EP3896183A1 - Alliage léger à forte entropie de cuivre présentant une grande résistance et une grande plasticité et son procédé de préparation - Google Patents

Alliage léger à forte entropie de cuivre présentant une grande résistance et une grande plasticité et son procédé de préparation Download PDF

Info

Publication number
EP3896183A1
EP3896183A1 EP19895264.0A EP19895264A EP3896183A1 EP 3896183 A1 EP3896183 A1 EP 3896183A1 EP 19895264 A EP19895264 A EP 19895264A EP 3896183 A1 EP3896183 A1 EP 3896183A1
Authority
EP
European Patent Office
Prior art keywords
entropy alloy
alloy
smelting
lightweight
preparation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP19895264.0A
Other languages
German (de)
English (en)
Other versions
EP3896183A4 (fr
Inventor
Yunfei XUE
Songshen CHEN
Liang Wang
Tangqing CAO
Benpeng WANG
Fuchi WANG
Lu Wang
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing Institute of Technology BIT
Original Assignee
Beijing Institute of Technology BIT
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing Institute of Technology BIT filed Critical Beijing Institute of Technology BIT
Publication of EP3896183A1 publication Critical patent/EP3896183A1/fr
Publication of EP3896183A4 publication Critical patent/EP3896183A4/fr
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C14/00Alloys based on titanium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/02Making non-ferrous alloys by melting
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C16/00Alloys based on zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C30/00Alloys containing less than 50% by weight of each constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/16Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of other metals or alloys based thereon
    • C22F1/18High-melting or refractory metals or alloys based thereon
    • C22F1/183High-melting or refractory metals or alloys based thereon of titanium or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/16Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of other metals or alloys based thereon
    • C22F1/18High-melting or refractory metals or alloys based thereon
    • C22F1/186High-melting or refractory metals or alloys based thereon of zirconium or alloys based thereon

Definitions

  • the present invention relates to a lightweight high-entropy alloy with high strength and high plasticity and a preparation method thereof, belonging to the fields of metal materials and preparation thereof.
  • a high-entropy alloy is an alloy formed by combining five or more elements in an approximate equi-atomic ratio and is also referred to as a multi-principal-element and high-irregularity alloy. Due to a multi-principal-element effect (a high-entropy effect, a lattice distortion effect, a lagged diffusion effect and a cocktail effect), the high-entropy alloy shows a metallurgical-physical effect mechanism different from that of traditional alloy and further shows a series of excellent properties such as outstanding high-temperature strength, good low-temperature plasticity, good wear resistance, good corrosion resistance and excellent radiation resistance. With the development of research, the range of the high-entropy alloy is widened, elements are no longer limited to five or more than five elements, the atomic proportion also gradually deviates from an equi-atomic ratio, and the designability of the alloy is greatly improved.
  • the present invention provides a lightweight high-entropy alloy with high strength and high plasticity and a preparation method thereof.
  • the high-entropy alloy has low density, high strength and high plasticity so as to have a huge application potential in the field of engineering.
  • the preparation method of the high-entropy alloy is easy to operate as well as safe and reliable, and the high-entropy alloy is economical and practical.
  • M is preferably one or more of Al, Hf, Cr, Fe, Mg, Be, Li, Mo, Co and Ni.
  • a preparation method of the high-entropy alloy provided by the present invention includes the following steps:
  • purities of the elemental raw materials Ti, Zr, V, Nb and M are respectively greater than or equal to 99.7wt%.
  • the smelting furnace is preferably an electric arc smelting furnace.
  • the protective gas is preferably argon.
  • a lightweight high-entropy alloy Ti 60 Zr 20 V 3 Nb 17 with high strength and high plasticity is prepared by the following steps:
  • the prepared high-entropy alloy Ti 60 Zr 20 V 3 Nb 17 is mainly composed of a BCC phase. It can be known from a metallograph in Fig. 2 that the prepared high-entropy alloy Ti 60 Zr 20 V 3 Nb 17 is of an equiaxed grain structure. It can be known from a test result in Fig. 8 that the prepared high-entropy alloy Ti 60 Zr 20 V 3 Nb 17 has the yield strength of 758.06 MPa and the elongation at break of 18.11%. It can be known by test and calculation that the prepared high-entropy alloy Ti 60 Zr 20 V 3 Nb 17 has the density of 5.8356 g/cm 3 .
  • a lightweight high-entropy alloy Ti 30 Zr 27 V 18 Nb 25 with high strength and high plasticity is prepared by the following steps:
  • the prepared high-entropy alloy Ti 30 Zr 27 V 18 Nb 25 is mainly composed of a BCC phase. It can be Known from a metallograph in Fig. 3 that the prepared high-entropy alloy Ti 30 Zr 27 V 18 Nb 25 is of an equiaxed grain structure. It can be known from a test result in Fig. 8 that the prepared high-entropy alloy Ti 30 Zr 27 V 18 Nb 25 has the yield strength of 991.64 MPa and the elongation at break of 12.95%. It can be known by test and calculation that the prepared high-entropy alloy Ti 30 Zr 27 V 18 Nb 25 has the density of 6.0938 g/cm 3 .
  • a lightweight high-entropy alloy Ti 50 Zr 18 V 12 Nb 16 Al 4 with high strength and high plasticity is prepared by the following steps:
  • the prepared high-entropy alloy Ti 50 Zr 18 V 12 Nb 16 Al 4 is mainly composed of a BCC phase. It can be known from a metallograph in Fig. 4 that the prepared high-entropy alloy Ti 50 Zr 18 V 12 Nb 16 Al 4 is of an equiaxed grain structure. It can be known from a test result in Fig. 8 that the prepared high-entropy alloy Ti 50 Zr 18 V 12 Nb 16 Al 4 has the yield strength of 795.2 MPa and the elongation at break of 36.57%. It can be known by test and calculation that the prepared high-entropy alloy Ti 50 Zr 18 V 12 Nb 16 Al 4 has the density of 5.6072 g/cm 3 .
  • a lightweight high-entropy alloy Ti 40 Zr 23 V 13 Nb 19 Al 5 with high strength and high plasticity is prepared by the following steps:
  • the prepared high-entropy alloy Ti 40 Zr 23 V 13 Nb 19 Al 5 is mainly composed of a BCC phase. It can be known from a metallograph in Fig. 5 that the prepared high-entropy alloy Ti 40 Zr 23 V 13 Nb 19 Al 5 is of an equiaxed grain structure. It can be known from a test result in Fig. 8 that the prepared high-entropy alloy Ti 40 Zr 23 V 13 Nb 19 Al 5 has the yield strength of 1077.3 MPa and the elongation at break of 25.84%. It can be known by test and calculation that the prepared high-entropy alloy Ti 40 Zr 23 Vi 3 Nbi 9 Al 5 has the density of 5.9201 g/cm 3 .
  • a lightweight high-entropy alloy Ti 30 Zr 45 Nb 7 Al 8 Hf 10 with high strength and high plasticity is prepared by the following steps:
  • the prepared high-entropy alloy Ti 30 Zr 45 Nb 7 Al 8 Hf 10 is mainly composed of a BCC phase. It can be known from a metallograph in Fig. 6 that the prepared high-entropy alloy Ti 30 Zr 45 Nb 7 Al 8 Hf 10 is of an equiaxed grain structure. It can be known from a test result in Fig. 8 that the prepared high-entropy alloy Ti 30 Zr 45 Nb 7 Al 8 Hf 10 has the yield strength of 710.59 MPa and the elongation at break of 12.35%. It can be known by test and calculation that the prepared high-entropy alloy Ti 30 Zr 45 Nb 7 Al 8 Hf 10 has the density of 6.4338 g/cm 3 .
  • a lightweight high-entropy alloy Ti 50 Zr 25 V 7 Nb 12 Al 5 Fe 1 with high strength and high plasticity is prepared by the following steps:
  • the prepared high-entropy alloy Ti 50 Zr 25 V 7 Nb 12 Al 5 Fe 1 is mainly composed of a BCC phase. It can be known from a metallograph in Fig. 7 that the prepared high-entropy alloy Ti 50 Zr 25 V 7 Nb 12 Al 5 Fe 1 is of an equiaxed grain structure. It can be known from a test result in Fig. 8 that the prepared high-entropy alloy Ti 50 Zr 25 V 7 Nb 12 Al 5 Fe 1 has the yield strength of 995.49 MPa and the elongation at break of 9.45%. It can be known by test and calculation that the prepared high-entropy alloy Ti 50 Zr 25 V 7 Nb 12 Al 5 Fe 1 has the density of 5.5533 g/cm 3 .

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacture And Refinement Of Metals (AREA)
EP19895264.0A 2018-12-10 2019-11-19 Alliage léger à forte entropie de cuivre présentant une grande résistance et une grande plasticité et son procédé de préparation Withdrawn EP3896183A4 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811500843.2A CN109402482B (zh) 2018-12-10 2018-12-10 一种兼具高强度和高塑性的轻质高熵合金及其制备方法
PCT/CN2019/000222 WO2020118802A1 (fr) 2018-12-10 2019-11-19 Alliage léger à forte entropie de cuivre présentant une grande résistance et une grande plasticité et son procédé de préparation

Publications (2)

Publication Number Publication Date
EP3896183A1 true EP3896183A1 (fr) 2021-10-20
EP3896183A4 EP3896183A4 (fr) 2022-08-10

Family

ID=65458014

Family Applications (1)

Application Number Title Priority Date Filing Date
EP19895264.0A Withdrawn EP3896183A4 (fr) 2018-12-10 2019-11-19 Alliage léger à forte entropie de cuivre présentant une grande résistance et une grande plasticité et son procédé de préparation

Country Status (3)

Country Link
EP (1) EP3896183A4 (fr)
CN (1) CN109402482B (fr)
WO (1) WO2020118802A1 (fr)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114058922A (zh) * 2021-11-16 2022-02-18 中国科学院过程工程研究所 一种轻型硬质CoCrAlSiNi高熵合金及其制备方法
CN114150205A (zh) * 2021-11-26 2022-03-08 中国航发北京航空材料研究院 一种具有高室温塑性的耐高温高熵合金及其制备方法
CN114275735A (zh) * 2021-12-28 2022-04-05 安徽工业大学 一种含Mg室温可逆储氢高熵合金粉体材料及其制备方法
CN114622121A (zh) * 2022-03-25 2022-06-14 赣南师范大学 一种中熵合金及其制备方法
CN117789875A (zh) * 2023-12-14 2024-03-29 广东海洋大学 一种设计高强度高熵合金的数据驱动方法及应用

Families Citing this family (51)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109402482B (zh) * 2018-12-10 2022-07-05 北京中辰至刚科技有限公司 一种兼具高强度和高塑性的轻质高熵合金及其制备方法
CN110205537B (zh) * 2019-04-19 2021-08-24 武汉理工大学 铝镁锂钛组成的高熵合金粉末及其制备方法
CN111763867B (zh) * 2019-06-27 2021-11-02 江苏锋泰工具有限公司 一种CoCrTiAlSi高熵合金粉末以及烧结材料
CN110331322B (zh) * 2019-07-24 2021-01-08 中国科学院金属研究所 一种面向核电用MoVNbTiZrx高熵合金及其制备方法
CN110438387B (zh) * 2019-09-23 2021-04-09 河南工业大学 硅化物析出强化难熔高熵合金及其制备方法
CN110804712B (zh) * 2019-11-22 2021-10-08 长沙经阁新材料有限公司 一种含镁的高熵合金及其制备方法
CN110983145A (zh) * 2019-12-23 2020-04-10 昆明理工大学 一种抗蠕变性能优异的高熵合金及其制备方法
CN111549270B (zh) * 2020-05-22 2021-08-17 北京工业大学 一种低密度高强度高塑性的高熵合金材料及其制备方法
CN111945034B (zh) * 2020-07-30 2021-09-28 东北大学 一种含硼元素的bcc结构高熵合金及其制备方法
CN112030055A (zh) * 2020-09-10 2020-12-04 燕山大学 一种CrNbTiVZrSi高熵合金及其制备方法
CN112458519A (zh) * 2020-11-06 2021-03-09 安徽鑫发铝业有限公司 一种防腐电泳消光铝型材的制备方法
CN113151725A (zh) * 2020-12-02 2021-07-23 西北工业大学 一种增强难熔高熵合金耐磨性的方法
CN112553488B (zh) * 2020-12-16 2022-05-31 湘潭大学 一种CrAlNbTiVZr高熵合金材料及其制备方法
CN114645175A (zh) * 2020-12-21 2022-06-21 武汉苏泊尔炊具有限公司 轻质材料及其制备方法和生活用具
CN114645178A (zh) * 2020-12-21 2022-06-21 武汉苏泊尔炊具有限公司 耐腐蚀合金及其制备方法、烹饪器具
CN112708817A (zh) * 2020-12-21 2021-04-27 重庆大学 一种高塑性低中子吸收截面的难熔高熵合金材料及其制备方法
CN113046614A (zh) * 2021-03-08 2021-06-29 西南交通大学 NbMoHfTiZrAlSi难熔高熵合金及制备方法
CN113373366B (zh) * 2021-06-17 2022-08-30 西北工业大学 一种多元难熔高熵合金及其制备方法
CN113652591B (zh) * 2021-07-22 2022-06-03 中国科学院金属研究所 兼具高比强度、高塑性和高韧性的富Ti高熵合金及其制备
CN113667877B (zh) * 2021-08-12 2022-11-11 北京理工大学 一种含有稀土元素的TiZrVNb基高熵合金及其制备方法
CN115386774B (zh) * 2021-09-30 2023-10-13 北京理工大学 一种兼具高强度和高均匀延伸率的难熔高熵合金及其制备方法
CN113832416A (zh) * 2021-10-28 2021-12-24 西北工业大学 一种利用磁场调控高熵合金σ相的方法
CN114293085B (zh) * 2021-12-07 2022-06-21 北京科技大学 一种耐酸腐蚀的Al-Nb-Ti-Zr-Si系高熵合金
CN114395717B (zh) * 2021-12-14 2023-02-17 北京科技大学 一种Co-Ni-Cr-Fe-W系高密度高塑性的高熵合金及其制备方法
CN114561602B (zh) * 2022-03-02 2022-09-30 东北大学 一种NbTiZrU系含铀高熵合金
CN114774752B (zh) * 2022-03-25 2023-12-22 江苏理工学院 一种高强高韧TiZrNbMoV难熔高熵合金及其制备方法
CN114836667B (zh) * 2022-04-07 2022-12-09 山东大学 一种轻质高温高熵合金及其杆材制备工艺
CN114855048B (zh) * 2022-04-08 2024-05-17 西安工业大学 一种高强塑自钝化难熔高熵合金及其制备方法
CN114855049B (zh) * 2022-04-11 2023-03-07 北京科技大学 一种TaNbHfZrTi系难熔高熵合金及其制备方法和应用
CN114737102B (zh) * 2022-04-18 2023-04-25 温州大学 一种具有高硬度sigma相高熵合金涂层及其制备方法
CN114921705A (zh) * 2022-04-22 2022-08-19 中国科学院赣江创新研究院 一种AlCrSiTi高熵合金及其制备方法和用途
CN114807798B (zh) * 2022-04-25 2023-01-31 西北工业大学 一种多维度间接超声处理调控高熵合金组织与性能的方法和装置
CN115198158A (zh) * 2022-06-13 2022-10-18 西北工业大学 一种抗氧化难熔高熵合金及制备方法
CN114783980B (zh) * 2022-06-21 2022-09-23 亚芯半导体材料(江苏)有限公司 Cu互连集成电路用多层合金扩散阻挡层及其制备方法
CN115074558B (zh) * 2022-06-24 2023-04-11 重庆三航新材料技术研究院有限公司 一种利用热处理调控CoCrCuFeNi高熵合金组织及磁性的方法
CN115233072B (zh) * 2022-06-24 2023-02-03 大连理工大学 一种Ti-V-Zr-Nb-Al-Ta-Hf系轻质高强高熵合金及其制备方法
CN114959405B (zh) * 2022-06-29 2023-03-14 中国航发北京航空材料研究院 一种bcc型低密度高熵合金细晶棒材及其制备方法
CN115449688B (zh) * 2022-07-08 2023-12-01 重庆大学 一种FeCoNi系多主元合金及其制备方法
CN115287519B (zh) * 2022-08-24 2024-01-30 西安理工大学 拉应力下相变增强增韧的TiZrVMo高熵合金及方法
CN115418543B (zh) * 2022-09-06 2023-06-16 沈阳航空航天大学 具有高强韧性的共晶多主元合金及其制备方法
CN115386780B (zh) * 2022-09-13 2023-03-21 南京工业大学 一种轻质高强高韧高熵超合金及其制备方法
CN115404387B (zh) * 2022-09-20 2023-08-22 中国科学院兰州化学物理研究所 一种高温耐磨高熵合金及其制备方法和应用
CN115491564B (zh) * 2022-10-09 2023-06-23 南京工业大学 一种富铁高强韧双相高熵不锈钢及其制备方法
CN115595488B (zh) * 2022-10-20 2023-09-29 上海大学 一种低中子吸收的低密度中熵合金及其制备方法和应用
CN115612954B (zh) * 2022-10-21 2023-09-26 北京理工大学 一种降低Ti-V-Ta-Nb系难熔高熵合金中杂质含量的方法
CN115679179B (zh) * 2022-11-04 2023-09-26 中国石油大学(华东) 一种高熵合金及其在钛/钢复合板焊接中的应用
CN115679178B (zh) * 2022-11-21 2023-08-22 中国矿业大学 一种低密度超高硬度Al-Cr-Zr-Ni高熵合金及其制备方法
CN115872725B (zh) * 2022-12-08 2023-07-25 中国科学院合肥物质科学研究院 一种Al-Y-Cr-Fe-Zr-Nb-Ti-Ta-O高熵复合氧化物阻氢涂层
CN115747607B (zh) * 2023-01-10 2023-04-14 西安稀有金属材料研究院有限公司 一种用于纤维金属层板的高熵合金薄板及其制备方法
CN116393708B (zh) * 2023-06-06 2023-09-01 宁波众远新材料科技有限公司 一种用于3d打印的合金粉体及其制备方法
CN117701975B (zh) * 2024-02-06 2024-05-17 北京科技大学 具有室温塑性的低膨胀难熔高熵合金及制备和应用

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI317954B (en) * 2006-12-22 2009-12-01 Ind Tech Res Inst Soft magnetism thin film inductor and magnetic multi-element alloy film
CN103602872B (zh) * 2013-10-31 2015-09-23 北京科技大学 一种TiZrNbVMox高熵合金及其制备方法
CN103602874B (zh) * 2013-11-21 2016-03-02 北京科技大学 高强度低弹性模量TiZrNbHf高熵合金及制备方法
CN103710607B (zh) * 2013-12-16 2016-01-06 北京科技大学 一种氧强化的TiZrNbHfO高熵合金及其制备方法
CN104213013B (zh) * 2014-09-28 2016-09-21 哈尔滨工业大学 一种TiZrNbMoxHfy多主元高温合金及其制备方法
US20170314097A1 (en) * 2016-05-02 2017-11-02 Korea Advanced Institute Of Science And Technology High-strength and ultra heat-resistant high entropy alloy (hea) matrix composites and method of preparing the same
CN105886805A (zh) * 2016-05-18 2016-08-24 北京理工大学 一种高塑性五元难熔高熵合金及其制备方法
US10435771B2 (en) * 2016-08-16 2019-10-08 The Boeing Company Aluminum-titanium-vanadium-zirconium-niobium alloy composition for high temperature applications
CN107142410B (zh) * 2017-06-16 2018-08-24 湘潭大学 CrMoNbTiZr高熵合金材料及其制备方法
CN107419154B (zh) * 2017-07-24 2019-02-15 北京科技大学 一种具有超弹性的TiZrHfNbAl高熵合金及其制备方法
CN107739956B (zh) * 2017-09-14 2019-10-29 北京理工大学 一种Nb微合金化Ni-Co-Fe-Cr-Al高熵合金
CN107619982B (zh) * 2017-11-03 2019-05-17 北京理工大学 一种高塑性高强度的六元难熔高熵合金及其验证方法
CN107841673B (zh) * 2017-11-08 2019-08-20 湖南理工学院 一系列Fe-Co-Cr-Ni-Al高熵合金及其热处理工艺
CN108220740B (zh) * 2018-01-15 2020-07-07 湘潭大学 一种耐磨、耐蚀高熵合金材料及其制备方法
CN108220742B (zh) * 2018-03-14 2022-10-18 北京中辰至刚科技有限公司 一种微合金化Ti-Zr-Hf-V-Nb-Ta难熔高熵合金及其制备方法
CN108677077B (zh) * 2018-08-01 2020-05-22 北京理工大学 一种高比强度高塑性的难熔高熵合金及其制备方法
CN109402482B (zh) * 2018-12-10 2022-07-05 北京中辰至刚科技有限公司 一种兼具高强度和高塑性的轻质高熵合金及其制备方法

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114058922A (zh) * 2021-11-16 2022-02-18 中国科学院过程工程研究所 一种轻型硬质CoCrAlSiNi高熵合金及其制备方法
CN114150205A (zh) * 2021-11-26 2022-03-08 中国航发北京航空材料研究院 一种具有高室温塑性的耐高温高熵合金及其制备方法
CN114275735A (zh) * 2021-12-28 2022-04-05 安徽工业大学 一种含Mg室温可逆储氢高熵合金粉体材料及其制备方法
CN114622121A (zh) * 2022-03-25 2022-06-14 赣南师范大学 一种中熵合金及其制备方法
CN114622121B (zh) * 2022-03-25 2022-11-08 赣南师范大学 一种中熵合金及其制备方法
CN117789875A (zh) * 2023-12-14 2024-03-29 广东海洋大学 一种设计高强度高熵合金的数据驱动方法及应用
CN117789875B (zh) * 2023-12-14 2024-05-10 广东海洋大学 一种设计高强度高熵合金的数据驱动方法及应用

Also Published As

Publication number Publication date
EP3896183A4 (fr) 2022-08-10
WO2020118802A1 (fr) 2020-06-18
CN109402482A (zh) 2019-03-01
CN109402482B (zh) 2022-07-05

Similar Documents

Publication Publication Date Title
EP3896183A1 (fr) Alliage léger à forte entropie de cuivre présentant une grande résistance et une grande plasticité et son procédé de préparation
CN108193088B (zh) 一种析出强化型AlCrFeNiV体系高熵合金及其制备方法
CN108220742B (zh) 一种微合金化Ti-Zr-Hf-V-Nb-Ta难熔高熵合金及其制备方法
CN111876647A (zh) 一种无Co共晶中熵合金及其制备方法
Sinha et al. Effect of molybdenum addition on metastability of cubic γ-uranium
CN109023002B (zh) 一种硅固溶强化VNbMoTaSi高熵合金及其制备方法
CN107523740A (zh) CuCrFeNiTi高熵合金材料及其制备方法
CN109594002A (zh) 一种多主元中熵合金及其制备方法
Ma et al. Effects of Mo and Zr composite additions on the microstructure, mechanical properties and oxidation resistance of multi-elemental Nb-Si based ultrahigh temperature alloys
Zadorozhnyy et al. Ti-based nanostructured low-alloy with high strength and ductility
Guo et al. Surface microstructure modification of hypereutectic Nb-Si based alloys to improve oxidation resistance without damaging fracture toughness
CN109881048A (zh) 一种高强度高塑性Ni-W-X合金制备方法
Jiang et al. Effects of Sn on microstructure of as-cast and as-extruded Mg–9Li alloys
CN114774727B (zh) 纳米二氧化锆增强NbMoTaW难熔高熵合金的制备方法
CN114058922A (zh) 一种轻型硬质CoCrAlSiNi高熵合金及其制备方法
Kotsar’ et al. Obtaining of high-purity titanium, zirconium, and hafnium by the method of iodide refining in industrial conditions
CN113088784B (zh) 一种含bcc/b2双相结构的多主元合金及其制备方法
Kobayashi et al. Improvement in oxidation resistance of the intermetallic compound titanium aluminide by heat treatment under a low partial pressure oxygen atmosphere
Kuwabara et al. Development of an ultra-fine grained V–1.7 mass% Y alloy dispersed with yttrium compounds having superior ductility and high strength
CN110331322B (zh) 一种面向核电用MoVNbTiZrx高熵合金及其制备方法
Taylor et al. The constitution diagram of the molybdenum-hafnium binary system
CN108277418B (zh) MoNbTaTiHf高熵合金材料及其制备方法
Kimura et al. The phase diagram of the Niobium-Carbon system
US3620852A (en) Process for producing cobalt alloys
Cheng et al. Orientation relationship and interfacial structure between Nbsolid solution precipitates and α-Nb5Si3 intermetallics

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20210709

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
A4 Supplementary search report drawn up and despatched

Effective date: 20220712

RIC1 Information provided on ipc code assigned before grant

Ipc: C22F 1/18 20060101ALI20220706BHEP

Ipc: C22C 16/00 20060101ALI20220706BHEP

Ipc: C22C 14/00 20060101ALI20220706BHEP

Ipc: C22F 1/00 20060101ALI20220706BHEP

Ipc: C22C 1/02 20060101ALI20220706BHEP

Ipc: C22C 30/00 20060101AFI20220706BHEP

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20230209