of a radio-frequency medical generator having an impedance based control algorithm
US7927328B2 (en) 2006-01-24 2011-04-19 Covidien Ag System and method for closed loop monitoring of monopolar electrosurgical apparatus
US7972328B2 (en) 2006-01-24 2011-07-05 Covidien Ag System and method for tissue sealing
US9642665B2 (en) 2006-01-24 2017-05-09 Covidien Ag Method and system for controlling an output of a radio-frequency medical generator having an impedance based control algorithm
US9186200B2 (en) 2006-01-24 2015-11-17 Covidien Ag System and method for tissue sealing
US7972332B2 (en) 2006-03-03 2011-07-05 Covidien Ag System and method for controlling electrosurgical snares
US7651493B2 (en) 2006-03-03 2010-01-26 Covidien Ag System and method for controlling electrosurgical snares
US7648499B2 (en) 2006-03-21 2010-01-19 Covidien Ag System and method for generating radio frequency energy
US9119624B2 (en) 2006-04-24 2015-09-01 Covidien Ag ARC based adaptive control system for an electrosurgical unit
US8556890B2 (en) 2006-04-24 2013-10-15 Covidien Ag Arc based adaptive control system for an electrosurgical unit
US7651492B2 (en) 2006-04-24 2010-01-26 Covidien Ag Arc based adaptive control system for an electrosurgical unit
US8753334B2 (en) 2006-05-10 2014-06-17 Covidien Ag System and method for reducing leakage current in an electrosurgical generator
US8034049B2 (en) 2006-08-08 2011-10-11 Covidien Ag System and method for measuring initial tissue impedance
US7731717B2 (en) 2006-08-08 2010-06-08 Covidien Ag System and method for controlling RF output during tissue sealing
US7637907B2 (en) 2006-09-19 2009-12-29 Covidien Ag System and method for return electrode monitoring
US7794457B2 (en) 2006-09-28 2010-09-14 Covidien Ag Transformer for RF voltage sensing
US8231616B2 (en) 2006-09-28 2012-07-31 Covidien Ag Transformer for RF voltage sensing
US8777941B2 (en) 2007-05-10 2014-07-15 Covidien Lp Adjustable impedance electrosurgical electrodes
US7834484B2 (en) 2007-07-16 2010-11-16 Tyco Healthcare Group Lp Connection cable and method for activating a voltage-controlled generator
US8216220B2 (en) 2007-09-07 2012-07-10 Tyco Healthcare Group Lp System and method for transmission of combined data stream
US8353905B2 (en) 2007-09-07 2013-01-15 Covidien Lp System and method for transmission of combined data stream
US9271790B2 (en) 2007-09-21 2016-03-01 Coviden Lp Real-time arc control in electrosurgical generators
US8512332B2 (en) 2007-09-21 2013-08-20 Covidien Lp Real-time arc control in electrosurgical generators
US8226639B2 (en) 2008-06-10 2012-07-24 Tyco Healthcare Group Lp System and method for output control of electrosurgical generator
US9770287B2 (en) 2008-10-10 2017-09-26 Covidien Lp System and method for delivering high current to electrosurgical device
US8734444B2 (en) 2008-10-10 2014-05-27 Covidien Lp System and method for delivering high current to electrosurgical device
US10278771B2 (en) 2008-10-10 2019-05-07 Covidien Lp System and method for delivering 5 high current to electrosurgical device
US20100094288A1 (en) * 2008-10-10 2010-04-15 Tyco Healthcare Group Lp System and Method for Delivering High Current to Electrosurgical Device
US8486061B2 (en) 2009-01-12 2013-07-16 Covidien Lp Imaginary impedance process monitoring and intelligent shut-off
US7956620B2 (en) 2009-08-12 2011-06-07 Tyco Healthcare Group Lp System and method for augmented impedance sensing
US8624606B2 (en) 2009-08-12 2014-01-07 Covidien Lp System and method for augmented impedance sensing
US20110204903A1 (en) * 2009-08-12 2011-08-25 Tyco Healthcare Group Lp System and Method for Augmented Impedance Sensing
US20110037484A1 (en) * 2009-08-12 2011-02-17 Tyco Healthcare Group Lp System and Method for Augmented Impedance Sensing
US9872719B2 (en) 2013-07-24 2018-01-23 Covidien Lp Systems and methods for generating electrosurgical energy using a multistage power converter
US11135001B2 (en) 2013-07-24 2021-10-05 Covidien Lp Systems and methods for generating electrosurgical energy using a multistage power converter
US9636165B2 (en) 2013-07-29 2017-05-02 Covidien Lp Systems and methods for measuring tissue impedance through an electrosurgical cable
US9655670B2 (en) 2013-07-29 2017-05-23 Covidien Lp Systems and methods for measuring tissue impedance through an electrosurgical cable

Similar Documents

Publication Publication Date Title
US3595221A (en) Endoscopic having illumination supply unit
US4244371A (en) High-frequency surgical apparatus
Gerhard Surgical Electrotechnology: Quo Vadis?
US3858586A (en) Surgical method and electrode therefor
US1841968A (en) Radio-surgical apparatus
US2545865A (en) Electrosurgical instrument
US3592199A (en) Autoclavable surgical instrument illumination
US20170028213A1 (en) At-Home Light-Emitting Diode and Massage Device for Vaginal Rejuvenation
NO962840D0 (en) Apparatus and method for endoluminal electro-occlusion detection
KR100603777B1 (en) Endoscope Power Supplying Appliance
GB2119253A (en) Apparatus for performing surgical operations
US10729318B2 (en) Anoscope
BR102016018296A2 (en) improved control coagulation and dissection instrument
WO2018133677A1 (en) Treatment device for endoscope, endoscope, and expanding stent
RU2611903C2 (en) Device and method for reducing the number or removing of particles from the enclosed space in the body
Memon Surgical diathermy
CN101229079A (en) Nonnasality plasma therapeutic apparatus
DE1910810C3 (en) Endoscope with a distal light bulb fed by a transformer
JP2828817B2 (en) Surgery switching device
Reuter et al. The development of urological endoscopy in America
CN206044721U (en) A kind of radio frequency temperature control therapeutic equipmentss for anorectal hemorrhoid treating
Neufeld et al. Electrosurgical hazards in laparoscopy
Marsh Bipolar cautery for the fiberoptic bronchoscope
RU191942U1 (en) Portable Microsurgical Plasma Scalpel Coagulator
Esposito The laparoscopist and electrosurgery

Legal Events

Date Code Title Description
AS Assignment

Owner name: SMITHS INDUSTRIES PUBLIC LIMITED COMPANY, 765 FINC

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST.;ASSIGNOR:MATBURN (HOLDINGS) LIMITED;REEL/FRAME:004689/0708

Effective date: 19861027