EP4263168A1 - Recycling-verfahren für verunreinigte polyolefine - Google Patents

Recycling-verfahren für verunreinigte polyolefine

Info

Publication number
EP4263168A1
EP4263168A1 EP21840814.4A EP21840814A EP4263168A1 EP 4263168 A1 EP4263168 A1 EP 4263168A1 EP 21840814 A EP21840814 A EP 21840814A EP 4263168 A1 EP4263168 A1 EP 4263168A1
Authority
EP
European Patent Office
Prior art keywords
polyolefin
recyclate
contaminated
solvent
polyolefin material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
EP21840814.4A
Other languages
English (en)
French (fr)
Inventor
Robert Siegl
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Alpla Werke Alwin Lehner GmbH and Co KG
Original Assignee
Alpla Werke Alwin Lehner GmbH and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Alpla Werke Alwin Lehner GmbH and Co KG filed Critical Alpla Werke Alwin Lehner GmbH and Co KG
Publication of EP4263168A1 publication Critical patent/EP4263168A1/de
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B17/00Recovery of plastics or other constituents of waste material containing plastics
    • B29B17/02Separating plastics from other materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B13/00Conditioning or physical treatment of the material to be shaped
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/002Methods
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/30Mixing; Kneading continuous, with mechanical mixing or kneading devices
    • B29B7/58Component parts, details or accessories; Auxiliary operations
    • B29B7/66Recycling the material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/80Component parts, details or accessories; Auxiliary operations
    • B29B7/88Adding charges, i.e. additives
    • B29B7/885Adding charges, i.e. additives with means for treating, e.g. milling, the charges
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/80Component parts, details or accessories; Auxiliary operations
    • B29B7/88Adding charges, i.e. additives
    • B29B7/94Liquid charges
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B9/00Making granules
    • B29B9/16Auxiliary treatment of granules
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J11/00Recovery or working-up of waste materials
    • C08J11/04Recovery or working-up of waste materials of polymers
    • C08J11/06Recovery or working-up of waste materials of polymers without chemical reactions
    • C08J11/08Recovery or working-up of waste materials of polymers without chemical reactions using selective solvents for polymer components
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B9/00Making granules
    • B29B9/16Auxiliary treatment of granules
    • B29B2009/168Removing undesirable residual components, e.g. solvents, unreacted monomers; Degassing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B13/00Conditioning or physical treatment of the material to be shaped
    • B29B2013/002Extracting undesirable residual components, e.g. solvents, unreacted monomers, from material to be moulded
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B17/00Recovery of plastics or other constituents of waste material containing plastics
    • B29B2017/001Pretreating the materials before recovery
    • B29B2017/0015Washing, rinsing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B17/00Recovery of plastics or other constituents of waste material containing plastics
    • B29B17/02Separating plastics from other materials
    • B29B2017/0213Specific separating techniques
    • B29B2017/0217Mechanical separating techniques; devices therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B17/00Recovery of plastics or other constituents of waste material containing plastics
    • B29B17/02Separating plastics from other materials
    • B29B2017/0213Specific separating techniques
    • B29B2017/0286Cleaning means used for separation
    • B29B2017/0289Washing the materials in liquids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B17/00Recovery of plastics or other constituents of waste material containing plastics
    • B29B17/02Separating plastics from other materials
    • B29B2017/0213Specific separating techniques
    • B29B2017/0293Dissolving the materials in gases or liquids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2023/00Use of polyalkenes or derivatives thereof as moulding material
    • B29K2023/04Polymers of ethylene
    • B29K2023/06PE, i.e. polyethylene
    • B29K2023/0608PE, i.e. polyethylene characterised by its density
    • B29K2023/065HDPE, i.e. high density polyethylene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2323/00Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
    • C08J2323/02Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2323/00Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
    • C08J2323/02Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
    • C08J2323/10Homopolymers or copolymers of propene
    • C08J2323/12Polypropene
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/62Plastics recycling; Rubber recycling

Definitions

  • the invention relates to a recycling process for producing a polyolefin recyclate according to the preamble of claim 1 and a polyolefin recyclate.
  • HDPE High Density Polyethylene
  • stabilization and stress i.e. the molecular weight of the HDPE continues to decrease. This reduction in molecular weight is not compensated for by common mechanical recycling processes. Compensation methods are known from the literature. However, these are not economically interesting because of the high technical complexity, such as applying high pressures or supplying special catalysts.
  • HDPE stabilizers or antioxidants such as Irganox 1010 or Irgafos 168, which are added to the starting material between 500 and 3000 mg/kg, lose their effect due to their reaction mechanisms, e.g. with oxygen and radicals. After each thermal load and thus each further use in the cycle, stabilizers and antioxidants must be added in order to achieve the properties of the starting material.
  • stabilizers and degradation products such as 3,5-di-tert-butyl-4-hydroxybenzaldehyde from Irganox 1010 are not removed or only inadequately removed by the known recycling processes and remain in the recycling material.
  • this accumulation of stabilizers and their degradation products are problematic in the use of food packaging, since they can contaminate the food or adversely affect the taste of the food.
  • HDPE material is available on the market in a wide variety of colors, although the pigments cannot be removed using standard mechanical recycling processes. Accordingly, a separate recycling stream must be created for each color. However, this approach fails because a minimum amount of HDPE material in a color is not reached, making recycling uneconomical.
  • HDPE material absorbs contaminants such as nonenal and/or nonanal through migration, which usually have a negative effect on the smell. also are in the HDPE itself degradation products that negatively affect the smell.
  • Degradation products can be, for example, butyric acid or valeric acid.
  • Butyric acid can result from the fact that the container to be recycled was filled with a dairy product or from carnauba wax, which is often used as a mold release agent and decomposes into butyric acid when exposed to the sun.
  • degradation products that have migrated into the material to be recycled are not removed or only insufficiently removed by common recycling processes. Therefore, material from the usual mechanical HDPE recycling processes is often accompanied by a bad smell.
  • HDPE materials release their contaminants only slowly, so that most common mechanical recycling processes cannot provide recyclate that allows direct contact with food.
  • fuels and oils are stored in containers made of polyolefins, preferably made of HDPE. This achieves concentrations of benzene and other MOAH (Mineral Oil Aromatic Hydrocarbons) of 5,000 to 10,000 mg/kg polyolefin in the container walls.
  • MOAH Minimum Oil Aromatic Hydrocarbons
  • HDPE materials contain very low molecular chains (oligomers, POSH (polyolefin oligomeric saturated hydrocarbons), POAH) below 2000 daltons, which are perceived as an unpleasant smelling waxy or oily aroma or contaminate food.
  • POSH polyolefin oligomeric saturated hydrocarbons
  • POAH polyolefin oligomeric saturated hydrocarbons
  • Mechanical recycling processes cannot remove these low-molecular chains sufficiently, but they continue to degrade the material to be recycled and thus increase the number of low-molecular chains from recycling cycle to recycling cycle.
  • an object can be to create a cost-effective method for producing recycled HDPE material that can be used as food packaging. description
  • a recycling process for producing a polyolefin recyclate comprises the removal of impurities from a contaminated polyolefin material, in which the contaminated polyolefin material is swollen by means of a solvent in a swelling step in order to dissolve impurities in the solvent present in the contaminated polyolefin material and the solvent and the to remove impurities dissolved in the solvent from the contaminated polyolefin material.
  • a washing step with water, cleaning agents and/or caustic is carried out and the contaminated polyolefin material is modified by the swelling/solvent recycling process in such a way that (i) the low-molecular impurities below 2000 daltons are more than 90 percent by weight are removed or washed out, and thereby the average molecular chain length of the polyolefin is increased and (ii) that the melt volume flow rate (MVR) of the polyolefin recyclate, which has increased through degradation and aging, is reduced to a predetermined MVR.
  • MVR melt volume flow rate
  • the contamination contained in the contaminated polyolefin material to be regenerated or recycled can surprisingly be removed particularly easily from the contaminated polyolefin material.
  • the cleaning efficiency refers to the concentration of impurities before the washing process versus the concentration after the swelling process, more precisely after the removal of the solvent and the impurities dissolved in the solvent.
  • 0.5 g to 5 g per kg of contaminated polyolefin material can be separated using the proposed method.
  • the predetermined MVR for manufacturing different products is not necessarily always the same.
  • the MVR of the polyolefin recyclate can, for example, be reduced to the MVR of the polyolefin material before the first processing, i.e. to the MVR that the virgin polyolefin (hereinafter referred to as "new material”) has before it is melted in the extruder for the first time.
  • the desired MVR can vary. Rather, the MVR can be set in such a way that films, threads, rods, plates, pipes, injection-molded parts or hollow blow moldings can be produced from the recycled polyolefin material.
  • the MVR of the Polyolefin recyclate equals the MVR of the polyolefin material before primary processing. The degree and rate of removal of the low molecular weight contaminants below 2000 daltons can be affected by the residence time of the contaminated polyolefin material in the solvent, the temperature of the solvent, and the application of pressure.
  • PCR post-consumer recyclate
  • the average molecular weight of the polyolefin material can be increased by removing the low-molecular impurities below 2000 daltons, and the MVR is reduced accordingly.
  • more than 90% of stabilizers and antioxidants and their reaction products below 2000 daltons are removed from the contaminated polyolefin material and new stabilizers and antioxidants are introduced into the polyolefin recyclate.
  • Antioxidants or anti-aging agents are known, for example, under the trade names Irganox 1010 or Irgafos 168.
  • the difference to the polyolefin recyclates currently on the market from a conventional mechanical recycling process is the removal of the stabilizers (antioxidants) from the polyolefin material to be recycled.
  • Irganox 1010 has 292 Daltons and is added to the new material between 500 mg and 3000 mg per kg of new material.
  • a typical reaction product from Irganox 1010 is 3,5-di-tert-butyl-4-hydroxybenzaldehyde.
  • the proposed method allows the proportion of 3,5-di-tert-butyl-4-hydroxybenzaldehyde to be reduced to less than 50 mg per kg of polyolefin recyclate.
  • the polyolefin recyclate can then be given new and fresh stabilizers from about 450 mg to about 2950 mg per kg polyolefin recyclate be supplied.
  • the polyolefin recyclate therefore has at least essentially the same properties as the new material.
  • encapsulated dyes present in the contaminated polyolefin material lose the protective effect of the capsule in that the capsule is dissolved and/or broken open by the solvent and the color-active molecules below 2000 daltons are more than 90% made up of the contaminated polyolefin material by the process. material to be washed out.
  • 1% by weight of color masterbatch per kg of polyolefin material is added to the polyolefin material to be colored.
  • the color masterbatch contains 20% by weight of Solvent red 111 (C15H11 NO2 CAS 82-38-2) with a molecular weight of 237 daltons.
  • the proposed recycling process allows the following dyes to be washed out of the contaminated polyolefin material to be regenerated: Solvent yellow 93, 114, Solvent red 242, 179, 195, Solvent green 3, 5, 28, Solvent blue 101, 36, 97, 35, 104 and calcium carbonate for opaque shades.
  • Capsules made of polystyrene, polyamide, polyester and SlOx can be ruptured or dissolved using solvents such as acetone, alkalis or alcohols, but also heat, pressure or radiation.
  • the polyolefin recyclate obtained according to the proposed recycling process can be recolored.
  • the above-mentioned dyes are not removed or only insufficiently removed by the known mechanical recycling processes.
  • residues of mineral oils such as MOAH (Mineral Oil Aromatic Hydrocarbons) and MOSH (Mineral Oil Saturated Hydrocarbons) together with the naturally occurring polyolefin POAH (polyolefin aromatic hydrocarbons) and POSH (polyolefin saturated hydrocarbons) with a molecular weight below 500 Dalton is more than 99% leached or removed from the contaminated polyolefin material.
  • Mechanically cleaned polyolefin recyclates on the market have undesirable contamination from hydrocarbons, which occur naturally as a result of the processing of the packaging material (printing ink, mineral oils from processing machines, etc.) or in the new material.
  • each model contamination from the group of toluene, chlorobenzene, phenylcyclohexane, benzophenone and methyl stearate is more than 90% removed from the contaminated polyolefin material.
  • Model contamination means the enrichment of the polyolefin material to be regenerated with said contaminations in concentrations of 500 mg to 1500 mg per kg of polyolefin material to be regenerated.
  • EFSA European Food Safety Authority
  • plasticizers some of which are used in soft PVC, in particular orthophthalates, in particular DEHP, are removed from the polyolefin material contaminated by PVC.
  • Polyolefin material absorbs these plasticizers very well and therefore these plasticizers, although not primarily a component of new material, are also disadvantageously present in the known mechanically cleaned polyolefin recyclate.
  • a concentration of DEHP in the polyolefin recyclate is less than 0.1 mg per kg of polyolefin recyclate.
  • odor-active carbon compounds below 500 daltons for example carboxylic acids, in particular butyric acid and valeric acid, odor-active saturated and unsaturated aldehydes, in particular nonanal and nonenal, odor-active lactones such as nonalactone and/or e-caprolactone and odor-active terpenes such as limonene and/or p-cymene is removed from the contaminated polyolefin material by more than 90%.
  • Limonene is one of the main components in the olfactory perception of citrus fruits and one of the most important components in lemonade.
  • a typical limonene contamination in the polyolefin material can be around 600 ppm, for example, and can be reduced to below 6 ppm by the process.
  • the solvent is n-hexane or n-heptane or a mixture thereof. These solvents have been found to be particularly efficient with a large broad spectrum effect in removing low molecular weight contaminants below 2000 daltons, particularly the contaminants described above. In addition, this solvent can be separated from the polyolefin recyclate with practically no residue.
  • the contaminated polyolefin material is swollen at a temperature of about 10 ° K below the melting point of the polyolefin material to be regenerated and a pressure between 1 and 1000 bar by means of the solvent, whereby 99.9% of the polyolefin material to be regenerated existing biofilms and germs are killed.
  • a polyolefin recyclate suitable for filling foodstuffs can also be produced.
  • a further aspect of the invention relates to a purified polyolefin material, or polyolefin recyclate, produced by the recycling process described above, the polyolefin recyclate preferably being in the form of granules.
  • This regenerated polyolefin material has properties close to virgin material and is therefore far superior in quality to recycled materials used in a mechanical.
  • the polyolefin recyclate advantageously contains less than 50 mg of 3,5-di-tert-butyl-4-hydroxybenzaldehyde per kg of polyolefin recyclate. It goes without saying that developments and advantageous embodiments that are described using the recycling process also apply, where appropriate, to the polyolefin recyclate produced using the recycling process, and vice versa.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Environmental & Geological Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Separation, Recovery Or Treatment Of Waste Materials Containing Plastics (AREA)

Abstract

Die Erfindung betrifft ein Recycling-Verfahren zur Herstellung eines Polyolefin-Rezyklats, aufweisend die Entfernung von Verunreinigungen aus einem verunreinigten Polyolefin-Material, bei welchem ein verunreinigtes Polyolefin-Material in einem Quellschritt mittels eines Lösungsmittels aufgequollen wird, um im verunreinigten Polyolefin-Material vorhandene Verunreinigungen im Lösungsmittel zu lösen und das Lösungsmittel und die im Lösungsmittel gelösten Verunreinigungen aus dem Polyolefin-Material zu entfernen. Erfindungsgemäss wird vor dem Quellschritt ein Waschschritt mit Wasser, Reinigungsmitteln und/oder Lauge durchgeführt. Das verunreinigte Polyolefin-Material wird durch das Quell/Lösungsmittel Recycling-Verfahren so verändert, (i) dass die niedrigmolekularen Ketten unter 2000 Daltons, zu mehr als 90% entfernt bzw. ausgewaschen werden, und dadurch die mittlere molekulare Kettenlänge des Polyolefin-Rezyklats angehoben wird und (ii) dass die Schmelze-Volumenfliessrate (MVR) des Polyolefin-Rezyklats auf eine vorbestimmte MVR reduziert wird.

Description

Recycling-Verfahren für verunreinigte Polyolefine
Gebiet der Erfindung
Die Erfindung betrifft ein Recycling-Verfahren zur Herstellung eines Polyolefin-Rezyklats gemäss Oberbegriff des Anspruchs 1 und ein Polyolefin-Rezyklat.
Stand der Technik
HDPE (High Density Polyethylen) Material bautwährend dem Verarbeitungsprozess und später im Laufe der Zeit je nach Stabilisierung und Belastung immer weiter ab, d.h. das Molekulargewicht des HDPEs nimmt immer weiter ab. Durch gängige mechanische Recycling-Verfahren wird dieser Abbau des Molekulargewichtes nicht wieder kompensiert. Zwar sind aus der Literatur Kompensierungsverfahren bekannt. Diese sind jedoch aufgrund des hohen technischen Aufwands wie Aufbringen von hohen Drücken oder Zuführen von speziellen Katalysatoren wirtschaftlich nicht interessant.
HDPE Stabilisatoren bzw. Antioxidantien wie Irganox 1010 oder Irgafos 168, die dem Ausgangsmaterial zwischen 500 und 3000 mg/kg beigemischt sind, verlieren durch Ihre Reaktionsmechanismen z.B. mit Sauerstoff und Radikalen ihre Wirkung. Nach jeder thermischen Belastung und damit jeder weiteren Verwendung im Zyklus müssen Stabilisatoren und Antioxidantien ergänzt werden, um die Eigenschaften des Ausgangsmaterials zu erreichen. Allerdings werden Stabilisatoren und Abbauprodukte wie bspw. das 3,5-Di-tert butyl-4-hydroxybenzaldehyd aus Irganox 1010 durch die bekannten Recycling-Verfahren nicht oder nur unzureichend entfernt und verbleiben im Recyclingmaterial. Diese Akkumulation von Stabilisatoren und deren Abbauprodukte sind jedoch in der Anwendung von Lebensmittelverpackungen problematisch, da sie die Lebensmittel kontaminieren können oder den Geschmack der Lebensmittel nachteilig beeinflussen können.
HDPE Material ist am Markt mit unterschiedlichsten Farben vertreten, wobei die Pigmente durch die üblichen mechanischen Recycling Verfahren nicht entfernt werden können. Entsprechend muss für jede Farbe ein eigener Recyclingstrom geschaffen werden. Allerdings scheitert dieser Ansatz, da eine Mindestmenge an HDPE-Material einer Farbe nicht erreicht wird und damit ein Recycling unwirtschaftlich ist.
HDPE Material nimmt über die Zeit über Migration Verunreinigungen wie bspw. Nonenal und/oder Nonanal auf, welche in der Regel den Geruch negativ beeinflussen. Auch ent- stehen im HDPE selbst Abbauprodukte, die den Geruch negativ beeinflussen. Abbauprodukte können bspw. Buttersäure oder Valeriansäure sein. Buttersäure kann dadurch entstehen, dass der zu rezyklierende Behälter mit einem Milchprodukt gefüllt war oder auch durch Carnauba-Wachs, welches häufig als Entformungsmittel verwendet wird und unter Einwirkung von Sonne zu Buttersäure abbaut. Wie bereits ausgeführt, werden durch gängige Recycling-Verfahren in das zu rezyklierende Material migrierte Abbauprodukte nicht oder nur unzureichend entfernt. Daher ist Material aus den üblichen mechanischen HDPE Recycling-Verfahren oft von einem schlechten Geruch begleitet.
HDPE Materialien geben ihre Kontaminationen nur langsam ab, sodass die meisten und üblichen mechanischen Recycling-Verfahren kein Rezyklat bereitstellen können, welches einen direkten Kontakt mit Lebensmittel erlaubt. Beispielsweise werden in Behältern aus Polyolefinen bevorzugt aus HDPE Treibstoffe und Öle gelagert. Hierdurch werden Konzentrationen von Benzol und weitere MOAH (Mineral Oil Aromatic Hydrocarbons) von 5000 bis 10000 mg/kg Polyolefin in den Behälterwandungen erreicht. Für den Lebensmittelkontakt müssen derartige Kontaminationen in ausreichender Menge durch das Verfahren entfernt werden, um eine Anwendung des regenerierten HDPEs als Lebensmittelverpackung zu ermöglichen.
HDPE Materialien enthalten sehr niedrig molekulare Ketten (Oligomere, POSH (polyolefin oligomeric saturated hydrocarbons), POAH) unter 2000 Dalton, welche als wachsartig oder ölartig unangenehm riechendes Aroma wahrgenommen werden bzw. Lebensmittel kontaminieren. Mechanische Recycling-Verfahren können nicht diese niedrig molekularen Ketten nicht ausreichend entfernen, bauen das zu rezyklierende Material jedoch weiter ab und erhöhen damit von Rezyklierungzyklus zu Rezyklierungszyklus die Anzahl der niedrig molekularen Ketten.
Aufgabe der Erfindung
Somit kann eine Aufgabe darin bestehen, ein kostengünstiges Verfahren zur Herstellung von rezykliertes HDPE Material zu schaffen, welches als Lebensmittelverpackung verwendbar ist. Beschreibung
Die Lösung der gestellten Aufgabe gelingt bei einem Recycling-Verfahren zur Herstellung eines Polyolefin-Rezyklats durch die im kennzeichnenden Abschnitt des Patentanspruchs 1 angeführten Merkmale. Weiterbildungen und/oder vorteilhafte Ausführungsvarianten sind Gegenstand der abhängigen Patentansprüche.
Es wird ein Recycling-Verfahren zur Herstellung eines Polyolefin-Rezyklats vorgeschlagen. Das Recycling-Verfahren weist die Entfernung von Verunreinigungen aus einem verunreinigten Polyolefin-Material auf, bei welchem das verunreinigte Polyolefin-Material in einem Quellschritt mittels eines Lösungsmittels aufgequollen wird, um im verunreinigten Polyolefin-Material vorhandene Verunreinigungen im Lösungsmittel zu lösen und das Lösungsmittel und die im Lösungsmittel gelösten Verunreinigungen aus dem verunreinigten Polyolefin-Material zu entfernen. Vor dem Quellschritt wird ein Waschschritt mit Wasser, Reinigungsmitteln und/oder Lauge durchgeführt und das verunreinigte Polyole- fin-Material durch das Quell/Lösungsmittel Recycling-Verfahren so verändert, (i) dass die niedrigmolekularen Verunreinigungen unter 2000 Dalton, zu mehr als 90 Gewichtsprozent entfernt bzw. ausgewaschen werden, und dadurch die mittlere molekulare Kettenlänge des Polyolefins angehoben wird und (ii) dass die Schmelze-Volumenfliessrate (MVR) des Polyolefin-Rezyklats, welche durch Abbau und Alterung gestiegen ist, auf eine vorbestimmte MVR reduziert wird. Die in dem zu regenerierenden oder zu rezyklie- renden verunreinigten Polyolefin-Material enthaltenen Kontaminationen können in überraschender Weise besonders leicht aus dem verunreinigten Polyolefin-Material entfernt werden. Die Reinigungseffizienz bezieht sich auf die Konzentration der Verunreinigungen vor dem Waschverfahren gegenüber der Konzentration nach dem Quellverfahren, genauer nach der Entfernung des Lösungsmittels und der im Lösungsmittel gelösten Verunreinigungen. Je nach Anteil der niedermolekularen Verunreinigungen können 0,5g bis 5g pro kg verunreinigtes Polyolefin-Material durch das vorgeschlagene Verfahren abgetrennt werden. Die vorbestimmte MVR für die Fertigung unterschiedlicher Produkte ist nicht notwendigerweise immer gleich. Die MVR des Polyolefin-Rezyklats kann beispielsweise wird auf das MVR des Polyolefin-Materials vor der Erstverarbeitung reduziert werden, also auf die MVR, die das virgin Polyolefin (im weiteren „Neumaterial“ genannt) hat, bevor es im Extruder erstmals aufgeschmolzen wird. Je nach gewünschter Verwendung des rezyklierten, regenerierten bzw. recycelten Polyolefin-Materials kann die gewünschte MVR unterschiedlich sein. Vielmehr noch kann die MVR derart eingestellt werden, dass aus dem rezyklierten Polyolefin-Material Folien, Fäden, Stäbe, Platten, Rohre, Spritzteile oder Hohlblaskörper fertigbar sind. Idealerweise ist die MVR des Polyolefin-Rezyklats gleich der MVR des Polyolefin-Materials vor der Erstverarbeitung. Der Grad und die Schnelligkeit der Entfernung der niedrigmolekularen Verunreinigungen unter 2000 Dalton kann durch die Verweildauer des verunreinigten Polyolefin-Materials in dem Lösungsmittel, die Temperatur des Lösungsmittels und durch Beaufschlagung mit Druck beeinflusst werden. So können die niedrigmolekularen Verunreinigungen unter 2000 Dalton bei einer Lösungsmitteltemperatur von 150°C und 12 bar Druck innerhalb von 25 Minuten zu 100% aufgequollen werden. Ein regeneriertes bzw. recyceltes Po- lyolefin-Material ist auch unter der Bezeichnung „Post-Consumer-Rezyklat (PCR)“ bekannt.
Der Unterschied zu den am Markt erhältlichen regenerierten Polyolefin-Materialien liegt in der Molekulargewichtsverteilung: Die derzeit am Markt befindlichen mechanischen Verfahren können die niedrigmolekularen Verunreinigungen unter 2000 Dalton in dem verunreinigten Polyolefin-Material nicht reduzieren. Vielmehr reichern sich von Recyclingzyklus zu Recyclingzyklus die niedrigmolekularen Verunreinigungen unter 2000 Dal- ton in dem recykliertem Polyolefin-Material an. Durch die Anreicherung des recyclierten Polyolefin-Materials mit den niedrigmolekularen Verunreinigungen unter 2000 Dalton erhöht sich der MVR. Mit dem vorgeschlagenen Verfahren lässt sich hingegen durch die Entfernung der niedrigmolekularen Verunreinigungen unter 2000 Dalton das mittlere Molekulargewicht des Poleolefin-Materials erhöhen und dementsprechend erniedrigt sich die MVR.
In einer besonders bevorzugten Ausführungsform werden Stabilisatoren und Antioxidantien und deren Reaktionsprodukte unter 2000 Dalton zu mehr als 90% aus dem aus dem verunreinigten Polyolefin-Material entfernt und neue Stabilisatoren und Antioxidantien in das Polyolefin-Rezyklat eingebracht. Antioxidantien bzw. Alterungsschutzmittel sind beispielsweise unter den Handelsnamen Irganox 1010 oder Irgafos 168 bekannt. Der Unterschied zu den sich derzeit am Markt befindlichen Polyolefin-Rezyklaten aus einem herkömmlichen mechanischen Recycling-Verfahren besteht also in der Entfernung der Stabilisatoren (Antioxidantien) aus dem zu rezyklierendem Polyolefin-Material. Beispielsweise Irganox 1010 besitzt 292 Dalton und wird dem Neumaterial zwischen 500 mg und 3000mg pro kg Neumaterial zugesetzt. Ein typisches Reaktionsprodukt aus Irganox 1010 ist 3,5-Di-tert butyl-4-hydroxybenzaldehyd. Durch das vorgeschlagene Verfahren kann der Anteil des 3,5-Di-tert butyl-4-hydroxybenzaldehyd auf weniger als 50 mg pro kg Polyolefin-Rezyklat reduziert werden. Entsprechend der Verwendung können dann dem Polyolefin-Rezyklat neue und frische Stabilisatoren von etwa 450 mg bis etwa 2950 mg pro kg Polyolefin-Rezyklat zugeführt sein. Damit besitzt das Polyolefin-Rezyklat zumindest im Wesentlichen die gleichen Eigenschaften wie das Neumaterial.
Gemäß einem weiteren Ausführungsbeispiel verlieren in dem verunreinigten Polyolefin- Material vorhandene gekapselte Farbstoffe die Schutzwirkung der Kapsel, indem die Kapsel durch das Lösungsmittel aufgelöst und/oder aufgebrochen wird und die farbaktiven Moleküle unter 2000 Dalton durch das Verfahren zu über 90% aus dem verunreinigten Polyolefin-Material ausgewaschen werden. Typischerweise werden dem zu färbenden Polyolefin-Material 1 Gewichtsprozent Farbmasterbatch pro kg Polyolefin-Material zugegeben. In dem vorliegenden Beispiel befinden sich in dem Farbmasterbatch 20 Gewichtsprozent Solvent red 111 (C15H11 NO2 CAS 82-38-2) mit einem Molekulargewicht von 237 Dalton. Durch das vorgeschlagene Recycling-Verfahren können von den ursprünglich vorhandenen 2000 mg Solvent red 111 pro kg Polyolefin-Material mindestens 1800 mg Solvent red 111 pro kg Polyolefin-Material entfernt werden. Durch das vorgeschlagene Recycling-Verfahren können neben Solvent red 111 unter anderem die folgenden Farbstoffe aus dem zu regenerierenden verunreinigten Polyolefin-Material ausgewaschen werden: Solvent yellow 93, 114, Solvent red 242, 179, 195, Solvent green 3, 5, 28, Solvent blue 101 , 36, 97, 35, 104 und Kalziumcarbonat für deckende Farbtöne. Kapseln aus Polystyrol, Polyamid, Polyester und SlOx können durch Lösungsmittel, beispielsweise Aceton, Laugen oder Alkohole, aber auch Hitze, Druck oder Strahlung zum Aufbrechen oder Auflösen gebracht werden. Das gemäss dem vorgeschlagenen Recycling-Verfahren gewonnene Polyolefin-Rezyklat kann neu eingefärbt werden. Durch die bekannten mechanischen Recyclingprozesse werden die oben genannten Farbstoffe nicht oder nur unzureichend entfernt.
In einer weiteren bevorzugten Ausführungsform werden Rückstände von Mineralölen wie MOAH (Mineral Oil Aromatic Hydrocarbons) und MOSH (Mineral Oil Saturated Hydrocarbons) zusammen mit den im Polyolefin natürlich vorkommenden POAH (Polyolefin aromatic Hydrocarbons) und POSH (Polyolefin saturated Hydrocarbons) mit einem Molekulargewicht unter 500 Dalton zu mehr als 99% aus dem verunreinigten Polyolefin- Material ausgewaschen bzw. entfernt. Am Markt befindliche mechanisch gereinigte Po- lyolefin-Recyklate besitzen unerwünschte Verunreinigungen durch Hydrocarbons, welche durch die Verarbeitung des Verpackungsmaterials (Druckerfarbe, Mineralöle von Verarbeitungsmaschinen usw.) oder im Neumaterial bereits natürlich vorkommen.
In einer weiteren Ausführungsform werden jede Modellkontaminationen aus der Gruppe Toluol, Chlorbenzol, Phenylcyclohexan, Benzophenon und Methylstearat zu über 90% aus dem verunreinigten Polyolefin-Material entfernt. Unter Modellkontamination versteht man das Anreichern des zu regenerierende Polyolefin-Material mit besagten Kontaminationen in Konzentrationen von 500 mg bis 1500 mg pro kg zu regenerierende Polyole- fin-Material. Um den vorgeschriebenen Test der Europäischen Behörde für Lebensmittelsicherheit (EFSA) zur Zulassung als lebensmittelechter Kunststoff zu bestehen, ist verpflichtend, dass mindestens 90% jeder Modellkontamination durch das Recycling- Verfahren entfernt wird. Versuche haben ergeben, dass durch das vorgeschlagene Recycling-Verfahren beispielsweise eine Kontamination mit Chlorbenzol und/oder Toluol von 1000 mg pro kg zu rezyklierendes Polyolefin-Material eine Anreicherung bis auf 5 mg pro kg Polyolefin-Rezyklat entfernt werden konnte und damit 99,5 Gewichtsprozent. Im Gegensatz dazu besteht mechanisch gereinigtes HDPE Recycling Material des Stands der Technik den Test der EFSA (Europäische Behörde für Lebensmittelsicherheit) in der Regel nicht, welcher für die sichere Anwendung des Materials bei Lebensmittelkontakt durchgeführt wird. Lediglich bei geringen Kontaminationen und sortenreinen Strömen von zu regenerierendem Polyolefin-Material, wie dies beispielsweise bei den HDPE-Verpackungen für Milch in Großbritannien der Fall ist, kann das Polyolefin- Rezyklat aus mechanischen Recycling-Verfahren nach dem Stand der Technik den EFSA-Test bestehen.
Zweckmässigerweise werden Weichmacher die zum Teil in Weich PVC eingesetzt werden, insbesondere Orthophthalate, insbesondere DEHP zu über 90% aus dem durch PVC verunreinigten Polyolefin-Material entfernt. Polyolefin-Material nimmt diese Weichmacher sehr gut auf und deshalb sind diese Weichmacher, obwohl primär nicht Bestandteil von Neumaterial, auch in nachteiliger Weise im bekannten mechanisch gereinigten Poyolefin-Rezyklat vorhanden.
Gemäß einem weiteren Ausführungsbeispiel ist eine Konzentration von DEHP im Polyolefin-Rezyklat kleiner als 0,1 mg pro kg Polyolefin -Rezyklat.
Gemäß einem weiteren Ausführungsbeispiel werden geruchsaktive Carbonverbindungen unter 500 Daltons, z.B. Carbonsäuren, insbesondere Buttersäure und Valerian- säure, geruchsaktive gesättigte und ungesättigte Aldehyde, insbesondere Nonanal u. Nonenal, geruchsaktive Laktone wie beispielsweise Nonalacton und/oder e-Caprolacton sowie geruchsaktive Terpene wie beispielsweise Limonen und/oder p-Cymol um mehr als 90% aus dem verunreinigten Polyolefin-Material entfernt. Limonen ist eine der Hauptkomponenten in der Geruchs Wahrnehmung von Citrusfrüch- ten und in Limonaden einer der wichtigsten Komponenten. Bei Polyolefinen spielen Limonaden eine untergeordnete Rolle, jedoch Reinigungsmittel mit einem Citrus oder Orangen Aroma auf Basis von Limonen, das dem Reinigungsmittel über 1000mg Limonen pro Liter beigemengt wird. Eine typische Limonen Kontamination im Polyolefinma- terial kann dadurch z.B. bei 600 ppm liegen, und durch das Verfahren unter 6ppm reduziert werden.
Im Gegensatz dazu besitzen standardmässig mechanisch recyceltes Polyolefin-Material, daraus hergestelltes Granulat und aus diesem produzierte Behälter oft einen sehr unangenehmen Geruch, der sich auf den Geschmack der in diesen Behältern aufbewahrten Lebensmittel auswirkt.
Es hat sich gezeigt, dass durch das vorgeschlagenen Recycling-Verfahren Nonenal, Nonanal und Nonalacton im Polyolefin-Rezyklat, insbesondere in einem HDPE- Rezyklat, jeweils auf weniger als 0,1 mg pro kg Polyolefin-Rezyklat, insbesondere HDPE-Rezyklat, reduziert wird.
Als vorteilhaft erweist es sich, wenn das Lösungsmittel n-Hexan oder n-Heptan oder eine Mischung daraus ist. Diese Lösungsmittel haben sich als besonders effizient mit einer grossen Breitbandwirkung zur Entfernung niedrigmolekularen Verunreinigungen unter 2000 Dalton, insbesondere der oben beschriebenen Verunreinigungen, herausgestellt. Darüber hinaus ist dieses Lösungsmittel aus dem Polyolefin-Rezyklat praktisch rückstandsfrei abtrennbar.
Mit Vorteil wird das verunreinigte Polyolefin-Material bei einer Temperatur von etwa 10°K unterhalb der Schmelztemperatur des zu regenerierenden Polyolefin-Materials und einem Druck zwischen 1 und 1000 bar mittels des Lösungsmittels aufgequollen, wodurch 99,9% an dem zu regenerierenden Polyolefin-Material vorhandene Biofilme und Keime abgetötet werden. Dadurch können nicht nur die mittlere molekulare Kettenlänge des regenerierten Materials erhöht werden und Verunreinigungen entfernt werden, sondern es lässt sich auch ein für die Abfüllung von Lebensmitteln geeignetes Polyolefin-Rezyklat herstellen.
Ein weiterer Aspekt der Erfindung betrifft ein gereinigtes Polyolefin-Material, respektive Polyolefin-Rezyklat, hergestellt nach dem oben beschriebenen Recycling-Verfahren, wobei das Polyolefin-Rezyklat vorzugsweise in der Form eines Granulats vorliegt. Dieses regenerierte Polyolefin-Material hat nahezu die Eigenschaften von Neumaterial und ist daher in seiner Qualität Recycling-Materialien, die in einem mechanischen weit überlegen.
In vorteilhafter Weise enthält das Polyolefin-Rezyklat weniger als 50 mg 3, 5-Di-tert butyl-4-hydroxybenzaldehyd pro kg Polyolefin-Rezyklat. Es versteht sich, dass Weiterbildungen und vorteilhafte Ausführungsformen, die anhand des Recycling-Verfahrens beschrieben sind, auch, wo sinnvoll, für das mittels des Recycling-Verfahrens hergestellte Polyolefin-Rezyklat gelten, und umgekehrt.

Claims

9 Patentansprüche
1 . Recycling-Verfahren zur Herstellung eines Polyolefin-Rezyklats, aufweisend die Entfernung von Verunreinigungen aus einem verunreinigten Polyolefin-Material, bei welchem das verunreinigte Polyolefin-Material in einem Quellschritt mittels eines Lösungsmittels aufgequollen wird, um im verunreinigten Polyolefin-Material vorhandene Verunreinigungen im Lösungsmittel zu lösen und das Lösungsmittel und die im Lösungsmittel gelösten Verunreinigungen aus dem verunreinigten Po- lyolefin-Material zu entfernen, dadurch gekennzeichnet, dass vor dem Quellschritt ein Waschschritt mit Wasser, Reinigungsmitteln und/oder Lauge durchgeführt wird und dass das verunreinigte Polyolefin-Material durch das Quell/Lösungsmittel Recycling Verfahren so verändert wird, (i) dass die niedrigmolekularen Verunreinigungen unter 2000 Dalton und Abbauprodukte des Polyolefins zu mehr als 90 Gewichtsprozent entfernt bzw. ausgewaschen werden, und dadurch die mittlere molekulare Kettenlänge des Polyolefin-Rezyklats angehoben wird und (ii) dass die Schmelze-Volumenfliessrate (MVR) des Polyolefin-Rezyklats auf eine vorbestimmte MVR reduziert wird.
2. Recycling-Verfahren nach Anspruch 1 , dadurch gekennzeichnet, dass Stabilisatoren und Antioxidantien und deren Reaktionsprodukte unter 2000 Dalton zu mehr als 90% aus dem verunreinigten Polyolefin-Material entfernt werden und neue Stabilisatoren und Antioxidantien in das Polyolefin-Rezyklat eingebracht werden.
3. Recycling-Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass in dem verunreinigten Polyolefin-Material vorhandene gekapselte Farbstoffe die Schutzwirkung der Kapsel verlieren, indem die Kapsel durch das Lösungsmittel aufgelöst und/oder aufgebrochen wird und die farbaktiven Moleküle unter 2000 Dalton zu über 90% ausgewaschen werden.
4. Recycling-Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass Rückstände von Mineralölen wie MOAH (Mineral Oil Aromatic Hydrocarbons) und MOSH (Mineral Oil Saturated Hydrocarbons) zusammen mit den im Polyolefin natürlich vorkommenden POAH (Polyolefin aromatic Hydro- carbons) und POSH (Polyolefin saturated Hydrocarbons) mit einem Molekulargewicht unter 500 Dalton zu mehr als 90% aus dem verunreinigten Polyolefin-Material ausgewaschen bzw. entfernt werden.
5. Recycling-Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass jede Modellkontamination aus der Gruppe Toluol, Chlorbenzol, Phenylcyclohexan, Benzophenon und Methylstearat zu über 90% aus dem verunreinigten Polyolefin-Material entfernt werden.
6. Recycling-Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass Weichmacher die zum Teil in Weich PVC eingesetzt werden, insbesondere Orthophthalate, insbesondere DEHP zu über 90% aus dem verunreinigten Polyolefin-Material entfernt werden.
7. Recycling-Verfahren nach Anspruch 6, dadurch gekennzeichnet, dass eine Konzentration von DEHP im Polyolefin-Rezyklat kleiner als 0,1 mg pro kg Polyolefin - Rezyklat ist.
8. Recycling-Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass geruchsaktive Carbonverbindungen unter 500 Daltons, z.B. Carbonsäuren, insbesondere Buttersäure und Valeriansäure, geruchsaktive gesättigte und ungesättigte Aldehyde, insbesondere Nonanal und Nonenal, geruchsaktive Laktone wie beispielsweise Nonalacton und geruchsaktive Terpene wie beispielsweise Limonen um mehr als 90% aus dem verunreinigten Polyolefin- Material entfernt werden.
9. Recycling-Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass Nonenal, Nonanal und Nonalacton im Polyolefin-Rezyklat, insbesondere in einem HDPE-Rezyklat, jeweils auf weniger als 0,1 mg pro kg Polyolefin-Rezyklat, insbesondere HDPE-Rezyklat, reduziert wird.
10. Recycling-Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass das Lösungsmittel n-Hexan oder n-Heptan oder eine Mischung daraus ist.
11 . Recycling-Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass das verunreinigte Polyolefin-Material bei einer Temperatur 11 von etwa 10°K unterhalb der Schmelztemperatur des zu regenerierenden Po- lyolefin-Materials und einem Druck zwischen 1 und 1000 bar mittels des Lösungsmittels aufgequollen wird, wodurch 99,9% an dem zu regenerierendem Po- lyolefin-Material vorhandene Biofilme und Keime abgetötet werden.
12. Polyolefin-Rezyklat, hergestellt durch ein Verfahren nach einem der Ansprüche 1 bis 10, wobei das Polyolefin-Rezyklat vorzugsweise in der Form eines Granulats vorliegt.
13. Polyolefin-Rezyklat nach Anspruch 11 , dadurch gekennzeichnet, dass das Po- lyolefin-Rezyklat weniger als 50 mg 3,5-Di-tert butyl-4-hydroxybenzaldehyd pro kg Polyolefin-Rezyklat enthält.
EP21840814.4A 2020-12-16 2021-12-16 Recycling-verfahren für verunreinigte polyolefine Pending EP4263168A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CH01595/20A CH718174A1 (de) 2020-12-16 2020-12-16 Recycling-Verfahren für verunreinigte Polyolefine.
PCT/EP2021/086141 WO2022129309A1 (de) 2020-12-16 2021-12-16 Recycling-verfahren für verunreinigte polyolefine

Publications (1)

Publication Number Publication Date
EP4263168A1 true EP4263168A1 (de) 2023-10-25

Family

ID=74129904

Family Applications (1)

Application Number Title Priority Date Filing Date
EP21840814.4A Pending EP4263168A1 (de) 2020-12-16 2021-12-16 Recycling-verfahren für verunreinigte polyolefine

Country Status (6)

Country Link
US (1) US20240051185A1 (de)
EP (1) EP4263168A1 (de)
CN (1) CN116601216A (de)
CH (1) CH718174A1 (de)
MX (1) MX2023006197A (de)
WO (1) WO2022129309A1 (de)

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5545718A (en) * 1978-09-27 1980-03-31 Mitsubishi Petrochem Co Ltd Fractionation of polyolefin resin
DE4122277A1 (de) * 1991-07-05 1993-01-07 Nordenia Verpackung Verfahren zur aufbereitung von gebrauchten gegenstaenden aus polyolefin zu wiederverwendbarem rohstoff
DE4207370A1 (de) * 1992-03-09 1993-09-16 Feinchemie Schwebda Gmbh Verfahren zur entfernung von pflanzenschutzmitteln von mit pflanzenschutzmitteln verunreinigten kunststoffbehaeltern
DE10062437A1 (de) * 2000-12-15 2002-06-20 Der Gruene Punkt Duales Syst Verfahren zum Aufbereiten eines Kunststoffgemisches
DE10127875A1 (de) * 2001-06-08 2003-01-30 Der Gruene Punkt Duales Syst Verfahren zur Gewinnung von LDPE aus gebrauchten Kunststofffolien
CH713184A1 (de) * 2016-11-17 2018-05-31 Alpla Werke Alwin Lehner Gmbh & Co Kg Anlage und Verfahren für das Recycling verunreinigter Polyolefine.
US10465058B2 (en) * 2016-12-20 2019-11-05 The Procter & Gamble Company Method for purifying reclaimed polymers
NL2018102B1 (en) * 2016-12-30 2018-07-23 Blue Plastics B V Process for recycling polyolefin waste

Also Published As

Publication number Publication date
WO2022129309A1 (de) 2022-06-23
MX2023006197A (es) 2023-06-29
CH718174A1 (de) 2022-06-30
CN116601216A (zh) 2023-08-15
US20240051185A1 (en) 2024-02-15

Similar Documents

Publication Publication Date Title
DE2521074C2 (de) Verfahren zum Raffinieren von rohem Glyceridöl
DE102019204579B4 (de) Recycling eines Schuhs
DE69214099T2 (de) Gummizusammensetzung zum Metallformenreinigen und Verfahren zu ihrer Verwendung
DE2917722A1 (de) Kaugummigrundlage und verfahren zu ihrer herstellung
DE4429506A1 (de) Verfahren zur Extraktion natürlicher Carotinoid-Farbstoffe
DE202015009899U1 (de) Vorgang zum Recycling von Polystyrolabfällen
DE4122277A1 (de) Verfahren zur aufbereitung von gebrauchten gegenstaenden aus polyolefin zu wiederverwendbarem rohstoff
CH626291A5 (de)
DE102007057189A1 (de) Verfahren und Vorrichtung zur Herstellung von Polyamid
DE2303672C3 (de) Verfahren zur Rückgewinnung regenerierter Cellulose
EP4263168A1 (de) Recycling-verfahren für verunreinigte polyolefine
DE1129682B (de) Verfahren zum Herstellen von trockenen oder praktisch trockenen Kautschukkruemeln
WO2004106025A1 (de) Verfahren zum lebensmittelechten recyceln von polyethylen-terephthalat (pet)
DD148500A5 (de) Verfahren zur regenerierung von kautschuk
EP1392766A1 (de) Verfahren zur gewinnung von ldpe aus gebrauchten kunststoffolien
WO2020030657A1 (de) Verfahren zur aufbereitung von zur wiederverwendung vorgesehenen thermoplasten
DE1469788A1 (de) Pigmentdispersionen
DE1113569B (de) Verfahren und Vorrichtung zur Rueckgewinnung der bei der Herstellung von Polyamiden aus Aminocarbonsaeuren oder anderen polyamidbildenden Monomeren beim Abtreiben des Wassers durch die entweichenden Daempfe mitgerissenen Aminocarbonsaeure- oder anderen Monomeranteile
DE2815122A1 (de) Vorrichtung und verfahren zur rueckgewinnung von elastomeren
WO2014121311A1 (de) Verfahren zur anreicherung von wertstoffen aus einem flüssigen rohstoff
DE1936209A1 (de) Riechstoffkompositionen
DE102012220498A1 (de) Verfahren und Vorrichtung zur Behandlung von Polymeren
AT256439B (de) Verfahren und Vorrichtung zum Beimischen von folienförmigem Abfallmaterial aus thermoplastischem Kunststoff zu dem einer Strangpresse zugeführten Kunststoffgranulat
WO2023217866A1 (de) Aufreinigungsverfahren zur herstellung eines polyolefin-regenerates
EP0777560A1 (de) Verpackungsformteile und verfahren zu ihrer herstellung

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20230704

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)