EP4072809A1 - Computergestütztes verfahren sowie einrichtung zur steuerung einer beton-mischanlage - Google Patents

Computergestütztes verfahren sowie einrichtung zur steuerung einer beton-mischanlage

Info

Publication number
EP4072809A1
EP4072809A1 EP20835698.0A EP20835698A EP4072809A1 EP 4072809 A1 EP4072809 A1 EP 4072809A1 EP 20835698 A EP20835698 A EP 20835698A EP 4072809 A1 EP4072809 A1 EP 4072809A1
Authority
EP
European Patent Office
Prior art keywords
concrete
unit
mixing
recipe
mixer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
EP20835698.0A
Other languages
English (en)
French (fr)
Inventor
Henning STAVES
Helmut BAECHLE
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Peri SE
Original Assignee
Peri SE
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Peri SE filed Critical Peri SE
Publication of EP4072809A1 publication Critical patent/EP4072809A1/de
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28CPREPARING CLAY; PRODUCING MIXTURES CONTAINING CLAY OR CEMENTITIOUS MATERIAL, e.g. PLASTER
    • B28C7/00Controlling the operation of apparatus for producing mixtures of clay or cement with other substances; Supplying or proportioning the ingredients for mixing clay or cement with other substances; Discharging the mixture
    • B28C7/02Controlling the operation of the mixing
    • B28C7/022Controlling the operation of the mixing by measuring the consistency or composition of the mixture, e.g. with supply of a missing component
    • B28C7/024Controlling the operation of the mixing by measuring the consistency or composition of the mixture, e.g. with supply of a missing component by measuring properties of the mixture, e.g. moisture, electrical resistivity, density
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28CPREPARING CLAY; PRODUCING MIXTURES CONTAINING CLAY OR CEMENTITIOUS MATERIAL, e.g. PLASTER
    • B28C7/00Controlling the operation of apparatus for producing mixtures of clay or cement with other substances; Supplying or proportioning the ingredients for mixing clay or cement with other substances; Discharging the mixture
    • B28C7/02Controlling the operation of the mixing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28CPREPARING CLAY; PRODUCING MIXTURES CONTAINING CLAY OR CEMENTITIOUS MATERIAL, e.g. PLASTER
    • B28C5/00Apparatus or methods for producing mixtures of cement with other substances, e.g. slurries, mortars, porous or fibrous compositions
    • B28C5/08Apparatus or methods for producing mixtures of cement with other substances, e.g. slurries, mortars, porous or fibrous compositions using driven mechanical means affecting the mixing
    • B28C5/18Mixing in containers to which motion is imparted to effect the mixing
    • B28C5/20Mixing in containers to which motion is imparted to effect the mixing rotating about a horizontal or substantially horizontal axis during mixing, e.g. without independent stirrers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28CPREPARING CLAY; PRODUCING MIXTURES CONTAINING CLAY OR CEMENTITIOUS MATERIAL, e.g. PLASTER
    • B28C7/00Controlling the operation of apparatus for producing mixtures of clay or cement with other substances; Supplying or proportioning the ingredients for mixing clay or cement with other substances; Discharging the mixture
    • B28C7/04Supplying or proportioning the ingredients
    • B28C7/0404Proportioning
    • B28C7/0409Proportioning taking regard of the moisture content of the solid ingredients; Moisture indicators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28CPREPARING CLAY; PRODUCING MIXTURES CONTAINING CLAY OR CEMENTITIOUS MATERIAL, e.g. PLASTER
    • B28C7/00Controlling the operation of apparatus for producing mixtures of clay or cement with other substances; Supplying or proportioning the ingredients for mixing clay or cement with other substances; Discharging the mixture
    • B28C7/04Supplying or proportioning the ingredients
    • B28C7/0404Proportioning
    • B28C7/0418Proportioning control systems therefor
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B40/00Processes, in general, for influencing or modifying the properties of mortars, concrete or artificial stone compositions, e.g. their setting or hardening ability
    • C04B40/0028Aspects relating to the mixing step of the mortar preparation
    • C04B40/0032Controlling the process of mixing, e.g. adding ingredients in a quantity depending on a measured or desired value
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/91Use of waste materials as fillers for mortars or concrete

Definitions

  • the present invention relates to a computer-aided method for controlling a concrete mixing plant for the production of ready-mixed concrete or mixed concrete, which is mixed at least from the components cement and aggregates with the addition of water in a motor-driven mixer unit.
  • the invention also relates to a data processing device executing the control method and a computer program embodying the method.
  • the invention comprises a special data format generated by the device for a documentation data record of the concrete quality produced and delivered by a concrete mixing plant.
  • the field of application of the invention extends both to concrete mixing plants and to the transport logistics between a concrete mixing plant for the production of ready-mixed concrete and the construction site on which the ready-mixed concrete is delivered and installed.
  • a concrete mixing plant usually consists essentially of several silos and outdoor storage areas on which the components to be mixed are stored. Powdered cement is stored in silos, protected from moisture, and the aggregates, preferably gravel and sand, are stored outdoors in the form of bulk material heaps. From here, depending on the type of concrete mixing plant, the aggregates can also be conveyed into silos, for example using a conveyor belt system. Different grain groups of aggregates are stored separately in assigned silos. The components get from the silos into the mixer unit according to a concrete recipe to be produced with the appropriate addition of water.
  • the mixer unit can be designed, for example, as a drum mixer, free-fall mixer, ring trough mixer, plate mixer, plate mixer or the like. After a mixing time, which is usually dictated by the recipe, the ready-mixed concrete is filled into truck mixers, which are supposed to transport it to the construction site as punctually as possible.
  • So-called concrete additives are also used as additional components for the production of ready-mixed concrete, which must be stored separately from the aforementioned components.
  • concrete additives for example fly ash, limestone powder or the like.
  • the above-mentioned components are usually metered by an operator in the control room of the concrete mixing plant and is carried out in a semi-automated manner in accordance with written mixing instructions, i.e. the concrete recipe.
  • written mixing instructions i.e. the concrete recipe.
  • strict rules apply to the metering of the components.
  • the components cement, aggregates, water and additives must be dosed with a tolerance of ⁇ 3% of the required amount in order to achieve the desired concrete quality.
  • the dosing process is computer-assisted according to instructions and when controlling the mixing time, care must be taken that changes in the properties of the components, such as the moisture of the aggregates, trigger a corresponding adjustment of the added quantities.
  • the mixing of the components must be carried out by the motor-driven mixer unit until the mixture appears uniform. This period is the mixing time ⁇ M, which is usually determined on the basis of empirical values and is at least 30 seconds for normal concrete and at least 90 seconds for lightweight concrete. Of course, the required mixing time ⁇ M also depends on the shape and movement of the mixer unit, for example on the speed of a drum mixer. These parameters differ depending on the concrete mixing plant and the mixer technology used there. Therefore, the aforementioned empirical values are not generally applicable.
  • concrete admixtures usually need to be added during the mixing process. If superplasticizer is added during the mixing process, the concrete must be mixed further until the superplasticizer has been completely distributed in the mixture. Depending on the system technology, concrete admixtures are added either together with the Water supply or immediately afterwards. Usually the effect depends on the time of addition.
  • Claim 16 relates to a concrete mixing plant for the production of ready-mixed concrete, which includes such a device.
  • Claim 18 relates to a computer program embodying the method according to the invention.
  • the invention includes the procedural teaching that the required mixing time ⁇ M of the mixer unit as a quality-determining factor for a ready-mixed concrete produced in a concrete mixing plant is calculated using an electronic forecast unit from the relevant influencing parameters before the start of the mixing process
  • a moisture sensor measured current moisture F at least of the added aggregates, but also the component temperature TK measured or determined via at least one temperature sensor or a thermal imaging camera, the mixer temperature TM and / or the outside temperature TA also taken into account in order to be based on a specified concrete recipe taking into account the Sensor technology determined various measured values to determine the required mixing time ⁇ M of the mixer unit as well as the expected concrete quality for each batch size.
  • a thermal imaging camera is used instead of a temperature sensor, it can be installed below or next to a mixer drum or the like, for example, to detect the mixer temperature TK.
  • a thermal imaging camera can be installed below or next to a mixer drum or the like, for example, to detect the mixer temperature TK.
  • existing concrete mixing plants can also be retrofitted with the technology according to the invention in terms of the required hardware with reasonable effort.
  • the solution according to the invention contains an optimal prediction of the mixing time ⁇ M of a concrete mixing plant as a quality-determining factor for a ready-mixed concrete to be produced by comparing measured values from various sensors, in particular a moisture sensor for determining the moisture content of the aggregates and at least one temperature sensor for determining process temperatures and / or sensors for other process parameters.
  • these essential measured variables have a decisive influence on the concrete quality that can be achieved, so that the concrete quality can be made uniform by setting the mixing time ⁇ M accordingly.
  • the mixing process can be shortened by increasing the amount of water added.
  • the prognosis of the required mixing time ⁇ M taking into account further correction characteristics for parameters relevant to the recipe.
  • the required mixing duration ⁇ M be transmitted from the forecasting unit directly to the control unit of the mixer unit for controlling the same.
  • the control unit can also vary the speed of rotation of a drum-shaped mixer unit in order to subsequently extend or shorten the predicted required mixing duration ⁇ M. If, for example, temperature measured values rise unusually strongly during the mixing process, the normal speed of the mixer unit can be increased in order to subsequently shorten the mixing time. This also shortens the heat exposure.
  • the control unit also adjusts the amount of water added to the measured moisture content of the aggregate.
  • temperature / mixing time correction characteristics for parameters relevant to the recipe.
  • speed / mixing time correction characteristics are used as correction characteristics for parameters relevant to the recipe.
  • These characteristics are used to vary the mixing time ⁇ M as a function of parameters such as the temperature or the speed of a drum-shaped mixer unit, which influence the quality of the concrete.
  • the electronic forecasting unit not only calculate the mixing time ⁇ M , but also forecast the transport time for the ready-mixed concrete from the concrete mixing plant to the construction site. Since the delivery location and the desired delivery time are also known from the order information for the ready-mixed concrete, the electronic forecasting unit can use a route planning unit to estimate the current travel time of a truck mixer due to the traffic. As a further influencing parameter, the electronic forecasting unit can also take into account the estimated transport temperature curve based on the outside temperature and optionally also an estimated waiting time until the ready-mixed concrete is installed on the construction site.
  • a waiting time can result, for example, from the fact that a formwork has not yet been completed on the construction site or the installation of earlier deliveries of ready-mixed concrete is delayed. Since the outside temperature also has a decisive influence on the quality of the concrete during transport, this is also taken into account.
  • the concrete quality can be predicted along the entire production chain, from the storage of the material, the start of the mixing process to the installation on the construction site, and if necessary influenced in order to achieve uniform quality. If, for example, a longer transport time is required due to congestion, the forecasting unit reacts by specifying concrete additives to extend the pot life of the ready-mixed concrete, which can be added within the framework of the given concrete recipe during the mixing process according to the control unit.
  • the forecast unit Since the forecast unit is able to determine the concrete quality that can be achieved under the given circumstances on the basis of the measured values determined by the sensors and other process-influencing parameters for the concrete recipe to be implemented, this can be communicated to the person responsible on the construction site before mixing and subsequent transport so that they can decide whether the concrete quality that can be achieved under the given circumstances should be used or not. In this way, incorrect deliveries can be avoided.
  • This process can advantageously be carried out by a computer-aided comparison unit connected to the forecast unit, which compares the forecast, realizable concrete quality with the specification required for the construction site. before the mixing unit is filled with the components to be mixed, the mixing process is started.
  • a documentation data record which comprises at least the following essential data fields assigned to an order identifier as a data record key: concrete recipe used,
  • This special data format thus includes the core information, which is decisive for the concrete quality of a delivery.
  • further data can of course also be added to the documentation data record.
  • such documentation data sets can be analyzed to determine the conditions under which optimal concrete quality could be achieved in order processes.
  • a pattern identifier can automatically suggest countermeasures to eliminate negative influences in the context of machine learning in order to ensure a higher probability of optimal concrete quality in the future.
  • Such a countermeasure can, for example, result in an increased addition of water slow speeds, a shortened mixing time at low temperatures or the like. All such countermeasures are not readily recognizable at all on the basis of the human understanding with the wealth of experience of a specialist.
  • the documentation data set can also be linked to other construction-related data using blockchain technology and stored in a forgery-proof documentation database for all those involved in a construction project.
  • FIG. 1 shows a schematic representation of a concrete mixing plant with a computer-aided control device implemented therein
  • FIG. 2 shows a schematic flow chart of a method for controlling the concrete mixing plant according to FIG. 1, and
  • FIG. 3 shows a data format of an order data record for the concrete mixing plant.
  • the mixer unit 3 is connected to cement silos 5a to 5c, which contain different types of cement 6a; 6b; 6c, which are blown into the mixer unit 3 in a valve-controlled manner via a compressed air delivery device.
  • the mixer unit 3 is in material flow connection with a dump area 7, on which dumps of bulk material with different aggregates 8a to 8c, that is different gravel and sands, are stored. These are transported to the mixer unit 3 by a conveyor belt device.
  • the mixer unit 3 can be connected to a connection for water 9.
  • an electronic forecast unit 10 is provided as part of the control of the concrete mixing plant.
  • the electronic forecasting unit 10 has a moisture sensor 11 for measuring the current moisture F of the aggregate 8a to be supplied; 8b; 8c in connection.
  • the temperature sensor 12 the component temperature T K of the aggregate to be fed 8a; 8b; 8c measured.
  • the process temperature within the mixer unit 3 is monitored via a further temperature sensor 13 and the outside temperature TA is also monitored via a temperature sensor 14.
  • the electronic forecasting unit 10 determines, based on a ready-mixed concrete order 16 stored in an order database 15 and to be processed, the associated concrete recipe 18 stored in a recipe database 17, for example for a special lightweight concrete.
  • the different types of measurement values determined by the sensor system described above are fed to the prognosis unit 10. Proceeding from this, the prognosis unit 10 determines at least the required mixing duration ⁇ M of the mixer unit 3 at a specific nominal speed. In addition, other control data can also be forecast.
  • the prognosis unit 10 When determining the control data, the prognosis unit 10 also takes into account correction characteristics 19, which are stored in a correction line database 20 and can be called up.
  • correction characteristics 19 are stored in a correction line database 20 and can be called up.
  • a temperature / mixing time correction characteristic curve can be used, for example in the case of the use of unusually dry and heated components, to extend the mixing time under M with increased addition of water. In the opposite case, the same applies analogously.
  • the required mixing duration ⁇ M predicted by the forecast unit 10 is then transmitted to the control unit 21 of the mixer unit 3 for controlling the motor 4 at a defined nominal speed.
  • the control unit 21 it is also possible for the control unit 21 to reduce or increase the speed of the electric motor 4 in order to vary the predicted required mixing duration t MZ u. For example, if a truck mixer 2 is not yet available for the removal of the ready-mixed concrete 1, the rotational speed of the mixer unit 3 can be reduced during the waiting time.
  • the electronic forecasting unit 10 also takes into account a transport time fr from the stationary concrete mixing plant to the construction site, which is forecast using a route planning unit 22 and which results from the route planning data. This can also be used to vary the required mixing time M accordingly.
  • concrete admixtures that extend the pot life can be added within the framework of the concrete formulation if it turns out that the delivery of the ready-mixed concrete 1 to the construction site would be extended due to traffic. This ensures that a concrete quality that is as uniform as possible is used.
  • a comparison unit 23 which is also connected to the forecast unit 10, compares the forecast, realizable concrete quality with the specification required for the construction site, which results from the order 16 for ready-mixed concrete. If this specification cannot be achieved, there is a possibility that the start of the filling and mixing process will be prevented, as it is foreseeable that the required concrete quality cannot be achieved in view of the extreme heating of components in the summer or a transport time delayed due to traffic jams.
  • This information generated by the comparison unit 23 can, for example, also be transmitted to the construction site for the purpose of changing the construction schedule.
  • the information generated by the sensor system, the prognosis unit 10, the control unit 21 and the comparison unit 23 on a mixing and delivery process for ready-mixed concrete 1 can be retrieved in a documentation database 24, which ensures later traceability.
  • the method for controlling a concrete mixing plant for the production of ready-mixed concrete 1 comprises at least the following steps:
  • a step A the concrete recipe to be produced is first loaded for the execution of a ready-mixed concrete order.
  • step B various current state measurement values of the required components are read in via the sensors of the concrete mixing plant.
  • step C at least the required mixing time is forecast.
  • step D this result is corrected by further logistical influencing parameters.
  • step E it is filled into a truck mixer for transport to the construction site.
  • a data format of an order data record 25 for a concrete mixing plant for the production of ready-mixed concrete comprises the following data fields assigned to an order identifier 26, which are also archived in the documentation database 24:
  • the concrete formulation 18 used is stored in a data field I, the measured temperature values T during the mixing and / or transport process are stored in a data field II, the measured moisture values F of at least one component of the concrete formulation used are stored in a data field III, and the actual quantities M of all components used according to the concrete recipe are stored, the predicted mixing time der M of the mixer unit is stored in a data field V and the entire transport and waiting time t of the ready-mixed concrete to or on the construction site is stored in a data field VI.
  • This concentrated data set documents essential quality information about an ordered and installed ready-mixed concrete, which is also accessible for a later evaluation in the sense of pattern recognition, damage analysis, recipe improvements and the like.
  • the invention is not limited to the preferred exemplary embodiment described above. Rather, modifications thereof are also conceivable, which are also covered by the scope of protection of the following claims.
  • the control parameter of the required mixing duration t M that determines the quality of the concrete, to also predict other or further variables, such as the actually required quantities of the individual components of the concrete.
  • the concrete mix can also be specifically preheated, for example. Thanks to the solution according to the invention, the quality of a concrete delivery can also be met in a contractual condition that can be met make a so-called smart contract and secure it along the production and use chain using blockchain technology.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Dispersion Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Structural Engineering (AREA)
  • Automation & Control Theory (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Preparation Of Clay, And Manufacture Of Mixtures Containing Clay Or Cement (AREA)

Abstract

Die Erfindung betrifft ein computergestütztes Verfahren und eine Einrichtung zur Steuerung einer Beton-Mischanlage für die Herstellung von Transportbeton (1) oder Mischbeton, der zumindest aus den Komponenten Zement (6a; 6b) und Gesteinskörnungen (8a, 8b, 8c) unter Zugabe von Wasser (9) in einer motorbetriebenen Mischereinheit (3) gemischt wird, wobei zumindest die erforderliche Mischdauer (tM) der Mischereinheit (3) vor dem Start des Mischvorgangs über eine elektronische Prognoseeinheit (10) kalkuliert wird, welche die über zumindest einen Feuchtigkeitssensor (11) gemessene aktuelle Feuchtigkeit (F) zumindest der zuzugebenden Gesteinskörnungen (8a, 8b, 8c) und die über zumindest einen Temperatursensor (12; 13;14) oder Wärmebildkamera gemessene beziehungsweise ermittelte Komponententemperatur (TK), die Mischertemperatur (TM) und/oder die Außentemperatur (TA) berücksichtigt, um auf Basis einer vorgegebenen Betonrezeptur (18) unter Berücksichtigung der durch die Sensorik ermittelten verschiedenartigen Messwerte die erforderliche Mischdauer (tM) der Mischereinheit (3) zu ermitteln.

Description

Computergestütztes Verfahren sowie Einrichtung zur Steuerung einer Beton-Mischanlage
Bezugnahme auf verwandte Anmeldungen
Die vorliegende Anmeldung beansprucht die Priorität der deutschen Patentanmeldung Nr. 102019219373.0, eingereicht am 11. Dezember 2019, die in vollem Umfang durch Bezugnahme in das vorliegende Dokument aufgenommen wird.
Die vorliegende Erfindung betrifft ein computergestütztes Verfahren zur Steuerung einer Beton-Mischanlage für die Herstellung von Transportbeton oder Mischbeton, der zumindest aus den Komponenten Zement und Gesteinskörnungen unter Zugabe von Wasser in einer motorbetriebenen Mischereinheit gemischt wird. Außerdem betrifft die Erfindung auch eine das Steuerverfahren ausführende Einrichtung zur Datenverarbeitung sowie ein das Verfahren verkörperndes Computerprogramm. Ferner umfasst die Erfindung ein durch die Einrichtung generiertes spezielles Datenformat für einen Dokumentations-Datensatz der von einer Beton- Mischanlage hergestellten und gelieferten Betonqualität.
Das Einsatzgebiet der Erfindung erstreckt sich sowohl auf Beton-Mischanlagen als auch auf die Transportlogistik zwischen einer Beton-Mischanlage für die Herstellung von Transportbeton und der Baustelle, auf welcher der Transportbeton angeliefert und verbaut wird.
LK: Stand der Technik
Eine Beton-Mischanlage besteht gewöhnlich im Wesentlichen aus mehreren Silos und Freilagerflächen, auf denen die zu mischenden Komponenten bevorratet werden. So wird pulverförmiger Zement feuchtigkeitsgeschützt in Silos gelagert und die Gesteinskörnungen, vorzugsweise Kies und Sand, werden in Form von Schüttguthalden im Freien gelagert. Von hier aus können die Gesteinskörnungen je nach Bauart der Beton-Mischanlage ebenfalls in Silos befördert werden, beispielsweise über eine Förderbandanlage. Dabei werden verschiedene Komgruppen an Gesteinskörnungen in je zugeordneten Silos getrennt aufbewahrt. Aus den Silos gelangen die Komponenten nach Maßgabe einer herzustellenden Betonrezeptur unter entsprechender Wasserzugabe in die Mischereinheit.
Die Mischereinheit kann dabei beispielsweise als Trommelmischer, Freifallmischer, Ringtrogmischer, Plattenmischer, Tellermischer oder dergleichen ausgebildet sein. Nach Ablauf einer gewöhnlich rezepturbedingten Mischdauer wird der Transportbeton in Fahrmischer abgefüllt, welche diesen möglichst termingerecht zur Baustelle transportieren sollen.
Als weitere Komponenten zur Herstellung von Transportbeton kommen auch sogenannte Betonzusatzmittel zum Einsatz, welche separat von den vorgenannten Komponenten zu lagern sind. Dasselbe gilt analog auch für sogenannte Betonzusatzstoffe, beispielsweise Flugasche, Kalksteinmehl oder dergleichen.
Die Dosierung der vorgenannten Komponenten erfolgt gemäß dem allgemein bekannten Stand der Technik gewöhnlich von einem Bediener im Leitstand der Beton-Mischanlage und erfolgt teilautomatisiert nach Maßgabe einer schriftlichen Mischanweisung, also der Betonrezeptur. Für das Zumessen der Komponenten gelten bei Chargengrößen von mehr als 1 m3 streng einzuhaltende Regeln. So müssen die Komponenten Zement, Gesteinskömungen, Wasser und Zusätze mit einer Toleranz von ±3% der erforderlichen Menge dosiert werden, um die gewünschte Betonqualität zu erzielen. Der Dosiervorgang erfolgt nach Anweisung rechnergestützt und bei der Steuerung der Mischdauer ist darauf zu achten, dass Änderungen der Eigenschaften der Komponenten, wie beispielsweise Feuchtigkeit der Gesteinskörnungen, eine entsprechende Anpassung von zugegebenen Mengen auslösen.
Das Mischen der Komponenten muss durch die motorbetriebene Mischereinheit solange durchgeführt werden, bis die Mischung gleichförmig erscheint. Dieser Zeitraum ist die Mischdauer ΪM, welche gewöhnlich nach Erfahrungswerten festgelegt wird und bei Normalbeton mindestens 30 Sekunden und bei Leichtbeton mindestens 90 Sekunden beträgt. Natürlich hängt die erforderliche Mischdauer ΪM ebenfalls von der Form und Bewegung der Mischereinheit ab, beispielsweise von der Drehzahl eines Trommelmischers. Diese Parameter sind je nach Beton-Mischanlage und dort verwendeter Mischertechnik unterschiedlich. Daher sind die vorgenannten Erfahrungswerte auch nicht allgemeingültig. Wird sicherheitshalber eine zu lange Mischdauer gewählt, wird damit zwar eine optimale Durchmischung der Komponenten erreicht, jedoch erfordert die höhere Anlagenzeit einen entsprechend höheren Aufwand und infolge beispielsweise einer zusätzlich staubedingt zu langen Transportdauer kann auch die Qualität des Transportbetons durch vorzeitiges Abbinden leiden.
Darüber hinaus können für die Herstellung von Betonen mit besonderen Anforderungen, beispielsweise selbstverdichtenden Betonen, hochfesten Betonen, Sichtbeton oder bei Verwendung von Luftporenbildem, längere Mischdauern erforderlich sein. Betonzusatzmittel müssen gewöhnlich während des Mischvorgangs zugegeben werden. Falls Fließmittel während des Mischvorgangs zugegeben wird, muss der Beton solange weitergemischt werden, bis sich das Fließmittel vollständig in der Mischung verteilt hat. Je nach Anlagentechnik erfolgt die Zugabe von Betonzusatzmitteln entweder gemeinsam mit der Wasserzufuhr oder direkt danach. Gewöhnlich hängt die Wirkung vom Zeitpunkt der Zugabe ab.
Außerdem beeinflussen auch weitere Umstände die erforderliche Mischdauer ΪM der Mischereinheit sowie die damit zusammenhängende Qualität des erzeugten Transportbetons. So können beispielsweise im Sommer aufgrund von Sonneneinstrahlung aufgeheizte Gesteinskörnungen zu einem viel zu heißen Transportbeton führen, welcher eventuell vor dem Ende der Transportdauer anfängt abzubinden. Dem kann zwar durch Zugabe von Trockeneis oder durch Bewässern der Gesteinskömungen entgegengewirkt werden, jedoch sind die erzielbaren Ergebnisse wegen der anderen vorgenannten Einflussparameter nicht stets zuverlässig erreichbar.
Es ist daher die Aufgabe der vorliegenden Erfindung, ein Verfahren sowie eine Einrichtung zur computergestützten Steuerung einer Beton-Mischanlage zu schaffen, welches/welche für verschiedene Betonrezepturen eine möglichst gleichmäßige Betonqualität trotz unterschiedlicher oder sich ändernder Einflussparameter gewährleistet.
Offenbarung der Erfindung
Die Aufgabe wird durch ein computergestütztes Verfahren gemäß Anspruch 1 gelöst. Hinsichtlich einer das Verfahren ausführenden Einrichtung zur Datenverarbeitung wird auf Anspruch 10 verwiesen. Der Anspruch 16 bezieht sich auf eine Beton-Mischanlage für die Herstellung von Transportbeton, welche eine solche Einrichtung mit umfasst. Außerdem wird ein spezielles Datenformat für einen Dokumentations-Datensatz einer Beton-Mischanlage vorgeschlagen und der Anspruch 18 bezieht sich auf ein das erfindungsgemäße Verfahren verkörperndes Computerprogramm. Die Erfindung schließt die verfahrenstechnische Lehre ein, dass die erforderliche Mischdauer ΪM der Mischereinheit als qualitätsbestimmender Faktor für einen in einer Beton-Mischanlage erzeugten Transportbeton vor dem Start des Mischvorgangs über eine elektronische Prognoseeinheit aus den maßgeblichen Einflussparametem kalkuliert wird, welche nicht allein die über zumindest einen Feuchtigkeitssensor gemessene aktuelle Feuchtigkeit F zumindest der zugegebenen Gesteinskörnungen, sondern auch die über zumindest einen Temperatursensor oder eine Wärmebildkamera gemessene beziehungsweise ermittelte Komponententemperatur TK, die Mischertemperatur TM und/oder die Außentemperatur TA mit berücksichtigt, um auf Basis einer vorgegebenen Betonrezeptur unter Berücksichtigung der durch die Sensorik ermittelten verschiedenartigen Messwerte die erforderliche Mischdauer ΪM der Mischereinheit sowie die zu erwartende Betonqualität losgrößenindividuell zu ermitteln. Falls statt einem Temperatursensor eine Wärmebildkamera zum Einsatz kommt, so lässt sich diese beispielsweise zur Detektion der Mischertemperatur TK unterhalb oder neben eine Mischertrommel oder dergleichen montieren. Auf diese Weise können bestehende Betonmischwerke auch mit vertretbarem Aufwand mit der erfindungsgemäßen Technologie hinsichtlich der erforderlichen Hardware nachgerüstet werden.
Mit anderen Worten beinhaltet die erfindungsgemäße Lösung eine optimale Vorhersage der Mischdauer ΪM einer Beton-Mischanlage als qualitätsbestimmender Faktor für einen herzustellenden Transportbeton durch Abgleich von Messwerten verschiedenartiger Sensoren, insbesondere eines Feuchtigkeitssensors zur Ermittlung der Feuchtigkeit der Gesteinskörnungen sowie zumindest einen Temperatursensor zur Ermittlung von Prozesstemperaturen und/oder Sensoren für andere Prozessparameter. Es hat sich herausgestellt, dass diese wesentlichen Messgrößen die erzielbare Betonqualität maßgeblich beeinflussen, so dass durch entsprechende Einstellung der Mischdauer ΪM die Betonqualität vergleichmäßigt werden kann. So kann der Mischvorgang beispielsweise bei hoher Außentemperatur unter Steigerung der Wasserzugabe verkürzt werden. Vorzugsweise erfolgt also die Prognose der erforderlichen Mischdauer ΪM unter weiterer Berücksichtigung von Korrekturkennlinien für rezepturrelevante Parameter.
Weiterhin wird vorgeschlagen, dass die erforderliche Mischdauer ΪM von der Prognoseeinheit direkt auf die Steuereinheit der Mischereinheit zur Ansteuerung derselben übertragen wird. Die Steuereinheit kann darüber hinaus auch die Drehgeschwindigkeit einer trommelförmigen Mischereinheit zur nachträglichen Verlängerung oder Verkürzung der prognostizierten erforderlichen Mischdauer ΪM variieren. Sollten beispielsweise Temperaturmesswerte während des Mischvorgangs ungewöhnlich stark ansteigen, so kann die normale Drehzahl der Mischereinheit erhöht werden, um die Mischdauer nachträglich zu verkürzen. Hierdurch wird auch die Hitzeeinwirkung verkürzt. Ebenso passt die Steuereinheit die Zugabe an Wasser an die gemessene Feuchtigkeit der Gesteinskömungen an.
Als Korrekturkennlinien für rezepturrelevante Parameter kommen beispielsweise Temperatur- Mi schzeitkorrektur-Kennlinien, Drehzahl-Mischzeitkorrektur-Kennlinien und dergleichen zur Anwendung. Diese Kennlinien dienen der Variierung der Mischdauer ΪM in Abhängigkeit von Parametern wie beispielsweise der Temperatur oder der Drehzahl einer trommelförmigen Mischereinheit, welche die Betonqualität beeinflussen.
Gemäß einer weiteren die Erfindung verbessernden Maßnahme wird vorgeschlagen, dass die elektronische Prognoseeinheit nicht allein die Mischdauer ΪM kalkuliert, sondern darüber hinaus auch die Transportzeit fr des Transportbetons von der Beton-Mischanlage zur Baustelle prognostiziert. Da durch die Bestellungsinformation für den Transportbeton auch der Lieferort und der gewünschte Lieferzeitpunkt bekannt sind, kann die elektronische Prognoseeinheit anhand einer Routenplanungseinheit die verkehrsbedingt aktuelle Fahrzeit eines Fahrmischers abschätzen. Als weiteren Einflussparameter kann die elektronische Prognoseeinheit dabei auch den geschätzten Transporttemperaturverlauf aufgrund der Außentemperatur und optional auch eine geschätzte Wartezeit bis zum Verbau des Transportbetons auf der Baustelle mitberücksichtigen. Eine Wartezeit kann sich beispielsweise dadurch ergeben, dass auf der Baustelle eine Verschalung noch nicht fertiggestellt worden ist oder sich der Verbau früherer Lieferungen von Transportbeton verzögert. Da auch die Außentemperatur während des Transports einen entscheidenden Einfluss auf die Betonqualität ausübt, wird auch diese mitberücksichtigt. Mittels Prognoseeinheit kann also die Betonqualität entlang der gesamten Herstellungskette, und zwar von der Lagerung des Materials, dem Start des Mischvorgangs bis zum Verbau auf der Baustelle vorhergesagt und erforderlichenfalls beeinflusst werden, um gleichmäßige Qualitäten zu erzielen. Wird beispielsweise staubedingt eine längere Transportzeit fr erforderlich sein, so reagiert die Prognoseeinheit mit der Vorgabe von Betonzusatzmitteln zur Verlängerung der Topfzeit des Transportbetons, die im Rahmen der vorgegebenen Betonrezeptur während des Mischvorgangs nach Maßgabe der Steuereinheit beigemischt werden können.
Da die Prognoseeinheit insoweit in der Lage ist, für die umzusetzende Betonrezeptur auf Basis der durch die Sensorik ermittelten Messwerte und weiterer prozessbeeinflussender Parameter die unter den gegebenen Umständen realisierbare Betonqualität zu ermitteln, kann diese vor dem Mischen und dem nachfolgenden Transport dem Verantwortlichen auf der Baustelle mitgeteilt werden, damit dieser entscheiden kann, ob die unter den gegebenen Umständen realisierbare Betonqualität verbaut werden soll oder nicht. Hierdurch können Fehllieferungen vermieden werden.
Dieser Vorgang lässt sich vorteilhafterweise durch eine an die Prognoseeinheit angeschlossene rechnergestützte Abgleicheinheit durchführen, welche die prognostizierte realisierbare Betonqualität mit der für die Baustelle erforderlichen Spezifikation vergleicht, ehe die Befüllung der Mischereinheit mit den zu mischenden Komponenten der Start des Mischvorgangs durchgeführt wird.
Gemäß einer weiteren die Erfindung verbessernden Maßnahme wird vorgeschlagen, dass zumindest die durch die Sensorik, die Prognoseeinheit, die Steuereinheit sowie die Abgleicheinheit generierten Informationen zu einem Misch- und Liefervorgang von Transportbeton in einer Dokumentations-Datenbank abrufbar hinterlegt wird. Hierfür wird ein spezielles Datenformat für einen Dokumentations-Datensatz vorgeschlagen, der zumindest die folgenden, einer Bestellkennung als Datensatzschlüssel zugeordneten wesentlichen Datenfelder umfasst: verwendete Betonrezeptur,
Temperaturmesswerte beim Misch- und/oder Transportvorgang, Feuchtigkeitsmesswerte mindestens einer verwendeten Komponente der Betonrezeptur,
Mengen aller verwendeten Komponenten der Betonrezeptur, prognostizierte du durchgeführte Mischdauer ΪM der Mischereinheit, und Transportzeit zur und Wartezeit auf der Baustelle.
Damit umfasst dieses spezielle Datenformat die Keminformationen, welche für die Betonqualität einer Lieferung maßgeblich sind. Darüber hinaus können natürlich auch weitere Daten dem Dokumentations-Datensatz angefügt werden. Ferner lassen sich derartige Dokumentations-Datensätze bei entsprechend hohem Datenbestand dahingehend analysieren, unter welchen Voraussetzungen optimale Betonqualitäten von Bestellvorgängen erzielt werden konnten. Hieraus kann eine Musterkennung im Rahmen eines maschinellen Lernens automatisiert Gegenmaßnahmen zur Beseitigung von negativen Einflüssen vorschlagen, um zukünftig eine höhere Wahrscheinlichkeit an optimalen Betonqualitäten sicherzustellen. Eine derartige Gegenmaßnahme kann beispielsweise in einer vermehrten Wasserzugabe bei langsamen Drehzahlen, einer verkürzten Mischzeit bei Niedrigtemperaturen oder dergleichen liegen. All solche Gegenmaßnahmen sind nicht allein aufgrund des menschlichen Verstandes mit dem Erfahrungsschatz eines Fachmanns ohne Weiteres überhaupt erkennbar.
Der Dokumentations-Datensatz kann ferner auch per Blockchain-Technologie mit anderen baurelevanten Daten verknüpft werden und in einer Dokumentations-Datenbank fälschungssicher für alle Beteiligten eines Bauvorhabens hinterlegt werden.
Detailbeschreibung anhand der Zeichnung
Weitere die Erfindung verbessernde Maßnahmen werden nachstehend gemeinsam mit der Beschreibung eines bevorzugten Ausführungsbeispiels der Erfindung anhand der Figuren näher dargestellt. Es zeigt:
Fig. 1 eine schematische Darstellung einer Beton-Mischanlage mit hierin implementierter rechnergestützter Steuereinrichtung,
Fig. 2 einen schematischen Ablaufplan eines Verfahrens zur Steuerung der Beton- Mischanlage gemäß Fig. 1, und
Fig. 3 ein Datenformat eines Bestellungs-Datensatzes für die Beton-Mischanlage.
Gemäß Fig. 1 besteht eine Beton-Mischanlage zur Herstellung von Transportbeton 1, welcher von dort aus per Fahrmischer 2 zu einer - hier nicht weiter dargestellten - Baustelle zum Verbau transportiert wird, im Wesentlichen aus einer Mischereinheit 3, die hier als Trommelmischer ausgebildet ist, welcher über einen elektrischen Antriebsmotor 4 zum Mischen in Drehbewegung versetzbar ist. Für die Zufuhr von zu mischenden Komponenten steht die Mischereinheit 3 mit Zementsilos 5a bis 5c in Verbindung, welche unterschiedliche Sorten von Zement 6a; 6b; 6c enthalten, welche ventilgesteuert über eine Druckluftfördereinrichtung in die Mischereinheit 3 eingeblasen werden. Außerdem steht die Mischereinheit 3 mit einer Haldenfläche 7 in Materialflussverbindung, auf welcher Schüttguthalden mit unterschiedlichen Gesteinskörnungen 8a bis 8c, also verschiedene Kiese und Sande, bevorratet sind. Diese werden per Förderbandeinrichtung zur Mischereinheit 3 transportiert. Außerdem ist die Mischereinheit 3 mit einem Anschluss für Wasser 9 verbindbar.
Zur Kalkulation einer erforderlichen Mischdauer ΪM zum Betrieb der Mischereinheit 3 ist im Rahmen der Steuerung der Beton-Mischanlage eine elektronische Prognoseeinheit 10 vorgesehen. Eingangsseitig steht die elektronische Prognoseeinheit 10 bei diesem Ausführungsbeispiel mit einem Feuchtigkeitssensor 11 zur Messung der aktuellen Feuchtigkeit F der zuzuführenden Gesteinskömung 8a; 8b; 8c in Verbindung. Außerdem wird per Temperatursensor 12 die Komponententemperatur TK der zuzuführenden Gesteinskörnung 8a; 8b; 8c gemessen. Daneben wird auch die Prozesstemperatur innerhalb der Mischereinheit 3 über einen weiteren Temperatursensor 13 überwacht sowie auch die Außentemperatur TA über einen Temperatursensor 14. An dieser Stelle sei noch einmal daraufhingewiesen, dass im Rahmen der erfindungsgemäßen Lösung auch nur eine Teilauswahl dieser Sensoren oder zusätzliche Sensoren vorgesehen werden können, welche mischdauerrelevante Messwerte an die elektronische Prognoseeinheit 10 melden.
Die elektronische Prognoseeinheit 10 ermittelt ausgehend von einer innerhalb einer Bestellungs-Datenbank 15 abgespeicherten und abzuarbeitenden Transportbeton-Bestellung 16 die zugehörige und in einer Rezeptur-Datenbank 17 abrufbar hinterlegte Betonrezeptur 18, beispielsweise für einen speziellen Leichtbeton. Außerdem werden die verschiedenartigen durch die vorstehend beschriebene Sensorik ermittelten Messwerte der Prognoseeinheit 10 zugeführt. Hiervon ausgehend ermittelt die Prognoseeinheit 10 zumindest die erforderliche Mischdauer ΪM der Mischereinheit 3 bei einer bestimmten Nenndrehzahl. Darüber hinaus können auch andere Ansteuerdaten prognostiziert werden.
Bei der Ermittlung der Ansteuerdaten berücksichtigt die Prognoseeinheit 10 außerdem auch Korrekturkennlinien 19, welche in einer Korrekturlinien-Datenbank 20 abrufbar hinterlegt sind. So kann beispielsweise eine Temperatur-Mischzeitkorrektur-Kennlinie hergenommen werden, um beispielsweise im Falle der Verwendung von ungewöhnlich trockenen und aufgeheizten Komponenten die Mischdauer ΪM unter vermehrter Wasserzugabe zu verlängern. Im gegenteiligen Fall gilt analog dasselbe.
Die von der Prognoseeinheit 10 prognostizierte erforderliche Mischdauer ΪM wird anschließend auf die Steuereinheit 21 der Mischereinheit 3 zur Ansteuerung des Motors 4 mit einer definierten Nenndrehzahl übertragen. Darüber hinaus ist es auch möglich, dass die Steuereinheit 21 die Drehzahl des Elektromotors 4 absenkt oder erhöht, um die prognostizierte erforderliche Mischdauer tMZu variieren. Steht beispielsweise noch kein Fahrmischer 2 für die Abnahme des Transportbetons 1 zur Verfügung, so kann die Drehgeschwindigkeit der Mischereinheit 3 während der Wartezeit abgesenkt werden.
Außerdem berücksichtigt die elektronische Prognoseeinheit 10 bei diesem Ausführungsbeispiel auch eine anhand einer Routenplanungseinheit 22 prognostizierte Transportzeit fr von der stationären Betonmischanlage zur Baustelle, die sich aus den Routenplanungsdaten ergibt. Hierüber lässt sich ebenfalls die erforderliche Mischdauer ΪM entsprechend variieren. Außerdem können im Rahmen der Betonrezeptur 18 topfzeitverlängernde Betonzusatzmittel zugegeben werden, falls sich herausstellt, dass sich die Anliefemng des Transportbetons 1 zur Baustelle verkehrsbedingt verlängern würde. Hierdurch wird sichergestellt, dass eine möglichst gleichmäßige Betonqualität verbaut wird.
Eine ebenfalls mit der Prognoseeinheit 10 verbundene Abgleicheinheit 23 vergleicht die prognostizierte realisierbare Betonqualität mit der für die Baustelle erforderlichen Spezifikation, welche sich aus der Transportbeton-Bestellung 16 ergibt. Sollte diese Spezifikation nicht erreichbar sein, so besteht die Möglichkeit, dass ein Start des Befüll- und Mischvorgangs verhindert wird, da absehbar ist, dass die geforderte Betonqualität angesichts einer extremen Aufheizung von Komponenten in der Sommerzeit oder einer staubedingt verzögerten Transportzeit nicht realisierbar ist. Diese von der Abgleicheinheit 23 erzeugte Information kann beispielsweise auch an die Baustelle zwecks Änderung der Bauablaufplanung übertragen werden.
Ferner ist vorgesehen, dass die durch die Sensorik, die Prognoseeinheit 10, die Steuereinheit 21 sowie die Abgleicheinheit 23 generierten Informationen zu einem Misch- und Liefervorgang von Transportbeton 1 in einer Dokumentations-Datenbank 24 abrufbar hinterlegt werden, was eine spätere Nachweisbarkeit gewährleistet.
Gemäß Fig. 2 umfasst das Verfahren zur Steuerung einer Beton-Mischanlage für die Herstellung von Transportbeton 1 zumindest die folgenden Schritte:
In einem Schritt A wird für die Ausführung einer Transportbeton-Bestellung zunächst die herzustellende Betonrezeptur geladen. In einem Schritt B werden über die Sensorik der Beton-Mischanlage verschiedenartige aktuelle Zustandsmesswerte der benötigten Komponenten eingelesen. Ausgehend davon wird in einem Schritt C zumindest die erforderliche Mischdauer prognostiziert. In einem Schritt D wird dieses Resultat durch weitere logistische Einflussparameter korrigiert. In einem Schritt E erfolgt das Abfüllen in einen Fahrmischer für den Transport zur Baustelle. Gemäß Fig. 3 umfasst ein Datenformat eines Bestellungs-Datensatzes 25 für eine Beton- Mischanlage für die Herstellung von Transportbeton die folgenden, einer Bestellkennung 26 zugeordneten Datenfelder, die auch in der Dokumentations-Datenbank 24 archiviert sind:
In einem Datenfeld I ist die verwendete Betonrezeptur 18 hinterlegt, in einem Datenfeld II sind die Temperaturmesswerte T bei Misch- und/oder Transportvorgang hinterlegt, in einem Datenfeld III sind die Feuchtigkeitsmesswerte F mindestens einer verwendeten Komponente der Betonrezeptur hinterlegt, in einem Datenfeld IV sind die tatsächlichen Mengen M aller verwendeten Komponenten laut Betonrezeptur hinterlegt, in einem Datenfeld V ist die prognostizierte Mischdauer ΪM der Mischereinheit hinterlegt und in einem Datenfeld VI ist die gesamte Transport- und Wartezeit t des Transportbetons zur bzw. auf der Baustelle abgespeichert.
Durch diesen konzentrierten Datensatz werden wesentliche Qualitätsinformationen über einen bestellten und verbauten Transportbeton dokumentiert, die auch einer späteren Auswertung im Sinne von Mustererkennungen, Schadensanalysen, Rezepturverbesserungen und dergleichen zugänglich sind.
Die Erfindung ist nicht beschränkt auf das vorstehend beschriebene bevorzugte Ausführungsbeispiel. Es sind vielmehr auch Abwandlungen hiervon denkbar, die vom Schutzbereich der nachfolgenden Ansprüche mit umfasst sind. So ist es beispielsweise auch denkbar, außer oder anstelle des betonqualitätsbestimmenden Ansteuerungsparameters der erforderlichen Mischdauer tMauch andere beziehungsweise weitere Größen zu prognostizieren, wie beispielsweise die tatsächlich erforderlichen Mengen der einzelnen Komponenten des Betons. Bei kalten Witterungsbedingungen auf der Baustelle kann das Betongemisch auch beispielsweise gezielt vorgeheizt werden. Dank der erfindungsgemäßen Lösung lässt sich die Qualität einer Betonlieferung auch zur einhaltbaren Vertragsbedingung eines sogenannten Smart Contracts machen und per Blockchain-Technologie entlang der Herstellungs- und Nutzungskette absichem.
Bezugszeichenliste
Transportbeton
Fahrmischer
Mischereinheit
Elektromotor
Silo
Zement
Haldenfläche
Gesteinskömung
Wasser
Prognoseeinheit
Feuchtigkeitssensor erster Temperatursensor zweiter Temperatursensor dritter Temperatursensor
Bestellungs-Datenbank
Transportbeton-Bestellung
Rezeptur-Datenbank
Betonrezeptur
Korrekturkennlinie
Korrekturkennlinien-Datenbank
Steuereinheit
Routenplanungseinheit
Abgleicheinheit
Dokumentations-Datenbank
Dokumentations-Datensatz
Bestellkennung

Claims

Ansprüche
1. Computergestütztes Verfahren zur Steuerung einer Beton-Mischanlage für die Herstellung von Transportbeton (1) oder Mischbeton, der zumindest aus den Komponenten Zement (6a; 6b) und Gesteinskörnungen (8a, 8b, 8c) unter Zugabe von Wasser (9) in einer motorbetriebenen Mischereinheit (3) gemischt wird, dadurch gekennzeichnet, dass zumindest die erforderliche Mischdauer (ΪM) der Mischereinheit (3) vor dem Start des Mischvorgangs über eine elektronische Prognoseeinheit (10) kalkuliert wird, welche die über zumindest einen Feuchtigkeitssensor (11) gemessene aktuelle Feuchtigkeit (F) zumindest der zuzugebenden Gesteinskörnungen (8a, 8b, 8c) und die über zumindest einen Temperatursensor (12; 13; 14) oder Wärmebildkamera gemessene beziehungsweise ermittelte Komponententemperatur (TK), die Mischertemperatur (TM) und/oder die Außentemperatur (TA) berücksichtigt, um auf Basis einer vorgegebenen Betonrezeptur (18) unter Berücksichtigung der durch die Sensorik ermittelten verschiedenartigen Messwerte die erforderliche Mischdauer (ΪM) der Mischereinheit (3) zu ermitteln.
2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass die Prognose der erforderlichen Mischdauer (ΪM) unter weiterer Berücksichtigung von Korrekturkennlinien (19) für rezepturrelevante Parameter durchgeführt wird.
3. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass die erforderliche Mischdauer (ΪM) von der Prognoseeinheit (10) auf die Steuereinheit (21) der Mischereinheit (3) zur Ansteuerung übertragen wird.
4. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass durch die Steuereinheit (21) die Drehgeschwindigkeit einer trommelförmigen Mischereinheit (3) zur nachträglichen Verlängerung oder Verkürzung der prognostizierten erforderlichen Mischdauer (ΪM) variiert wird.
5. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass durch die elektronische Prognoseeinheit (10) eine anhand einer Routenplanungseinheit (22) prognostizierte Transportzeit (fr) von der stationären Beton- Mischanlage zu einer Baustelle und/oder ein geschätzter Transporttemperaturverlauf des Transportbetons (1) und/oder eine geschätzte Wartezeit bis zum Verbau des Transportbetons (1) auf der Baustelle bei der Kalkulation mitberücksichtigt wird.
6. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass durch die Steuereinheit (21) die Zugabe von Wasser (9) nach Maßgabe der Betonrezeptur (18) und unter Berücksichtigung der gemessenen Feuchtigkeit zumindest der zuzugebenden Gesteinskörnungen (8a, 8b, 8c) oder anderer Komponenten gesteuert wird.
7. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass durch die Prognoseeinheit (10) für die umzusetzende Betonrezeptur (18) auf Basis der durch die Sensorik ermittelten Messwerte die unter den gegebenen Umständen realisierbare Betonqualität ermittelt wird.
8. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass durch eine Abgleicheinheit (23) die prognostizierte realisierbare Betonqualität mit der für die Baustelle erforderlichen Spezifikation verglichen wird, ehe der Start des Mischvorgangs erfolgt.
9. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass zumindest die durch die Sensorik, die Prognoseeinheit (10), die Steuereinheit (21) sowie die Abgleicheinheit (22) generierten Informationen zu einem Misch- und Liefervorgang von Transportbeton (1) in einer Dokumentations-Datenbank (24) abrufbar hinterlegt wird.
10. Einrichtung zur Datenverarbeitung für die Steuerung einer Beton-Mischanlage zur Herstellung von Transportbeton (1) oder Mischbeton, den eine motorbetriebene Mischereinheit (3) aus zumindest den Komponenten Zement (6a; 6b) und Gesteinskörnungen (8a, 8b, 8c) unter Zugabe von Wasser (9) erzeugt, wobei die Komponenten in jeweiligen mit der Mischereinheit (3) in Materialflussverbindung stehenden Silos (5a, 5b) und/oder auf mindestens einer Haldenfläche (7) bevorratet sind, dadurch gekennzeichnet, dass eine elektronische Prognoseeinheit (10) zur Kalkulation der erforderlichen Mischdauer (ΪM) der Mischereinheit (3) vorgesehen ist, welche die über zumindest einen Feuchtigkeitssensor (11) gemessene aktuelle Feuchtigkeit (F) zumindest der zuzugebenden Gesteinskörnungen (8a; 8b; 8c) und die über zumindest einen Temperatursensor (12; 13; 14) oder Wärmebildkamera gemessene beziehungsweise ermittelte Komponententemperatur (TK), die Mischertemperatur (TM) und/oder die Außentemperatur (TA) berücksichtigt, um auf Basis einer Betonrezeptur (18) unter Berücksichtigung der durch die Sensorik ermittelten Messwerte die erforderliche Mischdauer (ΪM) der Mischereinheit (3) zu ermitteln.
11. Einrichtung nach Anspruch 10, dadurch gekennzeichnet, dass verschiedene Betonrezepturen (18) in einer mit der Prognoseeinheit (10) verbundenen Rezeptur-Datenbank (17) abgespeichert sind.
12. Einrichtung nach Anspruch 10, dadurch gekennzeichnet, dass die Korrekturkennlinien (19) für rezepturrelevante Parameter in einer mit der Prognoseeinheit verbundenen Korrekturlinien-Datenbank (20) abgespeichert sind.
13. Einrichtung nach Anspruch 10, dadurch gekennzeichnet, dass die Korrekturkennlinien (19) für rezepturrelevante Parameter ausgewählt sind aus einer Kennliniengruppe, umfassend: Temperatur-Mischzeitkorrektur- Kennlinie, Drehzahl-Mischzeitkorrektur-Kennlinie.
14. Einrichtung nach Anspruch 10, dadurch gekennzeichnet, dass die zu mischenden Komponenten außerdem auch Betonzusatzmittel und/oder Betonzusatzstoffe umfassen, deren Eigenschaften die Prognoseeinheit (10) rezepturbedingt mitberücksichtigt.
15. Einrichtung nach Anspruch 10, dadurch gekennzeichnet, dass die Informationen zu einem Misch- und Liefervorgang, umfassend die verwendete Betonrezeptur (18), Temperaturmesswerte beim Misch- und/oder Transportvorgang, Feuchtigkeitsmesswerte mindestens einer verwendeten Komponente der Betonrezeptur (18), Mengen der verwendeten Komponenten der Betonrezeptur (18), die prognostizierte Mischdauer (ΪM) sowie Korrekturwerte hierzu und/oder die anschließende Transport- und Wartezeit in Form eines Dokumentations-Datensatzes (25) abgespeichert in einer Dokumentations-Datenbank (24) abrufbar hinterlegt sind.
16. Beton-Mischanlage für die Herstellung von Transportbeton (1), umfassend eine elektronische Einrichtung nach einem der Ansprüche 10 bis 15.
17. Datenformat eines Dokumentations-Datensatzes (25) für eine Beton-Mischanlage für die Herstellung von Transportbeton (1) oder Mischbeton, zumindest umfassend die folgenden, einer Bestellkennung (26) zugeordneten Datenfelder (I - VI): verwendete Betonrezeptur ( 18),
Temperaturmesswerte (T) beim Misch- und/oder Transportvorgang, Feuchtigkeitsmesswerte (F) mindestens einer verwendeten Komponente der Betonrezeptur (18), tatsächlichen Mengen (M) aller verwendeten Komponenten laut Betonrezeptur (18), prognostizierte Mischdauer (ΪM) der Mischereinheit (3), und Transportzeit zur mit Wartezeit (t) auf Baustelle.
18. Computerprogramm umfassend Befehle, die bei der Ausführung des Programms durch eine rechnergestützte Einrichtung nach einem der Ansprüche 10 bis 15, diese veranlassen, das Verfahren nach einem der Ansprüche 1 bis 9 auszuführen.
EP20835698.0A 2019-12-11 2020-12-10 Computergestütztes verfahren sowie einrichtung zur steuerung einer beton-mischanlage Pending EP4072809A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102019219373.0A DE102019219373A1 (de) 2019-12-11 2019-12-11 Computergestütztes Verfahren sowie Einrichtung zur Steuerung einer Beton-Mischanlage
PCT/EP2020/085500 WO2021116279A1 (de) 2019-12-11 2020-12-10 Computergestütztes verfahren sowie einrichtung zur steuerung einer beton-mischanlage

Publications (1)

Publication Number Publication Date
EP4072809A1 true EP4072809A1 (de) 2022-10-19

Family

ID=74125140

Family Applications (1)

Application Number Title Priority Date Filing Date
EP20835698.0A Pending EP4072809A1 (de) 2019-12-11 2020-12-10 Computergestütztes verfahren sowie einrichtung zur steuerung einer beton-mischanlage

Country Status (5)

Country Link
US (1) US20230033232A1 (de)
EP (1) EP4072809A1 (de)
CA (1) CA3161788A1 (de)
DE (1) DE102019219373A1 (de)
WO (1) WO2021116279A1 (de)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE202021004053U1 (de) 2021-04-07 2022-08-17 Hypercon Solutions Gmbh Anlage zur Herstellung von Fertigbeton oder daraus gefertigten Produkten
DE102021006575A1 (de) 2021-04-07 2022-10-13 Hypercon Solutions Gmbh Anlage und Verfahren zur Herstellung von Fertigbeton oder daraus gefertigten Produkten
CN113290695B (zh) * 2021-07-26 2021-11-26 中国恩菲工程技术有限公司 基于电流信号反馈的充填料浆浓度调控方法及系统
CN114565561A (zh) * 2022-01-26 2022-05-31 福建南方路面机械股份有限公司 基于深度学习的混凝土配方调整方法、装置及可读介质

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DD299279A5 (de) * 1990-02-12 1992-04-09 Baurationalisierung,De Verfahren zur bestimmung der notwendigen mischdauer
DE19511585B4 (de) * 1995-03-29 2010-07-01 Stetter Gmbh Verfahren und Vorrichtung zur Betonbereitung in einem Trommelmischsystem
DE19952462A1 (de) * 1999-10-29 2001-05-03 Gerd H Arnold Vorrichtung zum Bestimmen der absoluten Feuchtigkeit eines Materials
DE19952978A1 (de) * 1999-11-03 2001-05-10 Hudelmaier Joerg Qualitätsüberwachungsverfahren
JP2009184273A (ja) * 2008-02-07 2009-08-20 Pacific Technos Corp コンクリート材料の配合制御方法及びシステム
EP2269059B1 (de) * 2008-04-07 2015-01-07 W.R. Grace & Co.-Conn. Verfahren zur überwachung der thixotropie in einer betonmischtrommel
JP2015189080A (ja) * 2014-03-28 2015-11-02 住友大阪セメント株式会社 水硬性組成物の製造方法
JP7131943B2 (ja) * 2018-04-11 2022-09-06 前田建設工業株式会社 コンクリートの製造システム及びコンクリートの製造方法
JP7131951B2 (ja) * 2018-04-26 2022-09-06 前田建設工業株式会社 コンクリートの製造方法
CN109676795B (zh) * 2018-12-13 2020-09-04 中山艾尚智同信息科技有限公司 一种混凝土智能搅拌控制方法及其系统

Also Published As

Publication number Publication date
WO2021116279A1 (de) 2021-06-17
US20230033232A1 (en) 2023-02-02
CA3161788A1 (en) 2021-06-17
DE102019219373A1 (de) 2021-06-17

Similar Documents

Publication Publication Date Title
EP4072809A1 (de) Computergestütztes verfahren sowie einrichtung zur steuerung einer beton-mischanlage
DE19732833A1 (de) Überwachungssystem für die Zusatzmitteldosierung bei Transportbetonfahrzeugen
CN103180710A (zh) 基于标称剂量-响应分布图调节混凝土流变学的方法
DE2043372B2 (de) Dosierverfahren sowie Einrichtung zur Durchführung dieses Verfahrens
EP3234593A1 (de) Vorrichtung sowie ein verfahren zur herstellung und analyse einer mehrzahl von probewerkstoffen
DE60313833T2 (de) Bodenverarbeitungsmaschine
DE112016004036T5 (de) Kalibrieren eines bandwaagensystems einer kaltfräse
EP3946866A1 (de) Computergestütztes verfahren und einrichtung zur optimierten steuerung der förderleistung einer betonpumpe oder dergleichen
DE2433977A1 (de) Vorrichtung zum messen des feuchtigkeitsgehaltes von beton-zuschlagstoffen
DE102019135926A1 (de) Strassenfertiger-lastkraftwagen-gruppierung
EP4255703A1 (de) Baustoff-durchlaufmischvorrichtung, verfahren zur bereitstellung einer verarbeitungsfeuchten baustoffmischung mittels einer baustoff-durchlaufmischvorrichtung und einrichtung, insbesondere mit einer kontrolleinheit oder speichereinheit
DE102011080537A1 (de) Verfahren und Anlage zur Herstellung von Asphalt
DE19952978A1 (de) Qualitätsüberwachungsverfahren
EP1034906B1 (de) Verfahren zum Anmachung einer Baustoffmischung
DE4244616C2 (de) Vorrichtung zur Dosierung von Zusatzstoffen zu einer Mischeinrichtung
AT407672B (de) Überwachungseinrichtung für eine misch- und förderanlage
DE19808306A1 (de) Verfahren zur Steuerung und Regelung von Transportbeton hinsichtlich Konsistenz und Wasserzementwert (w/z) mit fachgerechtem Qualitätsnachweis
DE19923675C1 (de) Vorrichtung zur Aufbereitung von Gießereisand
WO2024068336A1 (de) Anlage und verfahren zur aufbereitung und verarbeitung von rohstoffen zu hochleistungs-beton, insbesondere zu ultra-hochleistungs-beton
DE1301874B (de) Befeuchtungsverfahren und -vorrichtung fuer Mischgueter, insbesondere Giessereiformsande
DE19601696A1 (de) Verfahren zur Herstellung von fließ- und/oder pumpfähigen Baustoffen, insbesondere Fließestrichen
DE3740287C2 (de) Verfahren zur Regelung der Konsistenz bei der Betonbereitung insbesondere bei der chargenweisen Betonbereitung
DE19908151A1 (de) Verfahren zum Herstellen von aus Beton bestehenden Elementen
DE2249150A1 (de) Verfahren zur herstellung von beton, insbesondere transportbeton, und vorrichtung zur durchfuehrung des verfahrens
DE3115677C2 (de) Verfahren zur rezeptgetreuen chargenweisen Herstellung von bituminösem Mischgut

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20220629

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20231002