EP3966050A1 - Mehrpunktlenker für ein fahrwerk eines fahrzeugs - Google Patents

Mehrpunktlenker für ein fahrwerk eines fahrzeugs

Info

Publication number
EP3966050A1
EP3966050A1 EP20718292.4A EP20718292A EP3966050A1 EP 3966050 A1 EP3966050 A1 EP 3966050A1 EP 20718292 A EP20718292 A EP 20718292A EP 3966050 A1 EP3966050 A1 EP 3966050A1
Authority
EP
European Patent Office
Prior art keywords
core element
recesses
point link
roving
link
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP20718292.4A
Other languages
German (de)
English (en)
French (fr)
Inventor
Ingolf Müller
Jens Heimann
Andre Stieglitz
Carsten Sohl
Valentin HÖRTDÖRFER
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ZF Friedrichshafen AG
Original Assignee
Schafer MWN GmbH
ZF Friedrichshafen AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Schafer MWN GmbH, ZF Friedrichshafen AG filed Critical Schafer MWN GmbH
Publication of EP3966050A1 publication Critical patent/EP3966050A1/de
Withdrawn legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G7/00Pivoted suspension arms; Accessories thereof
    • B60G7/001Suspension arms, e.g. constructional features
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2206/00Indexing codes related to the manufacturing of suspensions: constructional features, the materials used, procedures or tools
    • B60G2206/01Constructional features of suspension elements, e.g. arms, dampers, springs
    • B60G2206/012Hollow or tubular elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2206/00Indexing codes related to the manufacturing of suspensions: constructional features, the materials used, procedures or tools
    • B60G2206/01Constructional features of suspension elements, e.g. arms, dampers, springs
    • B60G2206/10Constructional features of arms
    • B60G2206/12Constructional features of arms with two attachment points on the sprung part of the vehicle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2206/00Indexing codes related to the manufacturing of suspensions: constructional features, the materials used, procedures or tools
    • B60G2206/01Constructional features of suspension elements, e.g. arms, dampers, springs
    • B60G2206/10Constructional features of arms
    • B60G2206/121Constructional features of arms the arm having an H or X-shape
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2206/00Indexing codes related to the manufacturing of suspensions: constructional features, the materials used, procedures or tools
    • B60G2206/01Constructional features of suspension elements, e.g. arms, dampers, springs
    • B60G2206/70Materials used in suspensions
    • B60G2206/71Light weight materials
    • B60G2206/7101Fiber-reinforced plastics [FRP]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2206/00Indexing codes related to the manufacturing of suspensions: constructional features, the materials used, procedures or tools
    • B60G2206/01Constructional features of suspension elements, e.g. arms, dampers, springs
    • B60G2206/70Materials used in suspensions
    • B60G2206/71Light weight materials
    • B60G2206/7105Porous materials, ceramics, e.g. as filling material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2206/00Indexing codes related to the manufacturing of suspensions: constructional features, the materials used, procedures or tools
    • B60G2206/01Constructional features of suspension elements, e.g. arms, dampers, springs
    • B60G2206/80Manufacturing procedures
    • B60G2206/85Filament winding

Definitions

  • Multipoint link for a chassis of a vehicle
  • the invention relates to a multi-point link for a chassis of a vehicle according to the preamble of claim 1. Furthermore, the present invention relates to a method for producing a multi-point link for a chassis of a vehicle according to the preamble of claim 15.
  • Multipoint links such as a four-point link
  • a multi-point link designed as a four-point link takes on the functions of lateral guidance and longitudinal guidance of the rigid axle.
  • such a multi-point link fulfills the function of a stabilizer and is thus in the case of rolling movements of a vehicle body that z. B. occur while cornering, exposed to additional rolling loads.
  • a multi-point link designed as a three-point link is used in commercial vehicles be rich in tractor units in order to attach the axle to the structural frame.
  • Three-point links contribute significantly to the transverse and longitudinal guidance of the axle.
  • a three-point link guides the axle in an upper link level and is exposed to high longitudinal loads and lateral loads when the utility vehicle is ferrying.
  • a multi-point link of the type mentioned is known from DE 10 2016 209 041 A1.
  • the multi-point link consists of a core element made of a foam material and at least one roving (fiber bundle del) wrapped around the core element.
  • the at least one roving wrapping the core element in at least one layer forms an outer layer of the multi-point link.
  • the core element is mainly intended to form the inner shape of the multi-point link.
  • the core element itself is not intended to accommodate loads or only to a limited extent, but is primarily intended to be deposited or wrapped with the roving. Loads and forces that are introduced into the multi-point link in load application areas through a vehicle axle or a wheel carrier are mainly absorbed by the outer layer of the multi-point link formed from at least one roving.
  • the core element which is wrapped by the at least one roving during a winding process, specifies the respective component contour of the multi-point link.
  • the core element must absorb the forces which the at least one roving, which is kept under tension, exerts on the core element during the winding process, in particular at the beginning.
  • the core element may only deform very slightly here, since the core element is shaping and essential geometric dimensions (kinematic points) of the multi-point link must be set within tight tolerances.
  • the depositing of the at least one roving during the winding process essentially follows a geodetic line in order to prevent the roving from slipping.
  • a geodetic line represents the shortest connection between two points on a curved surface.
  • the roving can be placed on the core element on this line without the aid of adhesive effects.
  • the possibilities of storing the roving are limited by the risk of slipping or possibly lifting off the surface of the core element.
  • laying the rovings along the geodetic lines increases the amount of material used.
  • the main load paths of the multi-point link are not directly covered by a continuous geodetic line, but can only be mapped via a detour along several geodetic lines through the deposit of the roving.
  • a multi-point link for a chassis of a vehicle, the multi-point link consisting of a core element made of a foam material and at least one roving made of bundled continuous fibers wound around the core element.
  • the at least one roving wrapping around the core element in at least one layer forms an outer layer of the multi-point link, which serves to absorb the load.
  • recesses serving to guide the at least one roving to be laid down by winding are made in the surface of the core element. The introduction of recesses in the surface of the core element makes it possible to provide winding patterns which are independent of the geodetic lines when wrapping with the at least one roving.
  • the at least one roving can be laid down significantly more widely.
  • geometric structures of the core element for example a bulbous section of the core element, can be wrapped around by introducing at least one recess that has a strongly curved profile, without a detour via several geodetic lines. This means that denser load paths and more efficient load transfer can be achieved.
  • the at least one roving can be laid down in a targeted manner in order to support load transfer from locally multi-axis stress states in the multi-point link.
  • turning points in the depositing course of the at least one roving can be shown, with kinks being avoided.
  • material accumulation points in the layer formed by wrapping can be avoided.
  • the prescribable winding structure on the surface makes it possible to achieve targeted reinforcement of the layers subsequently deposited by wrapping with at least one roving.
  • the recesses can preferably be formed during the manufacture of the core element. This favors the large-scale production of the core element for a multi-point link, which is particularly important when the multi-point link according to the invention is used in the field of passenger vehicles.
  • the recesses can be formed by a machining surface treatment after the core element has been manufactured.
  • the recesses can have an arcuate cross section and / or a polygonal cross section.
  • the lateral walls that are designed for this purpose and delimit the contour of the recesses can cause the rovings to be guided under tension in the sections of the recesses that follow a defined contour.
  • a combination of different cross-sectional shapes within the course of a recess can be useful, for example, in turning points or strongly curved turning areas, in that the recess there has a polygonal cross section, while the recess before and after the turning point or the strongly curved turning area has a substantially arcuate cross section having.
  • the walls laterally delimiting the recesses can have undercuts. This makes it easier to catch the roving that is kept under tension during winding, i.e. an unwanted slipping out of the roving from the recess can be countered.
  • the recesses can preferably be arranged on the surface of the core element following a framework-like structure.
  • the at least one roving deposited on the surface of the core element can act as a lattice-like insert and stiffener of the supporting structure which is formed as a layer.
  • a very free and targeted reinforcement of the structure is possible, for example for specific, in particular local, load cases.
  • a targeted reinforcement of light winding cores can be achieved through the lattice-like structure to absorb the high winding forces with simultaneously small deformations. As a result, the shape of the contour of the core element is stabilized.
  • the recesses can be arranged fol lowing the main load paths of the multi-point link.
  • the at least one roaming can thereby be placed on the core element of a four-point link along the main load path, which runs between diagonally opposite support arms.
  • the recesses can be arranged completely independently of free geodetic orbits on the surface of the core element.
  • the recesses can have straight and / or curved sections.
  • the course sections of the recesses can be flexibly adapted to the desired winding structure to be achieved.
  • geodetic lines would determine the course of the roving to be deposited during winding.
  • recesses can be arranged parallel to each other. It can make sense to fan out the rovings over a wider area in order to create a flat structure for subsequent wraps.
  • a wave-like structure on the surface of the core element can be created by the parallel arrangement of the recesses next to one another.
  • recesses can be arranged on the surface of the core element to cross one another. This is advantageous for the formation of lattice-like structures on the surface due to the rovings deposited.
  • Crossing recesses can have a different depth.
  • the depth of a recess is defined as the distance between the upper surface of the core element and the deepest point of the recess.
  • rovings from different directions can cross, especially at nodes of the framework structure that serves to strengthen the load-bearing capacity of the core element. Then it is advantageous that the intersecting recesses have a different depth Fe, since this can counteract an excessive accumulation of material through the rovings wound one on top of the other.
  • Structural elements that are provided on the core element and protrude in sections from the surface thereof can preferably have at least one recess running essentially perpendicular to the surface of the core element.
  • local winding structures can be created by means of a robot, for example ring-shaped winding structures, which are required for recesses or local load introduction points on the multi-point link.
  • the core element can be designed as a hollow body which consists of at least two shell elements.
  • the execution of the core element as an at least two-part hollow body has the advantage of a lower mass compared to a solid solid core as a core element.
  • the at least two shell elements can preferably have an internal support structure.
  • the multi-part core element can be additionally stiffened by means of the internal support structure.
  • the core element By providing the support structure located on the inside, the core element can be made thinner-walled, whereby a further reduction in mass can be achieved.
  • the internal support structure can for example be formed by point or linienför shaped spacer elements or ribs.
  • the spacer elements or ribs preferably extend essentially perpendicular to the inner surface of the respective shell element.
  • the spacer elements or ribs can be arranged opposite one another in the position of the shell elements joined to the core element.
  • the support structure can be designed in the form of complementary connecting elements which, when the at least two shell elements are joined together, interlock at least in a form-fitting manner.
  • the complementary connecting elements can be designed with undercuts.
  • the undercuts can be fungal be designed mig or as a stop. In this way, a kind of click connection can be implemented between the at least two shell elements.
  • the production of the shell elements with undercuts on the connecting elements is made possible if the foam material used for production allows for a non-destructive forced demolding from the tool.
  • the internal support structure can be designed as an accumulation of material extending in sections over a flat plane of the respective shell element.
  • the position and arrangement of the accumulation of material can be predetermined, for example, at least in part by the winding paths of the at least one roving.
  • An at least partial orientation of the course of the accumulation of material on load paths along which loads are picked up and passed on by the multi-point link is also advantageous. It goes without saying that the provision of an accumulation of material with a support structure consisting of point or line spacing elements or ribs can be combined with one another.
  • the object set at the beginning is achieved by a method for producing a multi-point link having the features according to claim 15.
  • the introduction of recesses in the surface of the core element, which are not bound to geodetic lines, has the advantage that almost any winding structure can be produced by the at least one roving.
  • By the introduction of recesses allows the at least one roving to be deposited in a targeted manner in order to support a load transfer of locally multi-axis stress states in the multi-point link.
  • turning points can be shown in the deposition course of the at least one roving, with kinks being avoided.
  • material accumulation points in the layer formed by wrapping can be avoided.
  • 1 a to 1 c are schematic views of multipoint links for a chassis of a vehicle
  • Fig. 3 schematically shows a perspective partial view of a core element of the
  • Fig. 4 schematically the core element according to Figure 3 with a transparent Darge presented shell element
  • FIG. 5 schematically shows a perspective partial view of a core element with an outside support structure
  • FIG. 6 shows a schematic representation of a recess for depositing a support structure designed as at least one separate roving on the outside of the core element
  • FIG. 7 shows a schematic representation of a recess according to another
  • Embodiment; 8 shows a schematic representation of several recesses running parallel to one another
  • FIG. 10 shows a schematic representation of a structural element projecting locally over the surface of the core element in sections.
  • FIG. 11 shows a sectional view of the structural element along the line A-A according to FIG.
  • FIGS. 1 a to 1 c are schematic views of various Mehryaklen core 1 for a - not shown - chassis of a vehicle.
  • 1 a shows a multi-point link 1 designed as a three-point link.
  • the multi-point link 1 comprises a body 2 which has several force introduction regions 4 which are connected to one another by a connecting structure 3.
  • the body 2 essentially matches the basic shape of the multipoint link 1.
  • a multipoint link 1 designed as a four-point link or a five-point link is shown as an example.
  • Multipoint control arms 1 can connect kinematic points in a chassis and / or in a wheel suspension and transmit movements and / or forces. In this case, the connection of the multi-point link 1 to other components of the chassis can be realized by means of joints which are arranged in the force introduction areas 4.
  • the illustration in Fig. 2 shows schematically a top view of a multi-point link 1 designed as a four-point link.
  • the multi-point link 1 according to the invention comprises a core element 5, which consists of a foam material, and at least one roving 10 made of bundled continuous fibers wound around the core element 5, the At least one roving 10 wrapping the core element 5 in at least one layer forms an outer layer of the multipoint link 1.
  • the core element 5 has a torsion element 6 and four support arms 7 that are integrally connected to the torsion element 6. At the distal ends of the support arms 7, sections 8 are arranged for receiving load introduction elements.
  • the multi-point link 1, designed as a four-point link is used, for example, in a commercial vehicle as a chassis connection and takes on the tasks of a wishbone and a stabilizer.
  • the multi-point link 1, designed as a four-point link takes on the task of transverse guidance and longitudinal guidance of a rigid axle as well as roll stabilization.
  • FIG. 3 a perspective partial view of only the core element 5 according to FIG. 2 is shown schematically.
  • the core element 5 is designed according to the invention as a hollow body, which consists of at least two shell elements 1 1, 12, which are joined together.
  • the lower shell element 1 1 and the upper shell element 12 are designed as half-shells.
  • the at least two shell elements 1 1, 12 are preferably designed symmetrically.
  • the shell elements 1 1, 12 designed as half shells have a substantially U-shaped profile cross-section.
  • the shell elements 1 1, 12 joined together to form the core element 5 have walls 13, 14 that are essentially perpendicular to one another.
  • the walls 13, 14 limit the outer contour of the respective shell element 1 1, 12.
  • End faces on the walls 13, 14 are formed transversely to the walls 13, 14 extending contact surfaces 15, 16 on which the shell elements 1 1, 12 after Join one another.
  • an adhesive can be applied to one or both of the abutment surfaces 15, 16 before joining, whereby a material connection of the at least two shell elements 1 1, 12 is achieved.
  • the material connection also makes it possible to make the core element 5 fluid-tight.
  • Recesses 26 are arranged on the surface of the core element 5, as shown in FIG. 3 only indicated by way of example and schematically. These recesses 26 serve to position and guide the at least one roving 10. In particular, several separate rovings 22, 23, 24, 25 can be stored in the recesses 26, as shown in FIG. 5.
  • FIG. 4 shows schematically the core element 5 according to FIG. 3 with an upper shell element 12 which is transparently provided. Due to the transparent representation of the upper shell element 12, there are in the interior of the two shell elements 11, 12 opposing, in particular complementary, connecting elements 17 , 18 visible.
  • the connecting elements 17 of the lower shell element 11 can be designed as cylindrical pins and the connecting elements 18 of the upper shell element 12 as hollow cylindrical sections into which the connecting elements 17 designed as cylindrical pins can be inserted.
  • the connecting elements 17, 18 By means of the complementarily designed connecting elements 17, 18, the at least two shell elements 11, 12 can be connected to one another in a form-fitting and / or non-positive manner.
  • connecting elements 17, 18 function as a support structure 19 in the interior of the core element 5. This reinforces the core element 5, which increases the load-bearing capacity of the core element 5, particularly at the beginning of the winding process.
  • the support structure 19 in the interior of the respective shell element 11, 12 can alternatively be designed as ribs or as point and / or line-shaped spacer elements.
  • the ribs or point and / or line-shaped spacer elements are on top of one another, so that the compressive forces absorbed when winding the core element 5 with the at least one roving 10, which result from the thread tension of the roving 10, are not due lead to an undesired deformation of the core element 5.
  • This embodiment also has a support structure 19, which is designed as a particularly structured material accumulation 20 that extends in sections over an inner flat plane of the respective shell element 11, 12.
  • the course of the accumulation of material 20 on the respective inner side of the shell elements 1 1, 12 can preferably correspond to a framework-like structure, as indicated in FIG.
  • FIG. 5 a perspective partial view of the core element 5 with an outside support structure 21 is shown schematically.
  • the support structure 21 on the outside consists of at least one separate roving 22, 23, 24, 25 which is wound around the core element 5.
  • a plurality of separate rovings 22, 23, 24, 25 are preferably provided in order to join the at least two shell elements 1 1, 12, which are assembled to form the core element 5, and to connect them to one another.
  • recesses 26 it is provided in the surface on the outside of the at least two shell elements 1 1, 12 to arrange recesses 26, as is already indicated cal cally in FIG. These in particular channel-shaped recesses 26 can already be introduced into the shell elements 11, 12 during the manufacturing process. Alternatively, the recesses 26 can be introduced by a nachträgli surface machining of the surface of the shell elements 1 1, 12 or the core element 5 already geglag th.
  • the recesses 26 are preferably arranged independently of geodetic paths, as a result of which winding structures can be freely defined.
  • the separate rovings 22, 23, 24, 25 can be freely deposited on the surface of the shell elements 1 1, 12 in order to specifically generate a course of the support structure 21 that is at least partially independent of the outer shape of the core element 5 pending storage of the separate rovings 22, 23, 24, 25 enables.
  • the storage of the rovings 24 and 25 is used to fix the roving 22, which surrounds the core element 5 in the circumferential direction along the narrow vertical wall 14, in the recess 26 provided for this purpose and to tension it.
  • the separate rovings 22, 23, 24, 25 can also be produced by means of a robot and preferably form a framework-like structure.
  • the separate rovings 22, 23, 24, 25, with which the at least two shell elements 11, 12 are tied around and joined, are connected to the roving 10 wound around the core element 5 to form an outer layer.
  • the support structure of the core element 5 is reinforced.
  • the separate rovings 22, 23, 24, 25 act on the surface of the core element as truss-like inserts and stiffeners of the supporting structure. Since the separate rovings 22, 23, 24, 25 do not have to be placed on free geodetic paths, but are located in the recesses 26, a very free and targeted reinforcement of the support structure is possible, for example for certain load cases.
  • Fig. 6 shows a schematic representation of a recess 26 for depositing a support structure 21 designed as at least one separate roving 23 on the outside of the core element 5 and the recess 26 with a roving 23 deposited therein.
  • the recess 26 designed as a guide channel is curved executed moderate cross-section in which the separate roving 23 or the roving 10 is deposited.
  • the recesses 26 can have undercuts 28 according to a further development shown in FIG. 7 on the wall sections 27 delimiting the recess 26 .
  • the recesses 26 arranged on the surface can have different cross-sectional shapes.
  • the recesses 26 can at least partially be designed with a polygonal cross-section.
  • FIG. 8 schematically shows a plurality of recesses 26 running parallel to one another in the surface of the core element 5. This arrangement allows the at least one roving 10 to be fanned out over a wide area.
  • Fig. 9 is a schematic representation of intersecting recesses 26 ge shows.
  • Recesses 26 intersecting one another have a different one Depth on.
  • the depth of a recess 26 is defined as the distance between the surface of the core element 5 and the deepest point of the recess 26.
  • rovings 10, 22, 23, 24, 25 may overlap come from different Richtun conditions, especially at nodes of the truss-like structure, which serves to reinforce the load-bearing capacity of the core element 5.
  • the intersecting recesses 26 have a different depth, since this means that excessive material accumulation by the rovings 10, 22, 23, 24, 25 that are wound on top of one another can be countered by depositing them on different levels.
  • FIG. 10 shows a schematic representation of a structural element 29 projecting locally over the surface of the core element 5 in sections.
  • the structural element 29 projecting over the surface in sections is designed with at least one recess 26 running essentially perpendicular to the surface.
  • a turning point in the wrapping with the at least one roving 10 can be represented by means of the structural element 29.
  • This recess 26, which extends perpendicular to the surface of the core element 5, can be used to generate local winding structures, for example ring-shaped winding structures, by means of the robots, as are required, among other things, for recesses or local load introduction points.
  • Fig. 1 1 is a sectional view of the structural element 29 along the line AA ge according to FIG. 10 is shown.
  • the roving 10 can be wrapped around the structural element 29 at least in sections, for example as a local turning point, or completely and repeatedly, to form a local winding structure. Refers to multipoint link

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Moulding By Coating Moulds (AREA)
  • Vehicle Body Suspensions (AREA)
EP20718292.4A 2019-05-06 2020-04-08 Mehrpunktlenker für ein fahrwerk eines fahrzeugs Withdrawn EP3966050A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102019206436.1A DE102019206436A1 (de) 2019-05-06 2019-05-06 Mehrpunktlenker für ein Fahrwerk eines Fahrzeugs
PCT/EP2020/060025 WO2020224907A1 (de) 2019-05-06 2020-04-08 Mehrpunktlenker für ein fahrwerk eines fahrzeugs

Publications (1)

Publication Number Publication Date
EP3966050A1 true EP3966050A1 (de) 2022-03-16

Family

ID=70277394

Family Applications (1)

Application Number Title Priority Date Filing Date
EP20718292.4A Withdrawn EP3966050A1 (de) 2019-05-06 2020-04-08 Mehrpunktlenker für ein fahrwerk eines fahrzeugs

Country Status (5)

Country Link
US (1) US11878563B2 (zh)
EP (1) EP3966050A1 (zh)
CN (1) CN113840743A (zh)
DE (1) DE102019206436A1 (zh)
WO (1) WO2020224907A1 (zh)

Family Cites Families (142)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US369883A (en) * 1887-09-13 Connecting-rod
BE406490A (zh) * 1934-07-16
US2274417A (en) * 1938-10-10 1942-02-24 Katcher Morris Joint assembly for shock absorbers and the like
US2723705A (en) * 1950-07-21 1955-11-15 Owens Corning Fiberglass Corp Method and apparatus for making reinforced plastic laminates
US3111569A (en) * 1958-06-20 1963-11-19 Rubenstein David Packaged laminated constructions
US3015238A (en) * 1959-12-10 1962-01-02 Eaton Mfg Co Axle housing
US3370483A (en) * 1966-03-09 1968-02-27 Bendix Corp Laminated tension-torsion tie-bar
US3408124A (en) * 1966-04-18 1968-10-29 James O. Melton Idler arm construction
US3411379A (en) * 1967-03-13 1968-11-19 Bendix Corp Multiple loop tie-bar
US3475988A (en) * 1968-02-08 1969-11-04 Bendix Corp End fitting for tie bar
US3722931A (en) * 1970-11-05 1973-03-27 Ishikawa Tekko Kk Swivel joint
DE2657832C3 (de) * 1976-12-21 1981-07-09 Messerschmitt-Bölkow-Blohm GmbH, 8000 München Schäkel für die Flügelaufhängung im Rumpf eines Luft- oder Raumfahrzeuges
US4261390A (en) 1979-03-06 1981-04-14 Parker-Hannifin Corporation Hose construction
FR2452630A1 (fr) * 1979-03-26 1980-10-24 Rech Meca Appliquee Palier et son application aux bielles de commande et de transmission d'efforts
DE2951111C2 (de) * 1979-12-19 1983-10-13 Messerschmitt-Bölkow-Blohm GmbH, 8000 München Pleuelstange für Kraftmaschinen
US4300410A (en) * 1980-01-04 1981-11-17 Ford Motor Company Tension-compression member
US4411114A (en) * 1980-12-29 1983-10-25 M.A.N. Maschinenfabrik Augsburg-Nurnberg Aktiengesellschaft Compression-tension strut
GB2122708B (en) * 1982-07-01 1985-09-25 Dunlop Ltd Improvements in or relating to link means
DE3327803C1 (de) * 1983-08-02 1985-03-14 Messerschmitt-Bölkow-Blohm GmbH, 8012 Ottobrunn Gegenstand mit einem durch eine Endschlaufe befestigten Anschlusselement
US4772044A (en) * 1983-08-22 1988-09-20 Booher Benjamin V Vehicle suspension system with flexible control arm
US4650620A (en) * 1984-02-25 1987-03-17 Ford Motor Company Filament winding of articles of complex shape
JPS60234762A (ja) * 1984-05-03 1985-11-21 Toyoda Autom Loom Works Ltd 強化繊維成形体の製造方法とその装置
US4873889A (en) * 1984-08-29 1989-10-17 Allied-Signal Inc. Tie bar with internal lubrication
US4750960A (en) * 1984-09-10 1988-06-14 Rensselaer Polytechnic Institute Robotic winding system and method
US4704918A (en) * 1985-02-19 1987-11-10 Kamatics Corporation Composite material force or motion transmitting member
DE3763809D1 (de) * 1986-10-31 1990-08-23 Look Sa Kurbel fuer tretlager eines fahrrads.
US4841801A (en) * 1987-03-25 1989-06-27 Trw Inc. Connecting rod
IN171681B (zh) * 1987-10-05 1992-12-05 Thor Sa
US4857124A (en) * 1987-12-14 1989-08-15 Plas/Steel Products, Inc. Fiber-reinforced plastic strut connecting link
US4992313A (en) * 1987-12-14 1991-02-12 Shobert James P Fiber-reinforced plastic strut connecting link
US4887486A (en) * 1988-02-22 1989-12-19 Trw, Inc. Linkage component
US5267751A (en) * 1991-04-05 1993-12-07 Nhk Spring Co., Ltd. Suspension system for a vehicle
US5406033A (en) * 1992-09-02 1995-04-11 Maclean-Fogg Company Insulator structure and method of construction
US5374780A (en) * 1992-09-02 1994-12-20 Maclean Fogg Company Composite insulator structure and method of construction
US5397272A (en) * 1993-02-08 1995-03-14 Pressure Technology, Inc. Braided composite shaft with yoke member
FR2705610B1 (fr) * 1993-05-26 1995-08-11 Aerospatiale Procédé de fabrication de bielle en matériau composite monobloc par mise en place de fibres pré-imprégnées sur un mandrin extractible et bielle ainsi obtenue.
JPH0747826A (ja) * 1993-08-06 1995-02-21 Toyota Motor Corp サスペンションアーム及びその製造方法
US5435869A (en) * 1993-08-27 1995-07-25 Christensen; Roland Method for manufacturing a composite crank arm
ES2102248T3 (es) * 1993-10-06 1997-07-16 Abb Daimler Benz Transp Componente composite como barra de traccion-compresion para vehiculos ferroviarios.
DE4441219C2 (de) * 1994-11-19 2001-12-06 Zf Lemfoerder Metallwaren Ag Pendelstütze für das Einsetzen von die Lagerstellen bildenden Lagerhüben für die gelenkige Verbindung von Fahrwerksteilen in Kraftfahrzeugen
US6129367A (en) * 1995-06-16 2000-10-10 Zf Lemforder Metallwaren Ag Axle suspension for rigid axles in vehicles
JP3191654B2 (ja) * 1995-08-30 2001-07-23 トヨタ自動車株式会社 サスペンションアーム
US5788263A (en) * 1996-05-09 1998-08-04 Suspensions Incorporated Suspension system with laminated beams
US6116113A (en) * 1997-08-13 2000-09-12 Maclean-Fogg Company Composite link
US6324940B1 (en) * 1997-08-13 2001-12-04 Maclean-Fogg Company Composite link
DE19738249A1 (de) * 1997-09-02 1999-03-11 Daimler Benz Ag Lenker, insbesondere für eine Radaufhängung eines Kraftfahrzeuges
DE19961425B4 (de) * 1999-12-17 2005-10-20 Zf Lemfoerder Metallwaren Ag Kraftfahrzeugbauteil
US6371682B1 (en) * 2000-05-26 2002-04-16 Dana Corporation Anchor post non-articulating idler socket joint
GB0021716D0 (en) * 2000-09-05 2000-10-18 Meritor Heavy Vehicle Sys Ltd Vehicle suspension axle wrap
US20070264470A1 (en) * 2001-02-16 2007-11-15 Wellman Scott A Structural composite
US7205251B2 (en) * 2001-02-16 2007-04-17 Nvh Concepts, L.L.C. Structural composite
ITTO20010253A1 (it) * 2001-03-16 2002-09-16 Sistemi Sospensioni Spa Elemento strutturale per una sospensione di un autoveicolo e procedimento per la sua realizzazione.
US7044458B2 (en) * 2001-04-30 2006-05-16 Maclean-Fogg Company Stabilizer bar
ITTO20010617A1 (it) * 2001-06-27 2002-12-27 Campagnolo Srl Pedivella per bicicletta e procedimento per la sua fabbricazione.
DE10140288C1 (de) * 2001-08-16 2002-08-29 Thyssen Krupp Automotive Ag Querlenker
DE10154210A1 (de) * 2001-11-07 2003-05-15 Zf Lemfoerder Metallwaren Ag Lageraufnahme einer aus Verbundwerkstoffen hergestellten Kraftverbindungsstrebe
BR0200820B8 (pt) * 2002-02-27 2013-02-19 tirante de ligaÇço em compàsito.
US6564675B1 (en) * 2002-07-23 2003-05-20 Cheng-Xun Jiang Crank arm for bicycles
US6958105B2 (en) * 2002-08-08 2005-10-25 Airbus Deutschland Gmbh Automated fabrication of an integral fiber reinforced composite structural component using a positioning and assembly support
US7451795B2 (en) * 2002-10-17 2008-11-18 Eha Spezialmaschinenbau Gmbh System for separating and linking composite fibers
EP2110302A1 (en) * 2003-06-11 2009-10-21 CAMPAGNOLO S.r.l. Bicycle component
US20050044984A1 (en) * 2003-08-27 2005-03-03 Jones Brian H. Reinforced tension and compression reacting strut and method of making same
DE102004014610B4 (de) * 2004-03-23 2009-06-18 Zf Friedrichshafen Ag Vierpunktlenker
US20050281610A1 (en) * 2004-06-04 2005-12-22 Maclean Barry L Composite link
US20050276945A1 (en) * 2004-06-09 2005-12-15 Muggli Mark W Composite articles and methods of making the same
FR2881682B1 (fr) * 2005-02-08 2007-04-27 Salomon Sa Jante de roue et son procede de fabrication
ES2355414T3 (es) * 2005-06-14 2011-03-25 Industria Auxiliar Alavesa, S.A. (Inauxa) Cojinete de goma, proceso de fabricación y aparato.
ATE523419T1 (de) * 2006-02-14 2011-09-15 Campagnolo Srl Fahrradtretkurbel und herstellungsmethode für eine derartige tretkurbel
EP1818251A1 (en) * 2006-02-14 2007-08-15 CAMPAGNOLO S.r.l. Bicycle pedal crank, intermediate product and method for manufacturing such a pedal crank
JP5049345B2 (ja) * 2006-08-04 2012-10-17 エムディー ファイバーテック コーポレーション 多軸織物ウェブの連続生産のための方法
DE102006058377B4 (de) * 2006-12-08 2010-09-16 Airbus Deutschland Gmbh Stange zur strukturellen Verstärkung einer Rumpfstruktur eines Flugzeugs
DE102007015616B4 (de) * 2007-03-29 2021-10-21 Zf Friedrichshafen Ag Verbindungsstück zum gelenkigen Verbinden von im Fahrwerk eines Fahrzeugs angeordneten Bauelementen
US20080272572A1 (en) 2007-05-04 2008-11-06 Carlos Tsai Composite Carbon Fiber Bicycle Crank and Its Method of manufacture
DE102007022411A1 (de) * 2007-05-10 2008-11-13 Zf Friedrichshafen Ag Vierpunktlenker
AT505512B1 (de) * 2007-07-03 2009-09-15 Teufelberger Gmbh Anordnung zum verbinden eines länglichen elements mit einer weiteren komponente
US20090014977A1 (en) * 2007-07-10 2009-01-15 Molenaar Kelly J Control arm for vehicles
DE102007054645A1 (de) * 2007-11-15 2009-05-28 Airbus Deutschland Gmbh Vorrichtung und Verfahren zur Herstellung eines Faserverbundwerkstoff-Bauteils
EP2352887B1 (de) * 2008-11-18 2013-12-18 Zürcher Hochschule für Angewandte Wissenschaften ZHAW Konstruktionselemente für bauten
DE102009012961B3 (de) * 2009-03-12 2010-01-21 Ab Skf Verfahren zur Herstellung eines Ringes einer Synchronisationseinrichtung und Ring einer Synchronisationseinrichtung
GB2473007B (en) * 2009-08-26 2012-11-21 Messier Dowty Ltd Apparatus comprising an end fitting connected to a body
US20120211931A1 (en) * 2009-10-26 2012-08-23 Fane De Salis Rupert S Composite leaf spring
FR2953443B1 (fr) * 2009-12-08 2013-08-23 Messier Dowty Sa Procede de fabrication d'une bielle en materiau composite comprenant une surepaisseur localisee
DE102009054999A1 (de) * 2009-12-18 2011-06-22 Henkel AG & Co. KGaA, 40589 Verbundbauteil
JP4973745B2 (ja) * 2010-02-01 2012-07-11 トヨタ自動車株式会社 連続繊維プリプレグの成形方法
US8714571B2 (en) * 2010-03-16 2014-05-06 Automann Inc. Torque rod
JP2011239617A (ja) * 2010-05-12 2011-11-24 Toyota Boshoku Corp 嵩上げ部材及びこれを備えるワイヤーハーネス組付体
DE102010031054A1 (de) * 2010-07-07 2012-01-12 Bayerische Motoren Werke Aktiengesellschaft Dämpferbein-Achse der Eingelenk-Bauart
FR2962935B1 (fr) * 2010-07-20 2016-12-09 Skf Aerospace France Piece en materiau composite, son procede de fabrication, et bielle obtenue par ce procede
DE102010053850A1 (de) * 2010-12-08 2012-06-14 Daimler Ag Kraftfahrzeugkarosserie mit Versteifungsstreben
GB2492099B8 (en) * 2011-06-21 2015-09-09 Jaguar Land Rover Ltd Vehicle components
DE102011079654A1 (de) * 2011-07-22 2013-01-24 Zf Friedrichshafen Ag Vierpunktlenker
BR112014013752A2 (pt) * 2011-12-07 2017-06-13 Du Pont método para formar um artigo a partir de uma fita uniderecional e artigo
US9404249B2 (en) * 2012-01-18 2016-08-02 Adc Acquisition Company Ultra light fiber placed truss
JP5468644B2 (ja) * 2012-06-15 2014-04-09 日本発條株式会社 スタビリンク
CN205036765U (zh) * 2012-12-10 2016-02-17 伊利诺斯工具制品有限公司 环形连杆组件及包括其的系统
EP2759423B1 (de) * 2013-01-28 2015-04-22 Gestamp Umformtechnik GmbH Querlenker aus faserverstärktem Kunststoff für eine Radaufhängung eines Fahrzeuges
DE102013209099A1 (de) * 2013-05-16 2014-11-20 Bayerische Motoren Werke Aktiengesellschaft Federstütze für ein Kraftfahrzeug
EP2830042A1 (en) * 2013-07-26 2015-01-28 AIRBUS HELICOPTERS DEUTSCHLAND GmbH Sandwich type load bearing panel
WO2015049739A1 (ja) * 2013-10-02 2015-04-09 日本発條株式会社 サスペンション用アーム部材
DE102013225905A1 (de) * 2013-12-13 2015-06-18 Bayerische Motoren Werke Aktiengesellschaft Anordnung aus einem Rahmenelement und einem Verbindungselement sowie Verfahren zur Befestigung einesVerbindungselementes an einem Rahmenelement
DE102013225911A1 (de) * 2013-12-13 2015-06-18 Bayerische Motoren Werke Aktiengesellschaft Anordnung aus einem ersten Element und einem zweiten Element eines Kraftfahrzeugs sowie Verfahren zum Verbinden eines ersten Elements und eines zweiten Elements eines Kraftfahrzeugs
US9284981B2 (en) 2014-05-15 2016-03-15 GM Global Technology Operations LLC Expansion reduction of metal component assemblies using composites
DE102014214824A1 (de) * 2014-07-29 2016-02-04 Zf Friedrichshafen Ag Kugelgelenk für ein Fahrwerk
DE102014214827A1 (de) * 2014-07-29 2016-02-04 Zf Friedrichshafen Ag Lenker sowie Verfahren zu dessen Herstellung
DE102014215390B3 (de) 2014-08-05 2015-11-05 Bayerische Motoren Werke Aktiengesellschaft Anordnung mit einem metallischen Anschlusselement und einem Faserverbundwerkstoff
JP5923154B2 (ja) * 2014-10-28 2016-05-24 日本発條株式会社 リンクアーム部材
DE102014225435B4 (de) * 2014-12-10 2023-07-06 Volkswagen Aktiengesellschaft Verfahren zur Herstellung eines hybriden Kunststoffbauteils
DE102014226408A1 (de) 2014-12-18 2016-06-23 Volkswagen Aktiengesellschaft Verfahren zur Herstellung eines Kunststoffverbund-Bauteils mit gewickelten Verstärkungsfasern undhiermit hergestelltes Kunststoffverbund-Bauteil
CN106062225B (zh) * 2015-02-10 2017-11-21 昭和电工株式会社 铝合金制塑性加工品的制造方法
DE102015013915A1 (de) * 2015-10-27 2017-04-27 Florian Eichenhofer Maschinensystem zur Herstellung eines Hybridbauteils
JP6626690B2 (ja) * 2015-11-05 2019-12-25 ナブテスコ株式会社 力伝達部材の支持構造
DE102016102133A1 (de) * 2016-02-08 2017-08-10 Saf-Holland Gmbh Achseinheit
DE102016202755A1 (de) * 2016-02-23 2017-08-24 Bayerische Motoren Werke Aktiengesellschaft Fahrwerk und Verfahren zur Herstellung des Fahrwerks
KR101776493B1 (ko) * 2016-04-25 2017-09-08 현대자동차주식회사 프리폼 레이어 및 그 제조방법, 프리폼 레이어 적층체
DE102016108049B4 (de) * 2016-04-29 2020-04-09 Ottobock Se & Co. Kgaa Orthese
DE102016209041A1 (de) 2016-05-24 2017-11-30 Zf Friedrichshafen Ag Vierpunktlenker
DE102016210074A1 (de) * 2016-06-08 2017-12-14 Ford Global Technologies, Llc Längslenker für eine Radaufhängung sowie Radaufhängung mit Längslenker
DE102016210891A1 (de) * 2016-06-17 2017-12-21 Zf Friedrichshafen Ag Verfahren und Anlage zur Herstellung eines Faserkunststoffverbundbauteils unter Verwendung von Sub-Preforms
CA2934545C (en) * 2016-06-30 2017-01-31 Randel Brandstrom Fiber reinforced rebar with shaped sections
US11148390B2 (en) * 2016-11-09 2021-10-19 Lockheed Martin Corporation Multiple layer hollow cylinder and method of making
DE102016223383A1 (de) * 2016-11-25 2018-05-30 Zf Friedrichshafen Ag Lastübertragungsbauteil
DE102016123499B4 (de) * 2016-12-05 2024-07-25 Benteler Automobiltechnik Gmbh Radlenker für eine Radaufhängung in einem Fahrzeug
KR101792137B1 (ko) * 2016-12-27 2017-11-02 주식회사 일진 차량용 하이브리드 현가암
US10162107B2 (en) * 2017-02-16 2018-12-25 Institut National D'optique Multicore optical fiber for multipoint distributed sensing and probing
DE102017204464A1 (de) * 2017-03-17 2018-09-20 Bayerische Motoren Werke Aktiengesellschaft Fahrwerkskomponente für ein Kraftfahrzeug und Verfahren zum Herstellen einer Fahrwerkskomponente
EP3382220B1 (en) * 2017-03-31 2020-12-09 Crompton Technology Group Limited Composite structural component with tension/compression mechanical joint
DE102017207166A1 (de) * 2017-04-28 2018-10-31 Zf Friedrichshafen Ag Vierpunktlenker
DE102017213563A1 (de) * 2017-08-04 2019-02-07 Zf Friedrichshafen Ag Dreipunktlenker und Herstellungsverfahren für einen Dreipunktlenker
DE102017213564A1 (de) 2017-08-04 2019-02-07 Zf Friedrichshafen Ag Dreipunktlenker und Herstellungsverfahren für einen Dreipunktlenker
CN207226695U (zh) * 2017-08-11 2018-04-13 张家港锦亿化纤有限公司 用于卷绕化纤丝的筒管
DE102017214963A1 (de) * 2017-08-28 2019-02-28 Zf Friedrichshafen Ag Zentralgelenk für einen Dreipunktlenker
KR101935415B1 (ko) * 2017-09-29 2019-01-07 주식회사 일진 고정 핀을 이용한 차량용 하이브리드 현가암의 제조 방법 및 이를 이용하여 제조한 하이브리드 현가암
DE102017128691A1 (de) * 2017-12-04 2019-06-06 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Verbindungsstrebe
DE102018202307A1 (de) * 2018-02-15 2019-08-22 Ford Global Technologies, Llc Lenker für eine Radaufhängung
DE102018002544A1 (de) * 2018-03-28 2019-10-02 9T Labs Ag Verfahren zur Herstellung eines Extrudates
DE102018208282A1 (de) * 2018-05-25 2019-11-28 Zf Friedrichshafen Ag Fahrwerklenker für ein Kraftfahrzeug
IT201800007973A1 (it) * 2018-08-08 2020-02-08 Skf Ab Modulo cuscinetto mozzo ruota per un montante o articolazione di sospensione
DE102018213321A1 (de) * 2018-08-08 2020-02-13 Zf Friedrichshafen Ag Mehrpunktlenker für ein Fahrwerk eines Kraftfahrzeugs
DE102018213322A1 (de) * 2018-08-08 2020-02-13 Zf Friedrichshafen Ag Mehrpunktlenker für ein Fahrwerk eines Kraftfahrzeugs
DE112019004182T5 (de) * 2018-08-20 2021-06-10 Grouper Stamping, Llc Fahrzeugaufhängungskomponente mit verstärkungsmerkmal und verbindungsanbringung
EP3632624A1 (de) * 2018-10-04 2020-04-08 Hilti Aktiengesellschaft Exzenterantrieb für eine handwerkzeugmaschine
DE102019206435A1 (de) * 2019-05-06 2020-11-12 Schäfer MWN GmbH Mehrpunktlenker für ein Fahrwerk eines Fahrzeugs

Also Published As

Publication number Publication date
WO2020224907A1 (de) 2020-11-12
DE102019206436A1 (de) 2020-11-12
US20220212510A1 (en) 2022-07-07
US11878563B2 (en) 2024-01-23
CN113840743A (zh) 2021-12-24

Similar Documents

Publication Publication Date Title
DE102010003497B4 (de) Verfahren zur Herstellung eines Aufprallschutzelementes
DE102010050874B4 (de) Kraftfahrzeugstrukturbauteil aus mittels eines Knotenelements verbundenen Halbzeug-Bauteilen und Herstellungsverfahren
DE102013106384A1 (de) Vorrichtung zur Anbindung einer Lenksäule
WO2006131344A2 (de) Stabförmiger faserverbundwerkstoff, verfahren und vorrichtung zu seiner herstellung
WO2012079693A1 (de) Karosseriemodulbauteil und verfahren zu dessen herstellung
DE10211582A1 (de) Herstellungsverfahren für Verbundstoffquerblattfeder
EP3723963B1 (de) Verfahren zum herstellen eines bauelements und bauelement
DE102016012534A1 (de) System und Verfahren zum Herstellen von Bauteilen aus faserverstärktem Kunststoff
DE102014019080A1 (de) Verfahren zur Herstellung eines faserverstärkten Strukturbauteils
DE102012017940A1 (de) Verbundlenker-Hinterachse
EP3027489A1 (de) Profilleiste einer fahrzeugkarosserie
WO2011029434A1 (de) Stabilisator für ein kraftfahrzeug und verfahren zu seiner herstellung
DE102011121639B4 (de) Rotationssymmetrisches Strukturelement in Gitterkonstruktion und Verfahren zu dessen Herstellung
DE102021105040B3 (de) Verfahren und Vorrichtung zum Herstellen eines Faserverbundbauteils
EP3966050A1 (de) Mehrpunktlenker für ein fahrwerk eines fahrzeugs
EP3966049A1 (de) Mehrpunktlenker für ein fahrwerk eines fahrzeugs
WO2005018847A1 (de) Versteifungsprofil
EP3557117A2 (de) Druckbehälter sowie verfahren zur anbindung eines druckbehälters in eine karosseriestruktur
WO2022073814A1 (de) Mehrpunktlenker für ein fahrwerk eines fahrzeugs
DE102017206206A1 (de) Vierpunktlenker
DE102018218085B4 (de) Strukturbauteil für einen Fahrgestellrahmen eines Fahrzeuges und Verfahren zur Herstellung eines Strukturbauteils
WO2018130356A1 (de) Hilfsrahmen für ein kraftfahrzeug
WO2022073813A1 (de) Mehrpunktlenker für ein fahrwerk eines fahrzeugs
WO2021170349A1 (de) Profilbauteil aus einem faserverbundwerkstoff für ein fahrzeug
DE10108170A1 (de) Verfahren und Vorrichtung zum Herstellen einer eingebuchteten Aufnahmeöffnung

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20211103

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: ZF FRIEDRICHSHAFEN AG

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20220825

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20230105