CN114783980B - Cu互连集成电路用多层合金扩散阻挡层及其制备方法 - Google Patents

Cu互连集成电路用多层合金扩散阻挡层及其制备方法 Download PDF

Info

Publication number
CN114783980B
CN114783980B CN202210700880.8A CN202210700880A CN114783980B CN 114783980 B CN114783980 B CN 114783980B CN 202210700880 A CN202210700880 A CN 202210700880A CN 114783980 B CN114783980 B CN 114783980B
Authority
CN
China
Prior art keywords
vcrtizr
nbmotaw
entropy alloy
coating
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202210700880.8A
Other languages
English (en)
Other versions
CN114783980A (zh
Inventor
徐从康
马赛
张肖
陈箫箫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yaxin Electronic Technology Changzhou Co ltd
Yaxin Semiconductor Materials Jiangsu Co ltd
Original Assignee
Yaxin Electronic Technology Changzhou Co ltd
Yaxin Semiconductor Materials Jiangsu Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yaxin Electronic Technology Changzhou Co ltd, Yaxin Semiconductor Materials Jiangsu Co ltd filed Critical Yaxin Electronic Technology Changzhou Co ltd
Priority to CN202210700880.8A priority Critical patent/CN114783980B/zh
Publication of CN114783980A publication Critical patent/CN114783980A/zh
Application granted granted Critical
Publication of CN114783980B publication Critical patent/CN114783980B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/52Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames
    • H01L23/522Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body
    • H01L23/532Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body characterised by the materials
    • H01L23/53204Conductive materials
    • H01L23/53209Conductive materials based on metals, e.g. alloys, metal silicides
    • H01L23/53228Conductive materials based on metals, e.g. alloys, metal silicides the principal metal being copper
    • H01L23/53238Additional layers associated with copper layers, e.g. adhesion, barrier, cladding layers
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/02Making non-ferrous alloys by melting
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C30/00Alloys containing less than 50% by weight of each constituent
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/16Metallic material, boron or silicon on metallic substrates or on substrates of boron or silicon
    • C23C14/165Metallic material, boron or silicon on metallic substrates or on substrates of boron or silicon by cathodic sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3407Cathode assembly for sputtering apparatus, e.g. Target
    • C23C14/3414Metallurgical or chemical aspects of target preparation, e.g. casting, powder metallurgy
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3435Applying energy to the substrate during sputtering
    • C23C14/345Applying energy to the substrate during sputtering using substrate bias
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/35Sputtering by application of a magnetic field, e.g. magnetron sputtering
    • C23C14/352Sputtering by application of a magnetic field, e.g. magnetron sputtering using more than one target
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76838Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the conductors
    • H01L21/76841Barrier, adhesion or liner layers
    • H01L21/7685Barrier, adhesion or liner layers the layer covering a conductive structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76838Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the conductors
    • H01L21/76841Barrier, adhesion or liner layers
    • H01L21/76853Barrier, adhesion or liner layers characterized by particular after-treatment steps
    • H01L21/76861Post-treatment or after-treatment not introducing additional chemical elements into the layer
    • H01L21/76864Thermal treatment

Abstract

本发明属于半导体集成电路技术领域,具体涉及一种Cu互连集成电路用多层合金扩散阻挡层及其制备方法,自下而上依次包括Si衬底层、高熵合金中间阻隔层和Cu膜;所述高熵合金中间阻隔层自上而下依次包括第一涂层、第二涂层、第三涂层、第四涂层以及第五涂层;本发明以NbMoTaW和VCrTiZr高熵合金为靶材,采用直流磁控溅射的方法,在Si基体层上溅镀涂层得到Si‑VCrTiZr‑NbMoTaW‑VCrTiZr‑NbMoTaW‑VCrTiZr‑Cu复合结构的高熵合金扩散阻挡层。所得的Cu互连集成电路高熵合金扩散阻挡层在400℃~750℃下高温退火30min后仍能保持优异的热稳定性和扩散阻挡性能,在Cu互连集成电路上有广泛的应用前景。

