EP4234813A2 - Oszillationsmodul - Google Patents

Oszillationsmodul Download PDF

Info

Publication number
EP4234813A2
EP4234813A2 EP23178851.4A EP23178851A EP4234813A2 EP 4234813 A2 EP4234813 A2 EP 4234813A2 EP 23178851 A EP23178851 A EP 23178851A EP 4234813 A2 EP4234813 A2 EP 4234813A2
Authority
EP
European Patent Office
Prior art keywords
mass
carrier
oscillating
roller
belt
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
EP23178851.4A
Other languages
English (en)
French (fr)
Other versions
EP4234813A3 (de
Inventor
Peter Janner
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hamm AG
Original Assignee
Hamm AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hamm AG filed Critical Hamm AG
Publication of EP4234813A2 publication Critical patent/EP4234813A2/de
Publication of EP4234813A3 publication Critical patent/EP4234813A3/de
Pending legal-status Critical Current

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01CCONSTRUCTION OF, OR SURFACES FOR, ROADS, SPORTS GROUNDS, OR THE LIKE; MACHINES OR AUXILIARY TOOLS FOR CONSTRUCTION OR REPAIR
    • E01C19/00Machines, tools or auxiliary devices for preparing or distributing paving materials, for working the placed materials, or for forming, consolidating, or finishing the paving
    • E01C19/22Machines, tools or auxiliary devices for preparing or distributing paving materials, for working the placed materials, or for forming, consolidating, or finishing the paving for consolidating or finishing laid-down unset materials
    • E01C19/23Rollers therefor; Such rollers usable also for compacting soil
    • E01C19/28Vibrated rollers or rollers subjected to impacts, e.g. hammering blows
    • E01C19/286Vibration or impact-imparting means; Arrangement, mounting or adjustment thereof; Construction or mounting of the rolling elements, transmission or drive thereto, e.g. to vibrator mounted inside the roll
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B06GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS IN GENERAL
    • B06BMETHODS OR APPARATUS FOR GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS OF INFRASONIC, SONIC, OR ULTRASONIC FREQUENCY, e.g. FOR PERFORMING MECHANICAL WORK IN GENERAL
    • B06B1/00Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency
    • B06B1/10Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of mechanical energy
    • B06B1/16Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of mechanical energy operating with systems involving rotary unbalanced masses
    • B06B1/161Adjustable systems, i.e. where amplitude or direction of frequency of vibration can be varied
    • B06B1/166Where the phase-angle of masses mounted on counter-rotating shafts can be varied, e.g. variation of the vibration phase

Definitions

  • the present invention relates to an oscillation module for a compactor roller for a soil compactor.
  • a compactor roller can be periodically accelerated up and down to generate what is known as a vibration state, essentially vertically, ie in a direction essentially orthogonal to the surface of the subsoil to be compacted.
  • a vibration state essentially vertically, ie in a direction essentially orthogonal to the surface of the subsoil to be compacted.
  • an oscillation torque can be generated that acts on a compactor roller periodically back and forth in the circumferential direction about a roller axis of rotation.
  • a soil compactor with a compactor roller, in which such an oscillation state can be caused is from EP 2 504 490 B1 known and is 1 shown.
  • This known soil compactor 10 comprises two compactor rollers 12, 14 that can be rotated about respective roller axes of rotation A 1 , A 2 2 oscillating arrangement 18 shown with a total of four oscillating mass units 20, 22, 24, 26.
  • These oscillating mass units 20, 22, 24, 26 are assigned in pairs opposite one another with respect to the roller axis of rotation A1 , i.e. arranged at an angular distance of 180°.
  • All oscillating mass units 20, 22, 24, 26 are driven via a common drive shaft 28 and a common, not shown, oscillating drive motor for rotation about respective oscillating axes of rotation O parallel to the roller axis of rotation A 1 . Because of common drive, each of the pairs of oscillating mass units 20, 22 or 24, 26 arranged at an axial distance from one another in the direction of the roll axis of rotation A 1 produces in phase an oscillating torque which periodically acts on the roll shell 16 back and forth in the circumferential direction about the roll axis of rotation A 1 .
  • Each of the essentially identically constructed oscillating mass units 20, 22, 24, 26 comprises on a respective oscillating shaft 30 two imbalance masses 32 which can be rotated with the respective oscillating shaft 30 about the respective oscillating axis of rotation O rotatably supported on a carrier structure, for example a so-called blank, which is arranged in the interior of the compactor roller 12 and is firmly connected to the roller shell 16 .
  • the common drive shaft 28 is also rotatably supported by bearing disks 38, for example on the same support structure or structures as the unbalanced shafts 30.
  • each oscillating mass unit 20, 22, 24, 26 is on the common drive shaft 28 on the one hand and the respective unbalanced shaft 30 on the other a pulley 40 or 42 is provided.
  • the imbalance shafts 30 are driven to rotate about their respective oscillation axis of rotation O via a belt 44 that interacts with them, for example a toothed belt.
  • the oscillating mass units 20, 22 or 24, 26, which are assigned to one another in pairs, each rotate in phase opposition to one another, in order to rotate the compactor roller 12 or the roller shell in each pair of oscillating mass units 20, 22 or 24, 26, acting in the circumferential direction about the roller axis of rotation A1 16 to generate the same periodically acting in opposite circumferential directions oscillating torque.
  • a structure of an oscillation module is from U.S. 9,574,311 B1 known.
  • This oscillation module has a plate-like carrier arranged in an axially central area of a compactor roller and connected to the inner surface of a casing of the compactor roller.
  • Two oscillating mass units with unbalanced masses rotatably carried in a respective oscillating mass housing are shifted radially outwards on the carrier with respect to a roll axis of rotation arranged.
  • Each of the unbalanced masses is coupled to one of the two axial ends of a transmission shaft via a belt.
  • the transmission shaft is rotatably supported in a box-like transmission bearing hub.
  • the transfer bearing hub is disposed with a peripheral wall thereof in a mounting hole provided centrally in the carrier.
  • the transmission shaft is coupled to a rotor of an oscillating drive motor via an unbalanced drive shaft and can therefore be driven to rotate by it.
  • an oscillation module Due to the modular design of an oscillation arrangement, it is possible to integrate such an oscillation arrangement, referred to as an oscillation module, as a preassembled unit in a compactor roller, for example by the connection formation of the carrier of the oscillation module being fixed to an associated carrier structure in the interior of a compactor roller.
  • no further work is required to integrate individual components of an oscillation arrangement into the interior of the compactor roller. This not only simplifies the process of installing such a modularly provided oscillation arrangement in the interior, but also simplifies the structure of the entire compactor roller itself, since no individual components or system areas of an oscillation arrangement need be provided in the interior or components that can, for example, be rotatably supported.
  • At least one, preferably each, oscillation mass unit comprises an unbalanced mass bearing projection carried on the carrier and at least one unbalanced mass carried on the unbalanced mass bearing projection so as to be rotatable about the oscillation axis of rotation, and/or that at least one preferably each oscillating mass unit comprises an unbalanced mass with an unbalanced shaft carried on the carrier so as to be rotatable about an oscillation axis of rotation
  • the unbalanced mass bearing projection be carried on the carrier in its first axial end area and be self-supporting in its second axial end area. Stabilization can also be ensured in that at least one, preferably each oscillating mass unit, the unbalanced mass bearing projection is supported in its first axial end area on the carrier and in its second axial end area with respect to the unbalanced mass bearing projection of at least one other oscillating mass unit or with respect to the carrier is supported.
  • each Unbalanced mass is rotatably supported on the associated unbalanced mass bearing projection, for example in the region of its second axial end region, by an unbalanced mass bearing, the unbalanced mass bearing having a bearing inner ring carried on or provided by the unbalanced mass bearing projection and a bearing inner ring carried on or by the unbalanced mass provided bearing outer ring includes.
  • the oscillating mass units designed according to the invention do not include unbalanced shafts that are to be rotatably mounted and carry or provide the unbalanced masses, but rather unbalanced masses that are rotatably supported on an unbalanced mass bearing projection that acts as a bearing journal.
  • At least one, preferably each, unbalanced mass comprises an unbalanced mass annular body rotatably supported on the associated unbalanced mass bearing projection and at least one unbalanced mass element provided on the unbalanced mass annular body.
  • At least one, preferably each, imbalance mass be arranged on at least one, preferably both, axial end faces of the imbalance mass annular body and be connected to the imbalance mass annular body, preferably detachably.
  • an unbalanced mass element can be connected to the unbalanced mass annular body by screwing, so that the unbalanced moment of the unbalanced masses can be easily adapted in association with various configurations of a compactor roller.
  • a reliable drive interaction that essentially does not limit the positioning of the oscillating mass units with respect to the oscillating drive motor can be provided, for example, by at least one, preferably each unbalanced mass being drivable for rotation by means of the oscillating drive motor by a belt drive.
  • the belt drive in association with at least one, preferably each unbalanced mass on the oscillation drive motor by one Drive axis of rotation rotatable belt drive pulley, preferably toothed pulley, on the imbalance mass a belt driven pulley, preferably toothed pulley, and a belt, preferably toothed belt, cooperating with the belt drive pulley and the belt driven pulley.
  • a structurally particularly simple configuration can be achieved in that the belt driven pulley is provided by the annular body of the unbalanced mass in the case of at least one, preferably every unbalanced mass.
  • a further contribution to such a simple design can be that the belt drive pulley interacts with at least two belts to drive at least two imbalance masses of different oscillating mass units, the belt drive pulley having belt interaction areas that follow one another in the direction of the drive axis of rotation for interaction with the belts.
  • the unbalanced mass annular bodies each providing a belt driven pulley can be structurally identical to one another, which allows the use of identical parts, and/or can be positioned in the direction of the drive axis of rotation in the same axial area, so that on the one hand an easy-to-implement drive interaction with the oscillation drive motor can be ensured, on the other hand, the emergence of tilting moments is avoided.
  • a belt tensioning roller be provided in association with at least one, preferably each belt, preferably with at least one belt tensioning roller having a circumferential interaction length between the belt and the this cooperating belt drive pulley and / or belt driven pulley increases.
  • the oscillating drive motor may include a motor housing carried on the bracket positioned substantially on a first axial side of the bracket and a motor housing penetrating an opening in the bracket and drivingly interacting with the oscillating mass units on a second axial side of the bracket Include motor shaft.
  • This ensures an axially compact and stable construction of the entire module, since its system areas are distributed on both axial sides of the plate-like carrier.
  • the oscillating mass units are arranged on the second axial side of the carrier.
  • the oscillation drive motor can be supported on the bracket via a roller drive motor.
  • the opening in the carrier be arranged, surrounding a preferably teardrop-shaped housing which rotatably supports the motor shaft of the oscillating drive motor.
  • the housing is fixed to the carrier together with the roller drive motor.
  • at least one, preferably each, belt tensioning roller can be carried on this housing.
  • a structure of the oscillating mass units that is protected against external influences can provide that at least one, preferably each oscillating mass unit, comprises an oscillating mass housing with a peripheral wall accommodated in an opening of the carrier and on both axial end regions of the peripheral wall a base rotatably supporting an unbalanced mass.
  • a rotary drive axis of the oscillating drive motor and the oscillating rotary axes of at least two oscillating mass units are parallel to one another and/or lie in a common plane.
  • connection formation comprises a plurality of connection bolt passage openings on an outer peripheral area of the carrier.
  • a stable connection of the oscillating mass units to the carrier that is nevertheless easy to implement can be realized, for example, in that at least one, preferably each, unbalanced mass bearing projection is fixed on the carrier by a plurality of fastening elements, and/or that at least one, preferably each, unbalanced mass bearing Bearing projection is integrally formed with the carrier.
  • the invention also relates to a soil compactor, comprising at least one compactor roller which can be rotated about a roller axis of rotation and has at least one oscillation module constructed according to the invention.
  • the at least one compactor roller comprises a roller shell enclosing an interior space, with a preferably disk-like support structure, for example a round disk, being non-rotatable with the roller shell in the interior space , is provided and the carrier of the at least one oscillation module is fixed with its connection formation to the carrier structure assigned to it.
  • two oscillation modules be arranged in the compactor roller at a distance from one another in the direction of the roller axis of rotation.
  • At least one compactor roller can be a divided compactor roller with successive compactor roller sections in the direction of the roller axis of rotation, with at least one oscillation module being arranged in each compactor roller section.
  • at least one compactor roller can be an undivided compactor roller, with an oscillation module preferably being arranged in each axial end region of the compactor roller in such a way that it is essentially completely axially covered by a roller shell of the compactor roller in the direction of the roller axis of rotation.
  • FIGS 3 to 5 show a first embodiment of an oscillation module, which in a soil compactor, such as the soil compactor 1 , In at least one of the two compactor rollers 12, 14 of the same can be integrated.
  • the oscillation module generally designated 50, comprises a plate-like carrier 52 constructed from metal material, preferably sheet metal material, cast material or the like, as shown in FIG 4 and 5 show this clearly, basically elongated or rounded rectangular peripheral contour. A round, for example circular, peripheral contour of the carrier 52 can also be provided.
  • a connection formation generally designated 54, is provided in the outer peripheral area of the plate-like carrier 52. This comprises a plurality of connecting bolt passage openings 56 arranged at a distance from one another along the outer circumference of the plate-like carrier 52.
  • the oscillation module 50 can be fixed in a compactor roller in a manner to be described below by means of connecting bolts, for example screw bolts, reaching through these connecting bolt passage openings 56.
  • an oscillating drive motor 58 embodied, for example, as a hydraulic motor, alternatively also as an electric motor.
  • the oscillating drive motor 58 includes a motor housing 62 carried or positioned substantially on a first axial side 60 of the carrier 52.
  • the motor housing 62 is carried by means of a connecting element 61 on a non-rotating area 63 of a roller drive motor, generally designated 65 and designed in particular as a hydraulic motor.
  • a rotating section 67 of the roller drive motor 65 is arranged in the area of a central opening 64 of the carrier 52 and is fixed to the carrier 52 by bolts 69 .
  • the roller drive motor 65 with its non-rotating area 63 and its rotating area 67 forms an area of the motor housing 62 of the oscillating drive motor 58 with regard to the carrying functionality provided for the oscillating drive motor 58 If a roller drive motor is to be provided, the oscillation drive motor 58 can be connected to the carrier 52 directly or via an area of the motor housing 62 that takes on the carrying functionality of the roller drive motor 65 .
  • a motor shaft 66 of the oscillation drive motor 58 which extends in the direction of a drive axis of rotation A and passes through a central opening 71 in the roller drive motor 65 and through the central opening 64 in the carrier 52, lies with its free end area essentially on a second axial side 68 of the carrier 52 and supports there a Belt drive pulley 70, preferably designed as a toothed pulley, of a belt drive, generally designated 72.
  • the motor shaft 66 can be connected to a rotor of the oscillating drive motor 58 which protrudes from the motor housing 62 and is rotatably mounted therein for common rotation or can be formed integrally therewith.
  • Two oscillating mass units 74 , 76 are provided on the carrier 52 opposite one another with respect to the drive axis of rotation A and arranged essentially at the same distance therefrom.
  • the two oscillating mass units 74, 76 preferably have basically the same structure, so that their structure is described below with reference to both oscillating mass units 74, 76 in the same way.
  • Each of the two oscillating mass units 74, 76 includes an unbalanced mass bearing projection 78, which is fixed in its first axial end area 80 by a plurality of fastening elements 82, for example bolts, on the carrier 52, in particular on the second axial side 68 thereof.
  • the bearing projection 78 can have a positioning projection which engages in a corresponding positioning recess in the carrier 52 .
  • Each unbalanced mass bearing projection 78 providing a substantially cantilevered or free-standing bearing journal carries an unbalanced mass 86 in its second axial end region 84 so as to be rotatable about a respective oscillation axis of rotation O.
  • Each unbalanced mass 86 includes an unbalanced mass annular body 88 which is rotatably supported on the unbalanced mass bearing projection 78 via an unbalanced mass bearing 90 .
  • the unbalanced mass bearing 90 includes a fixed by a fixing plate 92 on the second axial end portion 84 of the unbalanced mass bearing projection 78 bearing inner ring 94 and, for example, a plurality of rolling elements such. B. balls or rollers 96, on the bearing inner ring 94 rotatably mounted bearing outer ring 98.
  • the bearing outer ring 98 is fixed via a fixing element 100 on the unbalance mass ring body 88, so that the unbalance mass ring body 88 on the associated unbalance mass bearing projection 78 in the axial direction with respect to a respective oscillation axis of rotation O is kept defined.
  • the two unbalanced masses 86 or their unbalanced mass ring bodies 88 are axially aligned with one another, that is to say are positioned in the same axial region.
  • Each unbalanced mass annular body 88 is designed as a toothed disk and thus provides a respective belt driven disk 102 .
  • the belt drive 72 comprises a belt 104, 106, with the two belts 104, 106 being offset from one another in the direction of the drive axis of rotation A or lying next to one another, so that each belt 104, 106 is associated with a belt interaction region 108 or 110 of the belt drive pulley 70 interacts or is guided around this area.
  • the belt 104, 106 with the associated Driven belt pulleys 102 or unbalanced mass ring bodies 88 cooperate in axial areas that are correspondingly offset from one another.
  • the belt driven pulleys 102 like the belt drive pulley 70, are designed as toothed pulleys
  • the belts 104, 106 are preferably designed as toothed belts for a defined drive interaction.
  • a belt tensioning roller 112 or 114 is provided in association with each of the two belts.
  • the belt tensioning rollers 112, 114 are located radially with respect to the drive axis of rotation A essentially between the drive axis of rotation A and the respective oscillation axes of rotation O and are offset in opposite directions with respect to a plane containing the drive axis of rotation A and the two oscillation axes of rotation O.
  • the two belt tensioning rollers 112, 114 rotatably carried on the carrier 52 not only maintain a defined tension of the belts 104, 106, but also ensure that due to the fact that the respective belt tensioning rollers 112, 114 are located between the belt drive pulley 70 and the belt sections running on the respective belt driven pulley 102, the degree of wrapping of the belts 104, 106 both around the belt drive pulley 70 and around the respectively associated belt driven pulley 102 is increased, which ensures improved drive interaction due to a correspondingly enlarged or lengthened toothing engagement area.
  • Each of the unbalanced masses 86 preferably comprises an unbalanced mass element 116, 118, for example made up of two parts, on both axial sides of the unbalanced mass annular body 88.
  • the two unbalanced mass elements 116, 118 are firmly connected to one another and to the associated unbalanced mass annular body 88, for example by bolts 120, and ensure that the center of mass of each unbalanced mass 86 is eccentric to the respective oscillation axis of rotation O, so that when unbalanced mass 86 rotates about the associated oscillation axis of rotation O, an unbalanced moment occurs.
  • At least one of the unbalanced mass elements 116, 118 or a part thereof could also be formed integrally with the associated unbalanced mass annular body 88, that is to say in one piece.
  • the two unbalanced masses 86 are fundamentally positioned in phase opposition to one another. This means that, as for example in 3 shown, in an assembly position, i.e. a state in which module 50 or its system components are being assembled, the centers of mass of the two unbalanced masses 86 are at a minimum distance from one another, which means that the respective unbalanced mass elements 118, 116 of the two unbalanced masses 86 must also be in relation to one another have a minimum and therefore also a minimum distance from the drive axis of rotation A.
  • a pin-like auxiliary assembly element 122 can be provided, which reaches through associated openings in the unbalanced mass elements 116, 118 and engages in a corresponding opening in the carrier 52. This ensures that the two unbalanced masses 86 assume a defined positioning with respect to one another when the two belts 104 , 106 are placed around them or around the belt drive pulley 70 . Once this has been done, the auxiliary assembly elements 122 can be removed, ie pulled out of the openings accommodating them, so that the two unbalanced masses 86 can rotate about their respective oscillation axis of rotation O, driven by the oscillation drive motor 58 .
  • the two unbalanced masses 86 rotate in the same direction, but in phase opposition to one another and also in the same direction as the belt drive pulley 70, whereby the oscillation torque already mentioned, oriented around the drive axis of rotation A, i.e. a Torque with a periodically reversing direction of action about the drive axis of rotation A is generated.
  • coupling the two unbalanced masses 86 to the oscillating drive motor 58 via the belt drive 72 is particularly advantageous for more freedom of positioning in the radial direction with respect to the drive axis of rotation A, in particular because this also makes it possible to ensure in a particularly simple manner that both unbalanced masses 86 rotate in the same direction.
  • the two unbalanced masses 86 could also be coupled to the oscillation drive motor 58 via a respective gear train, which also makes it easily possible, for example, to specify different directions of rotation for the two unbalanced masses, whereby the range of periodic and, for example, directed linear forces that can be generated is increased even further .
  • the 6 shows the integration of such an oscillation module 50 in a compactor roller, for example the compactor roller 12 of the soil compactor 10.
  • a support structure 126 which is designed, for example, in the manner of a disk and is fixed at its outer circumference, for example by welding, to the roller shell 16, which can generally also be referred to as a circular blank.
  • the support structure 126 that can be seen in an axial view has a contour adapted to the outer circumference of the support 52 of the oscillation module 50, oblong opening 128 into which the oscillation module 50 can be inserted from the axial end region 129 of the roll shell 16 forth.
  • connecting bolts 130 for example screw bolts, which in figure 5 recognizable connecting bolt penetration openings 56 pass through and are screwed into corresponding internally threaded openings of the support structure 126
  • the support 52 is fixed in a defined position on the support structure 126.
  • the carrier 52 and the carrier structure 126 can each have axially offset positioning regions 132, 134 in their mutually overlapping edge regions.
  • the positioning of the oscillation module 50 in the compactor roller 12 is preferably such that in the direction of the roller axis of rotation A 1 , which corresponds to the drive axis of rotation A of the oscillating drive motor 58, the oscillating drive motor 58 is accommodated essentially completely in the interior space 124, i.e. in the direction of the roller axis of rotation A 1 in the Essentially does not protrude beyond the roll shell 16. Thus, a disturbing interaction with the frame parts of the soil compactor 10 rotatably supporting the compactor roller 12 is avoided.
  • the modular design makes it possible to assemble the entire oscillation module 50 before integrating it into a compactor roller, in particular those system areas which, lying on the second axial side 68 of the carrier 52, are positioned in an area in the interior space 124 that is difficult to access are.
  • the entire module can be used prefabricated in the compactor roller 12 and fixed to it. Further assembly processes for attaching other system areas of an oscillation arrangement provided by the oscillation module 50 inside the compactor roller 12 are basically not required.
  • the modular design also makes it possible, for example by selecting the mass and/or shape of the respective unbalanced mass elements to adapt to different sizes of compactor rollers, to be able to generate different unbalanced torques or oscillation torques. This too increases the modular character, since identical parts can always be used to equip differently dimensioned compactor rollers. This also applies to the structure of each oscillation module 50 itself, since identical components can also be used there, particularly in each of the unbalance mass units 74, 76.
  • FIG. 1 illustrates in a schematic representation the equipment of a compactor roller 12 with two oscillation modules 50 constructed according to the invention 6 positioned in the manner described.
  • Each of the two oscillation modules 52 can be operated independently of the other oscillation module, so that each oscillation module 50 can generate an oscillation torque that is freely adjustable in terms of its phase position with respect to the respective other module and also in terms of its frequency.
  • the phase position of the oscillating torques generated by the two oscillating modules 50 it is possible to achieve a destructive or a constructive superimposition of the two oscillating torques, so that the overall oscillating torque generated by the superimposition can be varied in terms of its amplitude, namely by changing the Phase position of the two oscillating torques generated by the oscillating modules 50, 52, and on the other hand its frequency can be varied independently of the amplitude of the total oscillating torque by varying the speed of the respective oscillating drive motor 58 in the two oscillating modules 50 accordingly.
  • an undivided compactor roller 12 is shown as an example 9 a divided compactor roller 12' with two compactor roller regions 12a' and 12b' lying next to one another in the direction of the roller axis of rotation A 1 '.
  • These two compactor roller areas 12a' and 12b' which together provide a divided compactor roller 12', are each equipped with an oscillation module 50, so that in each of the two compactor roller areas 12a', 12b' an oscillating torque can be generated independently in each case independently of the other compactor roller area.
  • FIGS. 10 and 11 show an embodiment of an oscillation module 52, in which the two unbalanced mass bearing projections 78 are supported in relation to one another in their second axial end regions 84 by means of a support body 138, for example designed as a U-profile support, to increase the rigidity or stability.
  • the unbalanced mass bearing projections 78 which are basically self-supporting with respect to the carrier 52, are thus supported against one another at their free ends, so that even at comparatively high speeds and thus large unbalanced moments generated in the region of each oscillating mass unit 74, 76, a wobbling movement of the unbalanced mass bearing projections 78 in the region second axial end regions 84 rotatably supporting their respective unbalanced masses 86 is avoided.
  • the support body 138 to the unbalanced mass bearing projections 78, for example by screw bolts, these can be lengthened in their second axial end regions 84 in order to ensure that there is sufficient installation space for the free rotation of the unbalanced mass elements 116 positioned away from the carrier 52. Nevertheless, it can also be said in this configuration that the unbalanced masses 56 are rotatably supported on the unbalanced mass bearing projections 78 essentially in the second axial end regions 84 of the latter. In a modification of this type of embodiment, at least one imbalance mass bearing projection 78 could be supported in its second axial end area 84 by a support body with respect to the carrier 52 .
  • the 12 shows an embodiment of an oscillation module 50 integrated in a compactor roller 12, in which the basically plate-like carrier 52 can have a three-dimensional shape and is produced, for example, as a cast component, while, for example, in the embodiments described above, the carrier 52 can be designed as a stamped or cut-out component.
  • the unbalanced mass bearing projections 78 of the two oscillating mass units 74, 76 are integral with the carrier 52, that is to say in one piece, and are thus formed as a block of material. This increases stability and eliminates operations for assembling the imbalance mass bearing bosses 78 to the carrier 52.
  • the 12 clear that when it is produced as a cast component, it is comparatively easy to give the carrier 52 a three-dimensionally shaped structure, so that its connection formation 54 to be connected to the carrier structure 126 or the outer peripheral area of the carrier 52 with respect to the area in which the housing 62 of the oscillation drive motor 58 is fixed to the carrier 52, may be axially offset. This allows the main system areas of the oscillation module 50 to be shifted further inwards in the direction of the roller axis of rotation A 1 , although the support structure 126 is positioned comparatively close to the axial end area 129 of the roller shell 16 .
  • such a three-dimensional shape of the carrier 52 in principle also in the case of the above with reference to the Figures 3 to 5 described structure can be realized, for which purpose, for example, the initially planar, ie essentially provided as a planar component carrier 52 is subjected to a corresponding deformation.
  • Such a three-dimensionally shaped carrier 52 could also be provided by assembling several individual parts which can be connected to one another, for example, by welding and/or screwing or the like.
  • the 13 shows a further alternative embodiment of an oscillation module 50 constructed with two unbalanced mass units 74, 76.
  • the two oscillating mass units 74, 76 each have an unbalanced mass 86 formed with an unbalanced shaft 140.
  • the unbalanced shaft 140 is rotatably supported in an axial end region 142 on the carrier 52 provided, for example, as a cast component via an unbalanced mass bearing 144 and is rotatably supported in its other axial end region 146 via an unbalanced mass bearing 148 on a cover-like or plate-like support body 150.
  • the carrier 52 can have a cup-like formation 152, which can be closed off by the support body 150 in the region of the second axial end region 146 of the unbalanced shaft 140.
  • a driven belt pulley 154 is connected to the unbalanced shaft 140 in the region of the first axial end region 142 .
  • This is drive-connected to the belt drive pulley 70 via a belt 104 (only indicated in principle), while the unbalanced mass 86 of the other oscillating mass unit 76 is drive-connected to the belt drive pulley 70 via a belt driven pulley 156 and the belt 106 in a corresponding manner.
  • the belt drive pulley 70 may be carried at a greater axial distance from the housing 62 of the oscillating drive motor 58 on a shaft 158 which extends or continues the motor shaft of the oscillating drive motor 58 or is provided by itself.
  • the modular character is also achieved with this type of embodiment, since all system areas of an oscillation module 50 can be provided on the plate-like carrier 52 and can be arranged together with this in the interior 124 of the compactor roller 12 and fixed to the carrier structure 126 .
  • a further alternative embodiment of an oscillation mode constructed with two unbalanced mass units 74, 76 is shown in 14 shown. Also with the in 14 shown is the rotating portion 67 of the roller drive motor 65 arranged on the first axial side 60 of the carrier 52 in the area of the central opening 64 .
  • a pot-like housing 160 is arranged on the second axial side 68 of the carrier 52 . This comprises a peripheral wall 162 arranged surrounding the central opening 64.
  • the screw bolts 69 that fix the rotating area 67 of the roller drive motor 65 to the carrier 52 are screwed into this peripheral wall 162, so that both the roller drive motor 65 and the pot-like housing 160 is attached to the carrier 52.
  • a base 164 of the pot-like housing 160 is provided on an axial end of the peripheral wall 162 facing away from the carrier 52, for example formed integrally therewith or fixed thereto by screwing.
  • the belt tensioning rollers are rotatably supported on this pot-like base 164, from which 14 the belt tensioning roller 112 can be seen in the upper area in association with the belt 104.
  • the motor shaft 66 passing through the roller drive motor 65 in the region of its central opening 71 is rotatably mounted on the floor 164 via a bearing 166 .
  • the motor shaft 66 carries the belt drive pulley 70 in the axial end region that protrudes beyond the base 164 or the bearing 166.
  • Each of the two oscillating mass units 74, 76 is constructed with an oscillating mass housing 168 which is constructed separately from the carrier 52 and is fixed to this, for example by screwing or welding.
  • Each oscillating mass housing 168 includes a peripheral wall 170 fixed to the carrier 52 and two cover-like bottoms 172, 174 provided at the axial ends of the peripheral wall 170. These can be formed separately from the peripheral wall 170 and fixed thereto, for example by screwing. Alternatively, one of the floors 172, 174 could be formed integrally with the peripheral wall 170.
  • a respective unbalanced mass 86 with its unbalanced shaft 140 is rotatably supported on the two bases 172, 174 via the unbalanced mass bearings 144, 148.
  • the oscillating mass housings 168 are arranged in respective openings 176 of the carrier 52 approximately in an axial center area of the respective peripheral wall 170 in such a way that the belt driven pulleys 154, 156 carried on the imbalance shafts 140 in the area of their axial end areas 142 are positioned in the axial area of the belt drive pulley 70 and connectable thereto via belts 104, 106 for rotation together.
  • the pot-like housing 160 is also provided in a structurally different configuration.
  • the peripheral wall 162 can be provided with a plurality of webs, for example formed integrally with the base 164 , extending axially and connected to the carrier 52 by the bolts 69 .

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Architecture (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Road Paving Machines (AREA)
  • Investigation Of Foundation Soil And Reinforcement Of Foundation Soil By Compacting Or Drainage (AREA)
  • Devices For Conveying Motion By Means Of Endless Flexible Members (AREA)
  • Connection Of Motors, Electrical Generators, Mechanical Devices, And The Like (AREA)

Abstract

Ein Oszillationsmodul für eine Verdichterwalze eines Bodenverdichters, umfasst:- einen plattenartigen Träger (52), wobei der Träger (52) eine Verbindungsformation (54) zur festen Verbindung des Trägers (52) mit einer Trägerstruktur (126) einer Verdichterwalze (12) aufweist,- wenigstens zwei an dem Träger (52) in Abstand zueinander getragene Oszillationsmasseneinheiten (74, 76), jede Oszillationsmasseneinheit (74, 76) umfassend eine an dem Träger (52) um eine Oszillationsdrehachse (O) drehbar getragene Unwuchtmasse (86),- einen an dem Träger (52) getragenen Oszillationsantriebsmotor (58), wobei durch den Oszillationsantriebsmotor (58) jede Unwuchtmasse (86) jeder Oszillationsmasseneinheit (74, 76) zur Drehung um die jeweils zugeordnete Oszillationsdrehachse (O) antreibbar ist.

Description

  • Die vorliegende Erfindung betrifft ein Oszillationsmodul für eine Verdichterwalze für einen Bodenverdichter.
  • Um bei der Verdichtung von Untergrund, wie zum Beispiel Asphalt, Erdreich oder Kies, ein besseres Verdichtungsergebnis erzielen zu können, ist es bekannt, der statischen Belastung des zu verdichtenden Untergrundes durch das Gewicht einer auf diesem abrollenden Verdichterwalze bzw. des über diese auf dem Untergrund abgestützten Verdichters dynamische Zustände der Verdichterwalze zu überlagern. So kann eine Verdichterwalze zum Erzeugen eines sogenannten Vibrationszustandes im Wesentlichen vertikal, also in einer Richtung im Wesentlichen orthogonal zur Oberfläche des zu verdichtenden Untergrunds, periodisch auf und ab beschleunigt werden. Zur Erzeugung eines sogenannten Oszillationszustandes kann ein eine Verdichterwalze periodisch in Umfangsrichtung um eine Walzendrehachse hin und her beaufschlagendes Oszillationsdrehmoment generiert werden.
  • Ein Bodenverdichter mit einer Verdichterwalze, bei welcher ein derartiger Oszillationszustand hervorgerufen werden kann, ist aus der EP 2 504 490 B1 bekannt und ist Fig. 1 dargestellt. Dieser bekannte Bodenverdichter 10 umfasst zwei um jeweilige Walzendrehachsen A1, A2 drehbare Verdichterwalzen 12, 14. Zumindest eine dieser Verdichterwalzen 12, 14, beispielsweise die Verdichterwalze 12, ist als sogenannte Oszillationswalze ausgebildet und umfasst in dem von einem Walzenmantel 16 umschlossenen Innenraum eine in Fig. 2 dargestellte Oszillationsanordnung 18 mit insgesamt vier Oszillationsmasseneinheiten 20, 22, 24, 26. Diese Oszillationsmasseneinheiten 20, 22, 24, 26 sind einander paarweise zugeordnet bezüglich der Walzendrehachse A1 einander gegenüberliegend, also mit einem Winkelabstand von 180° angeordnet. Alle Oszillationsmasseneinheiten 20, 22, 24, 26 werden über eine gemeinsame Antriebswelle 28 und einen gemeinsamen, nicht dargestellten Oszillationsantriebsmotor zur Drehung um jeweilige zur Walzendrehachse A1 parallele Oszillationsdrehachsen O angetrieben. Aufgrund des gemeinsamen Antriebs erzeugt jedes der in axialem Abstand in Richtung der Walzendrehachse A1 zueinander angeordneten Paare von Oszillationsmasseneinheiten 20, 22 bzw. 24, 26 gleichphasig ein den Walzenmantel 16 periodisch in Umfangsrichtung um die Walzendrehachse A1 hin und her beaufschlagendes Oszillationsdrehmoment.
  • Jede der zueinander im Wesentlichen identisch aufgebauten Oszillationsmasseneinheiten 20, 22, 24, 26 umfasst an einer jeweiligen Oszillationswelle 30 zwei mit der jeweiligen Oszillationswelle 30 um die jeweilige Oszillationsdrehachse O drehbare Unwuchtmassen 32. Jede Oszillationswelle 30 ist an ihren beiden axialen Endbereichen über Lagerscheiben 34, 36 an einer im Innenraum der Verdichterwalze 12 angeordneten, mit dem Walzenmantels 16 fest verbundenen Trägerstruktur, beispielsweise einer sogenannten Ronde, drehbar getragen. Auch die gemeinsame Antriebswelle 28 ist durch Lagerscheiben 38 beispielsweise an der bzw. den gleichen Trägerstrukturen drehbar getragen, wie die Unwuchtwellen 30. in Zuordnung zu jeder Oszillationsmasseneinheit 20, 22, 24, 26 ist an der gemeinsamen Antriebswelle 28 einerseits und der jeweiligen Unwuchtwelle 30 andererseits eine Riemenscheibe 40 bzw. 42 vorgesehen. Über einen mit diesen zusammenwirkenden Riemen 44, beispielsweise Zahnriemen, werden die Unwuchtwellen 30 zur Drehung um ihre jeweilige Oszillationsdrehachse O angetrieben. Dabei rotieren die einander paarweise zugeordneten Oszillationsmasseneinheiten 20, 22 bzw. 24, 26 jeweils gegenphasig zueinander, um bei jedem Paar von Oszillationsmasseneinheiten 20, 22 bzw. 24, 26 ein in Umfangsrichtung um die Walzendrehachse A1 wirkendes, die Verdichterwalze 12 bzw. den Walzenmantel 16 derselben periodisch in entgegengesetzten Umfangsrichtungen beaufschlagendes Oszillationsdrehmoment zu erzeugen.
  • Ein Aufbau eines Oszillationsmoduls ist aus der US 9 574 311 B1 bekannt. Dieses Oszillationsmodul weist einen in einem axial zentralen Bereich einer Verdichterwalze angeordneten und an die innere Oberfläche eines Mantels der Verdichterwalze angebundenen, plattenartigen Träger auf. Bezüglich einer Walzendrehachse nach radial außen verlagert sind an dem Träger zwei Oszillationsmasseneinheiten mit in einem jeweiligen Oszillationsmassengehäuse drehbar getragenen Unwuchtmassen angeordnet. Jede der Unwuchtmassen ist über einen Riemen mit einem der beiden axialen Enden einer Übertragungswelle gekoppelt. Die Übertragungswelle ist in einer gehäuseartigen Übertragungslagernabe drehbar getragen. Die Übertragungslagernabe ist mit einer Umfangswand derselben in einer zentral im Träger vorgesehenen Montageöffnung angeordnet. An axialen Endbereichen der Umfangswand sind an dieser Böden getragen, welche von der Übertragungswelle durchsetzt sind und über jeweilige Lager die Übertragungswelle nahe ihren axialen Endbereichen drehbar tragen. Über eine Unwuchtantriebswelle ist die Übertragungswelle an einen Rotor eines Oszillationsantriebsmotors angekoppelt und somit durch diesen zur Drehung antreibbar.
  • Es ist die Aufgabe der vorliegenden Erfindung, baulich einfach zu realisierende Maßnahmen vorzuschlagen, durch welche eine Verdichterwalze zur Durchführung einer Oszillation beaufschlagt werden kann.
  • Erfindungsgemäß wird diese Aufgabe gelöst durch ein Oszillationsmodul für eine Verdichterwalze eines Bodenverdichters, umfassend:
    • einen plattenartigen Träger, wobei der Träger eine Verbindungsformation zur festen Verbindung des Trägers mit einer Trägerstruktur einer Verdichterwalze aufweist,
    • wenigstens zwei an dem Träger in Abstand zueinander getragene Oszillationsmasseneinheiten, jede Oszillationsmasseneinheit umfassend eine an dem Träger um eine Oszillationsdrehachse drehbar getragene Unwuchtmasse,
    • einen an dem Träger getragenen Oszillationsantriebsmotor, wobei durch den Oszillationsantriebsmotor jede Unwuchtmasse jeder Oszillationsmasseneinheit zur Drehung um die jeweils zugeordnete Oszillationsdrehachse antreibbar ist.
  • Aufgrund der modulartigen Ausgestaltung einer Oszillationsanordnung wird es möglich, eine derartige als Oszillationsmodul zu bezeichnende Oszillationsanordnung als vormontierte Einheit in eine Verdichterwalze zu integrieren, beispielsweise dadurch, dass die Verbindungsformation des Trägers des Oszillationsmoduls an einer zugeordneten Trägerstruktur im Innenraum einer Verdichterwalze festgelegt wird. Weitere Arbeiten zum Integrieren von einzelnen Bestandteilen einer Oszillationsanordnung in den Innenraum der Verdichterwalze sind dadurch nicht erforderlich. Dies vereinfacht nicht nur den Vorgang des Einbaus einer derartigen modulartig bereitgestellten Oszillationsanordnung in den Innenraum, sondern vereinfacht auch die Struktur der gesamten Verdichterwalze an sich, da im Innenraum keine einzelne Komponenten oder Systembereiche einer Oszillationsanordnung aufnehmende oder beispielsweise drehbar tragende Komponenten vorgesehen sein müssen.
  • Für eine stabile Drehlagerung einer Unwuchtmasse an dem Träger wird vorgeschlagen, dass wenigstens eine, vorzugsweise jede Oszillationsmasseneinheit einen an dem Träger getragenen Unwuchtmassen-Lagervorsprung und wenigstens eine an dem Unwuchtmassen-Lagervorsprung um die Oszillationsdrehachse drehbar getragene Unwuchtmasse umfasst, oder/und dass wenigstens eine, vorzugsweise jede Oszillationsmasseneinheit eine Unwuchtmasse mit einer an dem Träger um eine Oszillationsdrehachse drehbar getragenen Unwuchtwelle umfasst
  • Bei einer hinsichtlich einer stabilen Drehlagerung der Unwuchtmassen besonders vorteilhaften Ausgestaltung wird vorgeschlagen, dass bei wenigstens einer, vorzugsweise jeder Oszillationsmasseneinheit der Unwuchtmassen-Lagervorsprung in seinem ersten axialen Endbereich an dem Träger getragen ist und in seinem zweiten axialen Endbereich freitragend ist. Für eine Stabilisierung kann weiter dadurch gesorgt werden, dass bei wenigstens einer, vorzugsweise jeder Oszillationsmasseneinheit der Unwuchtmassen-Lagervorsprung in seinem ersten axialen Endbereich an dem Träger getragen ist und in seinem zweiten axialen Endbereich bezüglich des Unwuchtmassen-Lagervorsprungs wenigstens einer anderen Oszillationsmasseneinheit oder bezüglich des Trägers abgestützt ist. Ferner kann hierzu vorgesehen sein, dass wenigstens eine, vorzugsweise jede Unwuchtmasse auf dem zugeordneten Unwuchtmassen-Lagervorsprung beispielsweise im Bereich von dessen zweiten axialen Endbereich durch ein Unwuchtmassen-Lager drehbar getragen ist, wobei das Unwuchtmassen-Lager einen an dem Unwuchtmassen-Lagervorsprung getragenen oder durch diesen bereitgestellten Lagerinnenring und einen an der Unwuchtmasse getragenen oder durch diese bereitgestellten Lageraußenring umfasst. Anders als beim Stand der Technik, umfassen damit die erfindungsgemäß ausgebildeten Oszillationsmasseneinheiten keine drehbar zu lagernden und die Unwuchtmassen tragenden bzw. bereitstellenden Unwuchtwellen, sondern auf einem als Lagerzapfen wirksamen Unwuchtmassen-Lagervorsprung drehbar getragene Unwuchtmassen.
  • Hierfür kann beispielsweise vorgesehen sein, dass wenigstens eine, vorzugsweise jede Unwuchtmasse einen auf dem zugeordneten Unwuchtmassen-Lagervorsprung drehbar getragenen Unwuchtmassen-Ringkörper und wenigstens ein an dem Unwuchtmassen-Ringkörper vorgesehenes Unwuchtmassenelement umfasst.
  • Zum Erzeugen einer Unwucht wird vorgeschlagen, dass bei wenigstens einer, vorzugsweise jeder Unwuchtmasse an wenigstens einer, vorzugsweise beiden axialen Stirnseiten des Unwuchtmassen-Ringkörpers ein Unwuchtmassenelement angeordnet und mit dem Unwuchtmassen-Ringkörper vorzugsweise lösbar verbunden ist. Beispielsweise kann ein derartiges Unwuchtmassenelement durch Verschraubung mit dem Unwuchtmassen-Ringkörper verbunden sein, so dass in Zuordnung zu verschiedenen Ausgestaltungen einer Verdichterwalze in einfacher Art und Weise das Unwuchtmoment der Unwuchtmassen anpassbar ist.
  • Eine zuverlässige und die Positionierung der Oszillationsmasseneinheiten bezüglich des Oszillationsantriebsmotor im Wesentlichen nicht beschränkende Antriebswechselwirkung kann beispielsweise dadurch bereitgestellt werden, dass wenigstens eine, vorzugsweise jede Unwuchtmasse vermittels des Oszillationsantriebsmotors durch einen Riemenantrieb zur Drehung antreibbar ist.
  • Dabei kann der Riemenantrieb in Zuordnung zu wenigstens einer, vorzugsweise jeder Unwuchtmasse an dem Oszillationsantriebsmotor eine um eine Antriebsdrehachse drehbare Riemenantriebsscheibe, vorzugsweise Zahnscheibe, an der Unwuchtmasse eine Riemenabtriebsscheibe, vorzugsweise Zahnscheibe, sowie einen mit der Riemenantriebsscheibe und der Riemenabtriebsscheibe zusammenwirkenden Riemen, vorzugsweise Zahnriemen, umfassen.
  • Eine baulich besonders einfache Ausgestaltung kann dadurch erreicht werden, dass bei wenigstens einer, vorzugsweise jeder Unwuchtmasse der Unwuchtmassen-Ringkörper die Riemenabtriebsscheibe bereitstellt. Ferner kann zu einer derartigen einfachen Ausgestaltung beitragen, dass die Riemenantriebsscheibe mit wenigstens zwei Riemen zum Antrieb wenigstens zweier Unwuchtmassen verschiedener Oszillationsmasseneinheiten zusammenwirkt, wobei die Riemenantriebsscheibe zur Zusammenwirkung mit den Riemen in Richtung der Antriebsdrehachse aufeinanderfolgende Riemenwechselwirkungsbereiche aufweist.
  • Die jeweils eine Riemenabtriebsscheibe bereitstellenden Unwuchtmassen-Ringkörper können zueinander baugleich sein, was den Einsatz von Gleichteilen gestattet, oder/und können in Richtung der Antriebsdrehachse im gleichen axialen Bereich positioniert sein, so dass einerseits eine einfach zu realisierende Antriebswechselwirkung mit dem Oszillationsantriebsmotor gewährleistet werden kann, andererseits das Entstehen von Kippmomenten vermieden wird.
  • Um eine zuverlässige Antriebswechselwirkung zwischen dem bzw. den Riemen und den zugeordneten Riemenscheiben zu erreichen, wird vorgeschlagen, dass in Zuordnung zu wenigstens einem, vorzugsweise jedem Riemen eine Riemenspannrolle vorgesehen ist, vorzugsweise wobei wenigstens eine Riemenspannrolle eine Umfangs-Wechselwirkungslänge zwischen dem Riemen und der mit diesem zusammenwirkenden Riemenantriebsscheibe oder/und Riemenabtriebsscheibe vergrößert.
  • Der Oszillationsantriebsmotor kann ein an dem Träger getragenes, im Wesentlichen an einer ersten axialen Seite des Trägers positioniertes Motorgehäuse und eine eine Öffnung in dem Träger durchsetzende und an einer zweiten axialen Seite des Trägers mit den Oszillationsmasseneinheiten in Antriebswechselwirkung stehende Motorwelle umfassen. Somit wird eine axial kompakte und stabile Bauweise des gesamten Moduls gewährleistet werden, da dessen Systembereiche auf beide axialen Seiten des plattenartigen Trägers verteilt sind. Hierzu kann insbesondere auch vorgesehen sein, dass die Oszillationsmasseneinheiten an der zweiten axialen Seite des Trägers angeordnet sind. Ferner kann für eine kompakte Bauart der Oszillationsantriebsmotor über einen Walzenantriebsmotor an dem Träger getragen sein.
  • Für eine stabile Lagerung einer Motorwelle des Oszillationsantriebsmotors wird vorgeschlagen, dass an der zweiten axialen Seite des Trägers die Öffnung in dem Träger umgebend ein die Motorwelle des Oszillationsantriebsmotors drehbar lagerndes, vorzugsweise tropfartiges Gehäuse angeordnet ist. Dabei kann für einen einfach zu realisierenden Aufbau vorgesehen sein, dass das Gehäuse zusammen mit dem Walzenantriebsmotor an dem Träger festgelegt ist. Ferner kann an diesem Gehäuse wenigstens eine, vorzugsweise jede Riemenspannrolle getragen sein.
  • Ein gegen äußere Einwirkungen geschützter Aufbau der Oszillationsmasseneinheiten kann vorsehen, dass wenigstens eine, vorzugsweise jede Oszillationsmasseneinheit ein Oszillationsmassengehäuse mit einer in einer Öffnung des Trägers aufgenommenen Umfangswand und an beiden axialen Endbereichen der Umfangswand jeweils einem eine Unwuchtmasse drehbar tragenden Boden umfasst.
  • Um eine effiziente Erzeugung eines Oszillationsdrehmomentes zu gewährleisten, wird vorgeschlagen, dass eine Antriebsdrehachse des Oszillationsantriebsmotors und die Oszillationsdrehachsen wenigstens zweier Oszillationsmasseneinheiten zueinander parallel sind oder/und in einer gemeinsamen Ebene liegen.
  • Für eine feste Verbindung eines Oszillationsmoduls mit einer Verdichterwalze bzw. einem Walzenmantel derselben kann vorgesehen sein, dass die Verbindungsformation an einem Außenumfangsbereich des Trägers eine Mehrzahl von Verbindungsbolzen-Durchgriffsöffnungen umfasst.
  • Eine stabile, gleichwohl leicht zu realisierende Anbindung der Oszillationsmasseneinheiten an den Träger kann beispielsweise dadurch realisiert werden, dass wenigstens ein, vorzugsweise jeder Unwuchtmassen-Lagervorsprung an dem Träger durch eine Mehrzahl von Befestigungsorganen festgelegt ist, oder/und dass wenigstens ein, vorzugsweise jeder Unwuchtmassen-Lagervorsprung mit dem Träger einstückig ausgebildet ist.
  • Die Erfindung betrifft ferner einen Bodenverdichter, umfassend wenigstens eine um eine Walzendrehachse drehbare Verdichterwalze mit wenigstens einem erfindungsgemäß aufgebauten Oszillationsmodul.
  • Für eine einfach zu realisierende Integration eines derartigen Oszillationsmoduls in die Verdichterwalze wird vorgeschlagen, dass die wenigstens eine Verdichterwalze einen einen Innenraum umschließenden Walzenmantel umfasst, wobei in Zuordnung zu dem wenigstens einen Oszillationsmodul in dem Innenraum eine mit dem Walzenmantel drehfeste, vorzugsweise scheibenartige Trägerstruktur, beispielsweise Ronde, vorgesehen ist und der Träger des wenigstens einen Oszillationsmoduls mit seiner Verbindungsformation an der diesem zugeordneten Trägerstruktur festgelegt ist.
  • Für eine effiziente Erzeugung einer Oszillationsbewegung der Verdichterwalze wird vorgeschlagen, dass in der Verdichterwalze zwei Oszillationsmodule in Richtung der Walzendrehachse mit Abstand zueinander angeordnet sind.
  • Dabei kann wenigstens eine Verdichterwalze eine geteilte Verdichterwalze mit in Richtung der Walzendrehachse aufeinanderfolgenden Verdichterwalzenabschnitten sein, wobei in jedem Verdichterwalzenabschnitt wenigstens ein Oszillationsmodul angeordnet ist. Alternativ oder zusätzlich kann wenigstens eine Verdichterwalze eine ungeteilte Verdichterwalze sein, wobei in jedem axialen Endbereich der Verdichterwalze ein Oszillationsmodul vorzugsweise derart angeordnet ist, dass dieses in Richtung der Walzendrehachse von einem Walzenmantel der Verdichterwalze im Wesentlichen vollständig axial überdeckt ist.
  • Nachfolgend wird die vorliegende Erfindung mit Bezug auf die beiliegenden Figuren detailliert beschrieben. Es zeigt:
  • Fig. 1
    einen aus dem Stand der Technik bekannten Bodenverdichter mit zwei Verdichterwalzen in Seitenansicht;
    Fig. 2
    eine Oszillationsanordnung einer Verdichterwalze des Bodenverdichters der Fig. 1;
    Fig. 3
    eine Längsschnittansicht eines erfindungsgemäß aufgebauten Oszillationsmoduls, geschnitten längs einer Linie III-III in Fig. 4;
    Fig. 4
    eine Axialansicht des Oszillationsmoduls der Fig. 3, in Blickrichtung IV in Fig. 3;
    Fig. 5
    eine Axialansicht des Oszillationsmoduls der Fig. 3 in Blickrichtung V in Fig. 3;
    Fig. 6
    ein in eine Verdichterwalze integriertes Oszillationsmodul der Fig. 3;
    Fig. 7
    eine Axialansicht einer Verdichterwalze zur Aufnahme eines Oszillationsmoduls der Fig. 3;
    Fig. 8
    eine prinzipartige Längsschnittdarstellung einer ungeteilten Verdichterwalze mit zwei in diese integrierten Oszillationsmodulen;
    Fig. 9
    eine der Fig. 8 entsprechende Ansicht einer geteilten Verdichterwalze mit einem Oszillationsmodul in jedem der beiden Verdichterwalzenbereiche;
    Fig. 10
    eine der Fig. 3 entsprechende Darstellung eines Oszillationsmoduls einer alternativen Ausgestaltung;
    Fig. 11
    eine Seitenansicht des Oszillationsmoduls der Fig. 10 in Blickrichtung XI in Fig. 10;
    Fig. 12
    eine weitere alternative Ausgestaltungsart eines in eine Verdichterwalze integrierten Oszillationsmoduls;
    Fig. 13
    eine weitere alternative Ausgestaltungsart eines in eine Verdichterwalze integrierten Oszillationsmoduls;
    Fig. 14
    eine weitere alternative Ausgestaltungsart eines in eine Verdichterwalze integrierten Oszillationsmoduls.
  • Die Fig. 3 bis 5 zeigen eine erste Ausgestaltungsart eines Oszillationsmoduls, welches bei einem Bodenverdichter, beispielsweise dem Bodenverdichter der Fig. 1, in zumindest eine der beiden Verdichterwalzen 12, 14 desselben integriert werden kann.
  • Das in den Fig. 3 bis 5 allgemein mit 50 bezeichnete Oszillationsmodul umfasst einen aus Metallmaterial, vorzugsweise Blechmaterial, Gussmaterial oder dergleichen, aufgebauten, plattenartigen Träger 52 mit, wie die Fig. 4 und 5 dies deutlich zeigen, grundsätzlich langgestreckter bzw. abgerundeter rechteckiger Umfangskontur. Auch eine runde, z.B. kreisrunde Umfangskontur des Trägers 52 kann vorgesehen sein. Im Außenumfangsbereich des plattenartigen Trägers 52 ist eine allgemein mit 54 bezeichnete Verbindungsformation vorgesehen. Diese umfasst eine Mehrzahl von entlang des Außenumfangs des plattenartigen Trägers 52 mit Abstand zueinander angeordneten Verbindungsbolzen-Durchgriffsöffnungen 56. Durch durch diese Verbindungsbolzen-Durchgriffsöffnungen 56 hindurchgreifende Verbindungsbolzen, beispielsweise Schraubbolzen, kann das Oszillationsmodul 50 in nachfolgend noch beschreibender Weise in einer Verdichterwalze festgelegt werden.
  • In einem zentralen Bereich des plattenartigen Trägers 52 ist ein beispielsweise als Hydraulikmotor, alternativ auch als Elektromotor, ausgebildeter Oszillationsantriebsmotor 58 vorgesehen. Der Oszillationsantriebsmotor 58 umfasst ein im Wesentlichen an einer ersten axialen Seite 60 des Trägers 52 getragenes bzw. positioniertes Motorgehäuse 62. Das Motorgehäuse 62 ist vermittels eines Verbindungselements 61 an einem nicht rotierenden Bereich 63 eines allgemein mit 65 bezeichneten und insbesondere als Hydraulikmotor ausgebildeten Walzenantriebsmotors getragen. Ein rotierender Bereich 67 des Walzenantriebsmotors 65 ist im Bereich einer zentralen Öffnung 64 des Trägers 52 angeordnet und durch Schraubbolzen 69 am Träger 52 festgelegt. Im Sinne der vorliegenden Erfindung bildet somit der Walzenantriebsmotor 65 mit seinem nicht rotierenden Bereich 63 und seinem rotierenden Bereich 67 hinsichtlich der für den Oszillationsantriebsmotor 58 bereitgestellten Tragefunktionalität einen Bereich des Motorgehäuses 62 des Oszillationsantriebsmotors 58. bei einer Ausgestaltung einer Verdichterwalze, bei welcher an dieser Stelle kein Walzenantriebsmotor vorzusehen ist, kann der Oszillationsantriebsmotor 58 unmittelbar oder über einen die Tragefunktionalität des Walzenantriebsmotors 65 übernehmenden Bereich des Motorgehäuses 62 an den Träger 52 angebunden werden.
  • Eine in Richtung einer Antriebsdrehachse A sich erstreckende und eine zentrale Öffnung 71 des Walzenantriebsmotors 65 sowie die zentrale Öffnung 64 im Träger 52 durchsetzende Motorwelle 66 des Oszillationsantriebsmotors 58 liegt mit ihrem freien Endbereich im Wesentlichen an einer zweiten axialen Seite 68 des Trägers 52 und trägt dort eine vorzugsweise als Zahnscheibe ausgebildete Riemenantriebsscheibe 70 eines allgemein mit 72 bezeichneten Riemenantriebs. Die Motorwelle 66 kann mit einem aus dem Motorgehäuse 62 hervorstehenden und darin drehbar gelagerten Rotor des Oszillationsantriebsmotors 58 zur gemeinsamen Drehung verbunden oder damit integral ausgebildet sein.
  • Bezüglich der Antriebsdrehachse A einander gegenüberliegend und im Wesentlichen mit gleichem Abstand dazu angeordnet sind an dem Träger 52 zwei Oszillationsmasseneinheiten 74, 76 vorgesehen. Die beiden Oszillationsmasseneinheiten 74, 76 weisen vorzugsweise grundsätzlich den gleichen Aufbau auf, so dass nachfolgend deren Aufbau mit Bezug auf beide Oszillationsmasseneinheiten 74, 76 gleichermaßen beschrieben wird.
  • Jede der beiden Oszillationsmasseneinheiten 74, 76 umfasst einen Unwuchtmassen-Lagervorsprung 78, der in seinen ersten axialen Endbereich 80 durch eine Mehrzahl von Befestigungsorganen 82, beispielsweise Schraubbolzen, am Träger 52, insbesondere der zweiten axialen Seite 68 desselben festgelegt ist. Für eine definierte Positionierung kann im ersten axialen Endbereich 80 der Lagervorsprung 78 einen in eine entsprechende Positionierausnehmung des Trägers 52 eingreifenden Positioniervorsprung aufweisen. Jeder einen im Wesentlichen freitragenden bzw. freistehenden Lagerzapfen bereitstellende Unwuchtmassen-Lagervorsprung 78 trägt in seinem zweiten axialen Endbereich 84 eine Unwuchtmasse 86 um eine jeweilige Oszillationsdrehachse O drehbar. Jede Unwuchtmasse 86 umfasst einen Unwuchtmassen-Ringkörper 88, der über ein Unwuchtmassen-Lager 90 drehbar auf dem Unwuchtmassen-Lagervorsprung 78 getragen ist. Das Unwuchtmassen-Lager 90 umfasst einen durch eine Fixierplatte 92 am zweiten axialen Endbereich 84 des Unwuchtmassen-Lagervorsprungs 78 festgelegten Lagerinnenring 94 sowie einen beispielsweise über eine Mehrzahl von Wälzkörpern, wie z. B. Kugeln oder Rollen 96, auf dem Lagerinnenring 94 drehbar gelagerten Lageraußenring 98. Der Lageraußenring 98 ist über ein Fixierelement 100 am Unwuchtmassen-Ringkörper 88 festgelegt, so dass der Unwuchtmassen-Ringkörper 88 am jeweils zugeordneten Unwuchtmassen-Lagervorsprung 78 in axialer Richtung bezüglich einer jeweiligen Oszillationsdrehachse O definiert gehalten ist. Dabei ist in Fig. 3 deutlich zu erkennen, dass aufgrund der zueinander identischen Ausgestaltung die beiden Unwuchtmassen 86 bzw. deren Unwuchtmassen-Ringkörper 88 zueinander axial ausgerichtet, also im gleichen axialen Bereich positioniert sind.
  • Jeder Unwuchtmassen-Ringkörper 88 ist als Zahnscheibe ausgebildet und stellt somit eine jeweilige Riemenabtriebsscheibe 102 bereit. In Zuordnung zu jeder Unwuchtmasse 86 umfasst der Riemenantrieb 72 jeweils einen Riemen 104, 106, wobei die beiden Riemen 104, 106 zueinander in Richtung der Antriebsdrehachse A versetzt bzw. nebeneinander liegen, so dass jeder Riemen 104, 106 mit einem diesem jeweils zugeordneten Riemenwechselwirkungsbereich 108 bzw. 110 der Riemenantriebsscheibe 70 zusammenwirkt bzw. um diesen Bereich geführt ist. Dies führt dazu, dass die Riemen 104, 106 mit den zugeordneten Riemenabtriebsscheiben 102 bzw. Unwuchtmassen-Ringkörpern 88 in entsprechend zueinander versetzten axialen Bereichen zusammenwirken. Da die Riemenabtriebsscheiben 102, ebenso wie die Riemenantriebsscheibe 70, als Zahnscheiben ausgebildet sind, sind die Riemen 104, 106 für eine definierte Antriebswechselwirkung vorzugsweise als Zahnriemen ausgebildet.
  • Um für die beiden Riemen 104, 106 eine definierte Spannung beibehalten zu können, ist in Zuordnung zu jedem der beiden Riemen eine Riemenspannrolle 112 bzw. 114 vorgesehen. Die Riemenspannrollen 112, 114 liegen radial bezüglich der Antriebsdrehachse A im Wesentlichen zwischen der Antriebsdrehachse A und den jeweiligen Oszillationsdrehachsen O und liegen bezüglich einer die Antriebsdrehachse A sowie die beiden Oszillationsdrehachsen O enthaltenden Ebene zueinander gegensinnig versetzt.
  • Durch die beiden am Träger 52 drehbar getragenen Riemenspannrollen 112, 114 wird nicht nur eine definierte Spannung der Riemen 104, 106 beibehalten, sondern es wird dafür gesorgt, dass aufgrund des Umstandes, dass die jeweiligen Riemenspannrollen 112, 114 die zwischen der Riemenantriebsscheibe 70 und der jeweiligen Riemenabtriebsscheibe 102 verlaufenden Riemenabschnitte aufeinander zu pressen, der Umschlingungsgrad der Riemen 104, 106 sowohl um die Riemenantriebsscheibe 70, als auch um die jeweils zugeordnete Riemenabtriebsscheibe 102 vergrößert wird, was aufgrund eines entsprechend vergrößerten bzw. verlängerten Verzahnungseingriffsbereichs für eine verbesserte Antriebswechselwirkung sorgt. Es ist darauf hinzuweisen, dass grundsätzlich auch eine derartige Anordnung der Riemenspannrollen 112, 114 möglich ist, bei welcher die zwischen den jeweiligen Riemenscheiben verlaufenden Abschnitte der Riemen 104, 106 nicht aufeinander zu, sondern voneinander weg gespannt werden. Aufgrund der Vergrößerung des Umschlingungsgrads und der kompakten Bauart ist die in den Figuren dargestellte Ausgestaltung jedoch besonders vorteilhaft.
  • Jede der Unwuchtmassen 86 umfasst vorzugsweise an beiden axialen Seiten des Unwuchtmassen-Ringkörpers 88 ein beispielsweise mit zwei Teilen aufgebautes Unwuchtmassenelement 116, 118. Die beiden Unwuchtmassenelemente 116, 118 sind beispielsweise durch Schraubbolzen 120 miteinander und dem jeweils zugeordneten Unwuchtmassen-Ringkörper 88 fest verbunden und sorgen dafür, dass bei jeder Unwuchtmasse 86 der Massenschwerpunkt exzentrisch zur jeweiligen Oszillationsdrehachse O liegt, so dass bei Rotation der Unwuchtmasse 86 um die zugeordnete Oszillationsdrehachse O ein Unwuchtmoment entsteht. Zumindest eines der Unwuchtmassenelemente 116, 118 oder ein Teil davon könnte mit dem zugeordneten Unwuchtmassen-Ringkörper 88 auch integral, also einstückig ausgebildet sein.
  • Zur Erzeugung eines in Umfangsrichtung um die Antriebsdrehachse A, welche grundsätzlich auch einer Walzendrehachse einer ein derartiges Oszillationsmodul 50 aufweisenden Verdichterwalze entspricht, gerichtetes Oszillationsdrehmoment zu erzeugen, sind die beiden Unwuchtmassen 86 grundsätzlich gegenphasig zueinander positioniert. Dies bedeutet, dass, wie beispielsweise in Fig. 3 dargestellt, in einer Montageposition, also einem Zustand, in welchem das Modul 50 bzw. dessen Systembestandteile zusammengefügt werden, die Massenschwerpunkte der beiden Unwuchtmassen 86 zueinander einen minimalen Abstand aufweisen, was bedingt, dass auch die jeweiligen Unwuchtmassenelemente 118, 116 der beiden Unwuchtmassen 86 zueinander einen minimalen und somit auch einen minimalen Abstand zur Antriebsdrehachse A aufweisen. Um diese Positionierung für jede Unwuchtmasse 86 definiert vorgeben zu können, kann jeweils ein stiftartiges Montagehilfselement 122 vorgesehen werden, welches zugeordnete Öffnungen in den Unwuchtmassenelementen 116, 118 durchgreift und in eine entsprechende Öffnung im Träger 52 eingreift. Somit ist gewährleistet, dass die beiden Unwuchtmassen 86 eine definierte Positionierung bezüglich einander einnehmen, wenn die beiden Riemen 104, 106 um diese bzw. um die Riemenantriebsscheibe 70 gelegt werden. Ist dies erfolgt, können die Montagehilfselemente 122 entfernt, d.h. aus den diese aufnehmenden Öffnungen herausgezogen werden, so dass die beiden Unwuchtmassen 86 um deren jeweilige Oszillationsdrehachse O, angetrieben durch den Oszillationsantriebsmotor 58, rotieren können. Dabei drehen sich die beiden Unwuchtmassen 86 gleichsinnig, jedoch gegenphasig zueinander und auch gleichsinnig mit der Riemenantriebsscheibe 70, wodurch das bereits angesprochene, um die Antriebsdrehachse A orientierte Oszillationsdrehmoment, also ein Drehmoment mit periodisch umkehrender Wirkrichtung um die Antriebsdrehachse A, generiert wird.
  • Es sei hier darauf hingewiesen, dass insbesondere zur Erzeugung eines derartigen Oszillationsdrehmomentes die gegenphasige Positionierung der beiden Unwuchtmassen 86 erforderlich bzw. besonders vorteilhaft ist. Bei anderer Phasenlage zueinander können andere Arten von beispielsweise im Wesentlichen auch linear, also nicht in Umfangsrichtung um eine jeweilige Walzendrehachse sondern beispielsweise im Wesentlichen orthogonal dazu gerichteten, oszillierenden Kräften erzeugt werden. Auch dies ist im Sinne der vorliegenden Erfindung als eine Oszillation, jedoch ohne die Erzeugung eines um eine Walzendrehachse oszillierenden Drehmomentes, sondern mit Erzeugung einer oszillierenden und beispielsweise orthogonal zu einer jeweiligen Walzendrehachse gerichteten Kraft, zu verstehen. Weiter sei darauf hingewiesen, dass insbesondere für eine in radialer Richtung bezüglich der Antriebsdrehachse A freiere Positionierbarkeit der beiden Unwuchtmassen 86 die Ankopplung derselben an den Oszillationsantriebsmotor 58 über den Riemenantrieb 72 besonders vorteilhaft ist, insbesondere da damit auch in besonders einfacher Weise gewährleistet werden kann, dass beide Unwuchtmassen 86 in gleicher Richtung rotieren. Alternativ könnten die beiden Unwuchtmassen 86 jedoch auch über ein jeweiliges Zahnradgetriebe an den Oszillationsantriebsmotor 58 angekoppelt werden, wodurch es beispielsweise auch leicht möglich wird, für beide Unwuchtmassen zueinander unterschiedliche Drehrichtungen vorzugeben, wodurch das Spektrum an erzeugbaren periodischen und beispielsweise linear gerichteten Kräften noch weiter vergrößert wird.
  • Die Fig. 6 zeigt die Integration eines derartigen Oszillationsmoduls 50 in eine Verdichterwalze, beispielsweise die Verdichterwalze 12 des Bodenverdichters 10. In dem von dem Walzenmantel 16 der Verdichterwalze 12 umschlossenen Innenraum 124 ist eine beispielsweise scheibenartig ausgebildete und an ihrem Außenumfang beispielsweise durch Verschweißung am Walzenmantel 16 festgelegte Trägerstruktur 126, welche allgemein auch als Ronde bezeichnet werden kann, vorgesehen. Diese in Fig. 7 in Axialansicht erkennbare Trägerstruktur 126 weist eine der Außenumfangskontur des Trägers 52 des Oszillationsmoduls 50 angepasste, längliche Öffnung 128 auf, in welche das Oszillationsmodul 50 vom axialen Endbereich 129 des Walzenmantels 16 her eingesetzt werden kann. Durch eine Mehrzahl von Verbindungsbolzen 130, beispielsweise Schraubbolzen, welche die in Fig. 5 erkennbaren Verbindungsbolzen-Durchgriffsöffnungen 56 durchsetzen und in entsprechende Innengewindeöffnungen der Trägerstruktur 126 eingeschraubt sind, wird der Träger 52 in definierter Positionierung an der Trägerstruktur 126 festgelegt. Hierzu können der Träger 52 und die Trägerstruktur 126 in ihren einander überlappenden Randbereichen jeweils axial abgesetzte Positionierbereiche 132, 134 aufweisen.
  • Die Positionierung des Oszillationsmoduls 50 in der Verdichterwalze 12 ist vorzugsweise derart, dass in Richtung der Walzendrehachse A1, welche der Antriebsdrehachse A des Oszillationsantriebsmotors 58 entspricht, der Oszillationsantriebsmotor 58 im Wesentlichen vollständig im Innenraum 124 aufgenommen ist, also in Richtung der Walzendrehachse A1 im Wesentlichen nicht über den Walzenmantel 16 hervorsteht. Somit wird eine störende Wechselwirkung mit die Verdichterwalze 12 drehbar tragenden Rahmenteilen des Bodenverdichters 10 vermieden.
  • Durch die modulartige Ausgestaltung wird es möglich, das gesamte Oszillationsmodul 50 vor dem Integrieren in eine Verdichterwalze zu montieren, insbesondere auch diejenigen Systembereiche, die, an der zweiten axialen Seite 68 des Trägers 52 liegend, in einem im Innenraum 124 nur schwer zugänglichen Bereich zu positionieren sind. Das gesamte Modul kann vorgefertigt in die Verdichterwalze 12 eingesetzt und an dieser festgelegt werden. Weitere Montagevorgänge zum Anbringen anderer Systembereiche einer durch das Oszillationsmodul 50 bereitgestellten Oszillationsanordnung im Inneren der Verdichterwalze 12 sind grundsätzlich nicht erforderlich.
  • Durch den modulartigen Aufbau wird es ferner möglich, beispielsweise durch Auswahl der Masse oder/und Form der jeweiligen Unwuchtmassenelemente zur Anpassung an verschiedene Größen von Verdichterwalzen verschiedene zu Unwuchtmomente bzw. Oszillationsdrehmomente erzeugen zu können. Auch dies erhöht den Modulcharakter, da für die Ausstattung verschieden dimensionierter Verdichterwalzen grundsätzlich auf Gleichteile zugegriffen werden kann. Dies trifft auch für den Aufbau eines jeden Oszillationsmoduls 50 selbst zu, da auch dort insbesondere bei jeder der Unwuchtmasseneinheiten 74, 76 zueinander identische Bauteile eingesetzt werden können.
  • Die Fig. 8 veranschaulicht in prinzipartiger Darstellung die Ausstattung einer Verdichterwalze 12 mit zwei erfindungsgemäß aufgebauten Oszillationsmodulen 50. Diese sind jeweils nahe den axialen Endbereichen 129, 136 des Walzenmantels 16 in der vorangehend mit Bezug auf die Fig. 6 beschriebenen Art und Weise positioniert. Jedes der beiden Oszillationsmodule 52 ist unabhängig vom jeweils anderen Oszillationsmodul betreibbar, so dass durch jedes Oszillationsmodul 50 ein in seiner Phasenlage bezüglich des jeweils anderen Moduls und auch in seiner Frequenz frei einstellbares Oszillationsdrehmoment erzeugt werden kann. Insbesondere durch Variation der Phasenlage der durch die beiden Oszillationsmodule 50 generierten Oszillationsdrehmomente wird es möglich, eine destruktive oder eine konstruktive Überlagerung der beiden Oszillationsdrehmomente zu erreichen, so dass das durch die Überlagerung generierte Gesamt-Oszillationsdrehmoment einerseits hinsichtlich seiner Amplitude variierbar ist, nämlich durch Veränderung der Phasenlage der beiden durch die Oszillationsmodule 50, 52 generierten Oszillationsdrehmomente, und andererseits auch in seiner Frequenz unabhängig von der Amplitude des Gesamt-Oszillationsdrehmomentes variierbar ist, indem bei den beiden Oszillatonsmodulen 50 die Drehzahl des jeweiligen Oszillationsantriebsmotors 58 entsprechend variiert wird.
  • Während in Fig. 8 eine ungeteilte Verdichterwalze 12 beispielhaft dargestellt ist, zeigt die Fig. 9 eine geteilte Verdichterwalze 12' mit zwei in Richtung der Walzendrehachse A1' nebeneinanderliegenden Verdichterwalzenbereichen 12a' und 12b'. Diese beiden zusammen eine geteilte Verdichterwalze 12' bereitstellenden Verdichterwalzenbereiche 12a' und 12b' sind jeweils mit einem Oszillationsmodul 50 ausgestattet, so dass bei jedem der beiden Verdichterwalzenbereiche 12a', 12b' jeweils unabhängig vom anderen Verdichterwalzenbereich eigenständig ein Oszillationsdrehmoment generiert werden kann.
  • Nachfolgend werden mit Bezug auf die Fig. 10 bis 13 verschiedene Variationen eines Oszillationsmoduls beschrieben, welche grundsätzlich auf dem gleichen, vorangehend beschriebenen Aufbaukonzept basieren. In den Fig. 10 bis 13 sind für Komponenten bzw. Systembereiche, welche vorangehend mit Bezug auf die Fig. 3 bis 9 beschriebenen Komponenten bzw. Systembereichen entsprechen, gleiche Bezugszeichen verwendet.
  • Die Fig. 10 und 11 zeigen eine Ausgestaltung eines Oszillationsmoduls 52, bei welchem zum Erhöhen der Steifigkeit bzw. Stabilität die beiden Unwuchtmassen-Lagervorsprünge 78 in ihren zweiten axialen Endbereichen 84 vermittels eines Stützkörpers 138, beispielsweise ausgebildet als U-Profilträger, bezüglich einander abgestützt sind. Die mit Bezug auf den Träger 52 grundsätzlich freitragenden Unwuchtmassen-Lagervorsprünge 78 sind somit an ihren freien Enden gegeneinander abgestützt, so dass auch bei vergleichsweise großen Drehzahlen und somit im Bereich jeder Oszillationsmasseneinheit 74, 76 generierten großen Unwuchtmomente eine Taumelbewegung der Unwuchtmassen-Lagervorsprünge 78 im Bereich ihrer jeweiligen Unwuchtmassen 86 drehbar tragenden zweiten axialen Endbereiche 84 vermieden wird.
  • Zur Anbindung des Stützkörpers 138 an die Unwuchtmassen-Lagervorsprünge 78, z.B. durch Schraubbolzen, können diese in ihren zweiten axialen Endbereichen 84 verlängert sein, um dafür zu sorgen, dass ausreichend Bauraum für die freie Rotation der vom Träger 52 abgewandt positionierten Unwuchtmassenelemente 116 vorhanden ist. Gleichwohl kann auch bei dieser Ausgestaltung davon gesprochen werden, dass die Unwuchtmassen 56 im Wesentlichen in den zweiten axialen Endbereichen 84 der Unwuchtmassen-Lagervorsprünge 78 an diesen drehbar getragen sind. Bei einer Abwandlung dieser Ausgestaltungsart könnte zumindest ein Unwuchtmassen-Lagervorsprung 78 in seinem zweiten axialen Endbereich 84 durch einen Stützkörper bezüglich des Trägers 52 abgestützt sein.
  • Die Fig. 12 zeigt eine Ausgestaltung eines in einer Verdichterwalze 12 integrierten Oszillationsmoduls 50, bei welchem der grundsätzlich plattenartige Träger 52 eine dreidimensionale Ausformung aufweisen kann und beispielsweise als Gussbauteil hergestellt ist, während beispielsweise bei den vorangehend beschriebenen Ausgestaltungsformen der Träger 52 als Stanz- oder Ausschneidebauteil ausgebildet sein kann. Bei dem in Fig. 12 dargestellten Ausgestaltungsbeispiel sind die Unwuchtmassen-Lagervorsprünge 78 der beiden Oszillationsmasseneinheiten 74, 76 mit dem Träger 52 integral, also einstückig, somit als ein Materialblock ausgebildet. Dies erhöht die Stabilität und vermeidet Arbeitsvorgänge zum Montieren der Unwuchtmassen-Lagervorsprünge 78 am Träger 52.
  • Ferner zeigt die Fig. 12 deutlich, dass bei Herstellung als Gussbauteil es vergleichsweise leicht möglich ist, dem Träger 52 eine dreidimensional ausgeformte Struktur zu geben, so dass dessen mit der Trägerstruktur 126 zu verbindende Verbindungsformation 54 bzw. der äußere Umfangsbereich des Trägers 52 bezüglich desjenigen Bereichs, in welchem das Gehäuse 62 des Oszillationsantriebsmotors 58 am Träger 52 festgelegt ist, axial versetzt liegen kann. Dies gestattet es, die wesentlichen Systembereiche des Oszillationsmoduls 50 in Richtung der Walzendrehachse A1 weiter nach einwärts zu verlagern, obgleich die Trägerstruktur 126 vergleichsweise nahe am axialen Endbereich 129 des Walzenmantels 16 positioniert ist.
  • Es ist darauf hinzuweisen, dass eine derartige dreidimensionale Ausformung des Trägers 52 grundsätzlich auch bei dem vorangehend mit Bezug auf die Fig. 3 bis 5 beschriebenen Aufbau realisierbar ist, wozu beispielsweise der zunächst plan, also im Wesentlichen als ebenes Bauteil bereitgestellte Träger 52 einer entsprechenden Verformung unterzogen wird. Auch könnte ein derartiger dreidimensional ausgeformter Träger 52 durch den Zusammenbau mehrerer Einzelteile bereitgestellt werden, die beispielsweise durch Verschweißung oder/und Verschraubung oder dergleichen miteinander verbunden sein können.
  • Die Fig. 13 zeigt eine weitere alternative Ausgestaltungsart eines mit zwei Unwuchtmasseneinheiten 74, 76 aufgebauten Oszillationsmoduls 50. Bei dieser Ausgestaltungsart eines Oszillationsmoduls 50 weisen die beiden Oszillationsmasseneinheiten 74, 76 jeweils eine mit einer Unwuchtwelle 140 ausgebildete Unwuchtmasse 86 auf. Die Unwuchtwelle 140 ist in einem axialen Endbereich 142 am beispielsweise als Gussbauteil bereitgestellten Träger 52 über ein Unwuchtmassen-Lager 144 drehbar getragen und ist in ihren anderen axialen Endbereich 146 über ein Unwuchtmassen-Lager 148 an einem deckel- bzw. plattenartigen Stützkörper 150 drehbar getragen. Zur Aufnahme einer jeweiligen Unwuchtmasse 86 kann der Träger 52 eine topfartige Ausformung 152 aufweisen, die im Bereich des zweiten axialen Endbereichs 146 der Unwuchtwelle 140 durch den Stützkörper 150 abgeschlossen werden kann.
  • Außerhalb des so umgrenzten und die Unwuchtmasse 86 bzw. ein oder mehrere Unwuchtmassenelemente der Oszillationsmasseneinheit 74 aufnehmenden Volumens ist im Bereich des ersten axialen Endbereichs 142 an die Unwuchtwelle 140 eine Riemenabtriebsscheibe 154 angebunden. Diese steht über einen nur prinzipiell angedeuteten Riemen 104 in Antriebsverbindung mit der Riemenantriebsscheibe 70, während in entsprechender Art und Weise die Unwuchtmasse 86 der anderen Oszillationsmasseneinheit 76 über eine Riemenabtriebsscheibe 156 und den Riemen 106 in Antriebsverbindung mit der Riemenantriebsscheibe 70 steht. Die Riemenantriebsscheibe 70 wiederum kann in größerem axialen Abstand zu dem Gehäuse 62 des Oszillationsantriebsmotors 58 an einer Welle 158 getragen sein, welche die Motorwelle des Oszillationsantriebsmotors 58 verlängert oder fortsetzt oder durch diese selbst bereitgestellt ist.
  • Auch bei dieser Ausgestaltungsart wird der Modulcharakter erreicht, da alle Systembereiche eines Oszillationsmoduls 50 an dem plattenartigen Träger 52 vorgesehen werden können und zusammen mit diesem im Innenraum 124 der Verdichterwalze 12 angeordnet und an der Trägerstruktur 126 festgelegt werden können.
  • Eine weitere alternative Ausgestaltungsart eines mit zwei Unwuchtmasseneinheiten 74, 76 aufgebauten Oszillationsmodus ist in Fig. 14 dargestellt. Auch bei dem in Fig. 14 dargestellten Aufbau ist der rotierende Bereich 67 des Walzenantriebsmotors 65 an der ersten axialen Seite 60 des Trägers 52 im Bereich der zentralen Öffnung 64 angeordnet. An der zweiten axialen Seite 68 des Trägers 52 ist ein topfartiges Gehäuse 160 angeordnet. Dieses umfasst eine die zentrale Öffnung 64 umgebend angeordnete Umfangswand 162. In diese Umfangswand 162 sind die den rotierenden Bereich 67 des Walzenantriebsmotors 65 am Träger 52 festlegenden Schraubbolzen 69 eingeschraubt, so dass durch die Schraubbolzen 69 sowohl der Walzenantriebsmotor 65, als auch das topfartige Gehäuse 160 an den Träger 52 angebunden ist.
  • An einem von dem Träger 52 abgewandten axialen Ende der Umfangswand 162 ist an dieser ein Boden 164 des topfartigen Gehäuses 160 vorgesehen, beispielsweise damit integral ausgebildet oder daran durch Verschraubung festgelegt. An diesem topfartigen Boden 164 sind die Riemenspannrollen drehbar getragen, von welchen in Fig. 14 die Riemenspannrolle 112 im oberen Bereich in Zuordnung zum Riemen 104 erkennbar ist. Ferner ist am Boden 164 über ein Lager 166 die den Walzenantriebsmotor 65 im Bereich von dessen zentraler Öffnung 71 durchsetzende Motorwelle 66 drehbar gelagert. In dem über den Boden 164 bzw. das Lager 166 hinaus stehenden axialen Endbereich trägt die Motorwelle 66 die Riemenantriebsscheibe 70.
  • Jede der beiden Oszillationsmasseneinheiten 74, 76 ist mit einem vom Träger 52 getrennt aufgebauten, an diesem beispielsweise durch Verschraubung oder Verschweißung festgelegten Oszillationsmassengehäuse 168 aufgebaut. Jedes Oszillationsmassengehäuse 168 umfasst eine am Träger 52 festgelegte Umfangswand 170 sowie zwei an den axialen Enden der Umfangswand 170 vorgesehene, deckelartige Böden 172, 174. Diese können von der Umfangswand 170 separat ausgebildet und daran beispielsweise durch Verschraubung festgelegt sein. Alternativ könnte einer der Böden 172, 174 mit der Umfangswand 170 integral ausgebildet sein. An den beiden Böden 172, 174 ist eine jeweilige Unwuchtmasse 86 mit deren Unwuchtwelle 140 über die Unwuchtmassen-Lager 144, 148 drehbar getragen.
  • Die Oszillationsmassengehäuse 168 sind in jeweiligen Öffnungen 176 des Trägers 52 näherungsweise in einem axialen Mittenbereich der jeweiligen Umfangswand 170 angeordnet, derart, dass die an den Unwuchtwellen 140 im Bereich von deren axialen Endbereichen 142 getragenen Riemenabtriebsscheiben 154, 156 im axialen Bereich der Riemenantriebsscheibe 70 positioniert sind und mit dieser über die Riemen 104, 106 zur gemeinsamen Drehung verbunden werden können.
  • Es ist darauf hinzuweisen, dass bei der in Fig. 14 dargestellten Ausgestaltung beispielsweise das topfartige Gehäuse 160 auch in baulich anderer Konfiguration bereitgestellt wird. So kann die Umfangswand 162 mit mehreren, beispielsweise mit dem Boden 164 integral ausgebildeten, axial sich erstreckenden und durch die Schraubbolzen 69 an den Träger 52 angebundenen Stegen bereitgestellt sein.
  • Abschließend ist darauf hinzuweisen, dass, obgleich vorangehend mit Bezug auf die verschiedenen Ausgestaltungsformen die jeweiligen Oszillationsmasseneinheiten zueinander bauidentisch beschrieben und dargestellt sind, grundsätzlich auch baulich voneinander abweichende Ausgestaltungen möglich sind. Auch können beispielsweise mehr als zwei Oszillationsmasseneinheiten, beispielsweise insgesamt vier einander jeweils paarweise bezüglich der Antriebsdrehachse gegenüberliegende Oszillationsmasseneinheiten, vorgesehen sein.

Claims (16)

  1. Oszillationsmodul für eine Verdichterwalze eines Bodenverdichters, umfassend:
    - einen plattenartigen Träger (52), wobei der Träger (52) eine Verbindungsformation (54) zur festen Verbindung des Trägers (52) mit einer Trägerstruktur (126) einer Verdichterwalze (12) aufweist,
    - wenigstens zwei an dem Träger (52) in Abstand zueinander getragene Oszillationsmasseneinheiten (74, 76), jede Oszillationsmasseneinheit (74, 76) umfassend eine an dem Träger (52) um eine Oszillationsdrehachse (O) drehbar getragene Unwuchtmasse (86),
    - einen an dem Träger (52) getragenen Oszillationsantriebsmotor (58), wobei durch den Oszillationsantriebsmotor (58) jede Unwuchtmasse (86) jeder Oszillationsmasseneinheit (74, 76) zur Drehung um die jeweils zugeordnete Oszillationsdrehachse (O) antreibbar ist.
  2. Oszillationsmodul nach Anspruch 1,
    dadurch gekennzeichnet, dass wenigstens eine, vorzugsweise jede Oszillationsmasseneinheit (74, 76) einen an dem Träger (52) getragenen Unwuchtmassen-Lagervorsprung (78) und wenigstens eine an dem Unwuchtmassen-Lagervorsprung (78) um die Oszillationsdrehachse (O) drehbar getragene Unwuchtmasse (86) umfasst, oder/und dass wenigstens eine, vorzugsweise jede Oszillationsmasseneinheit (74, 76) eine Unwuchtmasse (86) mit einer an dem Träger (52) um eine Oszillationsdrehachse (O) drehbar getragenen Unwuchtwelle (140) umfasst
  3. Oszillationsmodul nach Anspruch 2,
    dadurch gekennzeichnet, dass bei wenigstens einer, vorzugsweise jeder Oszillationsmasseneinheit (74, 76) der Unwuchtmassen-Lagervorsprung (78) in seinem ersten axialen Endbereich (80) an dem Träger (52) getragen ist und in seinem zweiten axialen Endbereich (84) freitragend ist, oder/und bei wenigstens einer, vorzugsweise jeder Oszillationsmasseneinheit (74, 76) der Unwuchtmassen-Lagervorsprung (76) in seinem ersten axialen Endbereich (80) an dem Träger (52) getragen ist und in seinem zweiten axialen Endbereich (84) bezüglich des Unwuchtmassen-Lagervorsprungs (78) wenigstens einer anderen Oszillationsmasseneinheit (76, 74) oder bezüglich des Trägers (52) abgestützt ist, oder/und dass wenigstens eine, vorzugsweise jede Unwuchtmasse (86) auf dem zugeordneten Unwuchtmassen-Lagervorsprung (78) durch ein Unwuchtmassen-Lager (90) drehbar getragen ist, wobei das Unwuchtmassen-Lager (90) einen an dem Unwuchtmassen-Lagervorsprung (78) getragenen oder durch diesen bereitgestellten Lagerinnenring (94) und einen an der Unwuchtmasse (86) getragenen oder durch diese bereitgestellten Lageraußenring (98) umfasst.
  4. Oszillationsmodul nach Anspruch 2 oder 3,
    dadurch gekennzeichnet, dass wenigstens eine, vorzugsweise jede Unwuchtmasse (86) einen auf dem zugeordneten Unwuchtmassen-Lagervorsprung (78) drehbar getragenen Unwuchtmassen-Ringkörper (88) und wenigstens ein an dem Unwuchtmassen-Ringkörper (88) vorgesehenes Unwuchtmassenelement (116, 118) umfasst,
    vorzugsweise wobei bei wenigstens einer, vorzugsweise jeder Unwuchtmasse (86) an wenigstens einer, vorzugsweise beiden axialen Stirnseiten des Unwuchtmassen-Ringkörpers (88) ein Unwuchtmassenelement (116, 118) angeordnet und mit dem Unwuchtmassen-Ringkörper (88) vorzugsweise lösbar verbunden ist.
  5. Oszillationsmodul nach einem der vorangehenden Ansprüche,
    dadurch gekennzeichnet, dass wenigstens eine, vorzugsweise jede Unwuchtmasse (86) vermittels des Oszillationsantriebsmotors (58) durch einen Riemenantrieb (72) zur Drehung antreibbar ist.
  6. Oszillationsmodul nach Anspruch 5,
    dadurch gekennzeichnet, dass der Riemenantrieb (72) in Zuordnung zu wenigstens einer, vorzugsweise jeder Unwuchtmasse (86) an dem Oszillationsantriebsmotor (58) eine um eine Antriebsdrehachse (A) drehbare Riemenantriebsscheibe (70), vorzugsweise Zahnscheibe, an der Unwuchtmasse (86) eine Riemenabtriebsscheibe (102), vorzugsweise Zahnscheibe, sowie einen mit der Riemenantriebsscheibe (70) und der Riemenabtriebsscheibe (102) zusammenwirkenden Riemen (104, 106), vorzugsweise Zahnriemen, umfasst.
  7. Oszillationsmodul nach Anspruch 4 und Anspruch 6,
    dadurch gekennzeichnet,
    dass bei wenigstens einer, vorzugsweise jeder Unwuchtmasse (86) der Unwuchtmassen-Ringkörper (88) die Riemenabtriebsscheibe (102) bereitstellt, oder/und
    dass die Riemenantriebsscheibe (70) mit wenigstens zwei Riemen (104, 106) zum Antrieb wenigstens zweier Unwuchtmassen (86) verschiedener Oszillationsmasseneinheiten (74, 76) zusammenwirkt, wobei die Riemenantriebsscheibe (70) zur Zusammenwirkung mit den Riemen (104, 106) in Richtung der Antriebsdrehachse (A) aufeinanderfolgende Riemenwechselwirkungsbereiche (108, 110) aufweist.
  8. Oszillationsmodul nach Anspruch 7,
    dadurch gekennzeichnet, dass die jeweils eine Riemenabtriebsscheibe (102) bereitstellenden Unwuchtmassen-Ringkörper (88) zueinander baugleich sind oder/und in Richtung der Antriebsdrehachse (A) im gleichen axialen Bereich positioniert sind.
  9. Oszillationsmodul nach einem der Ansprüche 5-8,
    dadurch gekennzeichnet, dass in Zuordnung zu wenigstens einem, vorzugsweise jedem Riemen (104, 106) eine Riemenspannrolle (112, 114) vorgesehen ist, vorzugsweise wobei wenigstens eine Riemenspannrolle (112, 114) eine Umfangs-Wechselwirkungslänge zwischen dem Riemen (104, 106) und der mit diesem zusammenwirkenden Riemenantriebsscheibe (70) oder/und Riemenabtriebsscheibe (102) vergrößert.
  10. Oszillationsmodul nach einem der vorangehenden Ansprüche,
    dadurch gekennzeichnet, dass der Oszillationsantriebsmotor (58) ein an dem Träger (52) getragenes, im Wesentlichen an einer ersten axialen Seite (60) des Trägers (52) positioniertes Motorgehäuse (62) und eine eine Öffnung (64) in dem Träger (52) durchsetzende und an einer zweiten axialen Seite (68) des Trägers (52) mit den Oszillationsmasseneinheiten (74, 76) in Antriebswechselwirkung stehende Motorwelle (66) umfasst,
    vorzugsweise wobei die Oszillationsmasseneinheiten (74, 76) an der zweiten axialen Seite (68) des Trägers (52) angeordnet sind oder/und der Oszillationsantriebsmotor (58) über einen Walzenantriebsmotor (65) an dem Träger (52) getragen ist.
  11. Oszillationsmodul nach Anspruch 10,
    dadurch gekennzeichnet, dass an der zweiten axialen Seite (68) des Trägers (52) die Öffnung (64) in dem Träger (52) umgebend ein die Motorwelle (66) des Oszillationsantriebsmotors (58) drehbar lagerndes, vorzugsweise tropfartiges Gehäuse (160) angeordnet ist,
    vorzugsweise wobei das Gehäuse (160) zusammen mit dem Walzenantriebsmotor (65) an dem Träger (52) festgelegt ist.
  12. Oszillationsmodul nach Anspruch 9 und Anspruch 11,
    dadurch gekennzeichnet, dass wenigstens eine, vorzugsweise jede Riemenspannrolle (112, 114) an dem Gehäuse (160) getragen ist.
  13. Oszillationsmodul nach einem der vorangehenden Ansprüche,
    dadurch gekennzeichnet,
    dass wenigstens eine, vorzugsweise jede Oszillationsmasseneinheit (74, 76) ein Oszillationsmassengehäuse (168) mit einer in einer Öffnung (176) des Trägers (52) aufgenommenen Umfangswand (170) und an beiden axialen Endbereichen der Umfangswand (170) jeweils einem eine Unwuchtmasse (86) drehbar tragenden Boden (172, 174) umfasst,
    oder/und
    dass eine Antriebsdrehachse (A) des Oszillationsantriebsmotor (58) und die Oszillationsdrehachsen (O) wenigstens zweier Oszillationsmasseneinheiten (74, 76) zueinander parallel sind oder/und in einer gemeinsamen Ebene (E) liegen,
    oder/und
    dass die Verbindungsformation (54) an einem Außenumfangsbereich des Trägers (52) eine Mehrzahl von Verbindungsbolzen-Durchgriffsöffnungen (56) umfasst.
  14. Oszillationsmodul nach Anspruch 2 oder einem der Ansprüche 3-13, sofern auf Anspruch 2 rückbezogen,
    dadurch gekennzeichnet, dass wenigstens ein, vorzugsweise jeder Unwuchtmassen-Lagervorsprung (78) an dem Träger (52) durch eine Mehrzahl von Befestigungsorganen (82) festgelegt ist, oder/und dass wenigstens ein, vorzugsweise jeder Unwuchtmassen-Lagervorsprung (78) mit dem Träger (52) einstückig ausgebildet ist.
  15. Bodenverdichter, umfassend wenigstens eine um eine Walzendrehachse (A1, A2) drehbare Verdichterwalze (12, 14) mit wenigstens einem Oszillationsmodul (50) nach einem der vorangehenden Ansprüche.
  16. Bodenverdichter nach Anspruch 15,
    dadurch gekennzeichnet,
    dass die wenigstens eine Verdichterwalze (12) einen einen (124) Innenraum umschließenden Walzenmantel (16) umfasst, wobei in Zuordnung zu dem wenigstens einen Oszillationsmodul (50) in dem Innenraum (126) eine mit dem Walzenmantel (16) drehfeste, vorzugsweise scheibenartige Trägerstruktur (126) vorgesehen ist und der Träger (52) des wenigstens einen Oszillationsmoduls (50) mit seiner Verbindungsformation (54) an der diesem zugeordneten Trägerstruktur (126) festgelegt ist,
    oder/und
    dass in der Verdichterwalze (12) zwei Oszillationsmodule (50) in Richtung der Walzendrehachse (A1) mit Abstand zueinander angeordnet sind,
    oder/und
    dass wenigstens eine Verdichterwalze (12') eine geteilte Verdichterwalze (12') mit in Richtung der Walzendrehachse (A1') aufeinanderfolgenden Verdichterwalzenabschnitten (12a', 12b') ist, wobei in jedem Verdichterwalzenabschnitt (12a', 12b') wenigstens ein Oszillationsmodul (50) angeordnet ist, oder/und dass wenigstens eine Verdichterwalze (12) eine ungeteilte Verdichterwalze (12) ist, wobei in jedem axialen Endbereich (129, 136) der Verdichterwalze (12) ein Oszillationsmodul (50) vorzugsweise derart angeordnet ist, dass dieses in Richtung der Walzendrehachse (A1) von einem Walzenmantel (16) der Verdichterwalze (12) im Wesentlichen vollständig axial überdeckt ist.
EP23178851.4A 2017-09-27 2018-09-25 Oszillationsmodul Pending EP4234813A3 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE102017122370.3A DE102017122370A1 (de) 2017-09-27 2017-09-27 Oszillationsmodul
PCT/EP2018/075954 WO2019063540A1 (de) 2017-09-27 2018-09-25 Oszillationsmodul
EP18782667.2A EP3688227B1 (de) 2017-09-27 2018-09-25 Oszillationsmodul

Related Parent Applications (2)

Application Number Title Priority Date Filing Date
EP18782667.2A Division EP3688227B1 (de) 2017-09-27 2018-09-25 Oszillationsmodul
EP18782667.2A Division-Into EP3688227B1 (de) 2017-09-27 2018-09-25 Oszillationsmodul

Publications (2)

Publication Number Publication Date
EP4234813A2 true EP4234813A2 (de) 2023-08-30
EP4234813A3 EP4234813A3 (de) 2023-10-25

Family

ID=63787905

Family Applications (2)

Application Number Title Priority Date Filing Date
EP23178851.4A Pending EP4234813A3 (de) 2017-09-27 2018-09-25 Oszillationsmodul
EP18782667.2A Active EP3688227B1 (de) 2017-09-27 2018-09-25 Oszillationsmodul

Family Applications After (1)

Application Number Title Priority Date Filing Date
EP18782667.2A Active EP3688227B1 (de) 2017-09-27 2018-09-25 Oszillationsmodul

Country Status (7)

Country Link
US (2) US11248350B2 (de)
EP (2) EP4234813A3 (de)
JP (3) JP7003235B2 (de)
CN (1) CN111051612B (de)
BR (2) BR122023000211B1 (de)
DE (1) DE102017122370A1 (de)
WO (1) WO2019063540A1 (de)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102020128842A1 (de) 2020-11-03 2022-05-05 Hamm Ag Verfahren zum Verdichten von Asphaltmaterial

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2504490B1 (de) 2009-11-27 2017-01-11 Hamm AG Verdichtungsgerät, sowie verfahren zum verdichten von böden
US9574311B1 (en) 2015-07-28 2017-02-21 Caterpillar Paving Products Inc. Oscillation with vibratory pod design

Family Cites Families (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3426660A (en) * 1966-11-02 1969-02-11 John Edward Scott Soil compactor
JPS58500290A (ja) * 1980-12-03 1983-02-24 ゲオデイナミツク エイチ ツルナ− エ−ビ− 地盤の圧密化方法および圧密化装置
SE426719B (sv) * 1980-12-03 1983-02-07 Thurner Geodynamik Ab Forfarande och anordning for packning av ett materialskikt
JPS60144607A (ja) 1984-01-09 1985-07-31 Hitachi Constr Mach Co Ltd シ−ルド掘進機における摩耗検知装置
JPS60144607U (ja) * 1984-03-01 1985-09-25 小松造機株式会社 振動ロ−ラの振動発生装置
JPH0830326B2 (ja) * 1987-06-18 1996-03-27 酒井重工業株式会社 振動ロ−ラ
JPH01290801A (ja) * 1988-05-16 1989-11-22 Sakai Jukogyo Kk 振動ローラ
US4927289A (en) * 1988-06-24 1990-05-22 M-B-W Inc. Vibratory mechanism for a compaction roller
JP2678796B2 (ja) * 1989-10-07 1997-11-17 豊和工業株式会社 振動ローラの振動機構
DE69003530T2 (de) * 1990-05-28 1994-04-28 Caterpillar Paving Prod Einrichtung und Verfahren zur Überwachung der Schwingungsfrequenz einer Verdichtungsmaschine.
DE4434779A1 (de) * 1994-09-29 1996-04-04 Bomag Gmbh Verfahren und Vorrichtung zum dynamischen Verdichten von Boden
US5580234A (en) * 1995-06-02 1996-12-03 Wadensten; Theodore S. Hydraulically operated rotary vibrator
JP3728179B2 (ja) 2000-06-01 2005-12-21 酒井重工業株式会社 振動ローラ
CN2507900Y (zh) 2001-08-16 2002-08-28 徐州工程机械制造厂 复合式振动压实装置
US6561729B1 (en) * 2001-12-14 2003-05-13 Caterpillar Paving Products Inc. Compacting drum for a work machine
RU2305150C2 (ru) * 2003-01-24 2007-08-27 Инджерсолл-Рэнд Компани Вибросистема для уплотняющих машин
JP3799022B2 (ja) 2003-02-24 2006-07-19 酒井重工業株式会社 振動機構及び振動ローラ
JP3962344B2 (ja) 2003-03-04 2007-08-22 酒井重工業株式会社 振動機構及び振動ローラ
SE525020C2 (sv) 2003-03-21 2004-11-09 Metso Dynapac Ab Ställdon för reglering av en vältvals excenteraxels excentermoment
US6837648B1 (en) * 2004-05-27 2005-01-04 Theodore S. Wadensten Portable roller-type compactor apparatus having a combined means for the vibrating and the reversible propelling thereof
US7186056B2 (en) * 2004-08-13 2007-03-06 Caterpillar Paving Products Inc Split drum and support arrangement for a compacting work machine
EP2710189B1 (de) * 2011-05-20 2016-08-24 Volvo Construction Equipment AB Oberflächenverdichter und betriebsverfahren dafür
DE102012201443A1 (de) 2012-02-01 2013-08-01 Hamm Ag Verdichterwalze für einen Bodenverdichter
DE102012024104A1 (de) * 2012-12-10 2014-06-12 Bomag Gmbh Verdichtungsmaschine
EP3339436B1 (de) * 2013-07-29 2021-03-31 Henkel AG & Co. KGaA Waschmittelzusammensetzung mit proteasevarianten
US20170016185A1 (en) * 2015-07-14 2017-01-19 Caterpillar Paving Products Inc. Flush Mount Vibratory System for Utility Roller
US20170016184A1 (en) * 2015-07-15 2017-01-19 Caterpillar Paving Products Inc. Vibratory Compactor Having Conventional and Oscillatory Vibrating Capability
JP2017128880A (ja) 2016-01-19 2017-07-27 関東鉄工株式会社 締固め機械
US20160201275A1 (en) * 2016-03-21 2016-07-14 Caterpillar Paving Products Inc. Vibratory roller for compactors
US9990173B2 (en) 2016-04-14 2018-06-05 Cirrus Logic, Inc. Mixing of single-bit and multi-bit audio signals for simultaneous output
DE102017100069A1 (de) * 2017-01-04 2018-07-05 Hamm Ag Bodenbearbeitungswalze
US10072386B1 (en) * 2017-05-11 2018-09-11 Caterpillar Paving Products Inc. Vibration system

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2504490B1 (de) 2009-11-27 2017-01-11 Hamm AG Verdichtungsgerät, sowie verfahren zum verdichten von böden
US9574311B1 (en) 2015-07-28 2017-02-21 Caterpillar Paving Products Inc. Oscillation with vibratory pod design

Also Published As

Publication number Publication date
US11248350B2 (en) 2022-02-15
EP3688227A1 (de) 2020-08-05
JP7003235B2 (ja) 2022-01-20
EP4234813A3 (de) 2023-10-25
JP7267357B2 (ja) 2023-05-01
BR122023000211B1 (pt) 2023-12-12
JP2021191940A (ja) 2021-12-16
US11913178B2 (en) 2024-02-27
BR122023000219B1 (pt) 2023-12-12
CN111051612B (zh) 2022-09-23
WO2019063540A1 (de) 2019-04-04
JP2023059958A (ja) 2023-04-27
CN111051612A (zh) 2020-04-21
JP2020534459A (ja) 2020-11-26
BR112020002972A2 (pt) 2020-08-11
EP3688227B1 (de) 2023-07-26
US20200308780A1 (en) 2020-10-01
US20220127799A1 (en) 2022-04-28
DE102017122370A1 (de) 2019-03-28

Similar Documents

Publication Publication Date Title
EP2809848B1 (de) Verdichterwalze für einen bodenverdichter
EP2504490B1 (de) Verdichtungsgerät, sowie verfahren zum verdichten von böden
WO2008052691A1 (de) Getriebe
EP2358467A1 (de) Mischer mit drehbarem mischbehälter
WO2006029598A1 (de) Treibscheiben-schachtfördermaschine mit verbesserter kühlluftführung
DE102015216245A1 (de) Getriebeeinrichtung mit exzentrischer Auslenkung und Drehmomenteinstellungsverfahren dazu
EP3461952A1 (de) Verdichterwalze
EP2198091A1 (de) Vorrichtung zur erzeugung von schwingungen
DE102012009984A1 (de) Laborkugelmühle
DE102012009982A1 (de) Laborkugelmühle
EP3688227B1 (de) Oszillationsmodul
EP2255104B1 (de) Getriebe
EP3450631A1 (de) Tiefenrüttler mit verstellbarer unwucht
EP3901371B1 (de) Unwuchtanordnung für eine verdichterwalze eines bodenverdichters
DE102012009985A1 (de) Laborkugelmühle
DE2710708C3 (de) Lagerung für Walzkörper bei Verdichtungswalzen
DE2410472A1 (de) Umlaufendes untersetzungs-planetengetriebe
EP2732100A1 (de) Unwuchterreger für ein bodenverdichtungsgerät
EP2781269A1 (de) Schwingungserreger, insbesondere für eine Baumaschine
EP0730792B1 (de) Motorgetriebener unwuchtvibrator
DE3727742C1 (de) Schuettelbock
DE102005040428B3 (de) Antrieb für eine Presse
DE19512979B4 (de) Antriebsaggregat mit einem Motor, einem Planetengetriebe und einem Abtriebselement
DE19512976A1 (de) Antriebsaggregat, insbesondere Drehwerksantrieb, mit einem Planetengetriebe und einem Abtriebselement
DE4033793A1 (de) Vibrationswalze

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20230613

AC Divisional application: reference to earlier application

Ref document number: 3688227

Country of ref document: EP

Kind code of ref document: P

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

RIC1 Information provided on ipc code assigned before grant

Ipc: E01C 19/28 20060101AFI20230919BHEP