EP4126808A1 - Procédé d'inhibition de la polymérisation radicalaire indésirable de l'acide acrylique présent dans une phase liquide p - Google Patents

Procédé d'inhibition de la polymérisation radicalaire indésirable de l'acide acrylique présent dans une phase liquide p

Info

Publication number
EP4126808A1
EP4126808A1 EP21714113.4A EP21714113A EP4126808A1 EP 4126808 A1 EP4126808 A1 EP 4126808A1 EP 21714113 A EP21714113 A EP 21714113A EP 4126808 A1 EP4126808 A1 EP 4126808A1
Authority
EP
European Patent Office
Prior art keywords
weight
acrylic acid
liquid phase
ppm
glyoxal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
EP21714113.4A
Other languages
German (de)
English (en)
Inventor
Peter Zurowski
Tile GIESHOFF
Nicole Janssen
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BASF SE
Original Assignee
BASF SE
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BASF SE filed Critical BASF SE
Publication of EP4126808A1 publication Critical patent/EP4126808A1/fr
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C51/00Preparation of carboxylic acids or their salts, halides or anhydrides
    • C07C51/42Separation; Purification; Stabilisation; Use of additives
    • C07C51/50Use of additives, e.g. for stabilisation
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C51/00Preparation of carboxylic acids or their salts, halides or anhydrides
    • C07C51/42Separation; Purification; Stabilisation; Use of additives
    • C07C51/47Separation; Purification; Stabilisation; Use of additives by solid-liquid treatment; by chemisorption

Definitions

  • the present invention relates to a method for inhibiting the undesired free radical polymerization of acrylic acid in a liquid phase P and the liquid phase generated when the method is carried out.
  • Acrylic acid is an important monomer that is used as such, in the form of its salts and / or in the form of its esters (e.g. alkyl esters) for the production of polymers that are used e.g. as adhesives or as water-absorbing materials (cf.
  • Acrylic acid can be produced, for example, by heterogeneously catalyzed partial oxidation of a C3 precursor compound (e.g. propylene, propane, acrolein, propionaldehyde, propionic acid, propanol and / or glycerol) in the gas phase (cf. e.g. WO 2010/012586, US 5,198,578, EP 1 710227 A, EP 1 015410 A, EP 1 484 303 A, EP 1 484 308 A, EP 1 484 309 A,
  • a C3 precursor compound e.g. propylene, propane, acrolein, propionaldehyde, propionic acid, propanol and / or glycerol
  • Both the type and the proportion of the constituents other than acrylic acid in the product gas mixture can be determined, among other things, by the choice of the C3 precursor compound, by the catalyst used, by the reaction conditions under which the heterogeneously catalyzed partial gas phase oxidation is carried out, by the type and amount the contaminant components contained in the C3 precursor compound used as raw material, different from the C3 precursor compound, as well as the selection of the diluent gases that usually dilute the reactants in the reaction gas mixture (cf. e.g. DE 101 31 297 A, DE 102005 052917 A, WO 2007/074044 and DE 10028 582 A).
  • a combination of different separation processes is normally used in order to achieve a to achieve the appropriate purity of the acrylic acid for the subsequent use.
  • the particular combination used depends, among other things, on the type and amount of the constituents other than acrylic acid contained in the product gas mixture.
  • a feature common to essentially all possible combinations of separation processes for the separation of acrylic acid from the product gas mixture of a heterogeneously catalyzed partial gas phase oxidation of a C3 precursor compound is that, optionally after direct and / or indirect cooling of the aforementioned product gas mixture, acrylic acid contained in the product gas mixture in a Basic separation step is transferred into the condensed, in particular liquid, phase.
  • reaction gas mixtures of the heterogeneously catalyzed partial gas phase oxidation of the C3 precursor compound e.g. propylene
  • the above-described basic separation of acrylic acid from the product gas mixture of the heterogeneously catalyzed partial gas phase oxidation normally produces a condensed phase, which, in addition to acrylic acid, also contains glyoxal.
  • the separation steps to be used in order to separate the acrylic acid in the desired degree of purity from a liquid phase containing the target product acrylic acid and the undesired by-products glyoxal obtained as part of the basic separation described can vary depending on the target and the type and amount of other undesired secondary components additionally contained Combinations of, for example, adsorptive, extractive, desorptive, distillative, stripping, rectifying, azeotropic distillative, azeotropic rectifying and crystallizing processes.
  • liquid phases containing the target product acrylic acid and the undesired by-product glyoxal of various types and with different proportions can occur, which, for example, have to be temporarily stored or thermally stressed by the addition of heat.
  • EP 1 396484 A (in particular lines 16 and 17 of column 2), however, none of the known inhibitor systems is able to satisfy.
  • the variety of inhibitors recommended in the prior art according to EP 1 396484 A e.g. column 7, paragraph [0024] and column 1, lines 40 to 44
  • EP 1 396484 A states in column 3, lines 5 to 10 that although the known inhibitors are able to inhibit the undesired free radical polymerization of acrylic acid due to the thermal stress of the same comparatively effectively, but above all their inhibitory effect on causing and / or promotion of an undesired radical polymerization of acrylic acid due to impurities such as glyoxal contained in it is insufficient.
  • C3 precursor compounds (these are precursor compounds that have three carbon atoms) of acrylic acid to acrylic acid (e.g. by carefully selecting the catalyst (cf.
  • WO 2012/045738 describes a method for inhibiting the undesired radical polymerization of acrylic acid in a liquid phase P, the acrylic acid content of which is at least 10% by weight and, based on the weight of the acrylic acid contained in it, additionally 25 to 1000% by weight .-ppm glyoxal is made available that is characterized in that the liquid phase P 25 to 1000 ppm by weight of furfural is added.
  • WO 2020/020697 describes a method for inhibiting the undesired free radical polymerization of acrylic acid in a liquid phase P, the acrylic acid content of which is at least 10% by weight and, based on the weight of the acrylic acid contained in it, additionally at least 100% by weight.
  • -ppm propionic acid and at least 100 ppm by weight glyoxal characterized in that at least one chemical compound of the element copper is added to the liquid phase P
  • the object on which this invention is based was to provide an improved method for inhibiting the undesired free-radical polymerization of acrylic acid which is sensitive in a liquid phase P.
  • the process should be technically simple and economical to carry out and should not adversely affect the product quality, i.e. acrylic acid quality.
  • a method for inhibiting the undesired radical polymerization of acrylic acid in a liquid phase P which is characterized in that the acrylic acid content of P is at least 10% by weight, the liquid phase P in the range from 25 to 1000% by weight .
  • a liquid phase P was found which is characterized in that the acrylic acid content of P is at least 10% by weight and the liquid phase P is in the range from 25 to 1000 ppm by weight of glyoxal and in the range from 0.5 to 100 Ppm by weight of protoanemonine, based in each case on the weight of the acrylic acid contained in P.
  • the method is particularly characterized in that the liquid phase P contains in the range from 50 to 500 ppm by weight of glyoxal and / or protoanemonin is added to the liquid phase P in an amount such that a protoanemonin content in the range of 1
  • the result is up to 50 ppm by weight, based in each case on the weight of the acrylic acid contained in P.
  • the process according to the invention is based on the experimental finding, which is surprising compared with the previous knowledge of the prior art, that protoanemonin effectively suppresses the undesired radical polymerization of acrylic acid promoted by glyoxal.
  • hemiacetals and / or acetals generally no longer have the polymerization promotion typical for the monomeric glyoxal, or if at all to a significantly lesser extent than the same.
  • diglyoxal hydrates and triglyoxal hydrates are listed below:
  • the formation of the polyglyoxal hydrates requires elevated temperatures (as a rule, their formation only takes place to a significant extent at temperatures above 50 ° C.) and / or longer reaction times.
  • glycoxal (unless explicitly stated otherwise, or as long as the term “glyoxal” is not explicitly used with at least one additional characterization such as “monomeric” glyoxal or “di” glyoxal - “ Hydrate ", or” monomeric "glyoxal -" monohydrate “is added) not only monomeric glyoxal, but also reversibly subsume glyoxal chemically bound in the form of, for example, acetals and / or hemiacetals of the monomeric glyoxal.
  • glycoxal in this document always means the total amount of monomeric glyoxal and reversibly bound glyoxal.
  • water or aqueous solutions are often also recommended in the prior art as absorbents for a basic absorptive separation from the product gas mixture of the gas phase partial oxidation of the C3 precursor compound (cf. e.g. EP 1 298 120 A and US Pat. No. 7,332,624).
  • the glyoxal content of a liquid phase P (or another liquid phase) to be treated according to the invention is determined in the sense of the present application as follows: First, a derivatization solution D is prepared. For this, 2.0 g of a 50 wt.
  • glyoxal content of a liquid phase P 1 g (if necessary, this amount can be increased accordingly) of the derivatization solution D is weighed into a screw-thread jar with a capacity of 10 ml. A sample of the liquid phase P, the amount of which is in the range 0.15 to 2.0 g, is then weighed into the screw-neck glass filled in this way.
  • the 2,4-dinitro phenylhydrazine also removes the monomeric glyoxal bound in the monomeric glyoxal monohydrate and glyoxal dihydrate contained in the threaded screw glass in the form of hydrazone H (a corresponding removal of monomeric glyoxal from the polyglyoxal contained in the threaded screw glass Hydrates, on the other hand, essentially do not take place).
  • the hydrazone formation that has taken place is then frozen by adding 0.5 g of glacial acetic acid (manufacturer: Aldrich, purity:> 99.8%) to the threaded screw glass. If the addition of acetic acid is accompanied by the formation of solid precipitate, further acetic acid is added successively in order to dissolve the formation of the precipitate (the total amount of acetic acid added must not exceed 1.0 g, however). If the precipitate that has formed does not dissolve even when the maximum limit (1.0 g) of the total amount of acetic acid allowed has been added, 0.5 g of dimethyl phthalate is weighed out.
  • glacial acetic acid manufactured by adding 0.5 g of glacial acetic acid (manufacturer: Aldrich, purity:> 99.8%)
  • the amount of dimethyl phthalate added is successively increased in order to bring about this dissolution (the total amount of dimethyl phthalate added, however, must not exceed 1.0 g). If the precipitate that has formed does not dissolve even when the maximum limit (1.0 g) of the total amount of dimethyl phthalate added is reached, 2 g of a mixture G of 9 g of acetonitrile and 1 g of dimethyl phthalate are added. If this addition is unable to dissolve the precipitate either, the amount of mixture G successively increased to bring about this resolution. The total amount of mixture G added does not normally exceed 5 g in order to effect the dissolution of the precipitate (all of the above-mentioned dissolution experiments are carried out at 25 ° C.).
  • the hydrazone H solution produced as described in the screw-top jar is then examined for its hydrazone content using the following operating conditions by means of HPLC (High Pressure Liquid Chromatography) (the molar amount of glyoxal contained in the liquid phase P results directly from the molar amount of the same ): Chromatography column to be used: Waters Symmetry C18, 150 x 4.6 mm, 5 ⁇ m (der
  • Eluent in the period t> 0 min to 15 min a mixture of 30% by weight acetonitrile, 50% by weight water and 20% by weight tetrahydrofuran (in each case HPLC grade); in the period> 15 min to 17 min a mixture of 65% by weight acetonitrile, 30% by weight water and 5% by weight tetrahydrofuran; in the period> 17 min to 25 min a mixture of 30% by weight acetonitrile, 50% by weight water and 20% by weight tetrahydrofuran (the column is then equilibrated and ready to start again for the next analysis).
  • the retention time of the glyoxal as hydrazone H is 7.613 minutes under the aforementioned conditions.
  • the analysis is carried out by means of monochromatic radiation with a wavelength of 365 nm.
  • the analysis method used is absorption spectroscopy.
  • the variation of the eluent over the elution time ensures an increased separation effect (as a rule, the liquid phase P contains glyoxal and other by-product aldehydes and / or by-product ketones which form the corresponding hydrazone with 2,4-dinitrophenylhydrazine).
  • To calibrate the HPLC process it is expedient in application terms to use a solution of monomeric glyoxal in methanol which contains 50 ppm by weight of monomeric glyoxal (cf. DE 10 2008 041573 A and DE 102008 040799 A).
  • Protoanemonin is also known as 5-methylene-2 (5H) -furanone (CAS No. 108-28-1) and can dimerize to anemonin:
  • Protoanemonin anemonin (monomeric protoanemonin) (dimeric protoanemonin)
  • the dimerization is reversible. Anemonin thermally disintegrates again into protoanemonin. Protoanemonin contained in the liquid phase P can accordingly convert into anemonin and vice versa.
  • protoanemonin in this document is intended to subsume not only protoanemonin but also protoanemonin reversibly bound in the form of anemonin.
  • protoanemonin in this document always means the total amount of protoanemonin (monomeric protoanemonin) and anemonin (dimeric protoanemonin).
  • the protoanemonin content of a liquid phase P (or another liquid phase) to be treated according to the invention is determined in the context of the present application as follows by means of GC (gas chromatography ) certainly: Chromatography column to be used: Optima 35 MS 30m x 0.25mm x 0.25pm (from
  • Injector temperature 280 ° C
  • Temperature program from 60 to 320 ° C with 15 ° C / min; 10 min at 320 ° C;
  • the retention times of the protoanemonin or of the internal standard are 4.5 min and approx. 5 min, respectively, under the selected conditions.
  • the protoanemonin can be used as a pure substance or, for example, as a solution in a suitable solvent such as acrylic acid.
  • a suitable solvent such as acrylic acid.
  • concentration of protoanemonin in acrylic acid as a solvent can be in the range from 0.1 to 10% by weight, particularly 1 to 2% by weight.
  • the liquid phase P is frequently at least 10% by weight, or at least 20% by weight, particularly at least 30% by weight, or at least 40% by weight, further particularly at least 50% by weight, or at least 60% by weight, or at least 70% by weight, or at least 80% by weight, further particularly at least 90% by weight, or at least 95% by weight, very particularly at least 98% by weight or contain at least 99% by weight of acrylic acid (in each case based on the weight of the liquid phase P).
  • the acrylic acid contents can be determined with 1 H-NMR, gas chromatography or with HPLC.
  • the liquid phase P will frequently also contain water.
  • the water content of the liquid phase P in the process according to the invention can be at least 1% by weight, or at least 5% by weight, or at least 10% by weight, or at least 20% by weight, or at least 30% by weight %, or at least 40% by weight, or at least 60% by weight, or at least 80% by weight.
  • the method according to the invention is also particularly relevant when the liquid phase P to be treated according to the invention is less than 30% by weight, e.g. ⁇ 29% by weight, or ⁇ 27% by weight, or ⁇ 25% by weight, or ⁇ 20% by weight, or ⁇ 15% by weight, or ⁇ 10% by weight, or ⁇ 5% by weight of water (lower water contents reduce the formation of glyoxal hydrate).
  • the water content of the liquid phase P will be> 0.1% by weight, or> 0.5% by weight, or> 1% by weight (the water content of, for example, glyoxal hydrates is included in the aforementioned quantities ).
  • the liquid phase P will often contain a high-boiling absorbent into which the acrylic acid has been absorbed, e.g. from the product gas mixture of the heterogeneously catalyzed partial gas phase oxidation of the C3 precursor compound (cf.
  • high-boiling absorbents are understood as meaning absorbents whose boiling point at normal pressure is above that of acrylic acid.
  • the boiling point of the aforementioned absorbents at normal pressure is frequently ⁇ 400 ° C, frequently ⁇ 350 ° C and often also ⁇ 300 ° C or ⁇ 280 ° C.
  • the boiling point of the absorbent is in the range from 200 to 350 ° C. (based on normal pressure).
  • absorbent all those are considered in the Schrif th DE 103 36386 A, DE 2449780 A, DE 19627 850 A, DE 198 10962 A, DE 4308087 A,
  • the high-boiling absorbents are organic liquids. Often they consist of at least 70% by weight of organic molecules that do not contain any outwardly acting polar group and are therefore not able, for example, to form hydrogen bonds.
  • Particularly advantageous absorbents are, for example, diphenyl ether, diphenyl (biphenyl), mixtures of diphenyl ether (70 to 75% by weight) and diphenyl (25 to 30% by weight) referred to as Diphyl®, and also dimethyl phthalate, diethyl phthalate and mixtures Diphyl and dimethyl phthalate or diphyl and diethyl phthalate or diphyl, dimethyl phthalate and diethyl phthalate.
  • a group of mixtures which is particularly suitable for absorption purposes are those composed of 75 to 99.9% by weight of diphyl and 0.1 to 25% by weight of dimethyl phthalate and / or diethyl phthalate.
  • High-boiling absorbents for the purposes of this document can, however, also be ionic liquids.
  • the liquid phase P in the process according to the invention can be at least 1% by weight, or at least 5% by weight, or at least 10% by weight, or at least 20% by weight, or at least 30% by weight, or at least 40 wt .-%, or at least 60 wt .-%, or at least 80 wt .-% contain high-boiling absorbent.
  • the procedure according to the invention unfolds its advantageous effect in particular when the liquid phase P, based on the weight of the acrylic acid contained in it, is in the range from 25 to 1000 ppm by weight, especially in the range from 50 to 500 ppm by weight, glyo - Contains xal.
  • the propionic acid content of the liquid phase P in a corresponding manner (based on the amount by weight of acrylic acid contained) can be> 100 ppm by weight, or> 150 ppm by weight, or> 200 ppm by weight, or > 250 ppm by weight, or
  • the propionic acid contents of the liquid phase P are ⁇ 5% by weight, frequently ⁇ 4% by weight or ⁇ 3% by weight, often ⁇ 2% by weight, or ⁇ 1 % By weight.
  • the propionic acid content of liquid phases P is usually determined by gas chromatography.
  • the liquid phase P can be used as further secondary components and typical side reaction products of the heterogeneously catalyzed partial gas phase oxidation of a C3 precursor compound to acrylic acid compounds such as formaldehyde, acrolein, furfural, crotonaldehyde, benzaldehyde, propionaldehyde, protoanemonine, allyl anemonine, allyl anemonine, Contain formic acid, acetic acid, maleic acid, benzoic acid and / or maleic anhydride (for example in proportions as listed in WO 2006/002713 A, WO 2008/090190 A, DE 10 2007 004960 A and DE 102009 027401 A, especially in the various liquid substance mixtures of their exemplary embodiments).
  • liquid phases P to be treated according to the invention often have to be stored for relatively long periods of time. During this period of time the acrylic acid reacts to a certain extent with itself and forms limited amounts of diacrylic acid through Michael addition (cf. e.g. WO 98/01414 and WO 2005/035478).
  • the process according to the invention is therefore also suitable for liquid phases P, which, based on the weight of the acrylic acid contained in the liquid phase P, in addition to the amounts of glyoxal and acrylic acid already listed, also have> 100 ppm by weight, or> 200 wt .- ppm, or> 300 ppm by weight, or> 400 ppm by weight, or> 500 ppm by weight, or> 600 ppm by weight, or> 800 ppm by weight, or> 1000 ppm by weight ppm, or> 1500 ppm by weight, or> 2000 ppm by weight, or> 3000 ppm by weight, or> 5000 ppm by weight, or> 7500 ppm by weight, or> 10,000 ppm by weight Contain diacrylic acid.
  • the content of liquid phases P to be treated according to the invention, based on the weight of the acrylic acid contained therein, of diacrylic acid is not more than 20% by weight, frequently not more than 15% by weight or not more than 10% by weight .-%, and in many cases not more than 5% by weight.
  • Diacrylic acid contents of liquid phases P can be determined in a simple manner by means of high-resolution 1 H-NMR (cf. "Polymerization inhibition of (meth) acrylates, thesis by Dipl. -Ing. Holger Becker, Technische Vietnamese Darmstadt, 2003”). The method evaluates the specific signal shape and signal position as well as the signal area of the relevant 1 H resonance lines.
  • the method according to the invention is suitable both for inhibiting undesired radial polymerization of acrylic acid in a liquid phase P during its storage and during its procedural handling.
  • the latter case is particularly the case when the liquid phase P is subjected to a thermal separation process (the temperatures occurring are generally> 50 ° C, mostly above 60 ° C or 70 ° C, or above 90 ° C or 110 ° C, and preferably given at ⁇ 150 ° C).
  • thermal separation processes in which gaseous (ascending) and liquid (descending) material streams or two liquid material streams are conducted in countercurrent in separating columns containing separating internals, whereby a heat- and mass transfer takes place, which ultimately causes the separation effect desired in the separation column.
  • non-crystallizing thermal separation processes are rectification, azeotropic rectification, extraction, desorption, stripping, distillation, azeotropic distillation and adsorption.
  • liquid phases P to be treated according to the invention arise not least when the product gas mixture is subjected to the heterogeneously catalyzed partial gas phase oxidation of a C precursor compound to acrylic acid, an absorption, or a fractional condensation, or a partial condensation for the basic separation of acrylic acid from the product gas mixture, is suitable
  • the process according to the invention is also suitable for the polymerization inhibition of liquid phases P occurring in the context of such thermal separation processes.
  • the process according to the invention for inhibiting polymerization is also suitable when the liquid phase P is subjected to another separation process.
  • thermo separation process is intended to express that heat must be supplied to or withdrawn from the system in order to achieve the desired separation effect (cf. DE 102008 041573 A and DE 102008040799 A).
  • the liquid phase P to be treated procedurally can contain the protoanemonin to be added according to the invention from the beginning of the thermal separation process (i.e. it can be fed to the thermal process already treated according to the invention).
  • the protonemonin can also only be added in the course of the thermal separation process (e.g. dissolved in the reflux liquid in the case of rectification, or dissolved in the absorbent in the case of absorption, or dissolved in the reflux liquid in the case of fractional condensation, or in the case of direct cooling of the product gas mixture heterogeneously catalyzed partial gas phase oxidation of the C precursor compound dissolved in the quench liquid used for direct cooling).
  • the protoanemonine to be added to the liquid phase P according to the invention does not have to be the only inhibitor system added to the liquid phase P. Rather can the liquid phase P additionally one or more inhibitors from the group comprising the nitroxyl radicals (also referred to as N-oxyl radicals) (e.g.
  • manganese (III) salts such as manganese (III) acetate dihydrate and manganese (III) - di-n-butyldithiocarbamate, p-phenylenediamines (for example those disclosed in DE 19734 171 A), organic nitroso compounds such as 4-nitrosophenol (and the others disclosed in DE 19734 171 A), methylene blue and all others, for example in the EP 0765856 A.
  • the aforementioned inhibitors can be added to the liquid phase P in correspondingly effective amounts, that is to say for example in the range from 5 to 1000 ppm by weight (based on the amount by weight of the acrylic acid contained in P).
  • thermal separation processes for example all thermal separation processes described in WO 2011/000808, in DE 103 36386 A, in DE 19924532 A, in DE 19924533 A, and in DE 102007004960 A
  • devices according to the invention which correspond to the recommendations of US 6,441,228 and US 6,966,973.
  • a starting reaction gas mixture can be used which, based on the molar amount of the C3 precursor compound used (e.g. propane, propylene, acrolein, propionic acid, propionaldehyde, propanol and / or) Glycerine, among which propylene and acrolein are preferred), a total molar amount of C2 compounds (eg ethane, ethylene, acetylene, acetaldehyde, acetic acid and / or ethanol) of> 100 mol.-ppm, or
  • the aforementioned total molar amount of C2 compounds in the starting reaction gas mixture of the heterogeneously catalyzed partial gas phase oxidation of the C3 precursor compound to acrylic acid will not be more than 10,000 mol.- ppm.
  • the starting reaction gas mixture used for the heterogeneously catalyzed partial gas phase oxidation for the production of acrylic acid for example in the case of propylene or acrolein as the C3 precursor compound (but also in the case of the other C3 precursor compounds other than n-propane), based on the weight of the contained Propylene or acrolein (the C3 precursor compound other than n-propane)> 0.05% by weight n-propane, or> 0.2% by weight n-propane, or> 0.5% by weight n Propane, or> 1% by weight n-propane, or> 3% by weight n-propane, or> 5% by weight n-propane, or> 10% by weight n-propane, or> 20 Contain% by weight n-propane.
  • the C3 precursor compound other than n-propane based on the weight of the contained Propylene or acrolein (the C3 precursor compound other than n-propan
  • the reaction gas starting mixture of a heterogeneously catalyzed partial gas phase oxidation of propylene and / or acrolein (the C3 precursor compound other than n-propane) to acrylic acid does not contain more than 80% by volume, often not more than 70% by volume and many times not more than 60% by volume (but usually not less than 0.1% by volume) of n-propane.
  • the term “starting reaction gas mixture” means that gas mixture which is fed to the catalyst bed for the purpose of partial oxidation of the C3 precursor compound contained in it to acrylic acid.
  • the starting reaction gas mixture usually also contains inert diluent gases such as. B. nitrogen, carbon dioxide, water, noble gas, molecular hydrogen, etc.
  • Each inert diluent gas is normally such that it remains unchanged to at least 95 mol% of its initial amount in the course of the heterogeneously catalyzed partial oxidation.
  • the proportion of the C3 precursor compound in the starting reaction gas mixture can, for. B. in the Be rich from 4 to 20 vol .-%, or from 5 to 15 vol .-%, or from 6 to 12 vol .-%.
  • the starting reaction gas mixture normally contains, based on the stoichiometry of the partial oxidation reaction of the C3 precursor compound to acrylic acid, an excess of molecular oxygen in order to reoxidize the usually oxidic catalysts again.
  • this excess can be selected to be particularly high, since with increasing oxygen excess in as a rule, there is also an increase in the formation of undesirable secondary components in glyoxal.
  • the maximum reaction temperature present in the catalyst bed can be selected to be comparatively increased if the process according to the invention is used following the partial oxidation. This is i.a. attributable to the fact that the higher the maximum temperature, there is generally also an increase in the formation of undesirable secondary components in glyoxal.
  • the use of increased maximum temperatures generally allows the use of catalysts with lower activity, which opens up the possibility of a longer catalyst service life.
  • Glyoxal can optionally also be formed as an intermediate product.
  • the heterogeneously catalyzed partial gas phase oxidation z. B. can be carried out as described in the documents WO 2005/042459, WO 2005/047224 and WO 2005/047226. If the C3 precursor compound is e.g. B. propane, the heterogeneously catalyzed partial Gaspha senoxidation for the production of acrylic acid z. B. as in the documents EP 0608 838 A,
  • the C3 precursor compound is e.g. B. glycerol
  • propylene be produced as a C3 precursor compound by a partial dehydrogenation and / or oxydehydrogenation of propane upstream of the partial gas phase oxidation (e.g. WO 03/076370, WO 01/96271, EP 0 117 146 A,
  • the method according to the invention can also be used advantageously if the glyoxal contained in the liquid phase P is at least 20 mol%, or at least 30 mol%, or at least 50 mol%, or at least 70 mol%, or at least 90 mol%, or at least 95 mol% as monomeric glyoxal monohydrate and / or monomeric glyoxal dihydrate is present in the liquid phase P (or is contained in the liquid phase P).
  • the process according to the invention is advantageous if the liquid phase P to be treated according to the invention is based on a product gas mixture of a heterogeneously catalyzed partial gas phase oxidation of a C3 precursor of acrylic acid, which, based on the molar amount of acrylic acid contained in the product gas mixture, is in the range of 25 to 1000 ppm by weight of glyoxal, especially in the range of 50 to 500 ppm by weight of glyoxal, contains (to determine the aforementioned, based on the molar amount of acrylic acid contained, the glyoxal content of the product gas mixture is determined by cooling the same at least the contained therein Acrylic acid, the hemiacetals and / or acetals of glyoxal contained therein and the monomeric glyoxal contained therein are converted into the condensed phase and then analyzed as soon as possible for their generation as described in this document for a liquid phase P for their glyoxal and acrylic acid content ).
  • Liquid phases P to be treated according to the invention are frequently also subjected to an azeotropic rectification in order to separate off the water contained therein.
  • Suitable entrainers in this regard are in particular heptane, dimethylcyclohexane, ethylcyclohexane, toluene, ethylbenzene, octane, chlorobenzene, xylene or mixtures thereof (e.g. 60% by weight Toluene and 40 wt .-% heptane) into consideration.
  • methyl isobutyl ketone or isopropyl acetate can also be used as alternative entrainers.
  • Liquid phases P to be treated according to the invention are therefore in particular those liquid phases P which contain at least one of the aforementioned entrainers and water.
  • the water content of such liquid phases P is at least 10% by weight and the content of azeotropic entrainer is at least 1% by weight, often at least 2% by weight or at least 5% by weight.
  • the process according to the invention is also relevant when glyoxal contained therein is separated by crystallization from a liquid phase P treated according to the invention, the glyoxal in the remaining mother liquor and the acrylic acid in the crystallizate accumulating, and at least one of the mother liquor the process steps with the aid of which the liquid phase P treated according to the invention was generated (produced) from the product gas mixture of the heterogeneously catalyzed partial gas phase oxidation of the O 3 precursor compound.
  • the crystallizing separation process can be carried out in a corresponding manner as it is described in the documents DE 102008041573 A, DE 102008040799 A and WO 2007/074044, as well as DE 102007 029053 A. Unless otherwise stated, ppm data relate to weight.
  • Pressure data relate to the absolute pressure, unless otherwise stated.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

La présente invention concerne un procédé d'inhibition de la polymérisation radicalaire indésirable de l'acide acrylique présent dans une phase liquide P, la teneur en acide acrylique de P étant d'au moins 10 % en poids, la phase liquide P contenant une teneur dans la plage de 25 à 1 000 ppm en poids de glyoxal par rapport au poids de l'acide acrylique présent dans P et la phase liquide P étant mélangée avec de la protoanémonine en une proportion donnée de sorte à obtenir une teneur en protoanémonine dans la plage de 0,5 à 100 ppm en poids par rapport au poids de l'acide acrylique présent dans P, et une phase liquide P, la teneur en acide acrylique de P étant d'au moins 10 % en poids et la phase liquide P contenant une teneur dans la plage de 25 à 1 000 ppm en poids de glyoxal et une teneur dans la plage de 0,5 à 100 ppm en poids de protoanémonine dans chaque cas par rapport au poids de l'acide acrylique présent dans P.
EP21714113.4A 2020-03-26 2021-03-18 Procédé d'inhibition de la polymérisation radicalaire indésirable de l'acide acrylique présent dans une phase liquide p Pending EP4126808A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP20165913 2020-03-26
PCT/EP2021/056934 WO2021191042A1 (fr) 2020-03-26 2021-03-18 Procédé d'inhibition de la polymérisation radicalaire indésirable de l'acide acrylique présent dans une phase liquide p

Publications (1)

Publication Number Publication Date
EP4126808A1 true EP4126808A1 (fr) 2023-02-08

Family

ID=70224224

Family Applications (1)

Application Number Title Priority Date Filing Date
EP21714113.4A Pending EP4126808A1 (fr) 2020-03-26 2021-03-18 Procédé d'inhibition de la polymérisation radicalaire indésirable de l'acide acrylique présent dans une phase liquide p

Country Status (5)

Country Link
US (1) US20230132285A1 (fr)
EP (1) EP4126808A1 (fr)
JP (1) JP2023519280A (fr)
CN (1) CN115335354A (fr)
WO (1) WO2021191042A1 (fr)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114082211B (zh) * 2021-10-31 2023-09-22 中船(邯郸)派瑞特种气体股份有限公司 一种基于隔板塔生产电子级氯化氢的方法

Family Cites Families (96)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4717714U (fr) 1971-04-03 1972-10-30
DE2449780B2 (de) 1974-10-19 1980-06-12 Basf Ag, 6700 Ludwigshafen Verfahren zum Abtrennen schwer- oder nichtfluchtiger Nebenprodukte der Propylen- und/oder Acroleinoxidation von den fur die Absorbtion der Acrylsäure aus den Reaktionsgasen verwendeten Losungsmitteln
US4317926A (en) 1978-01-19 1982-03-02 Nippon Shokubai Kagaku Kogyo Co., Ltd. Process for preparing and recovering acrylic acid
EP0117146B1 (fr) 1983-02-22 1986-12-30 The Halcon Sd Group, Inc. Conversion du propane en acide acrylique
NO163690C (no) 1984-06-18 1990-07-04 Air Prod & Chem Fremgangsmaate for fremstilling av to kvaliteter av propylen.
US5198578A (en) 1986-07-17 1993-03-30 Union Carbide Chemicals Anhydrous diluents for the propylene oxidation reaction to acrolein and acrolein oxidation to acrylic acid
CA1299193C (fr) 1986-07-17 1992-04-21 Gordon Gene Harkreader Diluants anhydres pour l'oxydation du propene en acrylaldehyde et del'acrylaldehyde en acide acrylique
EP0608838B1 (fr) 1993-01-28 1997-04-16 Mitsubishi Chemical Corporation Procédé pour la préparation d'un acide carboxylique insaturé
DE4308087C2 (de) 1993-03-13 1997-02-06 Basf Ag Verfahren zur Abtrennung von Acrylsäure aus den Reaktionsgasen der katalytischen Oxidation von Propylen und/oder Acrolein
DE4335172A1 (de) 1993-10-15 1995-04-20 Basf Ag Verfahren zur Reinigung von Roh-(Meth)acrylsäure
US5759358A (en) 1994-05-31 1998-06-02 Rohm And Haas Company Process for pure grade acrylic acid
US5728872A (en) 1994-06-27 1998-03-17 Lutz Riemenschneider Stabilized acrylic acid compositions
JP3937462B2 (ja) 1994-08-04 2007-06-27 三菱化学株式会社 アクリル酸精製法
DE4436243A1 (de) 1994-10-11 1996-04-18 Basf Ag Verfahren zur Abtrennung von (Meth)acrylsäure aus dem Reaktionsgasgemisch der katalytischen Gasphasenoxidation C¶3¶-/C¶4¶-Verbindungen
DE19501326A1 (de) 1995-01-18 1996-07-25 Basf Ag Verfahren der rektifikativen Abtrennung von (Meth)acrylsäure aus einem (Meth)acrylsäure als Hauptbestandteil und niedere Aldehyde als Nebenbestandteile enthaltenden Gemisch in einer aus Abtriebsteil und Verstärkerteil bestehenden Rektifiaktionskolonne
JP3028925B2 (ja) 1995-12-05 2000-04-04 株式会社日本触媒 アクリル酸の製造方法
DE19606877A1 (de) 1996-02-23 1997-08-28 Basf Ag Verfahren zur Reinigung von Acrylsäure und Methacrylsäure
DE19627847A1 (de) 1996-07-10 1998-01-15 Basf Ag Verfahren zur Herstellung von Acrylsäure
DE19627679A1 (de) 1996-07-10 1998-01-15 Basf Ag Verfahren zur Reinigung von Roh-Acrylsäure durch Kristallisation
DE19627850A1 (de) 1996-07-10 1998-01-15 Basf Ag Verfahren zur Herstellung von Acrylsäure und Methacrylsäure
DE59700215D1 (de) 1997-01-17 1999-07-22 Basf Ag Verfahren der kontinuierlichen destillativen Auftrennung von flüssigen Gemischen, die als Hauptbestandteil (Meth)acrylsäure enthalten
JPH1135519A (ja) 1997-07-25 1999-02-09 Mitsubishi Chem Corp アクリル酸の製造方法
DE19835247B4 (de) 1997-08-05 2022-04-28 Asahi Kasei Kabushiki Kaisha Ammonoxidationskatalysator und Verfahren zur Herstellung von Acrylnitril oder Methacrylnitril aus Propan oder Isobutan durch Ammonoxidation
DE19734171A1 (de) 1997-08-07 1999-02-11 Basf Ag Verfahren zur Stabilisierung von (Meth)acrylsäureestern gegen unerwünschte radikalische Polymerisation
DE19740252A1 (de) 1997-09-12 1999-03-18 Basf Ag Verfahren zur Herstellung von Acrylsäure und Methacrylsäure
DE19740253A1 (de) 1997-09-12 1999-03-18 Basf Ag Verfahren zur fraktionierten Kondensation eines heißen Gasgemisches mit einem hohen Anteil nicht kondensierbarer Komponenten
DE19810962A1 (de) 1998-03-13 1999-09-16 Basf Ag Verfahren der rektifikativen Abtrennung von (Meth)acrylsäure aus einem (Meth)acrylsäure und eine höher als (Meth)acrylsäure siedende organische Flüssigkeit als Hauptbestandteile enthaltenden Gemisch
DE19814387A1 (de) 1998-03-31 1999-10-07 Basf Ag Verfahren zur Herstellung von Acrylsäure und Acrylsäureestern
DE19814375A1 (de) 1998-03-31 1999-10-07 Basf Ag Verfahren zur Herstellung von Acrylsäure und Acrylsäureestern
DE19814421A1 (de) 1998-03-31 1999-10-07 Basf Ag Verfahren zur Herstellung von Acrylsäure und Acrylsäureestern
DE19838795A1 (de) 1998-08-26 2000-03-02 Basf Ag Verfahren zur kontinuierlichen Gewinnung von (Meth)acrylsäure
DE19838783A1 (de) 1998-08-26 2000-03-02 Basf Ag Verfahren zur kontinuierlichen Gewinnung von (Meth)acrylsäure
DE19838817A1 (de) 1998-08-26 2000-03-02 Basf Ag Verfahren zur kontinuierlichen Gewinnung von (Meth)acrylsäure
DE19924533A1 (de) 1999-05-28 2000-11-30 Basf Ag Verfahren zur Herstellung von Acrylsäure
US6498272B1 (en) 1999-03-06 2002-12-24 Basf Aktiengesellschaft Method for producing acrylic acid
MY122671A (en) 1999-03-06 2006-04-29 Basf Ag Fractional condensation of a product gas mixture containing acrylic acid
DE19924532A1 (de) 1999-05-28 2000-11-30 Basf Ag Verfahren der fraktionierten Kondensation eines Acrylsäure enthaltenden Produktgasgemisches einer heterogen katalysierten Gasphasen-Partialoxidation von C3-Vorläufern der Acrylsäure mit molekularem Sauerstoff
JP5073129B2 (ja) 1999-03-31 2012-11-14 株式会社日本触媒 (メタ)アクリル酸の精製方法
JP4005750B2 (ja) 1999-12-28 2007-11-14 株式会社日本触媒 (メタ)アクリル酸製造用装置および(メタ)アクリル酸の製造方法
US6888025B2 (en) 2000-02-14 2005-05-03 Nippon Shokubai, Co. Ltd. Method for absorbing acrylic acid and method for purifying acrylic acid
DE10036880A1 (de) 2000-07-28 2002-02-07 Basf Ag Regelung einer Waschkolonne in einem Schmelzkristallisationsprozess
DE10117248A1 (de) 2000-05-31 2002-10-10 Mg Technologies Ag Verfahren zum Erzeugen von Propylen aus Methanol
DE10028582A1 (de) 2000-06-14 2001-12-20 Basf Ag Verfahren zur Herstellung von Acrolein oder Acrylsäure oder deren Gemischen aus Propan
CN1209332C (zh) 2000-06-14 2005-07-06 巴斯福股份公司 丙烯醛和/或丙烯酸的制备方法
JP4074194B2 (ja) 2001-01-12 2008-04-09 ストックハウゼン ゲーエムベーハー (メタ)アクリル酸の精製方法及びその製造装置
DE10115277A1 (de) 2001-03-28 2002-06-13 Basf Ag Verfahren zur kontinuierlichen Gewinnung von(Meth)acrylsäure
DE10211275A1 (de) 2002-03-13 2003-09-25 Basf Ag Verfahren der kontinuierlichen heterogen katalysierten partiellen Dehydrierung
DE10131297A1 (de) 2001-06-29 2003-01-09 Basf Ag Verfahren zur Herstellung von partiellen Oxidationsprodukten und/oder partiellen Ammoxidationsprodukten wenigstens eines olefinischen Kohlenwasserstoffs
JP4455790B2 (ja) 2001-09-28 2010-04-21 株式会社日本触媒 (メタ)アクリル酸の製造方法
BR0214089B1 (pt) 2001-11-15 2010-12-14 processo para a separaÇço de purificaÇço de cristais de sua suspensço em lixÍvia.
DE10223058A1 (de) 2002-05-24 2003-12-11 Basf Ag Verfahren zum reinigenden Abtrennen von Kristallen aus ihrer Suspension in Mutterlauge
DE10211686A1 (de) 2002-03-15 2003-10-02 Stockhausen Chem Fab Gmbh (Meth)Acrylsäurekristall und Verfahren zur Herstellung und Aufreinigung von wässriger (Meth)Acrylsäure
JP4440518B2 (ja) 2002-07-16 2010-03-24 株式会社日本触媒 アクリル酸の製造方法
DE10233975A1 (de) 2002-07-25 2004-02-12 Lurgi Ag Vorrichtung zur Herstellung von Propylen aus Methanol
DE10235847A1 (de) 2002-08-05 2003-08-28 Basf Ag Verfahren zur Herstellung von Acrylsäure
JP3908118B2 (ja) 2002-08-08 2007-04-25 株式会社日本触媒 アクリル酸の製造方法
JP4465144B2 (ja) 2002-08-08 2010-05-19 株式会社日本触媒 アクリル酸の製造方法
JP3905810B2 (ja) 2002-09-03 2007-04-18 株式会社日本触媒 アクリル酸製造プロセスにおける重合防止方法
DE10243625A1 (de) 2002-09-19 2004-04-01 Basf Ag Hydraulich abgedichteter Querstrom-Stoffaustauschboden
DE10245585A1 (de) 2002-09-27 2004-04-08 Basf Ag Verfahren zur Herstellung von wenigstens einem partiellen Oxidations- und/oder Ammoxidationsprodukt des Propylens
DE10246119A1 (de) 2002-10-01 2004-04-15 Basf Ag Verfahren zur Herstellung von wenigstens einem partiellen Oxidations- und/oder Ammoxidationsprodukt des Propylens
DE10247240A1 (de) 2002-10-10 2004-04-22 Basf Ag Verfahren zur Herstellung von Acrylsäure
DE10300816A1 (de) 2003-01-10 2004-07-22 Basf Ag Thermisches Trennverfahren zwischen wenigstens einem gasförmigen und wenigstens einem flüssigen Stoffstrom, von denen wenigstens einer (Meth)acrylmonomere enthält
JP3992643B2 (ja) 2003-05-09 2007-10-17 株式会社日本触媒 (メタ)アクリル酸および/またはそのエステルの蒸留方法
JP3999160B2 (ja) 2003-05-14 2007-10-31 株式会社日本触媒 易重合性物質の製造方法
JP3957298B2 (ja) 2003-06-05 2007-08-15 株式会社日本触媒 アクリル酸の製造方法
JP4056429B2 (ja) 2003-06-05 2008-03-05 株式会社日本触媒 (メタ)アクリル酸の製造方法
US7183428B2 (en) 2003-06-05 2007-02-27 Nippon Shokubai Co., Inc. Method for production of acrylic acid
DE10332758A1 (de) 2003-07-17 2004-05-27 Basf Ag Thermisches Trennverfahren zur Abtrennung wenigstens eines (Meth)acrylmonomere angereichert enthaltenden Stoffstroms
DE10336386A1 (de) 2003-08-06 2004-03-04 Basf Ag Verfahren zur absorptiven Grundabtrennung von Acrylsäure aus dem Produktgasgemisch einer heterogen katalysierten partiellen Gasphasenoxidation von Propen zu Acrylsäure
TWI337996B (en) 2003-10-09 2011-03-01 Basf Ag Rectificative separation of an acrylic acid-containing liquid
RU2365577C2 (ru) 2003-10-29 2009-08-27 Басф Акциенгезельшафт Способ проведения гетерогенного каталитического частичного окисления в газовой фазе акролеина в акриловую кислоту
JP4677527B2 (ja) 2003-10-29 2011-04-27 ビーエーエスエフ ソシエタス・ヨーロピア プロペンからアクロレインを生じさせる不均一系触媒による気相部分酸化の長期稼働を行う方法
EP1682478B1 (fr) 2003-10-31 2016-05-11 Basf Se Procede longue duree d'oxydation partielle en phase gazeuse a catalyse heterogene de propene en acide acrylique
JP5006507B2 (ja) 2004-01-30 2012-08-22 株式会社日本触媒 アクリル酸の製造方法
CN1980879B (zh) 2004-07-01 2011-03-02 巴斯福股份公司 由丙烷生产丙烯醛、丙烯酸或其混合物的方法
TWI522092B (zh) 2005-02-28 2016-02-21 贏創德固賽有限責任公司 丙烯酸和基於可再生原料之吸水聚合物結構及二者之製備方法
FR2884818B1 (fr) 2005-04-25 2007-07-13 Arkema Sa Procede de preparation d'acide acrylique a partir de glycerol
US20090068440A1 (en) 2005-06-20 2009-03-12 Gunther Bub Production of acrolein, acrylic acid and water-absorbent polymer structures made from glycerine
DE102005052917A1 (de) 2005-11-03 2007-10-11 Basf Ag Verfahren zur Herstellung von Acrolein, oder Acrylsäure oder deren Gemisch aus Propan
DE102005062010A1 (de) 2005-12-22 2007-06-28 Basf Ag Verfahren der heterogen katalysierten partiellen Gasphasenoxidation von Propylen zu Acrylsäure
DE102005062026A1 (de) 2005-12-22 2007-06-28 Basf Ag Verfahren der heterogen katalysierten partiellen Gasphasenoxidation von Propylen zu Acrylsäure
FR2897059B1 (fr) 2006-02-07 2008-04-18 Arkema Sa Procede de preparation d'acide acrylique
DE102007004960A1 (de) 2007-01-26 2008-07-31 Basf Se Verfahren zur Herstellung von Acrylsäure
KR101463278B1 (ko) 2007-01-26 2014-11-18 바스프 에스이 아크릴산의 제조 방법
DE102007029053A1 (de) 2007-06-21 2008-01-03 Basf Ag Verfahren der heterogen katalysierten partiellen Direktoxidation von n-Propan zu Acrylsäure
JP5739600B2 (ja) 2007-12-17 2015-06-24 三菱レイヨン株式会社 ヒドロキシエチルメタクリレートの製造方法
DE102008040799A1 (de) 2008-07-28 2008-12-11 Basf Se Verfahren zur Auftrennung von in einem Produktgasgemisch einer partiellen heterogen katalysierten Gasphasenoxidation einer C3-Vorläuferverbindung der Acrylsäure als Hauptbestandteil enthaltener Acrylsäure und als Nebenprodukt enthaltenem Glyoxal
MY153094A (en) 2008-07-28 2014-12-31 Basf Se Process for separating acrylic acid present as a main constituent and glyoxal present as a by-product in a product gas mixture of a partial heterogeneously catalyzed gas phase oxidation of a c3 precursor compound of acrylic acid
DE102008041573A1 (de) 2008-08-26 2010-03-04 Basf Se Verfahren zur Auftrennung von in einem Produktgasgemisch einer partiellen heterogen katalysierten Gasphasenoxidation einer C3-Vorläuferverbindung der Acrylsäure als Hauptbestandteil enhaltener Acrylsäure und als Nebenprodukt enthaltenem Glyoxal
WO2011000808A2 (fr) 2009-07-01 2011-01-06 Basf Se Procédé de séparation de l'acide acrylique contenu dans le mélange gazeux produit résultant d'une oxydation en phase gazeuse partielle en catalyse hétérogène d'au moins un composé précurseur c3
DE102009027401A1 (de) 2009-07-01 2010-02-18 Basf Se Verfahren der Abtrennung von Acrylsäure aus dem Produktgasgemisch einer heterogen katalysierten partiellen Gasphasenoxidation wenigstens einer C3-Vorläuferverbindung
DE102010042216A1 (de) 2010-10-08 2011-06-09 Basf Se Verfahren zur Hemmung der unerwünschten radikalischen Polymerisation von in einer flüssigen Phase P befindlicher Acrylsäure
JP6135565B2 (ja) 2014-03-17 2017-05-31 三菱化学株式会社 (メタ)アクリル酸の製造方法
FR3064630B1 (fr) 2017-04-04 2019-09-13 Arkema France Procede de purification d'acide (meth)acrylique incluant une colonne de distillation a paroi separatrice
US11447439B2 (en) 2018-07-26 2022-09-20 Basf Se Method for inhibiting unwanted radical polymerisation of acrylic acid present in a liquid phase P

Also Published As

Publication number Publication date
CN115335354A (zh) 2022-11-11
US20230132285A1 (en) 2023-04-27
JP2023519280A (ja) 2023-05-10
WO2021191042A1 (fr) 2021-09-30

Similar Documents

Publication Publication Date Title
DE102008040799A1 (de) Verfahren zur Auftrennung von in einem Produktgasgemisch einer partiellen heterogen katalysierten Gasphasenoxidation einer C3-Vorläuferverbindung der Acrylsäure als Hauptbestandteil enthaltener Acrylsäure und als Nebenprodukt enthaltenem Glyoxal
EP2334631B1 (fr) Procede de separation de l'acide acrylique contenu comme constituant principal, et de glyoxal contenu comme produit secondaire d'un melange de gaz de produit d'une oxydation en phase gazeuse partielle par catalyse heterogene d'un compose precurseur en c3 d'acide acrylique
DE102008041573A1 (de) Verfahren zur Auftrennung von in einem Produktgasgemisch einer partiellen heterogen katalysierten Gasphasenoxidation einer C3-Vorläuferverbindung der Acrylsäure als Hauptbestandteil enhaltener Acrylsäure und als Nebenprodukt enthaltenem Glyoxal
EP0717029A2 (fr) Procédé de séparation rectificative d'acide (méth)acrylique à partir d'un mélange hydrophobe contenant de l'acide (méth)acrylique brut
WO2003022793A1 (fr) Procede pour preparer des esters d'acide (meth)acrylique
WO2012045738A1 (fr) Procédé pour inhiber la polymérisation radicalaire indésirable d'acide acrylique se trouvant dans une phase liquide p
EP4126808A1 (fr) Procédé d'inhibition de la polymérisation radicalaire indésirable de l'acide acrylique présent dans une phase liquide p
EP0713854B1 (fr) Procédé de purification de l'acide (méth)acrylique brut
EP3826987A1 (fr) Procédé pour inhiber la polymérisation radicalaire non souhaitée d'acide acrylique se trouvant dans une phase liquide p
DE102005009890A1 (de) Verfahren zur Abtrennung von Methacrylsäure aus Acrylsäure als Hauptbestandteil sowie Zielprodukt und Methacrylsäure als Nebenkomponente enthaltender flüssiger Phase
EP1879846B1 (fr) Procede de separation par rectification d'un liquide contenant de l'acide acrylique et/ou de l'acide methacrylique
EP1025076A1 (fr) Procede de production d'acide (meth)acrylique
WO2006084667A1 (fr) Procede pour recuperer des composes organiques de melanges contenant de l'acide (meth)acrylique par extraction avec un solvant protogene
DE10224341A1 (de) Verfahren zur Herstellung von Acrylsäure und/oder deren Ester sowie von Propionsäure und/oder deren Ester im Verbund
EP1856021B1 (fr) Procede permettant de separer l'aldehyde methacrylique de l'acide acrylique en tant que constituant principal, et phase liquide contenant un produit cible et l'aldehyde methacrylique en tant de constituants secondaires
DE102005015637A1 (de) Verfahren zur Abtrennung von Methacrolein aus Acrylsäure als Hauptbestandteil sowie Zielprodukt und Methacrolein als Nebenkomponente enthaltender flüssiger Phase
DE102005015639A1 (de) Verfahren zur Abtrennung von Methacrylsäure aus Acrylsäure als Hauptbestandteil sowie Zielprodukt und Methacrylsäure als Nebenkomponente enthaltender flüssiger Phase
EP1856020B1 (fr) Procede pour separer l'acide methacrylique d'une phase liquide contenant de l'acide acrylique en tant que composant principal et produit cible et de l'acide methacrylique en tant que composant secondaire
WO2003095411A1 (fr) Procede pour produire de l'acide acrylique et/ou des esters de celui-ci et de l'acide propionique et/ou des esters de celui-ci sous forme de compose
EP0554660B1 (fr) Procédé de purification d'acides bruts alpha-bêta-monoéthyléniques et d'acides carboxyliques insaturés
DE19746690A1 (de) Verfahren zur Herstellung von (Meth)acrylsäure
DE102005009887A1 (de) Verfahren zur Abtrennung von Methacrolein aus Acrylsäure als Hauptbestandteil sowie Zielprodukt und Methacrotein als Nebenkomponente enthaltender flüssiger Phase

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20221026

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)