Description

Cu互连集成电路用多层合金扩散阻挡层及其制备方法
技术领域
本发明属于半导体集成电路技术领域,具体涉及一种Cu互连集成电路用多层合金扩散阻挡层及其制备方法。
背景技术
自从大约60年前集成电路(IC)发展以来,铝(Al)和二氧化硅(SiO2)一直被广泛地用作制造微处理器的导体和绝缘材料。随着技术需求的增长,微处理器中特征尺寸的不断减小和晶体管数量的爆炸性增加导致了所谓的栅极延迟的增长。为了解决这一问题,必须使用电阻率低于Al的新型布线材料和介电常数低于常规SiO2的介质材料作为替代。IBM在1997年宣布用铜取代铝作为半导体加工中的互连材料。与铝相比,铜具有较小的栅极延迟,这是因为它的电阻率较低,但电子迁移、应力迁移阻力和熔点较高。然而,铜作为互连线的引入也带来了其他一些挑战,包括由于铜在相当低的温度下扩散到硅和硅基绝缘层中而导致的器件退化,缺乏自钝化氧化层导致芯片制造过程中铜的腐蚀,以及铜与绝缘层之间的粘附性差。
为了解决这些问题,需要一种与铜具有良好附着力的合适的阻挡层材料来防止铜扩散到介质层。合格的扩散阻挡材料需要是耐高温的,在相当高的温度下对导体和绝缘体都不起作用,通常包括过渡金属,如Ta,W,T及其与氮(N),碳(C)或硅(Si)的复合材料,如Ta/TaN,W2N,TiN,TiC,TaSiN,Si3N4等。为了满足下一代微电子学对尺寸小于32 nm的严格要求,对更合适的扩散阻挡层也提出了更高的要求。近年来,由三元元素或层状结构组成的扩散阻挡层被广泛研究。具有三元或更多组分的扩散阻挡层,如Ta-W-N(50 nm)、Ru-Ti-N(10nm)、Ta-Ge-(O)N(50 nm)和Ru-Ta-N(15 nm),通常具有较大的晶格扭曲和非晶态结构,从而减少了可行的扩散路径的数量,并有效地增加了扩散阻力。层状(主要是双层)结构,包括Ti/MoN(5/5 nm),Ir/TaN(5/5 nm),Ru/TaN(5/5 nm),以及原子层沉积的Ru/TaCN(12/2nm),通过层-界面晶格失配增加了扩散距离,增强了扩散阻力,并加强了铜的结合。
多组分引起的晶格扭曲和层状结构增加的扩散距离有效地提高了阻挡层抗铜扩散的能力。因此,高熵合金(HEAs)具有的多主族元素,热力学稳定的固溶体结构和严重的晶格扭曲和非晶态的结构,使其在作为铜扩散阻挡层方面具有广泛的潜在应用前景。
申请号为CN201810086772.X公开了一种Cu互连集成电路高熵合金扩散阻挡层及其制备方法通过加入多晶体改变原子扩散的方式以提高原子扩散难度,但在多晶结构中Cu原子易沿多晶结构晶界扩散。
发明内容
本发明提供了一种Cu互连集成电路用多层合金扩散阻挡层及其制备方法,以解决Cu原子易沿多晶结构晶界扩散的问题。
为了解决上述技术问题,本发明提供了一种Cu互连集成电路用多层合金扩散阻挡层,自下而上依次包括Si衬底层、高熵合金中间阻隔层和Cu膜;所述高熵合金中间阻隔层自上而下依次包括第一涂层、第二涂层、第三涂层、第四涂层以及第五涂层;所述第一涂层为VCrTiZr薄膜;所述第二涂层为NbMoTaW薄膜;所述第三涂层为VCrTiZr薄膜;所述第四涂层为NbMoTaW薄膜;所述第五涂层为VCrTiZr薄膜。
又一方面,本发明还提供了一种Cu互连集成电路用多层合金扩散阻挡层的制备方法,包括如下步骤:步骤S1,真空熔炼,获得NbMoTaW高熵合金靶材和VCrTiZr高熵合金靶材;步骤S2,将单晶Si衬底超声震荡清洗,获得Si衬底层;步骤S3,将NbMoTaW高熵合金靶材和VCrTiZr高熵合金靶材进行预溅射清洗;步骤S4,将VCrTiZr高熵合金靶材通过直流磁控溅射工艺溅镀于Si衬底层,形成VCrTiZr高熵合金涂层;步骤S5,将NbMoTaW高熵合金靶材通过直流磁控溅射工艺溅镀于VCrTiZr高熵合金涂层,形成NbMoTaW高熵合金涂层;步骤S6,重复步骤S4和S5,制备出自下而上Si-VCrTiZr-NbMoTaW-VCrTiZr-NbMoTaW-VCrTiZr的阻隔层结构;步骤S7,将Cu通过直流磁控溅射工艺溅镀于Si-VCrTiZr-NbMoTaW-VCrTiZr-NbMoTaW-VCrTiZr的阻隔层结构,得到Si-VCrTiZr-NbMoTaW-VCrTiZr-NbMoTaW-VCrTiZr-Cu体系结构;步骤S8,将Si-VCrTiZr-NbMoTaW-VCrTiZr-NbMoTaW-VCrTiZr-Cu体系结构真空退火,获得多层高熵合金扩散阻挡层成品。
本发明的有益效果是,本发明的Cu互连集成电路用多层合金扩散阻挡层具有如下优点:
(1)VCrTiZr层与Si衬底和Cu膜的结合强度均满足应用要求,多层高熵合金扩散阻挡层很薄,成分均匀致密,电阻率低;
(2)在热力学上:多组分体系的高混合熵导致形成热稳定性高的简单固溶体,具有随机的非晶态结构,具有相对较少的可行扩散路径;
(3)结构上:由于添加了8种不同尺寸的原子而导致的高填充因子,减少了自由体积和铜原子扩散的空位的摩尔体积;
(4)动力学上:不同原子大小的多主元素的掺入还引起的严重晶格扭曲,增加了晶化和扩散的活化能,降低了铜原子的扩散系数;
(5)5层结构中的界面晶格失配增加了沿这些界面的横向扩散几率,增加了扩散距离。
本发明的其他特征和优点将在随后的说明书中阐述,并且,部分地从说明书中变得显而易见,或者通过实施本发明而了解。
为使本发明的上述目的、特征和优点能更明显易懂,下文特举较佳实施例,并配合所附附图,作详细说明如下。
附图说明
为了更清楚地说明本发明具体实施方式或现有技术中的技术方案,下面将对具体实施方式或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图是本发明的一些实施方式,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本发明的Cu互连集成电路用多层合金扩散阻挡层的结构示意图。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合附图对本发明的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
第一代高熵合金的由5 种或 5 种以上等摩尔比或近等摩尔比含量元素的高熵合金定义,第二代高熵合金由 4 种或 4 种以上的合金元素组成,组成元素含量配比可为非等原子比。 第二代高熵合金(HEA)(非等原子比)具备超越传统合金和第一代等原子比单相高熵合金性能限制的优异性能。在2021年12月2日国际著名期刊《SCIENCE CHINAMaterials》上哈尔滨工业大学材料科学与工程学院的黄永江、孙剑飞、沈红先团队与西班牙塞维利亚大学V. Franco教授和J.Y. Law博士,哈尔滨工业大学空间环境与物质科学研究院(国家大科学工程)姜思达老师和哈尔滨工业大学分析测试中心郭舒老师合作发表了“Enhancing the magnetocaloric response of high-entropy metallic-glassbymicrostructural control”这一篇文章,但第二代高熵合金尚没有完成进一步的技术转化。
如图一所示,本发明提供了一种Cu互连集成电路用多层合金扩散阻挡层,自下而上依次包括Si衬底层、高熵合金中间阻隔层和Cu膜;所述高熵合金中间阻隔层自上而下依次包括第一涂层、第二涂层、第三涂层、第四涂层以及第五涂层;所述第一涂层为VCrTiZr薄膜;所述第二涂层为NbMoTaW薄膜;所述第三涂层为VCrTiZr薄膜;所述第四涂层为NbMoTaW薄膜;所述第五涂层为VCrTiZr薄膜。
在本实施例中,具体的,在Si衬底上首先镀上一层HEAs层(A层),该层HEAs层需要与Si衬底具有良好的结合强度,确保HEAs阻隔层不会从Si衬底脱落;然后在此HEAs阻隔层上方再镀上一层HEAs阻隔层(B层),HEAs阻隔层(B层)的组成元素均为难熔金属,具有高熔点,以此提高整个扩散阻挡层的失效温度;在HEAs阻隔层(B层)上方依次镀上ABA层和铜膜,最上方HEAs阻隔层(A层)是为了保证阻隔层与Cu的结合强度。由于高熵合金自身的高熵效应和晶格畸变效应,使得HEAs阻隔层(A和B层)之间不会因为热膨胀系数的差而脱落。
在本实施例中,具体的,所述NbMoTaW薄膜和VCrTiZr薄膜的厚度为2~4nm;所述的Cu膜的厚度为200~300nm。
又一方面,本发明还提供了一种Cu互连集成电路用多层合金扩散阻挡层的制备方法,包括如下步骤:步骤S1,真空熔炼,获得NbMoTaW高熵合金靶材和VCrTiZr高熵合金靶材;步骤S2,将单晶Si衬底超声震荡清洗,获得Si衬底层;步骤S3,将NbMoTaW高熵合金靶材和VCrTiZr高熵合金靶材进行预溅射清洗;步骤S4,将VCrTiZr高熵合金靶材通过直流磁控溅射工艺溅镀于Si衬底层,形成VCrTiZr高熵合金涂层;步骤S5,将NbMoTaW高熵合金靶材通过直流磁控溅射工艺溅镀于VCrTiZr高熵合金涂层,形成NbMoTaW高熵合金涂层;步骤S6,重复步骤S4和S5,制备出自下而上Si-VCrTiZr-NbMoTaW-VCrTiZr-NbMoTaW-VCrTiZr的阻隔层结构;步骤S7,将Cu通过直流磁控溅射工艺溅镀于Si-VCrTiZr-NbMoTaW-VCrTiZr-NbMoTaW-VCrTiZr的阻隔层结构,得到Si-VCrTiZr-NbMoTaW-VCrTiZr-NbMoTaW-VCrTiZr-Cu体系结构;步骤S8,将Si-VCrTiZr-NbMoTaW-VCrTiZr-NbMoTaW-VCrTiZr-Cu体系结构真空退火,获得多层高熵合金扩散阻挡层成品。
在本实施例中,具体的,步骤S1中真空熔炼包括:将Nb、Mo、Ta、W按照1:1:1:1摩尔比混合,采用真空电炉熔炼5次,获得成分均匀的NbMoTaW高熵合金靶材;将V、Cr、Ti、Zr按照1:1:1:1摩尔比混合,采用真空电炉熔炼5次,获得成分均匀的VCrTiZr高熵合金靶材。
在本实施例中,具体的,Nb、Mo、Ta、W材料纯度不低于99.99%;V、Cr、Ti、Zr材料纯度不低于99.99%。
在本实施例中,具体的,步骤S2中单晶Si衬底超声震荡清洗包括:将单晶Si衬底采用丙酮和乙醇超声震荡清洗不少于30min。
在本实施例中,具体的,步骤S4中的直流磁控溅射工艺包括:在Ar气作为保护气体环境下进行;所述Ar气的流量为20~25sccm;基压为2.0×10−4 Pa;工作压力为0.8 Pa;基板偏压为-40~-60V;溅射功率为50W。
在本实施例中,具体的,步骤S5中的直流磁控溅射工艺包括:在Ar气作为保护气体环境下进行;所述Ar气的流量为20~25sccm;基压为2.0×10−4 Pa;工作压力为0.8 Pa;基板偏压为-40~-60V;溅射功率为60W。
在本实施例中,具体的,步骤S4和S5中的VCrTiZr高熵合金涂层和NbMoTaW高熵合金涂层的厚度为2-4nm。
实施例1
将Nb、Mo、Ta、W按照等摩尔比混合,采用真空电炉熔炼5次,获得成分均匀的NbMoTaW高熵合金靶材;将V、Cr、Ti、Zr按照等摩尔比混合,采用真空电炉熔炼5次,获得成分均匀的VCrTiZr高熵合金靶材;在溅镀高熵合金中间涂层之前,采用丙酮、酒精、去离子水依次对Si衬底进行超声波清洗,除去表面氧化物或杂质;采用预溅射清洗VCrTiZr和NbMoTaW靶材上的杂质,功率为30 W,时间为2分钟;将制备的VCrTiZr高熵合金靶材在Ar气氛下通过直流磁控溅射工艺溅镀于所述Si衬底层上,形成VCrTiZr高熵合金涂层,当基压到达2.0×10−4 Pa时,通入氩气,流量为25sccm,工作气压保持在0.8Pa,基板偏压为-40V,溅射功率为50W;在VCrTiZr高熵合金涂层上方,将制备的NbMoTaW靶材在Ar气氛下通过直流磁控溅射溅镀膜,Ar的流量为25sccm,基压和工作压力分别保持在2.0×10−4 Pa和0.8 Pa,基板偏压为-40V,溅射功率为60W;重复以上步骤,直至形成VCrTiZr-NbMoTaW-VCrTiZr-NbMoTaW-VCrTiZr 阻隔层结构;在VCrTiZr-NbMoTaW-VCrTiZr-NbMoTaW-VCrTiZr阻隔层结构上方,在不破坏真空的条件下,镀一层200nm厚的Cu膜 ,Cu膜的溅射工艺参数为:Ar的流量为25sccm,溅射功率为30W,基板偏压为-60V ,溅射时间为30min。
最后,把所制得的复合结构样品放入真空退火炉中,在温度为700℃下退火,保温时间为30min,得到样品。
经XRD (SmartLabTM 3 KW)检测,在700℃退火后的HEA薄膜仅出现与铜相对应的衍射峰,采用四点探针法(RG-200PV)测量薄膜电阻为3.34 μΩ·cm,在700°C薄膜电阻较小,从而表明在表面仅为铜单质。
实施例2
将Nb、Mo、Ta、W按照等摩尔比混合,采用真空电炉熔炼5次,获得成分均匀的NbMoTaW高熵合金靶材;将V、Cr、Ti、Zr按照等摩尔比混合,采用真空电炉熔炼5次,获得成分均匀的VCrTiZr高熵合金靶材;在溅镀高熵合金中间涂层之前,采用丙酮、酒精、去离子水依次对Si衬底进行超声波清洗,除去表面氧化物或杂质;采用预溅射清洗VCrTiZr和NbMoTaW靶材上的杂质,功率为30 W,时间为2分钟;将制备的VCrTiZr高熵合金靶材在Ar气氛下通过直流磁控溅射工艺溅镀于所述Si衬底层上,形成VCrTiZr高熵合金涂层,当基压到达2.0×10−4 Pa时,通入氩气,流量为25sccm,工作气压保持在0.8Pa,基板偏压为-40V,溅射功率为50W;在VCrTiZr高熵合金涂层上方,将制备的NbMoTaW靶材在Ar气氛下通过直流磁控溅射溅镀膜,Ar的流量为25sccm,基压和工作压力分别保持在2.0×10−4 Pa和0.8 Pa,基板偏压为-40V,溅射功率为60W;重复以上步骤,直至形成VCrTiZr-NbMoTaW-VCrTiZr-NbMoTaW-VCrTiZr 阻隔层结构;在VCrTiZr-NbMoTaW-VCrTiZr-NbMoTaW-VCrTiZr阻隔层结构上方,在不破坏真空的条件下,镀一层200nm厚的Cu膜 ,Cu膜的溅射工艺参数为:Ar的流量为25sccm,溅射功率为30W,基板偏压为-60V ,溅射时间为30min。
最后,把所制得的复合结构样品放入真空退火炉中,在温度为750℃下退火,保温时间为30min,样品。
经XRD (SmartLabTM 3 KW)检测, 在750℃退火后的HEA薄膜仅出现与铜相对应的衍射峰,采用四点探针法(RG-200PV)测量薄膜电阻为3.47 μΩ·cm,在750°C薄膜电阻较小,从而表明在表面仅为铜单质。
实施例3
将Nb、Mo、Ta、W按照等摩尔比混合,采用真空电炉熔炼5次,获得成分均匀的NbMoTaW高熵合金靶材;将V、Cr、Ti、Zr按照等摩尔比混合,采用真空电炉熔炼5次,获得成分均匀的VCrTiZr高熵合金靶材;在溅镀高熵合金中间涂层之前,采用丙酮、酒精、去离子水依次对Si衬底进行超声波清洗,除去表面氧化物或杂质;采用预溅射清洗VCrTiZr和NbMoTaW靶材上的杂质,功率为30 W,时间为2分钟;将制备的VCrTiZr高熵合金靶材在Ar气氛下通过直流磁控溅射工艺溅镀于所述Si衬底层上,形成VCrTiZr高熵合金涂层,当基压到达2.0×10−4 Pa时,通入氩气,流量为25sccm,工作气压保持在0.8Pa,基板偏压为-40V,溅射功率为50W;在VCrTiZr高熵合金涂层上方,将制备的NbMoTaW靶材在Ar气氛下通过直流磁控溅射溅镀膜,Ar的流量为25sccm,基压和工作压力分别保持在2.0×10−4 Pa和0.8 Pa,基板偏压为-40V,溅射功率为60W;重复以上步骤,直至形成VCrTiZr-NbMoTaW-VCrTiZr-NbMoTaW-VCrTiZr 阻隔层结构;在VCrTiZr-NbMoTaW-VCrTiZr-NbMoTaW-VCrTiZr阻隔层结构上方,在不破坏真空的条件下,镀一层200nm厚的Cu膜 ,Cu膜的溅射工艺参数为:Ar的流量为25sccm,溅射功率为30W,基板偏压为-60V ,溅射时间为30min。
最后,把所制得的复合结构样品放入真空退火炉中,在温度为800℃下退火,保温时间为30min,得到样品。
经XRD (SmartLabTM 3 KW)检测, 在800℃退火后,出现了铜硅化物;采用四点探针法(RG-200PV)测量薄膜电阻为66.5 μΩ·cm,在800°C薄膜电阻显著增加,从而表明在表面形成了高电阻的硅化铜。
综上所述,本发明以NbMoTaW和VCrTiZr高熵合金为靶材,采用直流磁控溅射的方法,在Si基体层上溅镀涂层得到Si-VCrTiZr-NbMoTaW-VCrTiZr-NbMoTaW-VCrTiZr-Cu复合结构的高熵合金扩散阻挡层。所得的Cu互连集成电路高熵合金扩散阻挡层在400℃~750℃下高温退火30min后仍能保持优异的热稳定性和扩散阻挡性能,在Cu互连集成电路上有广泛的应用前景。
以上述依据本发明的理想实施例为启示,通过上述的说明内容,相关工作人员完全可以在不偏离本项发明技术思想的范围内,进行多样的变更以及修改。本项发明的技术性范围并不局限于说明书上的内容,必须要根据权利要求范围来确定其技术性范围。

Claims (7)

1.一种Cu互连集成电路用多层合金扩散阻挡层的制备方法,其特征在于,包括如下步骤:
步骤S1,真空熔炼,获得NbMoTaW高熵合金靶材和VCrTiZr高熵合金靶材;
步骤S2,将单晶Si衬底超声震荡清洗,获得Si衬底层;
步骤S3,将NbMoTaW高熵合金靶材和VCrTiZr高熵合金靶材进行预溅射清洗;
步骤S4,将VCrTiZr高熵合金靶材通过直流磁控溅射工艺溅镀于Si衬底层,形成VCrTiZr高熵合金涂层;
步骤S5,将NbMoTaW高熵合金靶材通过直流磁控溅射工艺溅镀于VCrTiZr高熵合金涂层,形成NbMoTaW高熵合金涂层;
步骤S6,重复步骤S4和S5,制备出自下而上Si-VCrTiZr-NbMoTaW-VCrTiZr-NbMoTaW-VCrTiZr的阻隔层结构;
步骤S7,将Cu通过直流磁控溅射工艺溅镀于Si-VCrTiZr-NbMoTaW-VCrTiZr-NbMoTaW-VCrTiZr的阻隔层结构,得到Si-VCrTiZr-NbMoTaW-VCrTiZr-NbMoTaW-VCrTiZr-Cu体系结构;
步骤S8,将Si-VCrTiZr-NbMoTaW-VCrTiZr-NbMoTaW-VCrTiZr-Cu体系结构真空退火,获得多层高熵合金扩散阻挡层成品;其中
所述多层高熵合金扩散阻挡层包括:
自下而上依次包括Si衬底层、高熵合金中间阻隔层和Cu膜;
所述高熵合金中间阻隔层自上而下依次包括第一涂层、第二涂层、第三涂层、第四涂层以及第五涂层;
所述第一涂层为VCrTiZr薄膜;
所述第二涂层为NbMoTaW薄膜;
所述第三涂层为VCrTiZr薄膜;
所述第四涂层为NbMoTaW薄膜;
所述第五涂层为VCrTiZr薄膜;
所述NbMoTaW薄膜和VCrTiZr薄膜的厚度为2~4nm;
所述的Cu膜的厚度为200~300nm。
2.如权利要求1所述的制备方法,其特征在于,
步骤S1中真空熔炼包括:
将Nb、Mo、Ta、W按照等摩尔比混合,采用真空电炉熔炼5次,获得成分均匀的NbMoTaW高熵合金靶材;
将V、Cr、Ti、Zr按照等摩尔比混合,采用真空电炉熔炼5次,获得成分均匀的VCrTiZr高熵合金靶材。
3.如权利要求1所述的制备方法,其特征在于,
Nb、Mo、Ta、W材料纯度不低于99.99%;
V、Cr、Ti、Zr材料纯度不低于99.99%。
4.如权利要求1所述的制备方法,其特征在于,
步骤S2中单晶Si衬底超声震荡清洗包括:
将单晶Si衬底采用丙酮和乙醇超声震荡清洗不少于30min。
5.如权利要求1所述的制备方法,其特征在于,
步骤S4中的直流磁控溅射工艺包括:
在Ar气作为保护气体环境下进行;
所述Ar气的流量为20~25sccm;
基压为2.0×10−4 Pa;
工作压力为0.8 Pa;
基板偏压为-40~-60V;
溅射功率为50W。
6.如权利要求1所述的制备方法,其特征在于,
步骤S5中的直流磁控溅射工艺包括:
在Ar气作为保护气体环境下进行;
所述Ar气的流量为20~25sccm;
基压为2.0×10−4 Pa;
工作压力为0.8 Pa;
基板偏压为-40~-60V;
溅射功率为60W。
7.如权利要求1所述的制备方法,其特征在于,
步骤S4和S5中的VCrTiZr高熵合金涂层和NbMoTaW高熵合金涂层的厚度为2-4nm。
CN202210700880.8A 2022-06-21 2022-06-21 Cu互连集成电路用多层合金扩散阻挡层及其制备方法 Active CN114783980B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210700880.8A CN114783980B (zh) 2022-06-21 2022-06-21 Cu互连集成电路用多层合金扩散阻挡层及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210700880.8A CN114783980B (zh) 2022-06-21 2022-06-21 Cu互连集成电路用多层合金扩散阻挡层及其制备方法

Publications (2)

Publication Number Publication Date
CN114783980A CN114783980A (zh) 2022-07-22
CN114783980B true CN114783980B (zh) 2022-09-23

Family

ID=82422058

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210700880.8A Active CN114783980B (zh) 2022-06-21 2022-06-21 Cu互连集成电路用多层合金扩散阻挡层及其制备方法

Country Status (1)

Country Link
CN (1) CN114783980B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115939035B (zh) * 2023-02-06 2023-06-02 广州粤芯半导体技术有限公司 扩散阻挡层及其制备方法、集成电路Cu互连结构

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2905707B1 (fr) * 2006-09-08 2009-01-23 Centre Nat Rech Scient Procede pour deposer sur un substrat une couche mince d'alliage metallique et alliage metallique sous forme de couche mince.
CN103966566B (zh) * 2014-05-05 2016-06-22 四川大学 双层高熵合金扩散阻挡层的制备方法
WO2018017145A1 (en) * 2016-07-22 2018-01-25 Westinghouse Electric Company Llc Spray methods for coating nuclear fuel rods to add corrosion resistant barrier
CN108336062B (zh) * 2018-01-30 2020-04-14 上海电机学院 一种Cu互连集成电路高熵合金扩散阻挡层的制备方法
CN109402482B (zh) * 2018-12-10 2022-07-05 北京中辰至刚科技有限公司 一种兼具高强度和高塑性的轻质高熵合金及其制备方法
CN112921267B (zh) * 2020-06-08 2023-06-09 自贡市量子金属制造有限公司 球阀圆头表面TiVZrCrAl高熵合金涂层及其制备方法
CN112442668B (zh) * 2020-11-17 2021-08-03 中国科学院兰州化学物理研究所 一种高熵合金基光谱选择性太阳能吸收涂层及其制备方法

Also Published As

Publication number Publication date
CN114783980A (zh) 2022-07-22

Similar Documents

Publication Publication Date Title
CN108336062B (zh) 一种Cu互连集成电路高熵合金扩散阻挡层的制备方法
Li et al. Thermal stability of AlCrTaTiZrMo-nitride high entropy film as a diffusion barrier for Cu metallization
CN114783980B (zh) Cu互连集成电路用多层合金扩散阻挡层及其制备方法
JP2011504547A (ja) 耐熱金属をドープしたスパッタリングターゲット
Li et al. Sputtered Ru–Ti, Ru–N and Ru–Ti–N films as Cu diffusion barrier
JP4729661B2 (ja) ヒロックが無いアルミニウム層及びその形成方法
He et al. Diffusion barrier performances of direct current sputter-deposited Mo and MoxN films between Cu and Si
Soulié et al. Aluminide intermetallics for advanced interconnect metallization: thin film studies
CN102473602B (zh) 欧姆电极及其形成方法
JP5774005B2 (ja) 銅電極を有する薄膜トランジスタ(tft)
Qingxiang et al. Diffusion barrier performance of amorphous W–Ti–N films in Cu metallization
WO2012048460A1 (zh) 低电阻率高热稳定性的Cu-Ni-Mo合金薄膜及其制备工艺
Huang et al. The multi-functional stack design of a molybdenum back contact prepared by pulsed DC magnetron sputtering
Liu et al. Effects of Ti addition on the morphology, interfacial reaction, and diffusion of Cu on SiO 2
JP2006077295A (ja) Cu合金配線材料及びCu合金スパッタリングターゲット
Yan et al. Copper diffusion barrier performance of amorphous Ta–Ni thin films
Yu et al. The role of oxygen in the deposition of copper–calcium thin film as diffusion barrier for copper metallization
CN110911352A (zh) 一种Cu互连用扩散阻挡层及其制备方法和应用
Chu et al. Thermal performance of sputtered insoluble Cu (W) films for advanced barrierless metallization
JP2534434B2 (ja) 耐酸化性化合物およびその製造方法
Li et al. Addition of strong interaction element Fe (or Sn) to improve the stability of solid solution Cu (Ge) film
Glickman et al. Electrical resistivity of thin electroless Ag–W films for metallization
Tsai et al. Diffusion barrier performance of TiVCr alloy film in Cu metallization
TWI464286B (zh) 作為緩衝層之銅鍍層及其製作方法
Hsieh et al. Failure behavior of ITO diffusion barrier between electroplating Cu and Si substrate annealed in a low vacuum

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant