EP4045500A1 - Verfahren zur herstellung von acyloxymethylestern der (4s) -(4-cyano-2-methoxyphenyl)-5-ethoxy-2,8-dimethyl-1,4-dihydro-1,6-naphthyridin-3-carbonsäure - Google Patents
Verfahren zur herstellung von acyloxymethylestern der (4s) -(4-cyano-2-methoxyphenyl)-5-ethoxy-2,8-dimethyl-1,4-dihydro-1,6-naphthyridin-3-carbonsäureInfo
- Publication number
- EP4045500A1 EP4045500A1 EP20789970.9A EP20789970A EP4045500A1 EP 4045500 A1 EP4045500 A1 EP 4045500A1 EP 20789970 A EP20789970 A EP 20789970A EP 4045500 A1 EP4045500 A1 EP 4045500A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- formula
- lipase
- butyl
- methyl
- stands
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000000034 method Methods 0.000 title claims abstract description 147
- 125000005042 acyloxymethyl group Chemical group 0.000 title claims abstract description 24
- 150000001875 compounds Chemical class 0.000 claims abstract description 131
- BTBHLEZXCOBLCY-QGZVFWFLSA-N (4s)-4-(4-cyano-2-methoxyphenyl)-5-ethoxy-2,8-dimethyl-1,4-dihydro-1,6-naphthyridine-3-carboxamide Chemical compound C1([C@@H]2C(=C(C)NC=3C(C)=CN=C(C2=3)OCC)C(N)=O)=CC=C(C#N)C=C1OC BTBHLEZXCOBLCY-QGZVFWFLSA-N 0.000 claims abstract description 48
- -1 halogen esters Chemical class 0.000 claims description 184
- 239000004367 Lipase Substances 0.000 claims description 132
- 108090001060 Lipase Proteins 0.000 claims description 129
- 102000004882 Lipase Human genes 0.000 claims description 129
- 235000019421 lipase Nutrition 0.000 claims description 129
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 claims description 115
- WYURNTSHIVDZCO-UHFFFAOYSA-N tetrahydrofuran Substances C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 claims description 107
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 claims description 102
- 239000000203 mixture Substances 0.000 claims description 88
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 85
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 claims description 71
- 125000001449 isopropyl group Chemical group [H]C([H])([H])C([H])(*)C([H])([H])[H] 0.000 claims description 71
- 125000004108 n-butyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 claims description 70
- 125000000740 n-pentyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 claims description 68
- 238000002360 preparation method Methods 0.000 claims description 67
- FFUAGWLWBBFQJT-UHFFFAOYSA-N hexamethyldisilazane Chemical compound C[Si](C)(C)N[Si](C)(C)C FFUAGWLWBBFQJT-UHFFFAOYSA-N 0.000 claims description 62
- 239000002904 solvent Substances 0.000 claims description 46
- 102000004157 Hydrolases Human genes 0.000 claims description 45
- 108090000604 Hydrolases Proteins 0.000 claims description 45
- VHYFNPMBLIVWCW-UHFFFAOYSA-N 4-Dimethylaminopyridine Chemical compound CN(C)C1=CC=NC=C1 VHYFNPMBLIVWCW-UHFFFAOYSA-N 0.000 claims description 35
- GDTBXPJZTBHREO-UHFFFAOYSA-N bromine Substances BrBr GDTBXPJZTBHREO-UHFFFAOYSA-N 0.000 claims description 35
- 229910052794 bromium Inorganic materials 0.000 claims description 35
- WKBOTKDWSSQWDR-UHFFFAOYSA-N Bromine atom Chemical compound [Br] WKBOTKDWSSQWDR-UHFFFAOYSA-N 0.000 claims description 34
- 125000000484 butyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 claims description 30
- 238000010992 reflux Methods 0.000 claims description 30
- FEWJPZIEWOKRBE-UHFFFAOYSA-N Tartaric Acid Chemical compound [H+].[H+].[O-]C(=O)C(O)C(O)C([O-])=O FEWJPZIEWOKRBE-UHFFFAOYSA-N 0.000 claims description 29
- 125000001797 benzyl group Chemical group [H]C1=C([H])C([H])=C(C([H])=C1[H])C([H])([H])* 0.000 claims description 29
- 230000003197 catalytic effect Effects 0.000 claims description 29
- 125000004123 n-propyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])* 0.000 claims description 29
- 229910052736 halogen Inorganic materials 0.000 claims description 28
- 239000000460 chlorine Substances 0.000 claims description 25
- 229910052801 chlorine Inorganic materials 0.000 claims description 25
- 125000001280 n-hexyl group Chemical group C(CCCCC)* 0.000 claims description 25
- 241001661345 Moesziomyces antarcticus Species 0.000 claims description 22
- 241000589540 Pseudomonas fluorescens Species 0.000 claims description 22
- 125000001309 chloro group Chemical group Cl* 0.000 claims description 20
- 125000003118 aryl group Chemical group 0.000 claims description 13
- 241000235403 Rhizomucor miehei Species 0.000 claims description 11
- 241000222175 Diutina rugosa Species 0.000 claims description 10
- 241000223258 Thermomyces lanuginosus Species 0.000 claims description 8
- 241000228245 Aspergillus niger Species 0.000 claims description 6
- 240000006439 Aspergillus oryzae Species 0.000 claims description 6
- 235000002247 Aspergillus oryzae Nutrition 0.000 claims description 6
- 241001480714 Humicola insolens Species 0.000 claims description 6
- 241000498617 Mucor javanicus Species 0.000 claims description 6
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 claims description 5
- 210000004185 liver Anatomy 0.000 claims description 5
- 241001453380 Burkholderia Species 0.000 claims description 4
- 108090000531 Amidohydrolases Proteins 0.000 claims description 3
- 102000004092 Amidohydrolases Human genes 0.000 claims description 3
- 108090000371 Esterases Proteins 0.000 claims description 3
- 108091005804 Peptidases Proteins 0.000 claims description 3
- 102000035195 Peptidases Human genes 0.000 claims description 3
- 239000004365 Protease Substances 0.000 claims description 3
- 241000282887 Suidae Species 0.000 claims 1
- WEVYAHXRMPXWCK-UHFFFAOYSA-N Acetonitrile Chemical compound CC#N WEVYAHXRMPXWCK-UHFFFAOYSA-N 0.000 description 48
- 239000000243 solution Substances 0.000 description 39
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 30
- XEKOWRVHYACXOJ-UHFFFAOYSA-N Ethyl acetate Chemical compound CCOC(C)=O XEKOWRVHYACXOJ-UHFFFAOYSA-N 0.000 description 22
- 238000006243 chemical reaction Methods 0.000 description 22
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 description 21
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 21
- BZLVMXJERCGZMT-UHFFFAOYSA-N Methyl tert-butyl ether Chemical compound COC(C)(C)C BZLVMXJERCGZMT-UHFFFAOYSA-N 0.000 description 19
- 239000000047 product Substances 0.000 description 18
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 description 15
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 12
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 12
- 239000002253 acid Substances 0.000 description 12
- 150000002148 esters Chemical class 0.000 description 12
- 239000012071 phase Substances 0.000 description 11
- 229950004408 finerenone Drugs 0.000 description 10
- LWIHDJKSTIGBAC-UHFFFAOYSA-K tripotassium phosphate Chemical compound [K+].[K+].[K+].[O-]P([O-])([O-])=O LWIHDJKSTIGBAC-UHFFFAOYSA-K 0.000 description 10
- KWYUFKZDYYNOTN-UHFFFAOYSA-M Potassium hydroxide Chemical compound [OH-].[K+] KWYUFKZDYYNOTN-UHFFFAOYSA-M 0.000 description 9
- 239000008057 potassium phosphate buffer Substances 0.000 description 9
- 238000011109 contamination Methods 0.000 description 8
- 235000019439 ethyl acetate Nutrition 0.000 description 8
- 238000004128 high performance liquid chromatography Methods 0.000 description 8
- 238000004519 manufacturing process Methods 0.000 description 8
- 102000004190 Enzymes Human genes 0.000 description 7
- 108090000790 Enzymes Proteins 0.000 description 7
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 7
- IMNFDUFMRHMDMM-UHFFFAOYSA-N N-Heptane Chemical compound CCCCCCC IMNFDUFMRHMDMM-UHFFFAOYSA-N 0.000 description 7
- 230000015572 biosynthetic process Effects 0.000 description 7
- 239000000872 buffer Substances 0.000 description 7
- 125000004432 carbon atom Chemical group C* 0.000 description 7
- 239000012535 impurity Substances 0.000 description 7
- 239000003960 organic solvent Substances 0.000 description 7
- 238000003786 synthesis reaction Methods 0.000 description 7
- BWHMMNNQKKPAPP-UHFFFAOYSA-L potassium carbonate Chemical compound [K+].[K+].[O-]C([O-])=O BWHMMNNQKKPAPP-UHFFFAOYSA-L 0.000 description 6
- 238000000926 separation method Methods 0.000 description 6
- JHWIWZLGTMIMFG-UHFFFAOYSA-N CCOC1=NC=C(C2=C1CC(=C(N2)C)C(=O)O)C Chemical compound CCOC1=NC=C(C2=C1CC(=C(N2)C)C(=O)O)C JHWIWZLGTMIMFG-UHFFFAOYSA-N 0.000 description 5
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 5
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical class [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 5
- 150000001408 amides Chemical class 0.000 description 5
- 238000004587 chromatography analysis Methods 0.000 description 5
- 239000012043 crude product Substances 0.000 description 5
- SKTCDJAMAYNROS-UHFFFAOYSA-N methoxycyclopentane Chemical compound COC1CCCC1 SKTCDJAMAYNROS-UHFFFAOYSA-N 0.000 description 5
- 229910000160 potassium phosphate Inorganic materials 0.000 description 5
- 235000011009 potassium phosphates Nutrition 0.000 description 5
- 150000000094 1,4-dioxanes Chemical class 0.000 description 4
- NLXLAEXVIDQMFP-UHFFFAOYSA-N Ammonia chloride Chemical compound [NH4+].[Cl-] NLXLAEXVIDQMFP-UHFFFAOYSA-N 0.000 description 4
- 241000222120 Candida <Saccharomycetales> Species 0.000 description 4
- LRHPLDYGYMQRHN-UHFFFAOYSA-N N-Butanol Chemical compound CCCCO LRHPLDYGYMQRHN-UHFFFAOYSA-N 0.000 description 4
- 239000007864 aqueous solution Substances 0.000 description 4
- 230000002255 enzymatic effect Effects 0.000 description 4
- 238000000605 extraction Methods 0.000 description 4
- 125000001072 heteroaryl group Chemical group 0.000 description 4
- 238000002955 isolation Methods 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- BDAGIHXWWSANSR-UHFFFAOYSA-N methanoic acid Natural products OC=O BDAGIHXWWSANSR-UHFFFAOYSA-N 0.000 description 4
- 229960000549 4-dimethylaminophenol Drugs 0.000 description 3
- ZMANZCXQSJIPKH-UHFFFAOYSA-N Triethylamine Chemical compound CCN(CC)CC ZMANZCXQSJIPKH-UHFFFAOYSA-N 0.000 description 3
- 239000012062 aqueous buffer Substances 0.000 description 3
- 125000004429 atom Chemical group 0.000 description 3
- 238000002425 crystallisation Methods 0.000 description 3
- 230000008025 crystallization Effects 0.000 description 3
- CCGKOQOJPYTBIH-UHFFFAOYSA-N ethenone Chemical compound C=C=O CCGKOQOJPYTBIH-UHFFFAOYSA-N 0.000 description 3
- 239000007789 gas Substances 0.000 description 3
- 150000007529 inorganic bases Chemical class 0.000 description 3
- 239000007788 liquid Substances 0.000 description 3
- 239000012074 organic phase Substances 0.000 description 3
- 229910000027 potassium carbonate Inorganic materials 0.000 description 3
- 235000011181 potassium carbonates Nutrition 0.000 description 3
- 239000000843 powder Substances 0.000 description 3
- 150000003839 salts Chemical class 0.000 description 3
- 238000007127 saponification reaction Methods 0.000 description 3
- 229920006395 saturated elastomer Polymers 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- 239000000758 substrate Substances 0.000 description 3
- 238000010626 work up procedure Methods 0.000 description 3
- JWUJQDFVADABEY-UHFFFAOYSA-N 2-methyltetrahydrofuran Chemical compound CC1CCCO1 JWUJQDFVADABEY-UHFFFAOYSA-N 0.000 description 2
- OSWFIVFLDKOXQC-UHFFFAOYSA-N 4-(3-methoxyphenyl)aniline Chemical compound COC1=CC=CC(C=2C=CC(N)=CC=2)=C1 OSWFIVFLDKOXQC-UHFFFAOYSA-N 0.000 description 2
- 239000004925 Acrylic resin Substances 0.000 description 2
- 229920000178 Acrylic resin Polymers 0.000 description 2
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- 241000589513 Burkholderia cepacia Species 0.000 description 2
- OBGWGTULCRDWOT-UHFFFAOYSA-N CCOC1=NC=C(C2=C1C(C(=C(N2)C)C(=O)OCOC(=O)C)C3=C(C=C(C=C3)C#N)OC)C Chemical compound CCOC1=NC=C(C2=C1C(C(=C(N2)C)C(=O)OCOC(=O)C)C3=C(C=C(C=C3)C#N)OC)C OBGWGTULCRDWOT-UHFFFAOYSA-N 0.000 description 2
- JARQBCOFZCZLOJ-UHFFFAOYSA-N CCOC1=NC=C(C2=C1CC(=C(N2)C)C(=O)OC3=C(C=C(C=C3)C#N)OC)C Chemical compound CCOC1=NC=C(C2=C1CC(=C(N2)C)C(=O)OC3=C(C=C(C=C3)C#N)OC)C JARQBCOFZCZLOJ-UHFFFAOYSA-N 0.000 description 2
- OBGWGTULCRDWOT-HXUWFJFHSA-N CCOC1=NC=C(C2=C1[C@@H](C(=C(N2)C)C(=O)OCOC(=O)C)C3=C(C=C(C=C3)C#N)OC)C Chemical compound CCOC1=NC=C(C2=C1[C@@H](C(=C(N2)C)C(=O)OCOC(=O)C)C3=C(C=C(C=C3)C#N)OC)C OBGWGTULCRDWOT-HXUWFJFHSA-N 0.000 description 2
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical class OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 2
- 108010048733 Lipozyme Proteins 0.000 description 2
- FXHOOIRPVKKKFG-UHFFFAOYSA-N N,N-Dimethylacetamide Chemical compound CN(C)C(C)=O FXHOOIRPVKKKFG-UHFFFAOYSA-N 0.000 description 2
- SECXISVLQFMRJM-UHFFFAOYSA-N N-Methylpyrrolidone Chemical compound CN1CCCC1=O SECXISVLQFMRJM-UHFFFAOYSA-N 0.000 description 2
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 2
- JUJWROOIHBZHMG-UHFFFAOYSA-N Pyridine Chemical compound C1=CC=NC=C1 JUJWROOIHBZHMG-UHFFFAOYSA-N 0.000 description 2
- CDBYLPFSWZWCQE-UHFFFAOYSA-L Sodium Carbonate Chemical compound [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 description 2
- UIIMBOGNXHQVGW-UHFFFAOYSA-M Sodium bicarbonate Chemical compound [Na+].OC([O-])=O UIIMBOGNXHQVGW-UHFFFAOYSA-M 0.000 description 2
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 2
- 241001104043 Syringa Species 0.000 description 2
- 235000004338 Syringa vulgaris Nutrition 0.000 description 2
- 241000223257 Thermomyces Species 0.000 description 2
- 229920004890 Triton X-100 Polymers 0.000 description 2
- 239000013504 Triton X-100 Substances 0.000 description 2
- 125000004423 acyloxy group Chemical group 0.000 description 2
- 235000019270 ammonium chloride Nutrition 0.000 description 2
- 125000005605 benzo group Chemical group 0.000 description 2
- 125000004196 benzothienyl group Chemical group S1C(=CC2=C1C=CC=C2)* 0.000 description 2
- NHYXMAKLBXBVEO-UHFFFAOYSA-N bromomethyl acetate Chemical compound CC(=O)OCBr NHYXMAKLBXBVEO-UHFFFAOYSA-N 0.000 description 2
- PFKFTWBEEFSNDU-UHFFFAOYSA-N carbonyldiimidazole Chemical compound C1=CN=CN1C(=O)N1C=CN=C1 PFKFTWBEEFSNDU-UHFFFAOYSA-N 0.000 description 2
- 239000007795 chemical reaction product Substances 0.000 description 2
- 238000003776 cleavage reaction Methods 0.000 description 2
- 239000013078 crystal Substances 0.000 description 2
- MNNHAPBLZZVQHP-UHFFFAOYSA-N diammonium hydrogen phosphate Chemical compound [NH4+].[NH4+].OP([O-])([O-])=O MNNHAPBLZZVQHP-UHFFFAOYSA-N 0.000 description 2
- 238000011067 equilibration Methods 0.000 description 2
- 239000000706 filtrate Substances 0.000 description 2
- 238000001914 filtration Methods 0.000 description 2
- 235000019253 formic acid Nutrition 0.000 description 2
- 230000005484 gravity Effects 0.000 description 2
- 125000005842 heteroatom Chemical group 0.000 description 2
- 150000002430 hydrocarbons Chemical group 0.000 description 2
- 125000004435 hydrogen atom Chemical group [H]* 0.000 description 2
- JMMWKPVZQRWMSS-UHFFFAOYSA-N isopropanol acetate Natural products CC(C)OC(C)=O JMMWKPVZQRWMSS-UHFFFAOYSA-N 0.000 description 2
- FCCDDURTIIUXBY-UHFFFAOYSA-N lipoamide Chemical compound NC(=O)CCCCC1CCSS1 FCCDDURTIIUXBY-UHFFFAOYSA-N 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 230000003287 optical effect Effects 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 description 2
- 239000008363 phosphate buffer Substances 0.000 description 2
- 239000002243 precursor Substances 0.000 description 2
- 125000002294 quinazolinyl group Chemical group N1=C(N=CC2=CC=CC=C12)* 0.000 description 2
- 239000012088 reference solution Substances 0.000 description 2
- 239000012266 salt solution Substances 0.000 description 2
- 230000007017 scission Effects 0.000 description 2
- 238000012216 screening Methods 0.000 description 2
- 239000011780 sodium chloride Substances 0.000 description 2
- 239000001488 sodium phosphate Substances 0.000 description 2
- 229910000162 sodium phosphate Inorganic materials 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 239000007858 starting material Substances 0.000 description 2
- 238000003756 stirring Methods 0.000 description 2
- 239000012085 test solution Substances 0.000 description 2
- 238000011282 treatment Methods 0.000 description 2
- RYFMWSXOAZQYPI-UHFFFAOYSA-K trisodium phosphate Chemical compound [Na+].[Na+].[Na+].[O-]P([O-])([O-])=O RYFMWSXOAZQYPI-UHFFFAOYSA-K 0.000 description 2
- ACMSDYGOIVWQIX-CQSZACIVSA-N (2r)-n-(dicyclopropylmethyl)-4-methyl-2-(2-methylprop-2-enoylamino)pentanamide Chemical compound C1CC1C(NC(=O)[C@H](NC(=O)C(C)=C)CC(C)C)C1CC1 ACMSDYGOIVWQIX-CQSZACIVSA-N 0.000 description 1
- 125000005918 1,2-dimethylbutyl group Chemical group 0.000 description 1
- RYHBNJHYFVUHQT-UHFFFAOYSA-N 1,4-Dioxane Chemical compound C1COCCO1 RYHBNJHYFVUHQT-UHFFFAOYSA-N 0.000 description 1
- 125000006218 1-ethylbutyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])(*)C([H])([H])C([H])([H])[H] 0.000 description 1
- CXBDYQVECUFKRK-UHFFFAOYSA-N 1-methoxybutane Chemical compound CCCCOC CXBDYQVECUFKRK-UHFFFAOYSA-N 0.000 description 1
- ZWEHNKRNPOVVGH-UHFFFAOYSA-N 2-Butanone Chemical compound CCC(C)=O ZWEHNKRNPOVVGH-UHFFFAOYSA-N 0.000 description 1
- 125000006176 2-ethylbutyl group Chemical group [H]C([H])([H])C([H])([H])C([H])(C([H])([H])*)C([H])([H])C([H])([H])[H] 0.000 description 1
- 125000004493 2-methylbut-1-yl group Chemical group CC(C*)CC 0.000 description 1
- 125000005916 2-methylpentyl group Chemical group 0.000 description 1
- 125000003542 3-methylbutan-2-yl group Chemical group [H]C([H])([H])C([H])(*)C([H])(C([H])([H])[H])C([H])([H])[H] 0.000 description 1
- 125000005917 3-methylpentyl group Chemical group 0.000 description 1
- HBAQYPYDRFILMT-UHFFFAOYSA-N 8-[3-(1-cyclopropylpyrazol-4-yl)-1H-pyrazolo[4,3-d]pyrimidin-5-yl]-3-methyl-3,8-diazabicyclo[3.2.1]octan-2-one Chemical class C1(CC1)N1N=CC(=C1)C1=NNC2=C1N=C(N=C2)N1C2C(N(CC1CC2)C)=O HBAQYPYDRFILMT-UHFFFAOYSA-N 0.000 description 1
- 239000004254 Ammonium phosphate Substances 0.000 description 1
- 208000024172 Cardiovascular disease Diseases 0.000 description 1
- 208000007342 Diabetic Nephropathies Diseases 0.000 description 1
- 206010019280 Heart failures Diseases 0.000 description 1
- 244000178870 Lavandula angustifolia Species 0.000 description 1
- 235000010663 Lavandula angustifolia Nutrition 0.000 description 1
- 108010084311 Novozyme 435 Proteins 0.000 description 1
- 235000019502 Orange oil Nutrition 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- PMZURENOXWZQFD-UHFFFAOYSA-L Sodium Sulfate Chemical compound [Na+].[Na+].[O-]S([O-])(=O)=O PMZURENOXWZQFD-UHFFFAOYSA-L 0.000 description 1
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 1
- DTQVDTLACAAQTR-UHFFFAOYSA-N Trifluoroacetic acid Chemical compound OC(=O)C(F)(F)F DTQVDTLACAAQTR-UHFFFAOYSA-N 0.000 description 1
- 150000008065 acid anhydrides Chemical class 0.000 description 1
- 230000002378 acidificating effect Effects 0.000 description 1
- 125000000641 acridinyl group Chemical group C1(=CC=CC2=NC3=CC=CC=C3C=C12)* 0.000 description 1
- 230000004913 activation Effects 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 150000001298 alcohols Chemical class 0.000 description 1
- 125000000217 alkyl group Chemical group 0.000 description 1
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 1
- LFVGISIMTYGQHF-UHFFFAOYSA-N ammonium dihydrogen phosphate Chemical compound [NH4+].OP(O)([O-])=O LFVGISIMTYGQHF-UHFFFAOYSA-N 0.000 description 1
- 229910000387 ammonium dihydrogen phosphate Inorganic materials 0.000 description 1
- 229910000148 ammonium phosphate Inorganic materials 0.000 description 1
- 235000019289 ammonium phosphates Nutrition 0.000 description 1
- 150000003863 ammonium salts Chemical class 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 239000005557 antagonist Substances 0.000 description 1
- 125000002178 anthracenyl group Chemical group C1(=CC=CC2=CC3=CC=CC=C3C=C12)* 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 125000004931 azocinyl group Chemical group N1=C(C=CC=CC=C1)* 0.000 description 1
- 238000010923 batch production Methods 0.000 description 1
- 125000003785 benzimidazolyl group Chemical group N1=C(NC2=C1C=CC=C2)* 0.000 description 1
- 125000001164 benzothiazolyl group Chemical group S1C(=NC2=C1C=CC=C2)* 0.000 description 1
- 125000003354 benzotriazolyl group Chemical group N1N=NC2=C1C=CC=C2* 0.000 description 1
- 125000002619 bicyclic group Chemical group 0.000 description 1
- 230000036983 biotransformation Effects 0.000 description 1
- 125000006267 biphenyl group Chemical group 0.000 description 1
- FJDQFPXHSGXQBY-UHFFFAOYSA-L caesium carbonate Chemical compound [Cs+].[Cs+].[O-]C([O-])=O FJDQFPXHSGXQBY-UHFFFAOYSA-L 0.000 description 1
- 229910000024 caesium carbonate Inorganic materials 0.000 description 1
- 125000000609 carbazolyl group Chemical group C1(=CC=CC=2C3=CC=CC=C3NC12)* 0.000 description 1
- 150000001732 carboxylic acid derivatives Chemical class 0.000 description 1
- 238000006555 catalytic reaction Methods 0.000 description 1
- 238000005119 centrifugation Methods 0.000 description 1
- 238000003889 chemical engineering Methods 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 125000000259 cinnolinyl group Chemical group N1=NC(=CC2=CC=CC=C12)* 0.000 description 1
- 238000011157 data evaluation Methods 0.000 description 1
- 229940075894 denatured ethanol Drugs 0.000 description 1
- 208000033679 diabetic kidney disease Diseases 0.000 description 1
- HPNMFZURTQLUMO-UHFFFAOYSA-N diethylamine Chemical compound CCNCC HPNMFZURTQLUMO-UHFFFAOYSA-N 0.000 description 1
- 125000005046 dihydronaphthyl group Chemical group 0.000 description 1
- 125000004925 dihydropyridyl group Chemical class N1(CC=CC=C1)* 0.000 description 1
- 230000002526 effect on cardiovascular system Effects 0.000 description 1
- 239000003480 eluent Substances 0.000 description 1
- 239000000839 emulsion Substances 0.000 description 1
- 238000006911 enzymatic reaction Methods 0.000 description 1
- 150000002170 ethers Chemical class 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 238000003818 flash chromatography Methods 0.000 description 1
- 125000003983 fluorenyl group Chemical group C1(=CC=CC=2C3=CC=CC=C3CC12)* 0.000 description 1
- 238000004108 freeze drying Methods 0.000 description 1
- 125000002541 furyl group Chemical group 0.000 description 1
- 235000011187 glycerol Nutrition 0.000 description 1
- 229930182470 glycoside Natural products 0.000 description 1
- 150000002338 glycosides Chemical class 0.000 description 1
- 125000004051 hexyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-M hydroxide Chemical compound [OH-] XLYOFNOQVPJJNP-UHFFFAOYSA-M 0.000 description 1
- JBFYUZGYRGXSFL-UHFFFAOYSA-N imidazolide Chemical compound C1=C[N-]C=N1 JBFYUZGYRGXSFL-UHFFFAOYSA-N 0.000 description 1
- 125000002883 imidazolyl group Chemical group 0.000 description 1
- 238000011078 in-house production Methods 0.000 description 1
- 125000003392 indanyl group Chemical group C1(CCC2=CC=CC=C12)* 0.000 description 1
- 125000003453 indazolyl group Chemical group N1N=C(C2=C1C=CC=C2)* 0.000 description 1
- 125000003454 indenyl group Chemical group C1(C=CC2=CC=CC=C12)* 0.000 description 1
- 125000003406 indolizinyl group Chemical group C=1(C=CN2C=CC=CC12)* 0.000 description 1
- 125000001041 indolyl group Chemical group 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 229910052500 inorganic mineral Inorganic materials 0.000 description 1
- 239000013067 intermediate product Substances 0.000 description 1
- 125000000959 isobutyl group Chemical group [H]C([H])([H])C([H])(C([H])([H])[H])C([H])([H])* 0.000 description 1
- 125000004491 isohexyl group Chemical group C(CCC(C)C)* 0.000 description 1
- 125000000904 isoindolyl group Chemical group C=1(NC=C2C=CC=CC12)* 0.000 description 1
- 125000001972 isopentyl group Chemical group [H]C([H])([H])C([H])(C([H])([H])[H])C([H])([H])C([H])([H])* 0.000 description 1
- 229940011051 isopropyl acetate Drugs 0.000 description 1
- 125000002183 isoquinolinyl group Chemical group C1(=NC=CC2=CC=CC=C12)* 0.000 description 1
- 125000001786 isothiazolyl group Chemical group 0.000 description 1
- GWYFCOCPABKNJV-UHFFFAOYSA-N isovaleric acid Chemical compound CC(C)CC(O)=O GWYFCOCPABKNJV-UHFFFAOYSA-N 0.000 description 1
- 125000000842 isoxazolyl group Chemical group 0.000 description 1
- 208000017169 kidney disease Diseases 0.000 description 1
- 239000001102 lavandula vera Substances 0.000 description 1
- 235000018219 lavender Nutrition 0.000 description 1
- 230000014759 maintenance of location Effects 0.000 description 1
- 238000004949 mass spectrometry Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 235000010755 mineral Nutrition 0.000 description 1
- 239000011707 mineral Substances 0.000 description 1
- 239000002395 mineralocorticoid Substances 0.000 description 1
- 235000019837 monoammonium phosphate Nutrition 0.000 description 1
- 125000002950 monocyclic group Chemical group 0.000 description 1
- 239000012452 mother liquor Substances 0.000 description 1
- 125000001624 naphthyl group Chemical group 0.000 description 1
- 125000001971 neopentyl group Chemical group [H]C([*])([H])C(C([H])([H])[H])(C([H])([H])[H])C([H])([H])[H] 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 238000005580 one pot reaction Methods 0.000 description 1
- 239000010502 orange oil Substances 0.000 description 1
- 150000007530 organic bases Chemical class 0.000 description 1
- 239000012044 organic layer Substances 0.000 description 1
- 125000001715 oxadiazolyl group Chemical group 0.000 description 1
- 125000002971 oxazolyl group Chemical group 0.000 description 1
- 125000003585 oxepinyl group Chemical group 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 125000003538 pentan-3-yl group Chemical group [H]C([H])([H])C([H])([H])C([H])(*)C([H])([H])C([H])([H])[H] 0.000 description 1
- 125000001147 pentyl group Chemical group C(CCCC)* 0.000 description 1
- 125000001791 phenazinyl group Chemical group C1(=CC=CC2=NC3=CC=CC=C3N=C12)* 0.000 description 1
- 125000001484 phenothiazinyl group Chemical group C1(=CC=CC=2SC3=CC=CC=C3NC12)* 0.000 description 1
- 125000001644 phenoxazinyl group Chemical group C1(=CC=CC=2OC3=CC=CC=C3NC12)* 0.000 description 1
- 125000004592 phthalazinyl group Chemical group C1(=NN=CC2=CC=CC=C12)* 0.000 description 1
- 239000011736 potassium bicarbonate Substances 0.000 description 1
- 235000015497 potassium bicarbonate Nutrition 0.000 description 1
- 229910000028 potassium bicarbonate Inorganic materials 0.000 description 1
- TYJJADVDDVDEDZ-UHFFFAOYSA-M potassium hydrogencarbonate Chemical compound [K+].OC([O-])=O TYJJADVDDVDEDZ-UHFFFAOYSA-M 0.000 description 1
- 229940086066 potassium hydrogencarbonate Drugs 0.000 description 1
- 102000004196 processed proteins & peptides Human genes 0.000 description 1
- 108090000765 processed proteins & peptides Proteins 0.000 description 1
- 238000011321 prophylaxis Methods 0.000 description 1
- 125000001436 propyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 125000001042 pteridinyl group Chemical group N1=C(N=CC2=NC=CN=C12)* 0.000 description 1
- 238000000746 purification Methods 0.000 description 1
- 125000000561 purinyl group Chemical group N1=C(N=C2N=CNC2=C1)* 0.000 description 1
- 125000003373 pyrazinyl group Chemical group 0.000 description 1
- 125000003226 pyrazolyl group Chemical group 0.000 description 1
- 125000002098 pyridazinyl group Chemical group 0.000 description 1
- UMJSCPRVCHMLSP-UHFFFAOYSA-N pyridine Natural products COC1=CC=CN=C1 UMJSCPRVCHMLSP-UHFFFAOYSA-N 0.000 description 1
- 125000004076 pyridyl group Chemical group 0.000 description 1
- 125000000714 pyrimidinyl group Chemical group 0.000 description 1
- 125000000168 pyrrolyl group Chemical group 0.000 description 1
- 238000012797 qualification Methods 0.000 description 1
- 238000010791 quenching Methods 0.000 description 1
- 230000000171 quenching effect Effects 0.000 description 1
- 125000002943 quinolinyl group Chemical group N1=C(C=CC2=CC=CC=C12)* 0.000 description 1
- 125000001567 quinoxalinyl group Chemical group N1=C(C=NC2=CC=CC=C12)* 0.000 description 1
- 239000012429 reaction media Substances 0.000 description 1
- 239000011541 reaction mixture Substances 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 238000001953 recrystallisation Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 239000013557 residual solvent Substances 0.000 description 1
- 230000002441 reversible effect Effects 0.000 description 1
- 238000012552 review Methods 0.000 description 1
- 125000006413 ring segment Chemical group 0.000 description 1
- 125000002914 sec-butyl group Chemical group [H]C([H])([H])C([H])([H])C([H])(*)C([H])([H])[H] 0.000 description 1
- 125000003548 sec-pentyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])(*)C([H])([H])[H] 0.000 description 1
- 239000000741 silica gel Substances 0.000 description 1
- 229910002027 silica gel Inorganic materials 0.000 description 1
- 229910000030 sodium bicarbonate Inorganic materials 0.000 description 1
- 235000017557 sodium bicarbonate Nutrition 0.000 description 1
- 229910000029 sodium carbonate Inorganic materials 0.000 description 1
- 235000017550 sodium carbonate Nutrition 0.000 description 1
- 229910052938 sodium sulfate Inorganic materials 0.000 description 1
- 235000011152 sodium sulphate Nutrition 0.000 description 1
- FVEFRICMTUKAML-UHFFFAOYSA-M sodium tetradecyl sulfate Chemical compound [Na+].CCCCC(CC)CCC(CC(C)C)OS([O-])(=O)=O FVEFRICMTUKAML-UHFFFAOYSA-M 0.000 description 1
- 230000003637 steroidlike Effects 0.000 description 1
- 125000001424 substituent group Chemical group 0.000 description 1
- HXJUTPCZVOIRIF-UHFFFAOYSA-N sulfolane Chemical compound O=S1(=O)CCCC1 HXJUTPCZVOIRIF-UHFFFAOYSA-N 0.000 description 1
- 229910052717 sulfur Inorganic materials 0.000 description 1
- 239000011593 sulfur Substances 0.000 description 1
- 239000008030 superplasticizer Substances 0.000 description 1
- 239000011975 tartaric acid Substances 0.000 description 1
- 125000000999 tert-butyl group Chemical group [H]C([H])([H])C(*)(C([H])([H])[H])C([H])([H])[H] 0.000 description 1
- 125000001973 tert-pentyl group Chemical group [H]C([H])([H])C([H])([H])C(*)(C([H])([H])[H])C([H])([H])[H] 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 125000005329 tetralinyl group Chemical group C1(CCCC2=CC=CC=C12)* 0.000 description 1
- 125000001113 thiadiazolyl group Chemical group 0.000 description 1
- 125000000335 thiazolyl group Chemical group 0.000 description 1
- 125000001544 thienyl group Chemical group 0.000 description 1
- 125000004306 triazinyl group Chemical group 0.000 description 1
- 125000001425 triazolyl group Chemical group 0.000 description 1
- IMFACGCPASFAPR-UHFFFAOYSA-N tributylamine Chemical compound CCCCN(CCCC)CCCC IMFACGCPASFAPR-UHFFFAOYSA-N 0.000 description 1
- 238000010200 validation analysis Methods 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
- 125000001834 xanthenyl group Chemical group C1=CC=CC=2OC3=CC=CC=C3C(C12)* 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D471/00—Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, at least one ring being a six-membered ring with one nitrogen atom, not provided for by groups C07D451/00 - C07D463/00
- C07D471/02—Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, at least one ring being a six-membered ring with one nitrogen atom, not provided for by groups C07D451/00 - C07D463/00 in which the condensed system contains two hetero rings
- C07D471/04—Ortho-condensed systems
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07B—GENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
- C07B57/00—Separation of optically-active compounds
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N9/00—Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
- C12N9/14—Hydrolases (3)
- C12N9/16—Hydrolases (3) acting on ester bonds (3.1)
- C12N9/18—Carboxylic ester hydrolases (3.1.1)
- C12N9/20—Triglyceride splitting, e.g. by means of lipase
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12P—FERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
- C12P41/00—Processes using enzymes or microorganisms to separate optical isomers from a racemic mixture
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07B—GENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
- C07B2200/00—Indexing scheme relating to specific properties of organic compounds
- C07B2200/07—Optical isomers
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Y—ENZYMES
- C12Y301/00—Hydrolases acting on ester bonds (3.1)
- C12Y301/01—Carboxylic ester hydrolases (3.1.1)
- C12Y301/01003—Triacylglycerol lipase (3.1.1.3)
Definitions
- the present invention relates to a process for the preparation of acyloxymethyl esters of (4S) - (4-cyano-2-methoxyphenyl) -5-ethoxy-2,8-dimethyl-1,4-dihydro-1,6-naphthyridine-3-carboxylic acid of the formula (Ha), by resolution of the compound of the formula (II) using a hydrolase: ffl
- the invention also relates to a process for the preparation of (4S) -4- (4-cyano-2-methoxyphenyl) -5-ethoxy-2,8-dimethyl-1,4-dihydro-1,6-naphthyridine-3-carboxamide of formula (Ia), the process comprising the resolution of the compound of formula (II) using a hydrolase.
- the invention also relates to a process for the preparation of (4S) -4- (4-cyano-2-methoxyphenyl) -5-ethoxy-2,8-dimethyl-1,4-dihydro-1,6-naphthyridine-3-carboxamide of the formula (Ia), the racemic acid of the formula (III) with halogen esters of the general formula (V) to give racemic acyloxymethyl ester (4S) - (4-cyano-2-methoxyphenyl) -5-ethoxy-2,8-dimethyl -l, 4-dihydro-l, 6-naphthyridine-3-carboxylic acid of the formula (II) and converting this into the enantiomeric acyloxymethyl ester (4S) - (4-cyano-2-methoxyphenyl) -5 by resolution using a hydrolase -ethoxy-2,8-dimethyl-l, 4-dihydro-l, 6-naphthyridine
- the invention relates in particular to a process for the preparation of (4S) -4- (4-cyano-2-methoxyphenyl) -5-ethoxy-2,8-dimethyl-1,4-dihydro-1,6-naphthyridine-3-carboxamide of formula (Ia)
- the invention also relates to the use of a hydrolase in a process for preparing a compound according to formula (Ha).
- the invention also relates to the use of a hydrolase in a process for the preparation of a compound according to formula (Ia).
- the term "Finerenone” refers to the compound (4S) -4- (4-cyano- 2-methoxyphenyl) -5-ethoxy-2,8-dimethyl-1,4-dihydro-1,6-naphthyridine-3- carbox-amide or the compound according to formula (Ia)
- antipodes of Finerenone or “antipodes of the compound according to formula (I)” refers to the compounds according to formula (Ia) and (Ib)
- Finerenone (Ia) acts as a non-steroidal antagonist of the mineral corticoid receptor and can be used as an agent for the prophylaxis and / or treatment of cardiovascular and renal diseases such as heart failure and diabetic nephropathy.
- the object was therefore to provide an alternative synthetic access to enantiomerically pure finereone (Ia), which is significantly more cost-effective and can be carried out with conventional pilot plant equipment (stirred tank / isolation apparatus).
- pilot plant equipment stirred tank / isolation apparatus.
- Such systems traditionally belong to the standard equipment of pharmaceutical production plants and do not require any additional investments.
- the qualification and validation of batch processes is also much easier than with chromatographic processes
- the present invention relates to a process for the preparation of acyloxymethyl esters of (4S) - (4-cyano-2-methoxyphenyl) -5-ethoxy-2,8-dimethyl-1,4-dihydro-1,6-naphthyridine-3-carboxylic acid the formula (Ha) (Ha), where R stands for a linear or branched C1-C25 kete, by resolution of (II)
- CI -C25 kete means a “Ci-C25 alkyl chain”.
- Ci-C25-alkyl means a linear or branched saturated monovalent hydrocarbon group with 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24 or 25 carbon atoms.
- alkyl groups that can be used according to the invention are methyl, ethyl, propyl, isopropyl, butyl, sec-butyl, isobutyl, tert-butyl, pentyl, isopentyl, 2-methylbutyl, 1-methylbutyl, 1-ethylpropyl, 1,2-dimethylpropyl, neopentyl,
- the C1-C25 chain can be linear or branched.
- the C1-C25 ketone can be substituted with an aromatic radical.
- substituted means that one or more hydrogen atoms on the relevant atom or the relevant group is / are replaced by a selection from the specified group, with the proviso that the normal valence of the relevant atom is not exceeded under the present circumstances . Combinations of substituents and / or variables are allowed.
- unsubstituted means that no hydrogen atom has been replaced.
- aromatic radical includes “aryl” and “heteroaryl”.
- aryl is preferably a monovanlent, aromatic or partially aromatic, mono- or bi- or tricyclic hydrocarbon ring with 6, 7, 8, 9, 10, 11, 12, 13 or 14 carbon atoms (a “C6-C14 -Aryl "group), in particular a ring with 6 carbon atoms (a" C6-aryl "group), for example a phenyl group; or a ring of 9 carbon atoms (a "C9 aryl” group), e.g. an indanyl or indenyl group or a ring of 10 carbon atoms (a "Clo-aryl” group), e.g.
- the aryl group is a phenyl group.
- heteroaryl is preferably understood to mean a monovalent, monocyclic, bicyclic or tricyclic aromatic ring system with 5, 6, 7, 8, 9, 10, 11, 12, 13 or 14 ring atoms (5- to 14-membered heteroaryl group), in particular with 5 or 6 or 9 or 10 atoms, and the at least one heteroatom, which can be identical or different, the heteroatom being such as oxygen, nitrogen or sulfur and can additionally be benzofused in each case.
- heteroaryl is selected from thienyl, furanyl, pyrrolyl, oxazolyl, thiazolyl, imidazolyl, pyrazolyl, isoxazolyl, isothiazolyl, oxadiazolyl, triazolyl, thiadiazolyl, thia-4H-pyrazolyl, etc. and benzoderivatives thereof, such as benzothiazuryl, benzothienyl, benzothienyl, benzothiazolyl, etc.
- Hydrolases are enzymes that hydrolytically split esters, ethers, peptides, glycosides, acid anhydrides or CC bonds in a reversible reaction. The term is used in the meaning customary for the person skilled in the art. Examples of hydrolases are given below.
- hydrolase includes “lipases”, “esterases”, “amidases” and “proteases”. "Lipases”, “esterases”, “amidases” and “proteases” are a subgroup belonging to the hydrolases. The term is used in the meaning customary for the person skilled in the art. Examples of lipases are given below.
- the reaction takes place in a one- or two-phase system with an aqueous buffer, such as, for example, sodium phosphate, potassium phosphate, preferably potassium phosphate, and one which is or is not miscible with water miscible organic solvents, such as. B. ethanol, methanol, n-butanol, isopropanol, acetone, THF, DMF, DMSO, tert-butyl methyl ether, cyclopentyl methyl ether, 1,4-dioxanes, 2-methyl-THF, toluene or mixtures thereof.
- the reaction takes place at a pH of 7.0 to pH 10, preferably between pH 7-8, particularly preferably pH 7.
- the pH can be kept constant by sufficient buffer capacity or by slowly adding an inorganic base dropwise such as KOH or NaOH, both as an aqueous solution.
- an inorganic base dropwise such as KOH or NaOH, both as an aqueous solution.
- additives such as sugar, glycerine, Mg salts, Ca salts.
- the reaction takes place at temperatures of 22-45 ° C., preferably 25-38 ° C., and the mixture is stirred for 10 hours to 10 days (depending on the enzyme used).
- the reaction can be stopped by adding saturated sodium chloride solution (or another salt solution such as CaC12) and then the product can be extracted by extraction with a suitable solvent.
- the product can be further purified by chromatography.
- the crude product can also be recrystallized directly. It has generally proven to be an advantage to recrystallize the products (which generally show ee% values of> 70%) again in order to obtain ee% values of> 99%.
- Mixtures of tert-butyl methyl ether with alcohols such as ethanol, methanol, isopropanol or ethyl acetate or isopropyl acetate have proven to be useful as solvents for the final recrystallization.
- the invention also relates to a process for the preparation of (4S) -4- (4-cyano-2-methoxyphenyl) -5-ethoxy-2,8-dimethyl-1,4-dihydro-1,6-naphthyridine-3-carboxamide of formula (Ia)
- R stands for a linear or branched C1-C25 chain, which is optionally substituted by an aromatic radical
- X stands for chlorine or bromine, to racemic acyloxymethyl ester (4S) - (4-cyano-2-methoxyphenyl) -5-ethoxy-2,8-dimethyl-1,4-dihydro-1,6-naphthyridine-3-carboxylic acid of the formula (II) where R stands for a linear or branched C1-C25 chain, which is optionally substituted by an aromatic radical, and converts this into the enantiomeric acyloxymethyl ester (4S) - (4-cyano-2-methoxyphenyl) - by resolution using a hydrolase 5-ethoxy-2,8-dimethyl-1,4-dihydro-1,6-naphthyridine-3-carboxylic acid of the formula (Ha) where R stands for a linear or branched C1-C25 chain, which is optionally substituted by an aromatic radical, converted, and this in a THF / water mixture (2: 1) with sodium hydroxide to
- the acid (lavender or Illb) is obtained by alkaline saponification and subsequent acidic work-up:
- the saponification can be carried out in a manner known per se by the methods known to the person skilled in the art in organic solvents or water-miscible solvents with the aid of an inorganic base. It has been found that the reaction can very easily be carried out in a relatively concentrated manner in mixtures of THF / water. For this purpose, a mixture of THF / water 2: 1 (9 times) is preferred, the sodium hydroxide solution is metered in at 0 ° -5 ° C., then stirred at 0 ° -5 ° C. for 1-2 hours. Potassium hydroxide can also be used, but sodium hydroxide or potassium hydroxide is preferred.
- extraction is carried out with MTBE (methyl tert-butyl ether) and ethyl acetate or just toluene and, for isolation, the pH is adjusted to 7 with a mineral acid such as hydrochloric acid, sulfuric acid or phosphoric acid, but preferably hydrochloric acid.
- a saturated ammonium salt solution of the corresponding acid, but preferably ammonium chloride solution can then be added, the product crystallizing out quantitatively.
- it is washed with water and with ethyl acetate or acetonitrile or acetone, but preferably acetonitrile, and dried in vacuo at 40.degree.-50.degree. The yield is almost quantitative (99%).
- the consequence conversion of the acid (lilac or IIIb) to the amide (Ia or Ib) is described as follows: It was found that when the acid (lilac or IIIb) is converted into THF, the amide (Ia or Ib) is derived directly the solution crystallized out and can be obtained in high yield and purity.
- the carboxylic acid (purple or IIIb) is added with 1.1 to 1.6 equivalents, preferably 1.3-1.4 equivalents of l, l'-carbodiimidazole under DMAP catalysis (5-15 mol%, preferably 10 mol% / in some cases it has been shown that you can get the reaction without
- a mixture of water / or a mixture with THF is metered in; It has proven to be advantageous to use an amount of water of 0.5 to 0.7 times (based on the starting material), and an amount of 0.52 times of water is particularly advantageous.
- the water can be metered in directly or in a mixture with approximately one to twice the volume of THF. After quenching has ended, the mixture is refluxed for a total of 1-3 hours, preferably 1 hour. The mixture is cooled to 0 ° C. and stirred for 1-5 hours, preferably 3 hours, at this temperature, then the product is isolated by filtration or centrifugation.
- the compound (Ia) can also be obtained directly by reaction with ammonia gas in an autoclave (approx. 25 to 30 bar). To do this, the preactivation described above is carried out and then heated under pressure under ammonia gas. When the reaction has ended, the mixture is cooled and the product is filtered off. The yields and purities achieved in this way are comparable.
- the optical purity is »99% ee.
- the new inventive method described here is distinguished by several advantages over the prior art. No special equipment (such as SMB, chiral chromatographic methods) is required to separate the enanatiomers on the precursors of the finerenone synthesis (Ia).
- the enzymatic cleavage can be carried out in completely normal stirred reactors.
- the use of water as the reaction medium saves costs in terms of expensive solvents.
- the disposal of waste is also more environmentally friendly than previous methods.
- With the enzymatic Resolution of the racemate gives intermediate product (Ha) as a rule with 70-91% enantiomeric excess (ee%).
- ester (Ha) can be recrystallized in a relatively more concentrated manner in order to keep the losses as low as possible.
- the present invention relates to a process for the preparation of acyloxymethyl esters of (4S) - (4-cyano-2-methoxyphenyl) -5-ethoxy-2,8-dimethyl-1,4-dihydro-1,6-naphthyridine-3-carboxylic acid the formula (Ha)
- R stands for a linear or branched C1-C25 ketene, which is optionally substituted by an aromatic radical, using a hydrolase.
- Preferred within the scope of the present invention is a process for the preparation of acyloxymethyl esters of (4S) - (4-cyano-2-methoxyphenyl) -5-ethoxy-2,8-dimethyl-1,4-dihydro-1,6-naphthyridine -3-carboxylic acid of the formula (Ha)
- R stands for a linear or branched C1-C25 kete, which is optionally substituted by an aromatic radical, using a lipase.
- Preferred within the scope of the present invention is a process for the preparation of acyloxymethyl esters of (4S) - (4-cyano-2-methoxyphenyl) -5-ethoxy-2,8-dimethyl-1,4-dihydro-1,6-naphthyridine -3-carboxylic acid of the formula (Ha)
- Preferred in the context of the present invention is a process for the preparation of acyloxymethyl esters of (4S) - (4-cyano-2-methoxyphenyl) -5-ethoxy-2,8-dimethyl-1,4-dihydro-1,6-naphthyridine 3-carboxylic acid of the formula (Ha) where R is methyl, ethyl, n-propyl, iso-propyl, tert. Butyl, benzyl, n-butyl, n-pentyl or n-hexyl, by resolution of (II), where R is methyl, ethyl, n-propyl, iso-propyl, tert. Butyl, benzyl, n-butyl, n-pentyl or n-hexyl, using a hydrolase.
- Preferred in the context of the present invention is a process for the preparation of acyloxymethyl esters of (4S) - (4-cyano-2-methoxyphenyl) -5-ethoxy-2,8-dimethyl-1,4-dihydro-1,6-naphthyridine 3-carboxylic acid of the formula (Ha) where R is methyl, ethyl, n-propyl, iso-propyl, tert. Butyl, benzyl, n-butyl, n-pentyl or n-hexyl, represents ⁇ by resolution of (II), where R is methyl, ethyl, n-propyl, iso-propyl, tert. Butyl, benzyl, n-butyl, n-pentyl or n-hexyl, using a lipase.
- Preferred in the context of the present invention is a process for the preparation of acyloxymethyl esters of (4S) - (4-cyano-2-methoxyphenyl) -5-ethoxy-2,8-dimethyl-1,4-dihydro-1,6-naphthyridine 3-carboxylic acid of the formula (Ha) where R is methyl, ethyl, n-propyl, iso-propyl, tert. Butyl, benzyl, n-butyl, n-pentyl or n-hexyl, by resolution of (II), where R is methyl, ethyl, n-propyl, iso-propyl, tert.
- Preferred in the context of the present invention is a process for the preparation of acyloxymethyl esters of (4S) - (4-cyano-2-methoxyphenyl) -5-ethoxy-2,8-dimethyl-1,4-dihydro-1,6-naphthyridine 3-carboxylic acid of the formula (Ha), where R is methyl, ethyl and isopropyl, n-butyl or n-pentyl, by resolution of (II), where R is methyl, ethyl and isopropyl, n-butyl or n-pentyl using a hydrolase.
- Preferred in the context of the present invention is a process for the preparation of acyloxymethyl esters of (4S) - (4-cyano-2-methoxyphenyl) -5-ethoxy-2,8-dimethyl-1,4-dihydro-1,6-naphthyridine 3-carboxylic acid of the formula (Ha), where R is methyl, ethyl and isopropyl, n-butyl or n-pentyl, by resolution of (II), where R is methyl, ethyl and isopropyl, n-butyl or n-pentyl stands using a lipase.
- Preferred in the context of the present invention is a process for the preparation of acyloxymethyl esters of (4S) - (4-cyano-2-methoxyphenyl) -5-ethoxy-2,8-dimethyl-1,4-dihydro-1,6-naphthyridine 3-carboxylic acid of the formula (Ha), where R is methyl, ethyl and isopropyl, n-butyl or n-pentyl, by resolution of (II), where R is methyl, ethyl and isopropyl, n-butyl or n-pentyl using Lipase AK from Pseudomonas fluorescens.
- the present invention also relates to a process for the preparation of (4S) -4- (4-cyano-2-methoxyphenyl) -5-ethoxy-2,8-dimethyl-1,4-dihydro-1,6-naphthyridine-3- carboxamide of formula (Ia)
- R stands for a linear or branched C1-C25 chain, which is optionally substituted by an aromatic radical
- X represents chlorine or bromine, to form racemic acyloxymethyl ester (4S) - (4-cyano-2-methoxyphenyl) -5-ethoxy-2,8-dimethyl-1,4-dihydro-1,6-naphthyridine-3-carboxylic acid
- (4S) (4-cyano-2-methoxyphenyl) -5-ethoxy-2,8-dimethyl-1,4-dihydro-1,6-naphthyridine-3-carboxylic acid
- R stands for a linear or branched C1-C25 chain, which is optionally substituted by an aromatic radical, and converts this into the enantiomeric acyloxymethyl ester (4S) - (4-cyano-2 -methoxyphenyl) -5-ethoxy-2,8-dimethyl-1,4-dihydro-1,6-naphthyridine-3-carboxylic acid of the formula (Ha) where R stands for a linear or branched C1-C25 chain, which is optionally substituted by an aromatic radical, transferred, and this in a THF / water mixture (2: 1) with sodium hydroxide solution to the compound of the formula (purple)
- Preferred in the context of the present invention is a process for the preparation of (4S) -4- (4-cyano-2-methoxyphenyl) -5-ethoxy-2,8-dimethyl-1,4-dihydro-1,6-naphthyridine- 3-carboxamide of the formula (Ia)
- R stands for a linear or branched C1-C25 chain, which is optionally substituted by an aromatic radical
- R stands for a linear or branched C1-C25 chain, which is optionally substituted by an aromatic radical
- R stands for a linear or branched C1-C25 kete, which is optionally substituted by an aromatic radical, and this in a THF / water mixture (2: 1) with sodium hydroxide to give the compound of the formula (purple)
- Preferred in the context of the present invention is a process for the preparation of (4S) -4- (4-cyano-2-methoxyphenyl) -5-ethoxy-2,8-dimethyl-1,4-dihydro-1,6-naphthyridine- 3-carboxamide of the formula (Ia), characterized in that the racemic acid of the formula (III) is mixed with halogen esters of the general formula (V), where
- Preferred in the context of the present invention is a process for the preparation of (4S) -4- (4-cyano-2-methoxyphenyl) -5-ethoxy-2,8-dimethyl-1,4-dihydro-1,6-naphthyridine- 3-carboxamide of the formula (Ia), characterized in that the racemic acid of the formula (III) is mixed with halogen esters of the general formula (V), where
- R for methyl, ethyl, n-propyl, iso-propyl, tert. Butyl, benzyl, n-butyl, n-pentyl or n-hexyl,
- X represents chlorine or bromine, to form racemic acyloxymethyl ester (4S) - (4-cyano-2-methoxyphenyl) -5-ethoxy-2,8-dimethyl-1,4-dihydro-1,6-naphthyridine-3-carboxylic acid Formula (II), where
- R for methyl, ethyl, n-propyl, iso-propyl, tert. Butyl, benzyl, n-butyl, n-pentyl or n-hexyl, converts, and this by resolution using a lipase, in the enantiomeric acyloxymethyl ester (4S) - (4-cyano-2-methoxyphenyl) -5-ethoxy-2,8-dimethyl-1,4-dihydro-1,6-naphthyridine -3-carboxylic acid of the formula (Ha), where
- Preferred in the context of the present invention is a process for the preparation of (4S) -4- (4-cyano-2-methoxyphenyl) -5-ethoxy-2,8-dimethyl-1,4-dihydro-1,6-naphthyridine- 3-carboxamide of the formula (Ia), characterized in that the racemic acid of the formula (III) is mixed with halogen esters of the general formula (V), where
- R for methyl, ethyl, n-propyl, iso-propyl, tert. Butyl, benzyl, n-butyl, n-pentyl or n-hexyl,
- X represents chlorine or bromine, to form racemic acyloxymethyl ester (4S) - (4-cyano-2-methoxyphenyl) -5-ethoxy-2,8-dimethyl-1,4-dihydro-1,6-naphthyridine-3-carboxylic acid Formula (II), where
- R for methyl, ethyl, n-propyl, iso-propyl, tert. Butyl, benzyl, n-butyl, n-pentyl or n-hexyl, converts, and this by resolution using lipase AK from Pseudomonas fluorescens, in the enantiomeric acyloxymethyl ester (4S) - (4-cyano-2-methoxyphenyl) -5-ethoxy-2,8-dimethyl-1,4-dihydro-1,6-naphthyridine-3-carboxylic acid of the formula (Ha), where
- Preferred in the context of the present invention is a process for the preparation of (4S) -4- (4-cyano-2-methoxyphenyl) -5-ethoxy-2,8-dimethyl-1,4-dihydro-1,6-naphthyridine- 3-carboxamide of the formula (Ia), characterized in that the racemic acid of the formula (III) is mixed with halogen esters of the general formula (V), where R is methyl, ethyl and isopropyl, n-butyl or n-pentyl,
- X represents chlorine or bromine, to form racemic acyloxymethyl ester (4S) - (4-cyano-2-methoxyphenyl) -5-ethoxy-2,8-dimethyl-1,4-dihydro-1,6-naphthyridine-3-carboxylic acid Formula (II), where R stands for methyl, ethyl and isopropyl, n-butyl or n-pentyl, and converts this into the enantiomeric acyloxymethyl ester (4S) - (4-cyano-2-methoxyphenyl) by resolution using a hydrolase ) -5-ethoxy-2,8-dimethyl-l, 4-dihydro- l, 6-naphthyridine-3-carboxylic acid of the formula (Ha), in which
- R represents methyl, ethyl and isopropyl, n-butyl or n-pentyl, and this in a THF / water mixture (2: 1) with sodium hydroxide to give the compound of the formula (purple), saponified and this compound of the formula ( purple) then first reacted in THF as a solvent with 1,1-carbodiimidazole and catalytic amounts of 4- (dimethylamino) pyridine, after adding hexamethyldisilazane heated under reflux for 16-24 hours and then mixed with a THF / water mixture.
- Preferred in the context of the present invention is a process for the preparation of (4S) -4- (4-cyano-2-methoxyphenyl) -5-ethoxy-2,8-dimethyl-1,4-dihydro-1,6-naphthyridine- 3-carboxamide of the formula (Ia), characterized in that the racemic acid of the formula (III) is mixed with halogen esters of the general formula (V), where
- R represents methyl, ethyl and isopropyl, n-butyl or n-pentyl
- R represents methyl, ethyl and isopropyl, n-butyl or n-pentyl, and converts this into the enantiomeric acyloxymethyl ester (4S) - (4-cyano-2-methoxyphenyl) -5-ethoxy- 2,8-dimethyl-1,4-dihydro-1,6-naphthyridine-3-carboxylic acid of the formula (Ha), where R represents methyl, ethyl and isopropyl, n-butyl or n-pentyl, and this in a THF / water mixture (2: 1) with sodium hydroxide to give the compound of the formula (purple), saponified and this compound of the formula ( purple) then first reacted in THF as a solvent with 1,1-carbodiimidazole and catalytic amounts of 4- (dimethylamino) pyridine, after adding hexamethyldisilazane heated under reflux for 16-24 hours and then
- Preferred in the context of the present invention is a process for the preparation of (4S) -4- (4-cyano-2-methoxyphenyl) -5-ethoxy-2,8-dimethyl-1,4-dihydro-1,6-naphthyridine- 3-carboxamide of the formula (Ia), characterized in that the racemic acid of the formula (III) is mixed with halogen esters of the general formula (V), where
- R represents methyl, ethyl and isopropyl, n-butyl or n-pentyl
- X represents chlorine or bromine, to form racemic acyloxymethyl ester (4S) - (4-cyano-2-methoxyphenyl) -5-ethoxy-2,8-dimethyl-1,4-dihydro-1,6-naphthyridine-3-carboxylic acid Formula (II), where
- R represents methyl, ethyl and isopropyl, n-butyl or n-pentyl, and converts this into the enantiomeric acyloxymethyl ester (4S) - (4-cyano-2-methoxyphenyl) -5-ethoxy- 2,8-dimethyl-1,4-dihydro-1,6-naphthyridine-3-carboxylic acid of the formula (Ha), where
- R represents methyl, ethyl and isopropyl, n-butyl or n-pentyl, transferred, and this in a THF / water mixture (2: 1) with sodium hydroxide solution to the compound of the formula (purple), saponified and this compound of the formula (purple) then in THF as a solvent first with 1,1-carbodiimidazole and catalytic amounts 4- (Dimethylamino) pyridine reacted, after addition of hexamethyldisilazane, heated under reflux for 16-24 hours and then treated with a THF / water mixture.
- Preferred in the context of the present invention is a process for the preparation of (4S) -4- (4-cyano-2-methoxyphenyl) -5-ethoxy-2,8-dimethyl-1,4-dihydro-1,6-naphthyridine- 3-carboxamide of the formula (Ia), characterized in that the racemic acid of the formula (III) is mixed with halogen esters of the general formula (V), where
- R represents methyl, ethyl and isopropyl, n-butyl or n-pentyl
- R represents methyl, ethyl and isopropyl, n-butyl or n-pentyl, and converts this into the enantiomeric acyloxymethyl ester (4S) - (4-cyano-2-methoxyphenyl) -5-ethoxy- 2,8-dimethyl-1,4-dihydro-1,6-naphthyridine-3-carboxylic acid of the formula (Ha), where
- R represents methyl, ethyl and isopropyl, n-butyl or n-pentyl, and this in a THF / water mixture (2: 1) with sodium hydroxide solution to the compound of the formula (purple), saponified and this compound of the formula (purple) is then reacted in THF as a solvent first with 1,1-carbodiimidazole and catalytic amounts of 4- (dimethylamino) pyridine, after adding hexamethyldisilazane heated under reflux for 16-24 hours and then with a THF / Water mixture added.
- Preferred in the context of the present invention is a process for the preparation of (4S) -4- (4-cyano-2-methoxyphenyl) -5-ethoxy-2,8-dimethyl-1,4-dihydro-1,6-naphthyridine- 3-carboxamide of the formula (Ia), characterized in that the racemic acid of the formula (III) is mixed with halogen esters of the general formula (V), where R is methyl, ethyl and isopropyl, n-butyl or n-pentyl,
- X represents chlorine or bromine, to form racemic acyloxymethyl ester (4S) - (4-cyano-2-methoxyphenyl) -5-ethoxy-2,8-dimethyl-1,4-dihydro-1,6-naphthyridine-3-carboxylic acid Formula (II), where R stands for methyl, ethyl and isopropyl, n-butyl or n-pentyl, and converts this into the enantiomeric acyloxymethyl ester (4S) - (4-cyano) by resolution using lipase AK from Pseudomonas fluorescens -2-methoxyphenyl) -5-ethoxy-2,8-dimethyl-1,4-dihydro-1,6-naphthyridine-3-carboxylic acid of the formula (Ha), where
- R represents methyl, ethyl and isopropyl, n-butyl or n-pentyl, transferred, and this in a THF / water
- Preferred in the context of the present invention is a process for the preparation of (4S) -4- (4-cyano-2-methoxyphenyl) -5-ethoxy-2,8-dimethyl-1,4-dihydro-1,6-naphthyridine- 3-carboxamide of the formula (Ia), characterized in that the racemic acid of the formula (III) is mixed with halogen esters of the general formula (V), where
- R represents methyl, ethyl and isopropyl, n-butyl or n-pentyl
- R represents methyl, ethyl and isopropyl, n-butyl or n-pentyl, and converts this into the enantiomeric acyloxymethyl ester (4S) - (4-cyano-2-methoxyphenyl) - by resolution using lipase AK from Pseudomonas fluorescens 5-ethoxy-2,8-dimethyl-1,4-dihydro-1,6-naphthyridine-3-carboxylic acid of the formula (Ha), where
- R represents methyl, ethyl and isopropyl, n-butyl or n-pentyl, and this in a THF / water mixture (2: 1) with sodium hydroxide to give the compound of the formula (purple), saponified and this compound of the formula ( purple) then first reacted in THF as a solvent with 1,1-carbodiimidazole and catalytic amounts of 4- (dimethylamino) pyridine, after adding hexamethyldisilazane, heated under reflux for 16-24 hours and then treated with a THF / water mixture.
- Preferred in the context of the present invention is a process for the preparation of (4S) -4- (4-cyano-2-methoxyphenyl) -5-ethoxy-2,8-dimethyl-1,4-dihydro-1,6-naphthyridine- 3-carboxamide of the formula (Ia)
- R represents methyl, and converts this into the enantiomeric acyloxymethyl ester (4S) - (4-cyano-2-methoxyphenyl) -5-ethoxy-2,8-dimethyl-l, by resolution of the racemate using a hydrolase, 4-dihydro- l, 6-naphthyridine-3-carboxylic acid of the formula (Ha)
- Preferred in the context of the present invention is a process for the preparation of (4S) -4- (4-cyano-2-methoxyphenyl) -5-ethoxy-2,8-dimethyl-1,4-dihydro-1,6-naphthyridine- 3-carboxamide of the formula (Ia)
- R stands for methyl
- R represents methyl, and this is converted by resolution using a hydrolase into the enantiomeric acyloxymethyl ester (4S) - (4-cyano-2-methoxyphenyl) -5-ethoxy-2,8-dimethyl-1,4-dihydro- 1,6-naphthyridine-3-carboxylic acid of the formula (Ha)
- R represents methyl, converted, and this in a THF / water mixture (2: 1) with sodium hydroxide solution to the compound of the formula (purple)
- Preferred in the context of the present invention is a process for the preparation of (4S) -4- (4-cyano-2-methoxyphenyl) -5-ethoxy-2,8-dimethyl-1,4-dihydro-1,6-naphthyridine- 3-carboxamide of the formula (Ia)
- R stands for methyl
- R represents methyl, converts, and this by resolution using a lipase, in the enantiomeric acyloxymethyl ester (4S) - (4-cyano-2-methoxyphenyl) -5-ethoxy-2,8-dimethyl-1,4-dihydro- 1,6-naphthyridine-3-carboxylic acid of the formula (Ha)
- Preferred in the context of the present invention is a process for the preparation of (4S) -4- (4-cyano-2-methoxyphenyl) -5-ethoxy-2,8-dimethyl-1,4-dihydro-1,6-naphthyridine- 3-carboxamide of the formula (Ia)
- R stands for methyl, converts, and this by resolution using a lipase, in the enantiomeric acyloxymethyl ester (4S) - (4-cyano-2-methoxyphenyl) -5-ethoxy-2,8-dimethyl-1,4-dihydro-1,6-naphthyridine -3 -carboxylic acid of the formula (Ha)
- R represents methyl, converted, and this in a THF / water mixture (2: 1) with sodium hydroxide solution to the compound of the formula (purple)
- R represents methyl
- X represents chlorine or bromine
- Preferred in the context of the present invention is a process for the preparation of (4S) -4- (4-cyano-2-methoxyphenyl) -5-ethoxy-2,8-dimethyl-1,4-dihydro-1,6-naphthyridine- 3-carboxamide of the formula (Ia)
- X stands for bromine, to racemic acyloxymethyl ester (4S) - (4-cyano-2-methoxyphenyl) -5-ethoxy-2,8-dimethyl-1,4-dihydro-1,6-naphthyridine-3-carboxylic acid of the formula ( II) in which R represents methyl, converts, and this by resolution using lipase AK from Pseudomonas fluorescens, in the enantiomeric acyloxymethyl ester (4S) - (4-cyano-2-methoxyphenyl) -5-ethoxy-2,8-dimethyl-1, 4-dihydro- l, 6-naphthyridine-3-carboxylic acid of the formula (Ha)
- R represents methyl, converted, and this in a THF / water mixture (2: 1) with sodium hydroxide solution to the compound of the formula (purple)
- Preferred in the context of the present invention is a process for the preparation of (4S) -4- (4-cyano-2-methoxyphenyl) -5-ethoxy-2,8-dimethyl-1,4-dihydro-1,6-naphthyridine- 3-carboxamide of the formula (Ia), characterized in that the racemic acid of the formula (III) with halogen esters of the general formula (V), where R is methyl, ethyl and isopropyl, n-butyl or n-pentyl,
- X represents chlorine, to racemic acyloxymethyl ester (4S) - (4-cyano-2-methoxyphenyl) -5-ethoxy-2,8-dimethyl-1,4-dihydro-1,6-naphthyridine-3-carboxylic acid of the formula ( II), where R stands for methyl, ethyl and isopropyl, n-butyl or n-pentyl, and converts this into the enantiomeric acyloxymethyl ester (4S) - (4-cyano-2-methoxyphenyl) - by resolution using a hydrolase 5-ethoxy-2,8-dimethyl-1,4-dihydro-1,6-naphthyridine-3-carboxylic acid of the formula (Ha), where
- R represents methyl, ethyl and isopropyl, n-butyl or n-pentyl, and this in a THF / water mixture (2: 1) with sodium hydroxide to give the compound of the formula (purple), saponified and this compound of the formula ( purple) then reacted in THF as a solvent first with 1,1-carbodiimidazole and catalytic amounts of 4- (dimethylamino) pyridine, after adding Hexamethyldisilazane heated under reflux for 16-24 hours and then treated with a THF / water mixture.
- Preferred in the context of the present invention is a process for the preparation of (4S) -4- (4-cyano-2-methoxyphenyl) -5-ethoxy-2,8-dimethyl-1,4-dihydro-1,6-naphthyridine- 3-carboxamide of the formula (Ia), characterized in that the racemic acid of the formula (III) is mixed with halogen esters of the general formula (V), where
- R represents methyl, ethyl and isopropyl, n-butyl or n-pentyl
- X represents chlorine, to racemic acyloxymethyl ester (4S) - (4-cyano-2-methoxyphenyl) -5-ethoxy-2,8-dimethyl-1 , 4-dihydro-l, 6- naphthyridine-3-carboxylic acid of the formula (II), where
- R represents methyl, ethyl and isopropyl, n-butyl or n-pentyl, and converts this into the enantiomeric acyloxymethyl ester (4S) - (4-cyano-2-methoxyphenyl) -5-ethoxy- 2,8-dimethyl-1,4-dihydro-1,6-naphthyridine-3-carboxylic acid of the formula (Ha), where R is methyl, ethyl and isopropyl, n-butyl or n-pentyl, and this is converted into a THF / water mixture (2: 1) with sodium hydroxide solution to the compound of the formula (purple), saponified and this compound of the formula (purple) then in THF as a solvent first with 1,1-carbodiimidazole and catalytic amounts of 4- (dimethylamino) pyridine converts, after the addition of Hexamethyldisilazane heated under reflux for 16-24
- Preferred in the context of the present invention is a process for the preparation of (4S) -4- (4-cyano-2-methoxyphenyl) -5-ethoxy-2,8-dimethyl-1,4-dihydro-1,6-naphthyridine- 3-carboxamide of the formula (Ia), characterized in that the racemic acid of the formula (III) is mixed with halogen esters of the general formula (V), where
- R represents methyl, ethyl and isopropyl, n-butyl or n-pentyl
- X represents chlorine, to racemic acyloxymethyl ester (4S) - (4-cyano-2-methoxyphenyl) -5-ethoxy-2,8-dimethyl-1,4-dihydro-1,6-naphthyridine-3-carboxylic acid of the formula ( II), where
- R represents methyl, ethyl and isopropyl, n-butyl or n-pentyl, and converts this into the enantiomeric acyloxymethyl ester (4S) - (4-cyano-2-methoxyphenyl) - by resolution using lipase AK from Pseudomonas fluorescens 5-ethoxy-2,8-dimethyl-1,4-dihydro-1,6-naphthyridine-3-carboxylic acid of the formula (Ha), where
- R represents methyl, ethyl and isopropyl, n-butyl or n-pentyl, and this in a THF / water mixture (2: 1) with sodium hydroxide to give the compound of the formula (purple), saponified and this compound of the formula ( purple) then first reacted in THF as a solvent with 1,1-carbodiimidazole and catalytic amounts of 4- (dimethylamino) pyridine, after adding hexamethyldisilazane, heated under reflux for 16-24 hours and then treated with a THF / water mixture.
- Preferred in the context of the present invention is a process for the preparation of (4S) -4- (4-cyano-2-methoxyphenyl) -5-ethoxy-2,8-dimethyl-1,4-dihydro-1,6-naphthyridine- 3-carboxamide of the formula (Ia)
- R represents methyl, converts, and this by resolution using a lipase, in the enantiomeric acyloxymethyl ester (4S) - (4-cyano-2-methoxyphenyl) -5-ethoxy-2,8-dimethyl-1,4-dihydro- 1,6-naphthyridine-3-carboxylic acid of the formula (Ha)
- R represents methyl, converted, and this in a THF / water mixture (2: 1) with sodium hydroxide solution to the compound of the formula (purple)
- Preferred in the context of the present invention is a process for the preparation of (4S) -4- (4-cyano-2-methoxyphenyl) -5-ethoxy-2,8-dimethyl-1,4-dihydro-1,6-naphthyridine- 3-carboxamide of the formula (Ia)
- X represents chlorine, to racemic acyloxymethyl ester (4S) - (4-cyano-2-methoxyphenyl) -5-ethoxy-2,8-dimethyl-1,4-dihydro-1,6-naphthyridine-3-carboxylic acid of the formula ( II) in which R represents methyl, converts, and this by resolution using lipase AK from Pseudomonas fluorescens, in the enantiomeric acyloxymethyl ester (4S) - (4-cyano-2-methoxyphenyl) -5-ethoxy-2,8-dimethyl-1, 4-dihydro- l, 6-naphthyridine-3-carboxylic acid of the formula (Ha) in which
- R represents methyl, converted, and this in a THF / water mixture (2: 1) with sodium hydroxide solution to the compound of the formula (purple)
- the reaction takes place in organic solvents such as dimethylformamide, dimethylacetamide, NMP, acetonitrile, THF, DMSO, sulfolane, acetone, 2-butanone in the presence of an organic or inorganic base such as triethylamine, tributylamine, pyridine, potassium carbonate, cesium carbonate, sodium carbonate, potassium hydrogen carbonate, Sodium hydrogen carbonate, fithium hydroxide.
- organic solvents such as dimethylformamide, dimethylacetamide, NMP, acetonitrile, THF, DMSO, sulfolane, acetone, 2-butanone
- organic or inorganic base such as triethylamine, tributylamine, pyridine, potassium carbonate, cesium carbonate, sodium carbonate, potassium hydrogen carbonate, Sodium hydrogen carbonate, fithium hydroxide.
- the reaction takes place at 0.degree. C. to 80.degree. C., preferably at 20.degree.-60.degree
- halogen esters (V) The preparation of the halogen esters (V) is analogous to that in G Sosnovsky, NUM Rao, SW Fi, HM Swartz, J. Org. Chem. 1988, 54, 3667 and NP Mustafaev, MA Kulieva, KN Mustafaev, TN Kulibekova, GA Kakhramanova , MR Safarova, NN Novotorzhina, Russ. J. Org. Chem. 2012, 49, 198 carried out synthesis described.
- the invention also relates to the use of a hydrolase in a process for preparing a compound according to formula (Ha).
- the invention relates to the use of a hydrolase in a process for the preparation of a compound of the formula (Ha) by resolution of the compound (II).
- the invention relates to the use of a hydrolase in a process for the preparation of a compound of the formula (Ha) by resolution of the compound (II), where the Process corresponds to one of the embodiments of the process for the preparation of a compound of formula (Ha) explained above.
- the invention also relates to the use of a hydrolase in a process for the preparation of a compound according to formula (Ia).
- the invention relates to the use of a hydrolase for the preparation of a compound of the formula (Ia), the process corresponding to one of the embodiments of the process for the preparation of a compound of the formula (Ia) explained above.
- R for methyl, ethyl, n-propyl, iso-propyl, tert. Butyl, benzyl, n-butyl, n-pentyl or n-hexyl,
- R stands for a linear or branched C1-C25 chain, which is optionally substituted by an aromatic radical
- X stands for chlorine or bromine, to racemic acyloxymethyl ester (4S) - (4-cyano-2-methoxyphenyl) -5-ethoxy-2,8-dimethyl-1,4-dihydro-1,6-naphthyridine-3-carboxylic acid of the formula (II) where R stands for a linear or branched C1-C25 chain, which is optionally substituted by an aromatic radical, and converts this into the enantiomeric acyloxymethyl ester (4S) - (4-cyano-2-methoxyphenyl) - by resolution using a hydrolase 5-ethoxy-2,8-dimethyl-1,4-dihydro-1,6-naphthyridine-3-carboxylic acid of the formula (Ha) where R stands for a linear or branched C1-C25 chain, which is optionally substituted by an aromatic radical, converted, and this in a THF / water mixture (2: 1) with sodium hydroxide to
- R for methyl, ethyl, n-propyl, iso-propyl, tert. Butyl, benzyl, n-butyl, n-pentyl or n-hexyl, and
- R is methyl
- X stands for bromine
- R is a linear or branched C1-C25 chain, optionally with an aromatic
- Residue is substituted using a hydrolase.
- R stands for a linear or branched C1-C25 ketone, which is optionally substituted by an aromatic radical
- R is a linear or branched C1-C25 ketone, optionally with an aromatic
- R for methyl, ethyl, n-propyl, iso-propyl, tert. Butyl, benzyl, n-butyl, n-pentyl or n-hexyl, and
- X stands for bromine
- R is methyl
- X stands for bromine
- R for methyl, ethyl, n-propyl, iso-propyl, tert. Butyl, benzyl, n-butyl, n-pentyl or n-hexyl.
- R represents methyl, ethyl and isopropyl, n-butyl or n-pentyl, and where in the compound according to formula (II)
- R represents methyl, ethyl and isopropyl, n-butyl or n-pentyl.
- R stands for methyl, and where in the compound according to formula (II) R is methyl.
- the lipase is selected from lipase type VII from Candida rugosa, lipase from Candida rugosa, Amano lipase M, from Mucor javanicus, Amano lipase PS from Burkholderia cepacian, Amano lipase PS-IM , Lipase from Aspergillus niger lipase from Thermomyces lanuginosus, lipase from Rhizomucor miehei, lipase from Candida antarctica B, lipase from Candida antarctica A, lipase from Aspergillus oryzae, lipase from Humicola insolens, lipase from Candida antarctinos B, lipase from Thermomyces lanug Rhizomucor miehei, lipase from Candida antarctica and lipase from pig liver.
- R stands for a linear or branched C1-C25 ketene, which is optionally substituted by an aromatic radical, and converts this by resolution using a hydrolase in the enantiomeric acyloxymethyl ester (4S) - (4-cyano-2-methoxyphenyl) -5-ethoxy-2,8-dimethyl-1,4-dihydro-1,6-naphthyridine-3-carboxylic acid of the formula (Ha)
- R for methyl, ethyl, n-propyl, iso-propyl, tert. Butyl, benzyl, n-butyl, n-pentyl or n-hexyl, and
- R for methyl, ethyl, n-propyl, iso-propyl, tert. Butyl, benzyl, n-butyl or n-pentyl.
- R represents methyl, ethyl and isopropyl, n-butyl or n-pentyl
- R stands for methyl, ethyl and isopropyl, n-butyl or n-pentyl, and where in the compound according to formula (Ha)
- R represents methyl, ethyl and isopropyl, n-butyl or n-pentyl.
- R is methyl
- lipase is selected from lipase type VII from Candida rugosa, lipase from Candida rugosa, Amano lipase M, from Mucor javanicus, Amano lipase PS from Burkholderia cepacian, Amano lipase PS-IM , Lipase from Aspergillus niger lipase from Thermomyces lanuginosus, lipase from Rhizomucor miehei, lipase from Candida antarctica B, lipase from Candida antarctica A, lipase from Aspergillus oryzae, lipase from Humicola insolens, lipase from Candida Antarctinos B, lipase from Thermomyces lanug Rhizomucor miehei, lipase from Candida Antarctica and lipase from pig liver.
- (Ia) is defined according to one of paragraphs 16 to 22 and further comprises the process for preparing the compound according to formula (Ha) according to one of paragraphs 1 to 15.
- Table 3 below shows the structures of the compounds found in the HPLC. The assignment of the retention times in HPLC is given below.
- Ultra high-performance liquid chromatograph (with a pressure range of up to 1200 bar with thermostated column oven and UV detector
- Device / detector high-performance liquid chromatograph with thermostated column oven, UV detector and data evaluation system
- Test solution approx. 0.5 mg / mL of the substance racemate, dissolve with sample solvent.
- Reference solution A reference solution is prepared analogous to the test solution
- Solution A 0.58 g ammonium hydrogen phosphate and 0.66 g ammonium dihydrogen phosphate in 1 L water (ammonium phosphate buffer pH 7.2)
- Solvent B ethanol + 0.1% diethylamine solution 0 ': 95% A; 5% B
- Example 1 The following racemic acyloxy esters of the general formula (II) were synthesized in 10-15 mg on a parallel synthesis equipment * and characterized by mass spectroscopy:
- the potential of several hydrolases was tested for the kinetic resolution of the racemic acyloxy esters (II A-F).
- the racemic starting material was dissolved in an organic solvent such as DMSO, tert-butyl methyl ether, cyclopentyl methyl ether, 1,4-dioxane, DMF or 2-methyl-THF and passed through a buffered aqueous solution (pH 7) of an enzyme.
- lipases were used: lipase AK from Pseudomonas fluorescens, lipase type VII from Candida rugose, lipase from Candida rugose, Amano-lipase M, from Mucor javanicus, Amano-lipase PS, from Burkholderia cepacia, Amano-lipase PS-IM, lipase from Aspergillus niger, lipase from Thermomyces lanuginosus, lipase from Rhizomucor miehei, lipase from Candida antarctica B, lipase from Candida antarctica A, lipase from Aspergillus oryzae, lipase from Humicola insolens, lipase from Candida antarctica B, immobilized (lanug from Thermomyusces B, immobilized ), Lipase from Rhizomucor miehei (immobilized), Lip
- the resulting two-phase system was stirred at 22 ° to 36 ° C. until a degree of conversion of almost 50% was reached.
- the separation of the product and the enantiomerically enriched substrate was carried out by means of base acid extraction.
- Treatment of the organic layer with 5% aqueous potassium phosphate solution separates the desired enantiomerically enriched residual ester from the acid and carries out a chromatographic enantiomeric excess determination (method G).
- the enantiomeric excesses (ee) achieved are usually between 70% e.e. up to 91% e.e .; the 4R enantiomer is preferably saponified.
- the reaction mixture is filtered (separation of the salts) and the filter residue is washed with 400 ml of ethyl acetate.
- the filtrate is twice with 400 ml of water and then washed with 200 ml of saturated aqueous sodium chloride solution.
- the organic phase was evaporated to dryness in vacuo and the residue from 200 ml tert. Butyl methyl ether / 50 ml of ethanol recrystallized.
- Modification Mod A (as defined in WO2016 / 016287 Al)
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- Wood Science & Technology (AREA)
- Engineering & Computer Science (AREA)
- Zoology (AREA)
- Health & Medical Sciences (AREA)
- Genetics & Genomics (AREA)
- Bioinformatics & Cheminformatics (AREA)
- General Health & Medical Sciences (AREA)
- General Engineering & Computer Science (AREA)
- Microbiology (AREA)
- Biochemistry (AREA)
- Biotechnology (AREA)
- Analytical Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Medicinal Chemistry (AREA)
- Molecular Biology (AREA)
- Biomedical Technology (AREA)
- Nitrogen Condensed Heterocyclic Rings (AREA)
- Preparation Of Compounds By Using Micro-Organisms (AREA)
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP19203821 | 2019-10-17 | ||
PCT/EP2020/078611 WO2021074077A1 (de) | 2019-10-17 | 2020-10-12 | Verfahren zur herstellung von acyloxymethylestern der (4s) -(4-cyano-2-methoxyphenyl)-5-ethoxy-2,8-dimethyl-1,4-dihydro-1,6-naphthyridin-3-carbonsäure |
Publications (1)
Publication Number | Publication Date |
---|---|
EP4045500A1 true EP4045500A1 (de) | 2022-08-24 |
Family
ID=68281309
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP20789970.9A Pending EP4045500A1 (de) | 2019-10-17 | 2020-10-12 | Verfahren zur herstellung von acyloxymethylestern der (4s) -(4-cyano-2-methoxyphenyl)-5-ethoxy-2,8-dimethyl-1,4-dihydro-1,6-naphthyridin-3-carbonsäure |
Country Status (16)
Country | Link |
---|---|
US (1) | US20240150344A1 (ko) |
EP (1) | EP4045500A1 (ko) |
JP (1) | JP2022553225A (ko) |
KR (1) | KR20220084102A (ko) |
CN (1) | CN114555599B (ko) |
AU (1) | AU2020365314A1 (ko) |
BR (1) | BR112022005605A2 (ko) |
CA (1) | CA3157823A1 (ko) |
CL (1) | CL2022000941A1 (ko) |
CO (1) | CO2022004464A2 (ko) |
CR (1) | CR20220161A (ko) |
IL (1) | IL292194A (ko) |
JO (1) | JOP20220148A1 (ko) |
MX (1) | MX2022004480A (ko) |
PE (1) | PE20221414A1 (ko) |
WO (1) | WO2021074077A1 (ko) |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114214375B (zh) * | 2021-12-27 | 2024-03-19 | 江苏威凯尔医药科技有限公司 | (r)-3-(4-卤代-1h-吡唑-1-基)-3-环戊基丙酸酯的制备方法 |
CN115340539B (zh) * | 2022-01-19 | 2024-02-27 | 奥锐特药业股份有限公司 | 制备非奈利酮及其中间体的方法 |
WO2023205164A1 (en) | 2022-04-18 | 2023-10-26 | Teva Pharmaceuticals International Gmbh | Processes for the preparation of finerenone |
WO2023223188A1 (en) * | 2022-05-16 | 2023-11-23 | Glenmark Life Sciences Limited | Process for the preparation of finerenone and intermediates thereof |
CN115322194B (zh) * | 2022-08-23 | 2024-04-09 | 浙江国邦药业有限公司 | 一种非奈利酮中间体羧酸拆分方法 |
CN116715664A (zh) * | 2023-06-12 | 2023-09-08 | 常州制药厂有限公司 | 一种非奈利酮关键中间体的制备方法 |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5234821A (en) * | 1990-09-01 | 1993-08-10 | Kazuo Achiwa | Process for preparing 1,4 dihydropyridine compounds |
DE102007009494A1 (de) * | 2007-02-27 | 2008-08-28 | Bayer Healthcare Ag | Substituierte 4-Aryl-1, 4-dihydro-1,6-naphthyridinamide und ihre Verwendung |
AU2015295376C1 (en) * | 2014-08-01 | 2020-07-16 | Bayer Pharma Aktiengesellschaft | Method for the preparation of (4S)-4-(4-cyano-2-methoxyphenyl)-5-ethoxy-2,8-dimethyl-1,4-dihydro-1-6-naphthyridine-3-carbox-amide and the purification thereof for use as an active pharmaceutical ingredient |
CN108473488A (zh) * | 2015-08-21 | 2018-08-31 | 拜耳制药股份公司 | (4s)-和(4r)-4-(4-氰基-2-甲氧基苯基)-5-乙氧基-2,8-二甲基-1,4-二氢-1,6-萘啶-3-甲酰胺的代谢物的制备方法及其用途 |
CN107849043B (zh) * | 2015-08-21 | 2020-10-16 | 拜耳制药股份公司 | 用于制备(4s)-4-(4-氰基-2-甲氧基苯基)-5-乙氧基-2,8-二甲基-1,4-二氢-1,6-萘啶-3-甲酰胺的方法 |
CN108409731B (zh) * | 2018-03-07 | 2020-11-20 | 西华大学 | 芳基取代的1H-吡啶[3,4-b]吲哚-3-羧酸甲酯的手性拆分 |
-
2020
- 2020-10-12 BR BR112022005605A patent/BR112022005605A2/pt not_active Application Discontinuation
- 2020-10-12 WO PCT/EP2020/078611 patent/WO2021074077A1/de active Application Filing
- 2020-10-12 US US17/769,241 patent/US20240150344A1/en active Pending
- 2020-10-12 CR CR20220161A patent/CR20220161A/es unknown
- 2020-10-12 PE PE2022000593A patent/PE20221414A1/es unknown
- 2020-10-12 JP JP2022522986A patent/JP2022553225A/ja active Pending
- 2020-10-12 CA CA3157823A patent/CA3157823A1/en active Pending
- 2020-10-12 MX MX2022004480A patent/MX2022004480A/es unknown
- 2020-10-12 AU AU2020365314A patent/AU2020365314A1/en active Pending
- 2020-10-12 IL IL292194A patent/IL292194A/en unknown
- 2020-10-12 EP EP20789970.9A patent/EP4045500A1/de active Pending
- 2020-10-12 JO JOP/2022/0148A patent/JOP20220148A1/ar unknown
- 2020-10-12 KR KR1020227015997A patent/KR20220084102A/ko unknown
- 2020-10-12 CN CN202080072389.4A patent/CN114555599B/zh active Active
-
2022
- 2022-04-07 CO CONC2022/0004464A patent/CO2022004464A2/es unknown
- 2022-04-13 CL CL2022000941A patent/CL2022000941A1/es unknown
Also Published As
Publication number | Publication date |
---|---|
CA3157823A1 (en) | 2021-04-22 |
KR20220084102A (ko) | 2022-06-21 |
BR112022005605A2 (pt) | 2022-07-19 |
JOP20220148A1 (ar) | 2023-01-30 |
IL292194A (en) | 2022-06-01 |
US20240150344A1 (en) | 2024-05-09 |
CR20220161A (es) | 2022-06-17 |
PE20221414A1 (es) | 2022-09-20 |
CL2022000941A1 (es) | 2022-11-11 |
JP2022553225A (ja) | 2022-12-22 |
MX2022004480A (es) | 2022-05-06 |
CN114555599A (zh) | 2022-05-27 |
WO2021074077A1 (de) | 2021-04-22 |
CN114555599B (zh) | 2024-06-07 |
AU2020365314A1 (en) | 2022-05-12 |
CO2022004464A2 (es) | 2022-04-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP4045500A1 (de) | Verfahren zur herstellung von acyloxymethylestern der (4s) -(4-cyano-2-methoxyphenyl)-5-ethoxy-2,8-dimethyl-1,4-dihydro-1,6-naphthyridin-3-carbonsäure | |
EP0617019B1 (de) | Verfahren zur Herstellung von 3R,5S-(+)-Natrium-erythro-(E)-7-[4-(4-fluorphenyl)--2,6-diisopropyl-5-methoxymethyl-pyrid-3-yl]-3,5-dihydroxy-hept-6-enoat | |
EP0720655A1 (de) | Racematspaltung primärer und sekundärer amine durch enzym-katalysierte acylierung | |
EP4045501A1 (de) | Verfahren zur herstellung von 2-cyanoethyl (4s)-4-(4-cyano-2-methoxy-phenyl)-5-ethoxy-2,8-dimethyl-1,4-dihydro-1,6-naphthyridine-3-carboxylat durch racemat-spaltung mittels diastereomerer weinsäureester | |
JP5646992B2 (ja) | コルテキソロンの17α−モノエステルおよび/またはその9,11−デヒドロ誘導体を得るための酵素的方法 | |
DE102010005953A1 (de) | Verfahren zur Herstellung von Nebivolol | |
WO2021074072A1 (de) | Verfahren zur herstellung von 2-cyanoethyl (4s)-4-(4-cyano-2-methoxy-phenyl)-5-hydroxy-2,8-dimethyl-1,4-dihydro-1,6-naphthyridin-3-carboxylat durch racemat-spaltung mittels diastereomerer weinsäureester | |
EP3992195B1 (en) | Spiro (3,3'-isopropyl pyrrolidine oxindole) liver x receptor regulator, preparation method therefor, and use thereof | |
DE69325698T2 (de) | Enzymatisches Verfahren zur stereoselektiven Herstellung einem Enantiomer aus einem hetero bicyclischen Alkohols | |
DE69732772T2 (de) | Enzymatisches verfahren zur stereoselektiven herstellung von therapeutischen amiden | |
EP0815110A1 (de) | HALOGENIERTE $g(b)-CARBOLIN-DERIVATE, VERFAHREN ZU IHRER HERSTELLUNG UND VERWENDUNG DIESER SUBSTANZEN ZUR HEMMUNG DER ATMUNGSKETTE | |
DE60109515T2 (de) | Herstellung von Tamiflu über das Zwischenprodukt Gallocarbonsäure | |
EP2457899A1 (en) | Process for production of optically active nipecotamide | |
EP2303847B1 (de) | Synthese von zyklischen amidinen | |
DE60303825T2 (de) | Verfahren zum herstellen von enantiomeren von indol-2,3-dion-3-oxim-derivaten | |
DE2138122C3 (de) | Verfahren zur Gewinnung von D-Penicillamin | |
DE69516705T2 (de) | Bakteriologisches verfahren zur trennung von racematartigen cis-diolen | |
EP1786913B1 (de) | Verfahren zur herstellung von diarylcycloalkylderivaten | |
DD295358A5 (de) | Verfahren zur racemattrennung von 4-aryl-2-oxo-pyrrolidin-3-carbonsaeure-estern | |
DE19624292A1 (de) | Verfahren und Zwischenprodukte zur Herstellung von 1'-Hydroxybenzbromaron | |
DE2362687C3 (de) | Verfahren zur Gewinnung der optischen Isomeren des Penicillamins | |
DE69315720T2 (de) | Verfahren zur Trennung von 1,2-Isopropylidenglycerinbenzoylester-Enantiomeren | |
DE60215206T2 (de) | Enzymatisches verfahren zur enantiomeren trennung von aminosäuren | |
AT410545B (de) | Verfahren zur herstellung von chiralen alpha-hydroxycarbonsäuren | |
EP1323830A2 (de) | Verfahren zur Herstellung von heterocyclischen (R)-und (S)-Cyanhydrinen |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: UNKNOWN |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE |
|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE |
|
17P | Request for examination filed |
Effective date: 20220517 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
DAV | Request for validation of the european patent (deleted) | ||
RAX | Requested extension states of the european patent have changed |
Extension state: BA Payment date: 20220517 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: EXAMINATION IS IN PROGRESS |
|
17Q | First examination report despatched |
Effective date: 20230816 |