EP3914497B1 - Détection de passage pour téléphérique - Google Patents

Détection de passage pour téléphérique Download PDF

Info

Publication number
EP3914497B1
EP3914497B1 EP20711836.5A EP20711836A EP3914497B1 EP 3914497 B1 EP3914497 B1 EP 3914497B1 EP 20711836 A EP20711836 A EP 20711836A EP 3914497 B1 EP3914497 B1 EP 3914497B1
Authority
EP
European Patent Office
Prior art keywords
sensor
cable
cableway
cable car
support
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP20711836.5A
Other languages
German (de)
English (en)
Other versions
EP3914497A1 (fr
EP3914497C0 (fr
Inventor
Daniel Pfeifer
Adrian MOHNI
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Innova Patent GmbH
Original Assignee
Innova Patent GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Innova Patent GmbH filed Critical Innova Patent GmbH
Publication of EP3914497A1 publication Critical patent/EP3914497A1/fr
Application granted granted Critical
Publication of EP3914497B1 publication Critical patent/EP3914497B1/fr
Publication of EP3914497C0 publication Critical patent/EP3914497C0/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61BRAILWAY SYSTEMS; EQUIPMENT THEREFOR NOT OTHERWISE PROVIDED FOR
    • B61B12/00Component parts, details or accessories not provided for in groups B61B7/00 - B61B11/00
    • B61B12/06Safety devices or measures against cable fracture
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61BRAILWAY SYSTEMS; EQUIPMENT THEREFOR NOT OTHERWISE PROVIDED FOR
    • B61B12/00Component parts, details or accessories not provided for in groups B61B7/00 - B61B11/00
    • B61B12/02Suspension of the load; Guiding means, e.g. wheels; Attaching traction cables
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61BRAILWAY SYSTEMS; EQUIPMENT THEREFOR NOT OTHERWISE PROVIDED FOR
    • B61B7/00Rope railway systems with suspended flexible tracks

Definitions

  • the invention relates to a cable car with two end stations between which at least one cable car carriage can be moved on at least one hoisting cable and with at least one cable car support arranged between the end stations for guiding the at least one hoisting cable, the cable car support extending in the longitudinal direction of the hoisting cable over a cable car support length between two opposite support ends extends, wherein in the area of a first support end an entry area for entry of the cable car into the cable car support is provided and in the area of the second support end an exit area for exit of the cable car from the cable car support is provided.
  • the invention also relates to a method for detecting the passage of cable car vehicles on a cable car support that extends in the longitudinal direction of a hoisting cable guided on the cable car support over a cable car support length between two opposite support ends, with at least one cable car on the hoisting cable being moved over the cable car support.
  • Cable cars are available in a wide variety of designs, mostly for transporting people and/or goods, for example as urban transport or for transporting people in ski areas.
  • Funiculars are known in which mostly rail-bound vehicles are attached to a wire rope in order to be pulled by the wire rope. The movement takes place on the ground, whereby funicular railways are mostly used on mountain routes or in urban areas.
  • cable car vehicles such as gondolas, cabins or chairs are carried by one or more (wire) cables without fixed guides and are moved suspended in the air.
  • the cable car cars therefore have no ground contact.
  • Aerial cableways are usually used in rough terrain, mostly for mountain routes, for example in ski areas to transport people from the valley up a mountain, but also in urban areas for transporting people.
  • cable cars have two or more stations between which the cable cars are moved.
  • aerial tramways one or two cable car cars, pulled by a traction rope, on a hoist rope or on rails, shuttle back and forth in one lane between two stations.
  • the circulating cable car has an endless, constantly circulating hoisting cable between the stations, from which a large number of cable car carriages such as gondolas or chairs are suspended.
  • the cable car cars are thus moved from one station to the other on one side and back again on the other side.
  • the movement of the cable car is therefore always essentially continuous in one direction, analogous to a continuous conveyor.
  • one or more cable car supports are usually arranged between the two stations to guide the (carrying/pulling) cables.
  • Cable car supports can be designed as a steel framework construction, but also as a tubular steel or sheet metal box construction.
  • a number of rollers are usually arranged on a ropeway support, for example in the form of a so-called roller battery, in order to carry and guide the rope.
  • the cable cars are usually attached to the hoisting cable at a defined distance from one another. In order to ensure that the load on the haul rope and also on the cable car supports is as uniform as possible, the distances between the large number of cable cars on a cable car are usually the same.
  • the distance between the cable cars can of course vary depending on the specific design of a cable car. For example, the distance between the chairs of a chairlift will be less than the distance between the gondolas of a gondola, etc., because of the lower load.
  • the cable car cars are usually not permanently connected to the hoisting cable, but by means of cable clamps that can be opened.
  • the cable car carriages in the stations can be uncoupled from the hoisting cable and moved through the station at a lower speed relative to the speed of the hoisting cable.
  • this increases the comfort and safety for the passengers because more time is available for getting on and off.
  • the cable car cars are then clamped to the hoisting cable again using the cable clamps.
  • the cable car cars are preferably accelerated back up to the speed of the circulating hoisting cable in order to avoid abrupt acceleration and sudden loads.
  • the distances between the cable car cars mean that there is only one cable car car at a cable car support (at least in one direction of travel) between an entry area into the sheave assembly and an exit area from the sheave assembly.
  • rope position sensors are often provided for the sheave assemblies.
  • the rope position sensors are provided in order to detect a deviation in the position of the hoisting rope in the sheave assembly from a target rope position predetermined by the sheaves. If a deviation is detected, the cable car may be stopped, the speed reduced and/or a warning signal issued. This increases safety, particularly at high wind speeds, because, for example, the hoisting rope jumping out of the sheaves of the sheave assembly can be reliably detected. Under certain circumstances, the operation of the cable car can be maintained for longer.
  • the rope clamps are usually designed in such a way that they allow the hoist rope to slip through when there is a certain resistance between the cable car and the hoist rope (of course without loosening the clamp).
  • a blocked cable car cannot be easily recognized by the cable car control. If the cable car support cannot be seen from a cable car station, a blocked cable car car cannot be recognized by the operating personnel.
  • U.S. 4,003,314 discloses, for example, a cable car in the form of a chair lift, with a derailment sensor being provided in the area of a cable car support for detecting the derailment of the carrying cable.
  • the object of the present invention is consequently to increase the safety of a cable car, in particular when a cable car carriage passes through a cable car support of the cable car.
  • a detection device with at least one evaluation unit and with at least two sensors connected to the evaluation unit is provided on at least one cable car support, with a first sensor being arranged in the entry area of the cable car support in order to detect the presence of a cable car in a detection area of the first sensor and a second sensor is arranged in the exit area of the cable car support in order to detect the presence of a cable car in a detection area of the second sensor, with the detection device being provided to determine a number of cable car cars between the first sensor and the second sensor and to generate an error signal if the determined number exceeds a predetermined maximum number.
  • the cable car preferably has a control unit for controlling the cable car, which is provided to process the error signal from the detection device, the control unit controlling the cable car as a function of the processing.
  • the cable car can be shut down automatically, for example, if there is an error signal.
  • a preferably optical and/or acoustic warning signal can also be emitted automatically when an error signal is received, for example in order to inform the operating personnel of the location of the fault.
  • the sensors are preferably provided to generate a sensor value when detecting the presence of a cable car in the detection area of the sensor and to transmit it to the evaluation unit, and the evaluation unit is provided to process the sensor values received in order to calculate the number of cable car cars between the first sensor in the entrance area and to determine the second sensor in the exit area of the cable car support and to generate the error signal if the determined number exceeds the predetermined maximum number.
  • the evaluation unit is provided to increment a counter value by one step value when the first sensor in the entry area supplies a sensor value and to decrement the counter value by one step value when the second sensor in the exit area supplies a sensor value or vice versa and is intended to generate the error signal , if the counter value exceeds a preset counter value.
  • An initial counter value equal to zero is preferably provided and an increment value of one is provided, with the evaluation unit being provided when the counter value is greater than one generate the error signal.
  • the evaluation unit recognizes when there is more than one cable car between the entrance area and the exit area, when the counter value exceeds one and can trigger an error signal.
  • At least two sensors spaced apart in the longitudinal direction are provided in the entrance area and at least two sensors spaced apart in the longitudinal direction are provided in the exit area of the cable car support for the redundant determination of the number of cable car vehicles and/or for determining the direction of movement of a cable car vehicle.
  • This makes it possible, for example, to meet the requirements of a specific SIL level (safety integrity level) and to minimize the risk of failure of the detection device.
  • At least one evaluation unit is preferably provided for each cable car support to process the sensor values of the sensors of the respective cable car support or an evaluation unit is provided for a plurality of cable car supports to process the sensor values of the sensors of the plurality of cable car supports.
  • the number of sensors to be evaluated can thus be adapted to the performance of the evaluation unit and vice versa.
  • a separate evaluation unit could also be dispensed with and the sensor values could be evaluated in the control unit.
  • At least one sensor is preferably an inductive sensor which is provided to detect a cable clamp of a cable car, with which the cable car is attached to the hoisting cable. This provides a simple and robust detection of the cable car.
  • the object is achieved with a method for passage detection in that the cable car is moved into an entry area provided in the area of a first support end of the cable car support, with at least one first sensor provided in the entry area detecting the presence of the cable car in a detection area of the first sensor and transmits a sensor value to an evaluation unit that the cable car is moving from the entry area into an exit area of the cable car support provided in the area of the second support end, with at least one second sensor provided in the exit area detecting the presence of the cable car in a detection area of the second sensor and a sensor value transmitted to the evaluation unit and that the evaluation unit processes the sensor values received in order to determine a number of cable cars between the first and second sensor and generates an error signal if the number determined exceeds a predetermined maximum number.
  • a cable car support 1 of a cable car is shown, on which a hoisting cable 3 of the cable car is guided by means of a sheave battery 4 .
  • a cable car 5 is arranged hanging on the hoisting cable 3 by means of a cable clamp 6 (can be opened or clamped in a fixed manner).
  • the cable car is designed here as an orbit, in particular as a gondola, with the cable car 5 being designed as a gondola.
  • other variants of cable cars would also be conceivable, such as a chair lift with cable car carriages 5 designed as chairs, or drag lifts with brackets. Mixed operation with alternately a gondola and a chair would also be possible.
  • the cable car has two end stations 14 (not shown in detail), between which a plurality of cable car carriages 5 are usually moved by means of the hoisting cable 3 .
  • the cable car carriages 5 are attached to the hoisting cable 3 at a certain predetermined distance from one another, the attachment preferably being effected by means of cable clamps 6 .
  • several parallel hoisting ropes 3 and, if necessary, a revolving or back-and-forth traction rope can also be provided.
  • the invention is explained in the following example using only one hoisting rope 3, but of course the invention can also be used on cable cars with a plurality of hoisting ropes 3 and/or traction ropes.
  • At least one cable car support 1 is arranged between the end stations 14 of the cable car, with several cable car supports 1 usually being provided.
  • the number of cable car supports 1 depends, for example, on the distance between the end stations 14 of the cable car and the expected load from the cable car 5, but also according to the topology of the terrain in which the cable car is operated.
  • the cable car supports 1 serve to support and guide the hoisting cable 3 .
  • Fig.1 only an upper section of a cable car support 1 is shown, as well as only a cable car carriage 5 and a section of the hoisting cable 3 in the area of the cable car support 1.
  • the roller battery 4 can have a longitudinal beam 7 on which a plurality of rollers 8 are arranged one behind the other.
  • rollers 8 are rotatably mounted on the roller battery 4, for example on the longitudinal beam 7, and are used to carry the hoisting cable 3 and to guide it laterally.
  • the sheave battery 4 thus supports the load of the hoisting rope 3 including the cable car 5 attached to it via the cable car support 1 on the ground.
  • the cable car support 1 extends in the longitudinal direction of the hoisting cable 3 over a specific cable car support length L between two opposite support ends SE1, SE2.
  • a first support end SE1 there is an entry area E for the cable car 5 to enter the cable car support 1 and in the area of the second support end SE2 there is an exit area A for the cable car 5 to exit the cable car support 1 .
  • the support ends SE1, SE2 are formed by the ends of the sheave assembly 4.
  • the support ends SE1, SE2 could also be provided on another part of the cable car support 1, for example on a guide device for guiding the hoisting cable 3 or on a maintenance platform of the cable car support 1.
  • the length of the entry area E and the exit area A is advantageously up to one Third of the ropeway support length L of the ropeway support 1.
  • the cable car is moved during normal operation in such a way that the cable car 5 is moved from the right or bottom to the left or top, as indicated by the arrow.
  • the cable car support 1 can also have an opposite second sheave assembly 4 (not shown), which is used to guide the opposite part of the circulating hoisting cable 3 .
  • the entry area E and the exit area A are reversed.
  • the second set of rollers 4 functions in a similar manner.
  • At least one cableway support 1 of the cableway has a detection device 9 with at least one evaluation unit 16 and with at least two sensors 15 connected to the evaluation unit 16 are provided.
  • the first sensor 15 is arranged in the entry area E of the cable car support 1 in order to detect the presence of a cable car 5 in a detection area of the first sensor 15 .
  • a second sensor 15 is arranged in the exit area A of the cable car support 1 in order to detect the presence of a cable car 5 in a detection area of the second sensor 15 .
  • the detection device 9 is provided to determine a number i of cable car 5 between the first sensor 15 and the second sensor 15 and to generate an error signal F if the number i determined exceeds a predetermined maximum number i max .
  • the cable car preferably also has a control unit 11 for controlling the cable car, which is provided to process the error signal F from the detection device 9 and to control the cable car as a function of the processing.
  • the control unit 11 can intervene in the operation of the cable car, for example to switch off the cable car, to reduce the conveying speed and/or to generate an acoustic and/or visual warning signal by means of a signaling device 12, for example on an output unit of the control unit 11.
  • the control unit 11 is in Fig.1 shown only schematically and can be arranged, for example, in a terminal station 14 in order to control a drive device 13 of the cable car, such as an electric motor, when the control unit 11 receives the error signal F from the detection device 9 .
  • the signaling device 12 could, for example, have a loudspeaker 12a for emitting an acoustic warning signal and/or a lighting unit 12b for emitting a visual warning signal and/or an output on an output unit, such as a display.
  • the signaling device 12 can be provided, for example, in one or both terminal stations 14 and/or on one or more cable car supports 1. When arranged in a terminal station 14, the warning signal could be perceived, for example, by operating personnel in the terminal station 14, without a direct view of the cable car support 1, at which the error signal F is generated by the detection device 9.
  • the sensors 15 are advantageously provided to generate a sensor value SW when detecting the presence of the cable car 5 in the detection range of the sensor 15 and to transmit it to the evaluation unit 16 .
  • the evaluation unit 16 is preferably provided to process the received sensor values SW in order to determine the number i of the cable car 5 between the first sensor 15 in the entry area E and the second sensor 15 in the exit area A of the cable car support 1 . If the determined number i exceeds the specified maximum number i max , the evaluation unit 16 generates an error signal F and transmits the error signal F, preferably to the control unit 11 of the cable car.
  • the sensors 15 of the detection device 9 could, for example, also be connected to the evaluation unit of the cable position sensors 18 , which then also functions as an evaluation unit 16 of the detection device 9 .
  • the reverse case would of course also be conceivable, in which the cable position sensors 18 are connected to the evaluation unit 16 of the detection device 9 .
  • the evaluation unit 16 of the detection device 9 (or the evaluation unit of the cable position sensors 18) could then be provided, for example, both for evaluating the sensor values SW of the sensors 15 of the detection device 9 and for evaluating the cable position sensors 18.
  • a separate evaluation unit could also be provided for the cable position sensors 18, which communicates, for example, with the evaluation unit 16 and/or with the control unit 11 of the cable car.
  • the cable position sensors 18 could also function as sensors 15 for detecting the passage of the cable car 5 .
  • At least two longitudinally spaced sensors 15 are provided in the entry area E and at least two longitudinally spaced sensors 15 are provided in the exit area A of the cableway support 1 for redundant determination of the number i of cable car 5 .
  • certain functional safety requirements can be met, such as SIL3 level (safety integrity level 3).
  • SIL3 level safety integrity level 3
  • different requirements must be met in order to minimize the risk of a system malfunction. Details on this are known to the person skilled in the art. In the example shown, with only one sensor 15 each in the entry and exit areas E, A, the failure of one sensor 15 would lead to the failure of the entire system.
  • the redundant design would ensure normal functioning of the detection device 9 even if a sensor 15 in the entry or exit area E, A failed.
  • the evaluation unit 16 is preferably provided to detect a failure or a malfunction of a sensor 15, e.g. to transmit this to the control unit 11.
  • the control unit 11 could, for example, output a corresponding signal, for example via a screen, in order to signal the failure or the malfunction to the operating personnel.
  • the corresponding sensor 15 could be serviced at an early stage or possibly replaced before the entire detection device 9 fails.
  • the arrangement of at least two sensors 15 in the entrance area E and in the exit area A can advantageously also be used to determine a direction of movement of the cable car 5 .
  • the sensors 15 are arranged one behind the other at a distance from one another in the direction of movement. This takes place the detection of the cable car 5 and the generation of the sensor values SW with a time delay when the cable car 5 passes the sensors 15.
  • At least one evaluation unit 16 is preferably provided for each cable car support in order to process the sensor values SW of the sensors 15 of the respective cable car support 1 .
  • an evaluation unit 16 could also be provided for a plurality of cable car supports 1 in order to process the sensor values SW of the sensors 15 of the plurality of cable car supports 1 .
  • the necessary communication between the supports could, for example, be wired via cable or wireless, e.g. via radio.
  • at least two evaluation units 16 could also be provided on a cable car support 1 for a redundant execution of the signal processing, in order to meet the requirements of a specific SIL level.
  • At least one sensor 15 is designed as an inductive sensor which is intended to detect a part of the cable car 5, in particular the cable clamp 6 of the cable car 5.
  • all sensors 15 are preferably inductive sensors.
  • the structure and mode of operation of inductive sensors are known in the prior art. Essentially, an inductive sensor generates a magnetic field in a close range of the sensor via a coil. When an electrically conductive object enters the detection area of the sensor, the magnetic field is changed and the change in the magnetic field is detected by the sensor, the sensor generating a sensor value SW.
  • an inductive sensor 15 is arranged in the entry area E on the longitudinal member 7 of the sheave assembly 4 and an inductive sensor 15 is arranged in the exit area A on the longitudinal member 7 of the sheave assembly 4 .
  • the sensors 15 are arranged in such a way that they interact with the cable clamp 6 when the cable car 5 passes by in order to generate a sensor value SW.
  • the cable clamp 6 is usually made entirely of an electrically conductive material or has at least one area with an electrically conductive material that interacts with the (inductive) sensors 15 .
  • the sensors 15 are connected to the evaluation unit 16 in order to transmit the sensor values SW to the evaluation unit 16 .
  • the connection is preferably made via suitable lines, as in Fig.1 indicated, but could alternatively also be wireless.
  • the evaluation unit 16 processes the received sensor values SW and uses them to determine the number i of cable car 5s that are located between the entry area E and the exit area A, in particular between the respective sensors 15.
  • the evaluation is preferably carried out by the evaluation unit 16 in that the evaluation unit 16 increments a counter value Z by an increment value W if a first Sensor 15 in the entry area E supplies a sensor value SW and decrements the counter value Z by an increment W when a second sensor 15 in the exit area A supplies a sensor value SW or vice versa. If the counter value Z exceeds a predetermined counter value Z V , the evaluation unit 16 generates the error signal F and preferably sends it to the control unit 11 of the cable car. However, the evaluation unit 16 could also send the error signal F directly to a signaling device 12 in order to generate an acoustic and/or optical signal. The evaluation unit 16 is thus used to detect the passage of cable car 5, with the method of passage detection below using Fig.2a - 2c will be explained in detail later.
  • FIGS 2a-2c show an advantageous sequence of the method according to the invention based on a simplified representation of a roller assembly 4 of a (not shown) cable car support 1.
  • the support ends SE1, SE2 are formed by the ends of the longitudinal beam 7 of the roller assembly 4.
  • the entry area E for the cable car 5 is provided in the area of the first support end SE1 and the exit area A for the cable car 5 is provided in the area of the second support end SE2.
  • a cable car 5 is fastened to the hoisting cable 3 with a cable clamp 6, the cable car 5 only being partially shown for reasons of clarity.
  • the movement of the hoisting rope 3 moves the rope clamp 6 with the cable car 5 hanging thereon over the sheave assembly 4, here from right to left, as indicated by the arrow.
  • the sensor 15 detects the presence of the cable clamp 6, generates a sensor value SW and sends it to the evaluation unit 16, e.g. via a suitable sensor line 17.
  • two sensors 15 are provided in the entry area E and in the exit area A one behind the other in the direction of movement of the hoisting cable 3 .
  • the entry area E and exit area A preferably each extend over a length that is up to a third of the cable car support length L, in the example shown over a third of the length of the longitudinal beam 7 of the sheave assembly 4. It is advantageous to increase the area of passage detection , if the sensors are each arranged as close as possible to the respective support end SE1, SE2.
  • the sensors 15 could be used to determine the direction of movement, as described.
  • the evaluation unit 16 could process the sensor values SW of all sensors 15 of the cable car support 1, but could also ignore certain sensor values SW, for example. For example, after a sensor value SW has been received, a specific dead time t could be implemented, within which the evaluation unit 16 ignores further received sensor values SW.
  • the dead time t could be determined, for example, as a function of a speed of the hoisting cable 3 and a distance between the two sensors 15 of the entry and/or exit area E, A become. This could mean that after receiving a sensor value SW of the first sensor 15, the evaluation unit 16 ignores a specified dead time t further sensor values SW, here for example the sensor value SW of the second sensor 15b.
  • the evaluation unit 16 could, for example, use the next received sensor value SW for the evaluation, here the sensor value SW of the third sensor 15c. After receiving the sensor value SW of the third sensor 15c, a dead time t could again be implemented in order to ignore a further received sensor value SW (here of the fourth sensor 15d).
  • the evaluation unit 16 could also be provided to process the sensor values SW in pairs, essentially redundantly. From this, for example, a malfunction or failure of a sensor 15 could be determined.
  • the throughput time can result, for example, from a speed of the hoisting cable 3 (which corresponds to the speed of the cable car 5) and a distance between the sensor(s) 15 in the entry area E and the sensor(s) 15 in the exit area A.
  • the evaluation unit 16 could then, for example, also generate an error signal F if a time between receiving the sensor value SW of the sensor(s) 15 in the entry area E and receiving the sensor value SW of the sensor(s) 15 in the exit area A exceeds the specified throughput time exceeds, possibly taking into account a certain tolerance time.
  • the throughput time could also be determined, for example, from a current speed of the hoisting cable 3, which could be made available, for example, by the control unit 11 or could be determined by the evaluation unit 16 via the sensors 15 (in normal operation at a constant speed if there is no fault via the Distance between the sensors 15 and the time between receiving the sensor values SW).
  • the speed of the hoisting cable 3 could also be determined by other sensors of the cable car support 1 and transmitted to the evaluation unit 16, e.g. by the cable position sensors 18 for detecting the cable position.
  • the cable clamp 6 of the cable car 5 moves in the direction of the cable car support 1, but is still in front of the entry area E.
  • the cable clamp 6 has passed the sensors 15 of the entry area E and is located on the sheave assembly 4 between the entry area E and the exit area A.
  • the cable clamp 6 has passed the sensors 15 of the exit area A.
  • the evaluation unit 16 would trigger an error signal F and preferably send it to the control unit 11 of the cable car in order to stop the cable car if necessary.
  • the evaluation unit 16 preferably has a storage unit (not shown) in order to store the current counter value Z in the event that the cable car is switched off. This means that passage detection can be continued after the cable car has restarted.
  • the described embodiment of the invention is only to be understood as an example and it is up to the person skilled in the art to make specific structural changes to the detection device 9 and/or changes to the evaluation logic.
  • other sensors 15 could also be used that are suitable for recognizing the cable car.
  • optical sensors, capacitive sensors, light barriers, magnetic sensors, mechanical sensors, etc. would be conceivable.

Landscapes

  • Engineering & Computer Science (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Control Of Conveyors (AREA)
  • Escalators And Moving Walkways (AREA)
  • Geophysics And Detection Of Objects (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)
  • Refuge Islands, Traffic Blockers, Or Guard Fence (AREA)
  • Insulated Conductors (AREA)
  • Measurement Of Velocity Or Position Using Acoustic Or Ultrasonic Waves (AREA)
  • Window Of Vehicle (AREA)

Claims (12)

  1. Téléphérique comportant deux stations finales (14) entre lesquelles au moins une cabine de téléphérique (5) peut être déplacée sur au moins un câble de transport (3) et comportant au moins un pylône de téléphérique (1) disposé entre les stations finales (14) pour le guidage de l'au moins un câble de transport (3), le pylône de téléphérique (1) s'étendant dans la direction longitudinale du câble de transport (3) sur une longueur de pylône de téléphérique entre deux extrémités de pylônes opposées, une zone d'entrée (E) pour l'entrée de la cabine de téléphérique (5) dans le pylône de téléphérique (1) étant prévue dans la zone d'une première extrémité de pylône et une zone de sortie (A) pour la sortie de la cabine de téléphérique (5) du pylône de téléphérique (1) étant prévue dans la zone de la seconde extrémité de pylône, caractérisé en ce que sur au moins un pylône de téléphérique (1) un dispositif de détection (9) comportant au moins une unité d'évaluation (16) et comportant au moins deux capteurs (15) connectés à l'unité d'évaluation (16) est prévu, un premier capteur (15) étant disposé dans la zone d'entrée (E) du pylône de téléphérique (1) pour la détection d'une présence d'une cabine de téléphérique (5) dans une zone de détection du premier capteur (15) et un second capteur (15) étant disposé dans la zone de sortie (A) du pylône de téléphérique pour la détection d'une présence de la cabine de téléphérique (5) dans une zone de détection du second capteur (15), le dispositif de détection (9) étant prévu pour déterminer un nombre (i) de cabines de téléphérique (5) entre le premier capteur (15) et le second capteur (15) et pour générer un signal d'erreur (F), lorsque le nombre (i) déterminé dépasse un nombre maximal (imax) prédéfini.
  2. Téléphérique selon la revendication 1, caractérisé en ce que le téléphérique présente une unité de commande (11) pour la commande du téléphérique, qui est prévue pour traiter le signal d'erreur (F) du dispositif de détection (9), l'unité de commande (11) commandant le téléphérique en fonction du traitement.
  3. Téléphérique selon la revendication 1 ou 2, caractérisé en ce que les capteurs (15) sont prévus pour, lors de la détection de la présence d'une cabine de téléphérique (5) dans la zone de détection du capteur (15), générer une valeur de capteur (SW) et la transmettre à l'unité d'évaluation (16) et l'unité d'évaluation (16) étant prévue pour traiter la valeur de capteur (SW) reçue pour déterminer le nombre (i) de cabines de téléphérique (5) entre le premier capteur (15) dans la zone d'entrée (E) et le second capteur (15) dans la zone de sortie (A) du pylône de téléphérique (1) et pour générer le signal d'erreur (F) lorsque le nombre (i) déterminé dépasse le nombre maximal (imax) prédéfini.
  4. Téléphérique selon l'une des revendications 1 à 3, caractérisé en ce que l'unité d'évaluation (16) est prévue pour incrémenter une valeur de compteur (Z) d'une valeur de pas (W), lorsque le premier capteur (15) dans la zone d'entrée (E) livre une valeur de capteur (SW) et pour décrémenter la valeur de compteur (Z) d'une valeur de pas (W) lorsque le second capteur (15) dans la zone de sortie (A) livre une valeur de capteur (SW) ou inversement et en ce que l'unité d'évaluation (16) est prévue pour générer le signal d'erreur (F) lorsque la valeur de compteur (Z) dépasse une valeur de compteur (Z) prédéfinie.
  5. Téléphérique selon la revendication 4, caractérisé en ce qu'une valeur de compteur (Z) initiale Z=0 est prévue et une valeur de pas (W) de W=1 est prévue, l'unité d'évaluation (16) étant prévue pour générer le signal d'erreur (F) pour une valeur de compteur (Z) de Z > 1.
  6. Téléphérique selon l'une des revendications 3 à 5, caractérisé en ce que, pour la détermination redondante du nombre (i) de cabines de téléphérique (5) et/ou pour la détermination d'une direction de déplacement d'une cabine de téléphérique (5), au moins deux capteurs (15) espacés l'un de l'autre dans la direction longitudinale sont prévus dans la zone d'entrée (E) et au moins deux capteurs (15) espacés l'un de l'autre dans la direction longitudinale sont prévus dans la zone de sortie (A) du pylône de téléphérique (1).
  7. Téléphérique selon l'une des revendications 1 à 6, caractérisé en ce qu'au moins une unité d'évaluation (16) est prévue par pylône de téléphérique (1), pour traiter les valeurs de capteur (SW) des capteurs (15) du pylône de téléphérique (1) respectif ou en ce qu'une unité d'évaluation (16) est prévue pour une pluralité de pylônes de téléphérique (1), pour traiter les valeurs de capteur (SW) des capteurs (15) de la pluralité de pylônes de téléphérique (1).
  8. Téléphérique selon l'une des revendications 3 à 7, caractérisé en ce qu'au moins un capteur (15) est un capteur inductif (15), lequel est prévu pour détecter un serre-câble (6) d'une cabine de téléphérique (5), au moyen duquel la cabine de téléphérique (5) est fixée au câble de transport (3).
  9. Procédé pour la détection de passage de cabines de téléphérique (5) sur un pylône de téléphérique (1) d'un téléphérique s'étendant d'une longueur de pylône de téléphérique entre deux extrémités de pylône opposées dans la direction longitudinale d'un câble de transport (3) guidé sur le pylône de téléphérique (1), au moins une cabine de téléphérique (5) étant déplacée sur le câble de transport (3) à travers le pylône de téléphérique (1), caractérisé en ce que la cabine de téléphérique (5) est déplacée dans une zone d'entrée (E) prévue dans une zone d'une première extrémité de pylône du pylône de téléphérique (1), au moins un premier capteur (15) prévu dans la zone d'entrée (E) détectant une présence de la cabine de téléphérique (5) dans une zone de détection du premier capteur (15) et transmettant une valeur de capteur (SW) à une unité d'évaluation (16), en ce que la cabine de téléphérique (5) est déplacée de la zone d'entrée (E) dans une zone de sortie (A) du pylône de téléphérique (1) prévue dans la zone de la seconde extrémité de pylône, au moins un second capteur (15) prévu dans la zone de sortie (A) détectant une présence de la cabine de téléphérique (5) dans une zone de détection du second capteur (15) et transmettant une valeur de capteur (SW) à l'unité d'évaluation (16) et en ce que l'unité d'évaluation (16) traite les valeurs de capteur (SW) reçues pour déterminer un nombre (i) de cabines de téléphérique (5) entre le premier et le second capteur (15) et génère un signal d'erreur (F) lorsque le nombre (i) déterminé dépasse un nombre maximal (imax) prédéfini.
  10. Procédé selon la revendication 9, caractérisé en ce que le signal d'erreur (F) est transmis à une unité de commande (11) pour la commande du téléphérique et en ce que l'unité de commande (11) commande le téléphérique en fonction du traitement.
  11. Procédé selon la revendication 9 ou 10, caractérisé en ce que l'unité d'évaluation (16) incrémente une valeur de compteur (Z) d'une valeur de pas (W), lorsque le premier capteur (15) dans la zone d'entrée (E) livre une valeur de capteur (SW) et décrémente la valeur de compteur (Z) d'une valeur de pas (W) lorsque le second capteur (15) dans la zone de sortie (A) livre une valeur de capteur (SW) et inversement et en ce que l'unité d'évaluation (16) génère le signal d'erreur (F) lorsque la valeur de compteur (Z) dépasse une valeur de compteur (Z) prédéfinie.
  12. Procédé selon la revendication 11, caractérisé en ce qu'une valeur de compteur (Z) initiale de Z=0 est utilisée et une valeur de pas (W) de W=1 est utilisée, l'unité d'évaluation (16) générant le signal d'erreur (F) pour une valeur de compteur (Z) de Z > 1.
EP20711836.5A 2019-03-11 2020-03-10 Détection de passage pour téléphérique Active EP3914497B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ATA50200/2019A AT522187B1 (de) 2019-03-11 2019-03-11 Durchfahrtserkennung für eine Seilbahn
PCT/EP2020/056305 WO2020182791A1 (fr) 2019-03-11 2020-03-10 Détection de passage pour téléphérique

Publications (3)

Publication Number Publication Date
EP3914497A1 EP3914497A1 (fr) 2021-12-01
EP3914497B1 true EP3914497B1 (fr) 2023-07-12
EP3914497C0 EP3914497C0 (fr) 2023-07-12

Family

ID=69845358

Family Applications (1)

Application Number Title Priority Date Filing Date
EP20711836.5A Active EP3914497B1 (fr) 2019-03-11 2020-03-10 Détection de passage pour téléphérique

Country Status (14)

Country Link
US (1) US20220169290A1 (fr)
EP (1) EP3914497B1 (fr)
JP (1) JP7255916B2 (fr)
KR (1) KR20210134950A (fr)
CN (1) CN113631456B (fr)
AT (1) AT522187B1 (fr)
AU (1) AU2020235798A1 (fr)
CA (1) CA3133135A1 (fr)
CO (1) CO2021012320A2 (fr)
ES (1) ES2952070T3 (fr)
MA (1) MA54822A (fr)
MX (1) MX2021011049A (fr)
RU (1) RU2765526C1 (fr)
WO (1) WO2020182791A1 (fr)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IT202100017027A1 (it) 2021-06-29 2022-12-29 Leitner Spa Impianto di trasporto aereo a fune e metodo di funzionamento di tale impianto

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4003314A (en) * 1975-04-25 1977-01-18 Pearson William F Ski lift monitoring
JPH0796384B2 (ja) * 1987-05-08 1995-10-18 日本信号株式会社 ロ−プウェイのゴンドラ横揺れ監視装置
JPH0741827B2 (ja) * 1989-03-08 1995-05-10 川鉄マシナリー株式会社 リフト搬器用デタッチャー式握索機の握索力測定装置およびその測定方法
JPH0747384B2 (ja) * 1989-06-12 1995-05-24 日本レック株式会社 搬送用ケーブルの脱索防止装置
FR2663281A1 (fr) * 1990-06-13 1991-12-20 Pomagalski Sa Dispositif cadenceur d'un teleporteur debrayable.
JP2897173B2 (ja) * 1992-02-20 1999-05-31 株式会社神戸製鋼所 ロープ駆動式交通システムの追突防止装置
JP2778459B2 (ja) * 1994-04-08 1998-07-23 三菱電機株式会社 ロープウェイの制御装置
US5528219A (en) * 1994-04-28 1996-06-18 Konrad Doppelmayr & Sohn Ropeway safety monitoring system
JPH10119763A (ja) * 1996-10-21 1998-05-12 Nippon Cable Co Ltd 索道における脱索事前検出装置
JP3663026B2 (ja) * 1997-06-11 2005-06-22 東芝三菱電機産業システム株式会社 リフトの制御装置
EP1364853A1 (fr) * 2002-05-22 2003-11-26 Pomagalski S.A. Dispositif de support et de guidage pour cable de système de transport
AT503502A3 (de) * 2006-03-23 2010-07-15 Innova Patent Gmbh Verfahren zum betrieb einer seilbahnanlage und seilbahnanlage
JP4870482B2 (ja) * 2006-06-21 2012-02-08 日本ケーブル株式会社 交走式索道の速度制御装置
DE102007006316B3 (de) * 2007-01-30 2008-04-10 Hima Paul Hildebrandt Gmbh + Co Kg Vorrichtung und Verfahren zur Seillageüberwachung einer seilbetriebenen Transportanlage und seilbetriebene Transportanlage
ATE518714T1 (de) * 2008-07-24 2011-08-15 Innova Patent Gmbh Seilbahnanlage
FR2941206B1 (fr) * 2009-01-22 2011-03-25 Pomagalski Sa Procede de controle du cheminement de vehicule dans une installation de transport par cable
CN104097644A (zh) * 2014-07-31 2014-10-15 泰安市泰山索道运营中心 一种索道运行管理系统
FR3025163B1 (fr) * 2014-09-01 2016-08-26 Pomagalski Sa Installation et procede de transport par cable aerien
CN204323338U (zh) * 2014-11-25 2015-05-13 焦作华飞电子电器股份有限公司 一种猴车吊椅间距检测装置

Also Published As

Publication number Publication date
JP2022524539A (ja) 2022-05-06
CN113631456A (zh) 2021-11-09
AT522187B1 (de) 2020-10-15
RU2765526C1 (ru) 2022-01-31
EP3914497A1 (fr) 2021-12-01
MX2021011049A (es) 2021-10-13
CN113631456B (zh) 2023-08-29
US20220169290A1 (en) 2022-06-02
JP7255916B2 (ja) 2023-04-11
CA3133135A1 (fr) 2020-09-17
ES2952070T3 (es) 2023-10-26
MA54822A (fr) 2021-12-01
AT522187A1 (de) 2020-09-15
KR20210134950A (ko) 2021-11-11
AU2020235798A1 (en) 2021-09-23
WO2020182791A1 (fr) 2020-09-17
CO2021012320A2 (es) 2021-09-30
EP3914497C0 (fr) 2023-07-12

Similar Documents

Publication Publication Date Title
EP1837264A2 (fr) Procédé d'exploitation d'une installation de téléphérique avec une sécurité améliorée, et installation de téléphérique correspondante
DE3206630C2 (fr)
EP1849674A1 (fr) Installation de téléphérique à câble tracteur avec véhicules débrayables
EP1767425B1 (fr) Installation de téléphérage avec véhicules pivotants pour passagers
EP0275403B1 (fr) Installation de téléphérique
EP3914497B1 (fr) Détection de passage pour téléphérique
DE2646828A1 (de) Durchgehendes befoerderungssystem
DE4025313C2 (de) Schienengeführte Transporteinrichtung sowie hierfür bestimmte Führungsschienen und aus Transporteinrichtung und Führungsschienen bestehendes Transportsystem
DE2216284A1 (de) Beförderungsanlage mit passiven Wagen
WO2021214035A1 (fr) Station de téléphérique avec barrière de sécurité
DE102017219226A1 (de) Transportvorrichtung zum Transportieren einer Gondel eines Gondelbahnsystems zwischen einer Gondelstation und einer Fahrstrecke des Gondelbahnsystems und Verfahren zum Betreiben einer Transportvorrichtung
EP3781463A1 (fr) Système de transport et procédé de commande d'un tel système
EP1878631A1 (fr) Installation de téléphérique dotée d'au moins un câble tracteur
AT510268A4 (de) Seilbahnanlage zur beförderung von skifahrern
AT526242B1 (de) Parksystem für eine Umlaufseilbahn
EP3293069A1 (fr) Procédé et remontée mécanique destinée au transport des personnes
AT503900A2 (de) Seilbahnanlage mit mindestens einem förderseil
AT520965A1 (de) Regallager zum Lagern von Artikeln in Lagerplätzen von Regalen
EP4296137A1 (fr) Téléphérique avec dispositif de détection de personnes
CH706281A2 (de) Seilbahn, ausgebildet als Pendelbahn.
EP4257446A1 (fr) Chemin de câbles circulant
DE19902398C2 (de) Elektrohängebahn
DE114126C (fr)
DE102019215937A1 (de) Fahrwerk für eine Gondel eines Gondelbahnsystems, Tragmittel für Gondeln eines Gondelbahnsystems, Gondel für ein Gondelbahnsystem, Gondelbahnsystem und Verfahren zum Ansteuern eines Fahrwerks
DE947802C (de) Selbsttaetige Seilbahn

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20210825

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

RAV Requested validation state of the european patent: fee paid

Extension state: TN

Effective date: 20210825

Extension state: MA

Effective date: 20210825

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20230201

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502020004146

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

U01 Request for unitary effect filed

Effective date: 20230803

U07 Unitary effect registered

Designated state(s): AT BE BG DE DK EE FI FR IT LT LU LV MT NL PT SE SI

Effective date: 20230808

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2952070

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20231026

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231013

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231112

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230712

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231012

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231112

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230712

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231013

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230712

U20 Renewal fee paid [unitary effect]

Year of fee payment: 5

Effective date: 20240312

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230712

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230712

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230712

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230712

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT