EP3882374A1 - Verfahren zur erzeugung von bereichen mit unterschiedlichen optischen eigen-schaften auf verzinkten stahlbändern und verzinkte stahlbänder mit bereichen mit unterschiedlichen optischen eigenschaften - Google Patents

Verfahren zur erzeugung von bereichen mit unterschiedlichen optischen eigen-schaften auf verzinkten stahlbändern und verzinkte stahlbänder mit bereichen mit unterschiedlichen optischen eigenschaften Download PDF

Info

Publication number
EP3882374A1
EP3882374A1 EP20163979.6A EP20163979A EP3882374A1 EP 3882374 A1 EP3882374 A1 EP 3882374A1 EP 20163979 A EP20163979 A EP 20163979A EP 3882374 A1 EP3882374 A1 EP 3882374A1
Authority
EP
European Patent Office
Prior art keywords
areas
intermediate layer
metallic intermediate
zinc
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP20163979.6A
Other languages
English (en)
French (fr)
Inventor
Johann Gerdentisch
Thomas Steck
Ernst Commenda
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Voestalpine Stahl GmbH
Original Assignee
Voestalpine Stahl GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Voestalpine Stahl GmbH filed Critical Voestalpine Stahl GmbH
Priority to EP20163979.6A priority Critical patent/EP3882374A1/de
Priority to PCT/EP2021/056831 priority patent/WO2021185914A1/de
Priority to EP21714105.0A priority patent/EP4121579A1/de
Publication of EP3882374A1 publication Critical patent/EP3882374A1/de
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/54Contact plating, i.e. electroless electrochemical plating
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/1601Process or apparatus
    • C23C18/1603Process or apparatus coating on selected surface areas
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/1601Process or apparatus
    • C23C18/1633Process of electroless plating
    • C23C18/1635Composition of the substrate
    • C23C18/1637Composition of the substrate metallic substrate
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/1601Process or apparatus
    • C23C18/1633Process of electroless plating
    • C23C18/1646Characteristics of the product obtained
    • C23C18/165Multilayered product
    • C23C18/1653Two or more layers with at least one layer obtained by electroless plating and one layer obtained by electroplating
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/34Pretreatment of metallic surfaces to be electroplated
    • C25D5/36Pretreatment of metallic surfaces to be electroplated of iron or steel
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/60Electroplating characterised by the structure or texture of the layers
    • C25D5/605Surface topography of the layers, e.g. rough, dendritic or nodular layers
    • C25D5/611Smooth layers
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/627Electroplating characterised by the visual appearance of the layers, e.g. colour, brightness or mat appearance
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D7/00Electroplating characterised by the article coated
    • C25D7/06Wires; Strips; Foils
    • C25D7/0614Strips or foils

Definitions

  • the invention relates to a method for producing areas with different optical properties on galvanized steel strips with the features of claim 1.
  • the invention also relates, in particular, to galvanized steel strips or steel plates with areas with different optical properties according to the preamble of claim 11, which are produced according to the above-mentioned method.
  • Optical properties or a marking on a steel surface can be created by various methods. Often, optical properties are modified by mechanical and / or chemical processing.
  • depressions can be created by removing material, for example by laser embossing. Elevations are mostly created by applying structuring elements, for example by means of printing.
  • different printing processes are used for printing, such as screen printing, indirect gravure printing or ink jet.
  • Screen printing is a printing process in which the material to be applied is applied with a squeegee through a fine-meshed fabric onto the surface to be printed.
  • the mesh openings of the fabric are made impermeable at those points of the fabric where no material is to be applied in accordance with the printed image.
  • Indirect gravure printing is a printing process in which the elements to be imaged are present as depressions in the printing matrix.
  • the entire printing matrix is dipped into the material to be applied before printing and the excess material is removed with a doctor blade so that the material to be applied is only located in the depressions.
  • the material transfer takes place through high contact pressure and adhesive forces between the surface to be printed and the material.
  • Ink-Jet is a matrix printing process in which the material to be applied is in liquid form and is applied by targeted shooting or deflection of small drops of material.
  • the drops of material are generated using a piezoelectric transducer and then electrostatically charged via a charging electrode.
  • the droplets of material are then accelerated and their trajectory is controlled by means of a deflection electrode. After it hits the surface to be printed, a print image is generated.
  • structuring elements are applied to the surface to be marked. These are mostly foreign substances that have a different chemical composition and therefore different physical properties than the coated surface. This can possibly make further surface treatment or processing of the workpiece more difficult.
  • a change in topography can also be produced by chemical means. It is known to produce depressions on the surface by etching with acids. For this purpose, the metal surface to be treated is brought into contact with, for example, hydrochloric or sulfuric acid. The depth of the marking is directly related to the treatment time.
  • the surface is treated with a basic solution, for example caustic soda, in order to prevent possible corrosion from remaining acid residues.
  • a basic solution for example caustic soda
  • Optical properties or a marking can also be generated by means of a coating. It can be an organic or an inorganic coating.
  • An organic coating can be organic lacquers.
  • Optical effects are often created using organic multilayer systems, such as the colofer®vario process.
  • a steel surface is pretreated free of chromate.
  • a chromate-free primer is then applied.
  • the visual effect is defined by a basecoat and a texture layer on top.
  • Finally, a top coat is applied. Several system runs are required for this. This increases the manufacturing cost. In addition, further processing of the workpiece coated in this way is made more difficult.
  • An inorganic coating can be a metallic coating, such as a zinc coating.
  • a zinc coating is usually applied for corrosion protection purposes.
  • hot-dip galvanizing also known as hot-dip galvanizing
  • Steel is immersed continuously (e.g. strip or wire) or piece by piece (e.g. components) at temperatures of around 450 ° C to 600 ° C in a melt of liquid zinc (the melting point of zinc is 419.5 ° C).
  • the zinc melt conventionally has a zinc content of at least 98.0% by weight in accordance with DIN EN ISO 1461.
  • the zinc layer has a thickness of 5 ⁇ m to 40 ⁇ m.
  • the zinc layer can have a thickness of 50 ⁇ m to 150 ⁇ m.
  • the steel to be galvanized is introduced into the solution as a cathode and a dimensionally stable electrode is used as the anode. Electricity is passed through the electrolyte solution.
  • the zinc present in ionic form (oxidation level + II) is reduced to metallic zinc and deposited on the steel surface.
  • electrolytic zinc plating can be used to apply thinner zinc layers.
  • the zinc layer thickness is proportional to the current strength and duration of the current flow and thus the amount of charge.
  • Careful surface pretreatment is required to ensure the adhesion and uniformity of the zinc layer. This can be, for example, degreasing, alkaline cleaning, pickling, rinsing and / or pickling. After galvanizing, one or more subsequent treatments can be carried out, such as phosphating, oiling, passivating, applying organic coatings (KTL - cathodic dip painting).
  • optical properties of electrolytically deposited zinc layers by changing parameters. This can, for example, be a changed electrolyte composition.
  • the pre-treatment of the steel surface also plays a major role.
  • Optical properties can be varied, for example, by changing the pickling or cleaning parameters. It is disadvantageous here that the change in the optical properties relates to the entire bandwidth and cannot be controlled locally. This means that no local identification patterns can be generated with this method.
  • a marking and / or marking by means of laser of hot-dip galvanized metal components is known.
  • Laser marking is carried out in such a way that the protective properties of the galvanized layer are fully retained.
  • the zinc layer is selectively removed in a specified area by means of a laser and then subjected to a chemical reaction with an ambient gas (reaction gas).
  • reaction gas an ambient gas
  • a comparable procedure is from the DE 10 2007 010 932 A1 known.
  • the markings on the steel surface are also removed by laser.
  • the zinc layer can be completely removed in order to increase the legibility of the marking.
  • the subsequent oxidation of the base material increases the optical contrast.
  • the DE 40 33 230 A1 describes a combined marking process in which a metal strip is mechanically and chemically processed in order to create a surface structure. Initially, embossing engravings are made using a laser. The exposed areas are then etched by an acid to a specified depth, so that after the etching process, which can be repeated several times for the purpose of obtaining superimposed structures, a desired engraved profile is created.
  • thermoplastic is removed by a burning laser beam in the area of the desired symbols or structural elements.
  • a galvanic layer is applied to the thermoplastic surface structured in this way. Since there is no thermoplastic layer in the structuring area, no electroplated layer can form there. As a result, the laser-generated structuring is also visible on the top electroplated layer.
  • a structuring process is known in which structuring elements are applied to the surface to be structured by means of ink printing. The elevations produced by the ink pressure are hardened through. The surface is then coated with an electroplating layer.
  • the object of the invention is to create a method for producing areas with different optical properties on galvanized steel strips, which method does not impair the zinc layer and can be controlled locally in a targeted manner.
  • Another object of the invention is to create a steel strip produced by the above-mentioned method with areas with different optical properties.
  • areas with different optical properties are produced on galvanized steel strip or galvanized steel plates without changing the topography of the zinc layer.
  • a physically and largely chemically homogeneous zinc layer is guaranteed.
  • the changed optical properties are based on the generation of crystallographically different areas.
  • Gloss is defined as an optical property in the context of the invention. Shine is the optical property of a surface to reflect light completely or partially in a specular way. Gloss is a property, in particular also differences in gloss, which can be technically recorded and measured, in particular with the help of reflectometers.
  • the invention provides that a salt solution is applied locally in a targeted manner to a steel strip.
  • the solution can be applied using any transfer method. This can be, for example, ink jet, stamping or indirect gravure printing.
  • the steel surface is then electrolytically galvanized.
  • metal salt solutions are suitable for this process; metal salt solutions are particularly well suited.
  • the metal salt solutions can contain, for example, metal ions of the 4th, 5th main group and / or 7th, 11th subgroup. It is advantageous if the following metals are included as cations: Mn, Sn, Pb, Bi, Cu, Au, Ag. It is particularly advantageous if the metal salt solution used comprises bismuth ions.
  • Organic, inorganic ions or complexing agents can be used as anions.
  • Inorganic anions can be monovalent, such as, for example, F - , Cl - , I - , Br - , bivalent, such as, for example, O 2- , S 2- , or have a complex structure, such as, for example, NO 3 2- , SO 4 2- , OH - . It is advantageous if chloride, nitrate, sulfate ions, carbonates, hydroxide or oxide ions are present as inorganic anions. It is particularly advantageous if nitrate ions are used. Basically, salt solutions with low pH values are to be preferred.
  • Anions derived from organic acids can be used as organic anions. It can be, for example, alcoholates, organic sulfates, organic nitrates. It is advantageous if acetate, citrate and / or oxalate ions are present in the salt solution used.
  • the solution used can be selected from the group of Mn, Sn, Pb, Bi, Cu, Au, Ag and nitrate, chloride, hydroxide, oxide, sulfate, acetate, citrate, oxalate and mixtures and combinations thereof.
  • a cementation reaction sets in, especially at low pH values.
  • a metallic intermediate layer is formed on the steel surface.
  • the reaction can be exemplified by the following equation: 2M x + + xFe ⁇ 2M ⁇ + xFe 2+ (1)
  • the metal ions are reduced from the salt solution and deposited on the steel surface.
  • the deposited intermediate layer can have a layer thickness which is in the nanometer range.
  • the saline solution is applied in-line. It is advantageous that the desired pattern is not impaired by the entire system cycle.
  • the steel strip or steel plate is electrolytically galvanized.
  • the steel plate and / or the steel strip is brought into contact with a zinc electrolyte solution.
  • the zinc ions present in the electrolyte solution are reduced by the current passed through and crystallize on the surface to be coated. This process is known as electrocrystallization.
  • the zinc layer produced can have a layer thickness that is in the micrometer range.
  • the layer thickness ratio of the metallic intermediate layer and the zinc layer can be defined as 1: 1000, for example.
  • the electrocrystallization of the zinc is influenced by the underlying metallic intermediate layer in such a way that the crystallization in this area (wide area of the first type) takes place in a much more orderly manner. This leads to an increased symmetry of the zinc grid. This changes the optical properties of the zinc in the pretreated areas in such a way that the pretreated areas have a higher gloss. Further follow-up treatment is not necessary here.
  • topography change such as the layer thickness or the sheet thickness. If, for example, a marking or identification is required for the production process, this is no longer visible after a final painting due to the uniform topography.
  • modification of optical properties according to the invention offers great design freedom.
  • logos or patterns for an attractive visual design of the galvanized surface as well as other markings can be applied without changing the topography of the coating.
  • the marked surface is fully compatible with the other typical subsequent processes, such as phosphating, passivating, oiling, cleaning, and applying organic coatings.
  • the invention thus relates to a method for producing areas with different optical properties, specifically the gloss on galvanized steel strips or steel plates, a metal salt solution being applied to the steel surface and the steel surface then being galvanized.
  • an inorganic and / or organic metal salt solution is used.
  • a metal salt solution whose cations are from the group of Mn, Sn, Pb, Bi, Cu, Au, Ag and their anions are from the group of nitrate, chloride, hydroxide, oxide, sulfate, acetate, citrate, oxalate and mixtures and combinations thereof are selected.
  • a metal salt solution which contains bismuth ions.
  • a particularly acidic metal salt solution which comprises bismuth (III) nitrate pentahydrate and dilute nitric acid.
  • the applied metal salt solution induces a cementation reaction with the steel surface, a metallic intermediate layer being deposited on the steel surface.
  • a rapidly occurring cementation reaction can simplify the application of the metallic intermediate layer in-line in one system run, since complex drying steps for the application of the intermediate layer can be dispensed with.
  • the metallic intermediate layer can advantageously have a layer thickness in the nanometer range. Layer thicknesses in this area have hardly any effects on the topographical surface profile and are accordingly no longer recognizable in the height profile, especially during subsequent galvanizing.
  • Another advantage is that the steel surface is galvanized after the application of the metal salt solution, the galvanizing being carried out electrolytically.
  • the metallic intermediate layer and the upper zinc layer advantageously have layer thicknesses which are in a ratio of 1: 1000 to 1: 20000 to one another. Changes in the height profile due to the metallic intermediate layer can therefore be neglected.
  • the metallic intermediate layer influences the zinc electrocrystallization in such a way that the crystallization takes place in this area in a significantly more orderly manner.
  • a continuously rolled cold wide strip in particular an annealed continuously rolled cold wide strip, can advantageously be used as a template.
  • the zinc layer is deposited over the areas treated with the salt solution and untreated, with both areas having an unchanged topography after galvanizing.
  • the zinc layer is deposited over the areas of the first type and untreated areas of the second type treated with the salt solution, the areas of the first type having different optical properties, in particular a higher gloss.
  • the steel strip or the steel plate has areas of the first type and areas of the second type, both areas having a uniform topography, the areas of the first type having a thin metallic intermediate layer and having different optical properties.
  • the metallic intermediate layer can advantageously comprise metal or metals which can be selected from the group of Mn, Sn, Pb, Bi, Cu, Au, Ag.
  • the metallic intermediate layer comprises bismuth.
  • the steel strip or the steel plate has an electrolytically deposited zinc layer.
  • the steel strip or the steel plate is continuously cold-rolled, in particular continuously annealed and cold-rolled.
  • the areas of the first type carrying the metallic intermediate layer can have a significantly more ordered zinc crystal structure.
  • a salt solution is applied to a steel surface.
  • the steel surface can be a steel strip surface.
  • the steel strip provided with the salt solution is then electrolytic in-line in a system run in a manner known per se galvanized.
  • the areas treated according to the invention with the salt solution are still visible after galvanizing.
  • FIG 1 one recognizes an identification pattern generated with the method according to the invention.
  • the left picture shows the Figure 1 the cold broadband (KBB) with an applied metallic intermediate layer in the form of a regular pattern.
  • the picture on the right shows the same cold wide strip after electrolytic galvanizing, i.e. an electrolytically galvanized strip (EVB).
  • KBB cold broadband
  • EVB electrolytically galvanized strip
  • the applied pattern is still recognizable on the electrolytically galvanized surface, shown in dotted lines in the right picture, since the electro-crystallization in the area of the metallic intermediate layer is more orderly and therefore differences in the optical properties, namely in the gloss, are generated. Due to the different optical properties of the areas of the first and second type, a defined visual appearance is produced according to the invention.
  • the generated visual appearance which can contain identification patterns or any representations such as logos, does not show any change in topography in terms of layer thickness or sheet thickness change.
  • This is in Figure 2 evident.
  • Shown on the left is an enlarged transition from an area of the second type on the left to an area of the first type on the right, which is shown lighter due to its higher gloss.
  • the greatly enlarged light microscope image of the section of the galvanized steel strip shown in the left picture is in Figure 2 shown in the upper right picture.
  • the area shown dark on the right-hand side is the area of the first type which has a metallic intermediate layer.
  • the zinc atoms are deposited on this metallic intermediate layer in a more ordered crystal structure, which creates areas with different optical properties and, in the present case, with a higher gloss.
  • the fact that this area appears darker is due to the lighting, in this case a ring light, which is hardly reflected by the relatively flat area (evenly arranged "zinc shingles").
  • the lighter area in the left part of the upper picture was not treated with the salt solution and therefore only has an electrolytically deposited zinc layer. In this disordered area there are accordingly areas that reflect the ring light and therefore this area appears overall brighter. The generated gloss effect therefore depends on the lighting angle. It is essential that gloss differences are created, i.e. relative differences between the areas.
  • the second shot in Figure 2 The bottom right is a topographical image of the same sample. It can be seen that both areas have an identical topography. There are no elevations or depressions in the area of the marking.
  • An inorganic aqueous metal salt solution is prepared by adding 50 mL HNO 3 (1N) to a spatula tip of Bi (NO 3 ) 3 ⁇ 5H 2 O. The solution is stirred at room temperature until the salt is completely dissolved. The stock solution prepared in this way is then diluted with deionized water in a ratio of 1: 9. The diluted salt solution is applied in-line to a KBB (continuously rolled cold wide strip) by means of ink-jet or indirect gravure printing. The steel strip pretreated in this way is then electrolytically galvanized. In-line means in this context that the diluted salt solution is applied in the electrolytic galvanizing plant.
  • the salt solution is applied locally in a targeted manner.
  • the areas that arise later with different optical properties or patterns can be defined locally in a targeted manner.
  • the marking produced according to the invention is no longer visible after a further coating, for example a cathodic dip coating, due to the unchanged topography.
  • the marking according to the invention can thus be used for markings of any kind. It can be used, for example, for material description and / or data backup, such as for batch number, coil number, manufacturer information or brands, samples and the like.
  • barcodes or 3D codes can be generated with the method according to the invention.
  • the appearance produced according to the invention can also be used to form any graphic representations, for example logos, which should be visible on the final product.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Electroplating Methods And Accessories (AREA)

Abstract

Die Erfindung betrifft ein Verfahren zur Erzeugung von Bereichen mit unterschiedlichen optischen Eigenschaften auf verzinkten Stahloberflächen, insbesondere Stahlbändern, wobei eine Metallsalzlösung, insbesondere eine anorganische Metallsalzlösung, auf die Stahloberfläche aufgetragen wird und die Stahloberfläche anschließend elektrolytisch verzinkt wird.

Description

  • Die Erfindung betrifft ein Verfahren zur Erzeugung von Bereichen mit unterschiedlichen optischen Eigenschaften auf verzinkten Stahlbändern mit den Merkmalen des Anspruchs 1.
  • Die Erfindung betrifft zudem, insbesondere nach dem oben genannten Verfahren hergestellte verzinkte Stahlbänder oder Stahlplatten mit Bereichen mit unterschiedlichen optischen Eigenschaften nach dem Oberbegriff des Anspruchs 11.
  • Optische Effekte bzw. Modifikation optischer Eigenschaften auf verzinkten Stahlbändern oder Platten haben in den letzten Jahren eine zunehmende Bedeutung erhalten. Zum einen zur Rückverfolgbarkeit von produktrelevanten Informationen entlang der Fertigungskette im Rahmen der Qualitätssicherung; zum anderen geht es um die Bereitstellung von produktspezifischen Informationen für den Anwender.
  • Optische Eigenschaften bzw. eine Kennzeichnung auf einer Stahloberfläche können durch verschiedene Methoden erzeugt werden. Häufig werden optische Eigenschaften durch mechanische und/oder chemische Bearbeitung modifiziert.
  • Bei einer mechanischen Bearbeitung wird eine Topographieänderung induziert, d.h. es werden Vertiefungen und/oder Erhebungen an der Oberfläche erzeugt. Vertiefungen können durch einen Materialabtrag entstehen, beispielsweise durch Laserprägungen. Erhebungen werden meistens durch Aufbringen strukturgebender Elemente erzeugt, z.B. mittels Aufdrucken. Heutzutage werden zum Aufdrucken unterschiedliche Druckverfahren verwendet, wie zum Beispiel Siebdruck, indirekter Tiefdruck oder Ink-Jet.
  • Siebdruck ist ein Druckverfahren, bei dem das aufzutragende Material mit einer Rakel durch ein feinmaschiges Gewebe hindurch auf die zu bedruckende Oberfläche aufgebracht wird. An denjenigen Stellen des Gewebes, wo dem Druckbild entsprechend kein Material aufgetragen werden soll, werden die Maschenöffnungen des Gewebes undurchlässig gemacht.
  • Als indirekter Tiefdruck wird ein Druckverfahren bezeichnet, bei dem die abzubildenden Elemente als Vertiefungen in der Druckmatrix vorliegen. Die gesamte Druckmatrix wird vor dem Druck in das aufzutragende Material eingetaucht und das überschüssige Material wird mit einer Rakel entfernt, so dass sich das aufzutragende Material nur noch in den Vertiefungen befindet. Die Materialübertragung findet durch einen hohen Anpressdruck und Adhäsionskräfte zwischen der zu bedruckenden Oberfläche und dem Material statt.
  • Ink-Jet ist ein Matrixdruckverfahren, bei dem das aufzutragende Material in flüssiger Form vorliegt und durch einen gezielten Abschuss oder ein Ablenken kleiner Materialtropfen aufgetragen wird. Die Materialtropfen werden mittels eines piezoelektrischen Wandlers erzeugt und anschließend über eine Ladeelektrode elektrostatisch aufgeladen. Anschließend werden die Materialtropfen beschleunigt und ihre Flugbahn wird mittels einer Ablenkelektrode gesteuert. Nach dem Auftreffen auf die zu bedruckende Oberfläche wird ein Druckbild erzeugt.
  • Bei den genannten Verfahren werden strukturgebende Elemente auf die zu kennzeichnende Oberfläche aufgebracht. Dabei handelt es sich meistens um Fremdsubstanzen, die eine andere chemische Zusammensetzung und somit andere physikalischen Eigenschaften aufweisen als die beschichtete Oberfläche. Dies kann gegebenenfalls eine weitere Oberflächenbehandlung oder Verarbeitung des Werkstücks erschweren.
  • Vertiefungen bzw. Prägungen an metallischen Oberflächen werden heute oft durch Lasertechnik erzeugt.
  • Eine Topographieänderung kann auch mit chemischen Mitteln erzeugt werden. Es ist bekannt, Vertiefungen an der Oberfläche durch Ätzen mit Säuren zu erzeugen. Dafür wird die zu behandelnde Metalloberfläche in Kontakt mit beispielsweise Salz- oder Schwefelsäure gebracht. Die Tiefe der Kennzeichnung steht im direkten Verhältnis zur Behandlungszeit.
  • Wenn die gewünschte Tiefe erreicht ist, wird die Oberfläche mit einer basischen Lösung, beispielsweise Natronlauge, behandelt, um möglicher Korrosion durch verbliebene Säurereste vorzubeugen.
  • Optische Eigenschaften bzw. eine Kennzeichnung können ebenfalls mittels einer Beschichtung erzeugt werden. Es kann sich dabei um eine organische oder eine anorganische Beschichtung handeln.
  • Bei einer organischen Beschichtung kann es sich um organische Lacke handeln. Optische Effekte werden oft durch organische Mehrschichtsysteme erzeugt, wie beispielsweise durch das colofer®vario-Verfahren. Dabei wird eine Stahloberfläche chromatfrei vorbehandelt. Anschließend wird ein chromatfreier Primer aufgetragen. Der optische Effekt wird durch einen daraufliegenden Basislack und eine Texturschicht definiert. Zum Schluss wird ein Decklack aufgetragen. Dafür werden mehrere Anlagendurchläufe benötigt. Dies erhöht die Herstellungskosten. Außerdem wird eine weitere Verarbeitung des derart beschichteten Werkstücks erschwert.
  • Bei einer anorganischen Beschichtung kann es sich um eine metallische Beschichtung handeln, wie z.B. eine Zinkbeschichtung. Eine Zinkbeschichtung wird üblicherweise zu Korrosionsschutzzwecken aufgebracht.
  • Es sind verschiedene Verzinkungsverfahren bekannt. Ein gebräuchliches Verzinkungsverfahren ist die so genannte Feuerverzinkung (auch als Schmelztauchverzinkung bekannt). Dabei wird Stahl kontinuierlich (z.B. Band oder Draht) oder stückweise (z.B. Bauteile) bei Temperaturen von etwa 450 °C bis 600 °C in eine Schmelze aus flüssigem Zink getaucht (der Schmelzpunkt von Zink liegt bei 419,5 °C). Die Zinkschmelze weist konventionell einen Zinkgehalt von mindestens 98,0 Gew-% gemäß DIN EN ISO 1461 auf. Bei einem kontinuierlich verzinkten Band weist die Zinkschicht eine Dicke von 5 µm bis 40 µm auf. Bei einem stückweise verzinkten Bauteil kann die Zinkschicht Dicken von 50 µm bis 150 µm aufweisen.
  • Bei einer elektrolytischen Verzinkung (galvanischen Verzinkung) werden Stahlbänder oder Stahlplatten nicht in einer Zinkschmelze, sondern in einen Zinkelektrolyten eingetaucht.
  • Dabei wird der zu verzinkende Stahl als Kathode in die Lösung eingebracht und als Anode wird eine dimensionsstabile Elektrode verwendet. Durch die Elektrolytlösung wird Strom geleitet. Dabei wird das in ionischer Form vorliegende Zink (Oxidationsstufe +II) zu metallischem Zink reduziert und an der Stahloberfläche abgeschieden. Im Vergleich zum Feuerverzinken können durch elektrolytische Verzinkung dünnere Zinkschichten aufgetragen werden. Die Zinkschichtdicke ist dabei proportional zur Stromstärke und Zeitdauer des Stromflusses und damit der Ladungsmenge.
  • Zur Sicherstellung des Haftvermögens und der Einheitlichkeit der Zinkschicht ist eine sorgfältige Oberflächenvorbehandlung erforderlich. Dabei kann es sich beispielsweise um Entfetten, alkalische Reinigung, Beizen, Spülen und/oder Dekapieren handeln. Nach der Verzinkung können eine oder mehrere Nachbehandlungen durchgeführt werden, wie z.B. Phosphatieren, Ölen, Passivieren, Aufbringen von organischen Beschichtungen (KTL - kathodische Tauchlackierung).
  • Es ist außerdem bekannt, das optische Eigenschaften elektrolytisch abgeschiedener Zinkschichten durch Parameterveränderung zu definieren. Dabei kann es sich beispielsweise um eine veränderte Elektrolytzusammensetzung handeln. Außerdem spielt die Vorbehandlung der Stahloberfläche eine große Rolle. Optische Eigenschaften können z.B. durch Veränderung der Beiz- oder Reinigungsparameter variiert werden. Dabei ist es von Nachteil, dass die Veränderung der optischen Eigenschaften sich auf die gesamte Bandbreite bezieht und nicht lokal steuerbar ist. Somit können mit dieser Methode keine lokalen Kennzeichnungsmuster erzeugt werden.
  • Aus der DE 10 2017 106 672 A1 ist eine Kennzeichnung und/oder Markierung mittels Laser von feuerverzinkten Metallbauteilen bekannt. Die Markierung mittels Laser erfolgt derart, dass die protektiven Eigenschaften der Verzinkungsschicht vollumfänglich erhalten bleiben. Zur Erzeugung der dauerhaften Kennzeichnung wird die Zinkschicht selektiv in einem vorgegebenen Bereich mittels Laser abgetragen und anschließend einer chemischen Reaktion mit einem Umgebungsgas (Reaktionsgas) unterzogen. Die chemische Umsetzung der Zinkschicht führt u.a. zu Oxiden, die sich optisch von der umgebenden Zinkschicht unterscheiden und auf diese Weise einen optischen Effekt bzw. ein Muster erzeugen.
  • Ein vergleichbares Verfahren ist aus der DE 10 2007 010 932 A1 bekannt. Die Markierungen auf der Stahloberfläche werden ebenfalls mittels Laser abgetragen. Dabei kann die Zinkschicht vollständig entfernt werden, um die Lesbarkeit der Kennzeichnung zu erhöhen. Durch die anschließende Oxidation des Grundmaterials wird der optische Kontrast verstärkt.
  • Die DE 40 33 230 A1 beschreibt ein kombiniertes Kennzeichnungsverfahren, bei dem ein Metallband mechanisch und chemisch bearbeitet wird, um eine Oberflächenstrukturierung zu erzeugen. Anfangs werden Prägegravuren mittels Laser eingebracht. Anschließend werden die freiliegenden Flächen durch eine Säure in vorgegebener Tiefe geätzt, so dass nach dem Ätzvorgang, der zum Zwecke des Erhalts von überlagerten Strukturen mehrmals wiederholt werden kann, ein gewünschtes Prägegravurprofil entsteht.
  • Aus der DE 103 20 237 A1 ist ein Strukturierungsverfahren galvanisch veredelter Thermoplaste bekannt. Der Thermoplast wird im Bereich der gewünschten Symbole bzw. Strukturelemente durch einen verbrennenden Laserstrahl abgetragen. Auf die derart strukturierte Thermoplastoberfläche wird eine Galvanikschicht aufgebracht. Da im Bereich der Strukturierung eine Thermoplastschicht fehlt, kann sich dort keine Galvanikschicht ausbilden. Infolgedessen ist die mittels Laser erzeugte Strukturierung auch auf der oberen Galvanikschicht sichtbar.
  • Aus der DE 10 2011 051 266 A1 ist ein Strukturgebungsverfahren bekannt, bei dem auf die zu strukturierende Oberfläche strukturgebende Elemente mittels Tintendruck aufgebracht werden. Die durch den Tintendruck erzeugten Erhebungen werden durchgehärtet. Anschließend wird die Oberfläche mit einer Galvanikschicht überzogen.
  • Bei den genannten Kennzeichnungsverfahren ist es von Nachteil, dass die Kennzeichnung nur mit Fremdsubstanzen erzielbar ist. Dies kann zu Problemen bei der Nachbehandlung führen. Außerdem ist es nicht möglich, das Erscheinungsbild lokal zu beeinflussen. Somit sind die Designmöglichkeiten bei den genannten Verfahren eingeschränkt. Des Weiteren sind die genannten Kennzeichnungsverfahren nicht in-Line tauglich.
  • Aufgabe der Erfindung ist es, ein Verfahren zur Erzeugung von Bereichen mit unterschiedlichen optischen Eigenschaften auf verzinkten Stahlbändern zu schaffen, welches die Zinkschicht nicht beeinträchtigt und gezielt lokal steuerbar ist.
  • Die Aufgabe wird mit dem Verfahren mit den Merkmalen des Anspruchs 1 gelöst. Vorteilhafte Weiterbildungen sind in den hiervon abhängigen Unteransprüchen gekennzeichnet.
  • Eine weitere Aufgabe der Erfindung ist es, ein nach dem oben genannten Verfahren hergestelltes Stahlband mit Bereichen mit unterschiedlichen optischen Eigenschaften zu schaffen.
  • Die Aufgabe wird mit dem Erzeugnis mit den Merkmalen des Anspruchs 11 gelöst.
  • Vorteilhafte Weiterbildungen sind in den hiervon abhängigen Unteransprüchen gekennzeichnet.
  • Erfindungsgemäß werden Bereiche mit unterschiedlichen optischen Eigenschaften auf verzinktem Stahlband oder verzinkten Stahlplatten erzeugt, ohne die Topographie der Zinkschicht zu verändern. Zudem wird eine physisch und weitestgehend auch chemisch homogene Zinkschicht gewährleistet. Die veränderten optischen Eigenschaften beruhen auf der Erzeugung kristallographisch unterschiedlicher Bereiche.
  • Als eine optische Eigenschaft im Sinne der Erfindung wird der Glanz definiert. Glanz ist die optische Eigenschaft einer Oberfläche, Licht ganz oder teilweise spiegelnd zu reflektieren. Glanz ist eine Eigenschaft, insbesondere auch Unterschiede bei Glanz, die technisch erfassbar und messbar sind, insbesondere mit Hilfe von Reflektometern.
  • Die Erfindung sieht vor, dass eine Salzlösung auf ein Stahlband gezielt lokal aufgebracht wird. Die Applikation der Lösung kann mittels beliebiger Überführungsmethode stattfinden. Dabei kann es sich beispielsweise um Ink-Jet, Stempeln oder indirekten Tiefdruck handeln. Anschließend wird die Stahloberfläche elektrolytisch verzinkt.
  • Für diesen Vorgang sind anorganische und/oder organische Salzlösungen geeignet, insbesondere sind Metallsalzlösungen gut geeignet. Die Metallsalzlösungen können beispielsweise Metallionen der 4., 5. Hauptgruppe und/oder 7., 11. Nebengruppe enthalten. Es ist vorteilhaft, wenn folgende Metalle als Kationen enthalten sind: Mn, Sn, Pb, Bi, Cu, Au, Ag. Besonders vorteilhaft ist es, wenn die verwendete Metallsalzlösung Bismut-Ionen umfasst.
  • Als Anionen können organische, anorganische Ionen oder Komplexbildner eingesetzt werden. Anorganische Anionen können einwertig sein, wie z.B. F-, Cl-, I-, Br-, zweiwertig, wie z.B. O2-, S2-, oder komplex aufgebaut sein, wie z.B. NO3 2-, SO4 2-, OH-. Es ist vorteilhaft, wenn als anorganische Anionen Chlorid-, Nitrat-, Sulfationen, Carbonate, Hydroxid- oder Oxidionen vorliegen. Besonders vorteilhaft ist es, wenn Nitrationen verwendet werden. Grundsätzlich sind Salzlösungen mit niedrigen pH-Werten zu bevorzugen.
  • Als organische Anionen können Anionen verwendet werden, die von organischen Säuren abstammen. Es kann sich beispielsweise um Alkoholate, organische Sulfate, organische Nitrate handeln. Es ist vorteilhaft, wenn in der verwendeten Salzlösung Acetat-, Citrat und/oder Oxalat-Ionen vorliegen.
  • Somit kann im Rahmen der Erfindung die eingesetzte Lösung ausgewählt sein aus der Gruppe von Mn, Sn, Pb, Bi, Cu, Au, Ag und Nitrat, Chlorid, Hydroxid, Oxid, Sulfat, Acetat, Citrat, Oxalat sowie deren Mischungen und Kombinationen.
  • Nach dem Auftragen der Salzlösung setzt, insbesondere bei niedrigen pH-Werten eine Zementationsreaktion ein. Dabei wird eine metallische Zwischenschicht auf der Stahloberfläche gebildet. Die Reaktion kann beispielhaft durch folgende Gleichung dargestellt werden:

             2Mx+ + xFe → 2M↓ + xFe2+     (1)

  • Es ist ersichtlich, dass die Metallionen aus der Salzlösung reduziert und an der Stahloberfläche abgeschieden werden. Die abgeschiedene Zwischenschicht kann eine Schichtdicke aufweisen, die im Nanometerbereich liegt.
  • Die Salzlösung wird in-Line aufgetragen. Dabei ist es von Vorteil, dass das gewünschte Muster durch den gesamten Anlagendurchlauf nicht beeinträchtigt wird.
  • Es ist außerdem von Vorteil, dass weitere Bearbeitungsschritte nicht notwendig sind.
  • Nach dem Aufbringen der Salzlösung wird das Stahlband oder die Stahlplatte elektrolytisch verzinkt. Dafür wird die Stahlplatte und/oder das Stahlband mit einer Zinkelektrolytlösung in Kontakt gebracht. Die in der Elektrolytlösung vorhandenen Zink-Ionen werden durch den durchgeleiteten Strom reduziert und kristallisieren an der zu beschichtenden Oberfläche. Dieser Prozess wird als Elektrokristallisation bezeichnet. Die erzeugte Zinkschicht kann eine Schichtdicke aufweisen, die im Mikrometerbereich liegt.
  • Das Schichtdickenverhältnis der metallischen Zwischenschicht und der Zinkschicht kann beispielsweise als 1:1000 definiert werden.
  • Die Elektrokristallisation des Zinks wird durch die darunterliegende metallische Zwischenschicht derart beeinflusst, dass die Kristallisation in diesem Bereich (weiter Bereich erster Art) deutlich geordneter abläuft. Dies führt zu einer erhöhten Symmetrie des Zinkgitters. Dadurch werden die optischen Eigenschaften des Zinks an den vorbehandelten Bereichen derart verändert, dass die vorbehandelten Bereiche einen höheren Glanz aufweisen. Eine weitere Nachbehandlung ist hier nicht notwendig.
  • Dabei ist es von Vorteil, dass keine Topographieveränderung, wie z.B. der Schichtdicke oder der Blechdicke stattfindet. Wird beispielsweise eine Markierung oder Kennzeichnung für den Fertigungsprozess benötigt, ist diese aufgrund der gleichmäßigen Topographie nach einer abschließenden Lackierung nicht mehr sichtbar.
  • Weiterhin ist es von Vorteil, dass die erfindungsgemäße Modifizierung optischer Eigenschaften eine große Designfreiheit bietet. So können beispielsweise Logos oder Muster für eine ansprechende optische Gestaltung der verzinkten Oberfläche sowie andere Kennzeichnungen aufgebracht werden, ohne die Topographie der Beschichtung zu verändern.
  • Des Weiteren ist es von Vorteil, dass keine Fremdsubstanzen bzw. Fremdelemente an der Zinkoberfläche aufgetragen werden. Dadurch ist die gekennzeichnete Oberfläche mit den weiteren typischen Nachfolgeprozessen, wie z.B. Phosphatieren, Passivieren, Ölen, Reinigen, Aufbringen von organischen Beschichtungen, vollständig kompatibel.
  • Die Erfindung betrifft somit ein Verfahren zur Erzeugung von Bereichen mit unterschiedlichen optischen Eigenschaften und zwar speziell dem Glanz auf verzinkten Stahlbändern oder Stahlplatten, wobei eine Metallsalzlösung auf die Stahloberfläche aufgetragen wird und die Stahloberfläche anschließend verzinkt wird.
  • Bei einer Ausführungsform der Erfindung wird eine anorganische und/oder organische Metallsalzlösung verwendet.
  • In vorteilhafter Weise wird eine Metallsalzlösung verwendet, deren Kationen aus der Gruppe von Mn, Sn, Pb, Bi, Cu, Au, Ag und deren Anionen aus der Gruppe von Nitrat, Chlorid, Hydroxid, Oxid, Sulfat, Acetat, Citrat, Oxalat sowie deren Mischungen und Kombinationen ausgewählt werden.
  • Bei einer wiederum vorteilhafter Ausführungsform wird eine Metallsalzlösung verwendet, die Bismut-Ionen enthält.
  • Außerdem ist es von Vorteil, wenn eine insbesondere saure Metallsalzlösung verwendet wird, die Bismut(III)-nitrat-pentahydrat und verdünnte Salpetersäure umfasst.
  • Bei einer weiteren vorteilhaften Ausführungsform induziert die aufgebrachte Metallsalzlösung eine Zementationsreaktion mit der Stahloberfläche, wobei eine metallische Zwischenschicht auf der Stahloberfläche abgeschieden wird. Insbesondere kann eine schnell erfolgende Zementationsreaktion das Aufbringen der metallischen Zwischenschicht in-Line in einem Anlagendurchlauf vereinfachen, da auf aufwendigen Trocknungsschritte für das Aufbringen der Zwischenschicht verzichtet werden kann.
  • Vorteilhafter Weise kann die metallische Zwischenschicht eine Schichtdicke in Nanometerbereich aufweisen. Schichtdicken in diesem Bereich haben kaum Auswirkungen auf das topographische Oberflächenprofil und sind dementsprechend im Höhenprofil, insbesondere bei nachfolgender Verzinkung nicht mehr erkennbar.
  • Mit weiterem Vorteil wird die Stahloberfläche nach dem Aufbringen der Metallsalzlösung verzinkt, wobei die Verzinkung elektrolytisch erfolgt.
  • In vorteilhafter Weise weisen die metallische Zwischenschicht und die obere Zinkschicht Schichtdicken auf, die im Verhältnis 1:1000 bis 1:20000 zu einander stehen. Änderungen im Höhenprofil durch die metallische Zwischenschicht können daher vernachlässigt werden.
  • Außerdem ist es von Vorteil, wenn die metallische Zwischenschicht die Zink-Elektrokristallisation derart beeinflusst, dass die Kristallisation in diesem Bereich deutlich geordneter abläuft.
  • Vorteilhafter Weise kann ein kontinuierlich gewalztes Kaltbreitband, insbesondere ein geglühtes kontinuierlich gewalztes Kaltbreitband, als Vorlage verwendet werden.
  • Mit weiterem Vorteil wird die Zinkschicht über die mit der Salzlösung behandelten und unbehandelten Bereiche abgeschieden, wobei beide Bereiche nach der Verzinkung eine unveränderte Topographie aufweisen.
  • Bei einer weiteren vorteilhaften Ausführungsform wird die Zinkschicht über die mit der Salzlösung behandelten Bereiche erster Art und unbehandelten Bereiche zweiter Art abgeschieden, wobei die Bereiche erster Art unterschiedliche optische Eigenschaften, insbesondere einen höheren Glanz, aufweisen.
  • Es ist von Vorteil, wenn das Stahlband oder die Stahlplatte Bereiche erster Art und Bereiche zweiter Art aufweist, wobei beide Bereiche eine gleichmäßige Topographie haben, wobei die Bereiche erster Art eine dünne metallische Zwischenschicht aufweisen und unterschiedliche optische Eigenschaften haben.
  • Vorteilhafter Weise kann die metallische Zwischenschicht Metall oder Metalle umfassen, die aus der Gruppe von Mn, Sn, Pb, Bi, Cu, Au, Ag ausgewählt sein können.
  • Es ist besonders vorteilhaft, wenn die metallische Zwischenschicht Bismut umfasst.
  • Außerdem ist es von Vorteil, wenn das Stahlband oder die Stahlplatte eine elektrolytisch abgeschiedene Zinkschicht aufweist.
  • In einer wiederum vorteilhaften Ausführungsform ist das Stahlband oder die Stahlplatte kontinuierlich kaltgewalzt, insbesondere geglüht kontinuierlich kaltgewalzt.
  • In vorteilhafter Weise können die die metallische Zwischenschicht tragenden Bereiche erster Art eine deutlich geordnetere Zink-Kristallstruktur aufweisen.
  • Die Erfindung wird anhand einer Zeichnung beispielhaft erläutert. Es zeigen dabei:
  • Figur 1:
    Verändertes Erscheinungsbild des Zinks über der metallischen Zwischenschicht.
    Figur 2:
    Lichtmikroskop- und Topographieaufnahme einer veränderten Zinkschicht.
  • Erfindungsgemäß wird eine Salzlösung auf einer Stahloberfläche aufgebracht. Die Stahloberfläche kann eine Stahlbandoberfläche sein. Anschließend wird das mit der Salzlösung versehene Stahlband in-Line in einem Anlagendurchlauf in an sich bekannter Weise elektrolytisch verzinkt. Die erfindungsgemäß mit der Salzlösung behandelten Bereiche sind nach der Verzinkung immer noch sichtbar. In Figur 1 erkennt man ein mit dem erfindungsgemäßen Verfahren erzeugtes Kennzeichnungsmuster. Dabei ist im linken Bild der Figur 1 das Kaltbreitband (KBB) mit aufgetragenen metallischer Zwischenschicht in Form eines regelmäßigen Musters dargestellt. Im rechten Bild ist dasselbe Kaltbreitband nach der elektrolytischen Verzinkung, also ein elektrolytisch verzinktes Band (EVB), zu sehen. Auf der elektrolytisch verzinkten Oberfläche, im rechten Bild punktiert dargestellt, ist das aufgebrachte Muster noch immer erkennbar, da die Elektro-Kristallisation im Bereich der metallischen Zwischenschicht geordneter abläuft und daher Unterschiede in den optischen Eigenschaften, nämlich unter anderem im Glanz, erzeugt werden. Durch die unterschiedlichen optischen Eigenschaften der Bereiche erster und zweiter Art, wird erfindungsgemäß ein definiertes visuelles Erscheinungsbild erzeugt.
  • Das erzeugte visuelle Erscheinungsbild, das Kennzeichnungsmuster oder aber auch beliebige Darstellungen wie Logos beinhalten kann, weist keine Topographieänderung i.S.v. Schichtdicken- oder Blechdickenänderung auf. Dies ist in Figur 2 ersichtlich. Im der Figur 2 links dargestellt ist ein vergrößerter Übergang von einem Bereich zweiter Art links auf einen Bereich erster Art rechts, der aufgrund seines höheren Glanzes heller dargestellt ist.
  • Die stark vergrößerte lichtmikroskopische Aufnahme des im linken Bild eingezeichneten Ausschnittes des verzinkten Stahlbandes ist in Figur 2 im rechten oberen Bild dargestellt. Dies zeigt den vergrößerten Übergang von einem Bereich zweiter Art auf einen Bereich erster Art. Dabei ist der dunkel abgebildete Bereich auf der rechten Seite der Bereich erster Art, der eine metallische Zwischenschicht aufweist. Auf dieser metallischen Zwischenschicht erfolgt die Abscheidung der Zinkatome in einer geordneteren Kristallstruktur, wodurch Bereiche mit unterschiedlichen optischen Eigenschaften und zwar im vorliegenden Fall mit höherem Glanz, erzeugt werden. Dass dieser Bereich dunkler wirkt, hängt mit der Beleuchtung zusammen, in diesem Fall einem Ringlicht, welches von dem relativ ebenen Bereich (gleichmäßig angeordnete "Zinkschindeln") kaum reflektiert wird. Der heller abgebildete Bereich im linken Teil des oberen Bildes wurde mit der Salzlösung nicht behandelt und weist somit nur eine elektrolytisch abgeschiedene Zinkschicht auf. In diesem ungeordneten Bereich gibt es dementsprechend Flächen, die das Ringlicht reflektieren und daher wirkt dieser Bereich insgesamt heller. Der erzeugte Glanz-Effekt hängt somit vom Beleuchtungswinkel ab. Wesentlich ist, dass Glanzunterschiede erzeugt werden, also relative Unterschiede der Bereiche.
  • Bei der zweiten Aufnahme in Figur 2 rechts unten handelt es sich um eine topographische Aufnahme der gleichen Probe. Es ist ersichtlich, dass beide Bereiche eine identische Topographie aufweisen. Es sind keine Erhebungen oder Vertiefungen im Bereich der Kennzeichnung erkennbar.
  • Die Erfindung wird anhand eines Ausführungsbeispiels beispielhaft erläutert.
  • Eine anorganische wässrige Metallsalzlösung wird angesetzt, indem eine Spatelspitze Bi(NO3)3·5H2O mit 50 mL HNO3 (1N) versetzt wird. Die Lösung wird bei Raumtemperatur gerührt bis das Salz komplett aufgelöst ist. Anschließend wird die derart hergestellte Stammlösung mit VE-Wasser im Verhältnis 1:9 verdünnt. Die verdünnte Salzlösung wird mittels Ink-Jet oder indirekten Tiefdrucks auf ein KBB (kontinuierlich gewalztes Kaltbreitband) in-Line aufgetragen. Anschließend wird das derart vorbehandelte Stahlband elektrolytisch verzinkt. In-Line bedeutet in diesem Zusammenhang, dass die verdünnte Salzlösung in der elektrolytischen Verzinkungsanlage aufgetragen wird.
  • Bei der Erfindung ist es von Vorteil, dass die Salzlösung gezielt lokal aufgebracht wird. Dadurch können die später entstehenden Bereiche mit unterschiedlichen optischen Eigenschaften bzw. Muster gezielt lokal definiert werden.
  • Dabei ist es von Vorteil, dass die erfindungsgemäß erzeugte Kennzeichnung nach einer weiteren Beschichtung, beispielsweise einer kathodischen Tauchlackierung, aufgrund der unveränderten Topographie nicht mehr sichtbar ist.
  • Somit kann die erfindungsgemäße Kennzeichnung für Kennzeichnungen jeglicher Art verwendet werden. Sie kann beispielsweise für Werkstoffbeschreibung und/oder Datensicherung, wie beispielsweise für Chargennummer, Coilnummer, Herstellerangaben oder Marken, Muster und dergleichen verwendet werden.
  • Außerdem können mit dem erfindungsgemäßen Verfahren Barcodes oder 3D-Codes erzeugt werden.
  • Erfolgt hingegen keine weitere Beschichtung, kann das erfindungsgemäß erzeugte Erscheinungsbild auch zur Ausbildung von beliebigen graphischen Darstellungen, beispielsweise Logos, die am finalen Produkt sichtbar sein sollen, genutzt werden.

Claims (15)

  1. Verfahren zur Erzeugung von Bereichen mit unterschiedlichen optischen Eigenschaften auf verzinkten Stahloberflächen, insbesondere Stahlbändern, wobei eine Metallsalzlösung, insbesondere eine anorganische Metallsalzlösung, auf die Stahloberfläche aufgetragen wird und die Stahloberfläche anschließend elektrolytisch verzinkt wird.
  2. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass eine Metallsalzlösung verwendet wird, deren Kationen aus der Gruppe von Mn, Sn, Pb, Bi, Cu, Au, Ag und deren Anionen aus der Gruppe von Nitrat, Chlorid, Sulfat, Hydroxid, Oxid, Acetat, Citrat, Oxalat sowie deren Mischungen und Kombinationen ausgewählt werden.
  3. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass eine Metallsalzlösung verwendet wird, wobei die Lösung Bismut-Ionen enthält.
  4. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass eine Metallsalzlösung verwendet wird, wobei die Lösung Bismut(III)-nitrat-pentahydrat und verdünnte Salpetersäure umfasst.
  5. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die aufgebrachte Metallsalzlösung eine Zementationsreaktion mit der Stahloberfläche induziert, wobei eine metallische Zwischenschicht auf der Stahloberfläche abgeschieden wird.
  6. Verfahren nach Anspruch 5, dadurch gekennzeichnet, dass eine metallische Zwischenschicht abgeschieden wird, wobei die metallische Zwischenschicht eine Schichtdicke im Nanometerbereich aufweist.
  7. Verfahren nach Anspruch 5 oder 6, dadurch gekennzeichnet, dass die metallische Zwischenschicht und die obere Zinkschicht Schichtdicken aufweisen, die im Verhältnis 1:1000 bis 1:20000 zu einander stehen.
  8. Verfahren nach Ansprüchen 5 bis 7, dadurch gekennzeichnet, dass die metallische Zwischenschicht die Zink-Elektrokristallisation beeinflusst, wobei die Kristallisation in diesem Bereich geordneter abläuft als in Bereichen ohne die metallische Zwischenschicht.
  9. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Zinkschicht über die mit der Salzlösung behandelten und unbehandelten Bereiche abgeschieden wird, wobei beide Bereiche nach der Verzinkung eine unveränderte Topographie, insbesondere Zinkschichtdicke, aufweisen.
  10. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Zinkschicht über die mit der Salzlösung behandelten Bereiche erster Art und unbehandelten Bereiche zweiter Art abgeschieden wird, wobei die Bereiche erster Art unterschiedliche optische Eigenschaften, insbesondere einen höheren Glanz, aufweisen.
  11. Elektrolytisch verzinktes Stahlband, insbesondere hergestellt nach einem Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass das elektrolytisch verzinkte Stahlband Bereiche erster Art und Bereiche zweiter Art aufweist, wobei beide Bereiche eine gleichmäßige Topographie, insbesondere Zinkschichtdicke, haben, wobei die Bereiche erster Art eine dünne metallische Zwischenschicht zwischen Stahloberfläche und Zinkschicht aufweisen und unterschiedliche optische Eigenschaften haben und insbesondere einen höheren Glanz aufweisen.
  12. Stahlband oder Stahlplatte nach Anspruch 11, dadurch gekennzeichnet, dass die metallische Zwischenschicht Metall oder Metalle umfasst, die aus der Gruppe von Mn, Sn, Pb, Bi, Cu, Au, Ag ausgewählt sein können.
  13. Stahlband nach Ansprüchen 11 bis 12 dadurch gekennzeichnet, dass die metallische Zwischenschicht Bismut umfasst, wobei die metallische Zwischenschicht eine Schichtdicke im Nanometerbereich aufweist.
  14. Stahlband nach Ansprüchen 11 bis 13 dadurch gekennzeichnet, dass die metallische Zwischenschicht und die Zinkschicht Schichtdicken aufweisen, die im Verhältnis 1:1000 bis 1:20000 zu einander stehen.
  15. Stahlband nach Ansprüchen 11 bis 14 dadurch gekennzeichnet, dass die die metallische Zwischenschicht tragenden Bereiche erster Art eine deutlich geordnetere Zink-Kristallstruktur aufweisen, wobei die über der metallischen Zwischenschicht liegende Zinkschicht unterschiedliche optische Eigenschaften, insbesondere einen höheren Glanz, aufweist.
EP20163979.6A 2020-03-18 2020-03-18 Verfahren zur erzeugung von bereichen mit unterschiedlichen optischen eigen-schaften auf verzinkten stahlbändern und verzinkte stahlbänder mit bereichen mit unterschiedlichen optischen eigenschaften Withdrawn EP3882374A1 (de)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP20163979.6A EP3882374A1 (de) 2020-03-18 2020-03-18 Verfahren zur erzeugung von bereichen mit unterschiedlichen optischen eigen-schaften auf verzinkten stahlbändern und verzinkte stahlbänder mit bereichen mit unterschiedlichen optischen eigenschaften
PCT/EP2021/056831 WO2021185914A1 (de) 2020-03-18 2021-03-17 Verfahren zur erzeugung von kennzeichnungen auf verzinkten stahlbändern oder stahlblechen und verzinkte stahlbänder oder stahlbleche mit einer derartigen kennzeichnung
EP21714105.0A EP4121579A1 (de) 2020-03-18 2021-03-17 Verfahren zur erzeugung von kennzeichnungen auf verzinkten stahlbändern oder stahlblechen und verzinkte stahlbänder oder stahlbleche mit einer derartigen kennzeichnung

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP20163979.6A EP3882374A1 (de) 2020-03-18 2020-03-18 Verfahren zur erzeugung von bereichen mit unterschiedlichen optischen eigen-schaften auf verzinkten stahlbändern und verzinkte stahlbänder mit bereichen mit unterschiedlichen optischen eigenschaften

Publications (1)

Publication Number Publication Date
EP3882374A1 true EP3882374A1 (de) 2021-09-22

Family

ID=69845975

Family Applications (2)

Application Number Title Priority Date Filing Date
EP20163979.6A Withdrawn EP3882374A1 (de) 2020-03-18 2020-03-18 Verfahren zur erzeugung von bereichen mit unterschiedlichen optischen eigen-schaften auf verzinkten stahlbändern und verzinkte stahlbänder mit bereichen mit unterschiedlichen optischen eigenschaften
EP21714105.0A Pending EP4121579A1 (de) 2020-03-18 2021-03-17 Verfahren zur erzeugung von kennzeichnungen auf verzinkten stahlbändern oder stahlblechen und verzinkte stahlbänder oder stahlbleche mit einer derartigen kennzeichnung

Family Applications After (1)

Application Number Title Priority Date Filing Date
EP21714105.0A Pending EP4121579A1 (de) 2020-03-18 2021-03-17 Verfahren zur erzeugung von kennzeichnungen auf verzinkten stahlbändern oder stahlblechen und verzinkte stahlbänder oder stahlbleche mit einer derartigen kennzeichnung

Country Status (2)

Country Link
EP (2) EP3882374A1 (de)
WO (1) WO2021185914A1 (de)

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2148324A (en) * 1983-04-26 1985-05-30 British Steel Corp Plated steel products
DE4033230A1 (de) 1990-10-19 1992-04-23 Hueck Fa E Oberflaechenstrukturierte, grossformatige metallene pressplatten und/oder endlosbaender und verfahren zu deren herstellung
KR20020053290A (ko) * 2000-12-27 2002-07-05 이구택 광택성이 우수한 전기아연 도금강판의 제조방법
DE10320237A1 (de) 2003-05-07 2004-12-02 Dirk Kieslich Verfahren zur Herstellung durchleuchtbarer, galvanisch veredelter Thermoplastteile und durchleuchtbare Thermoplastteile mit galvanisch veredelter Oberfläche
DE102007010932A1 (de) 2007-03-05 2008-09-11 Hünnebeck Group GmbH Verzinkte längenverstellbare Stahlrohrstütze mit Markierungen und Verfahren zur Herstellung derselben
DE102011051266A1 (de) 2011-06-22 2012-12-27 Guido Schulte Presskörper zur Herstellung eines Laminats sowie Verfahren zur Herstellung eines Presskörpers
WO2013117249A1 (en) * 2012-02-06 2013-08-15 Nv Bekaert Sa Ternary or quaternary alloy coating for steam ageing and cured humidity adhesion elongated steel element comprising a ternary or quaternary brass alloy coating and corresponding method
JP2018044190A (ja) * 2016-09-12 2018-03-22 東洋鋼鈑株式会社 亜鉛めっき鋼板の製造方法
DE102017106672A1 (de) 2017-01-17 2018-07-19 Fontaine Holdings Nv Verfahren zur Kennzeichnung und/oder Markierung verzinkter, insbesondere feuerverzinkter Bauteile
US20180230625A1 (en) * 2012-02-06 2018-08-16 Nv Bekaert Sa Process for manufacturing an elongated steel element to reinforce rubber products
US20190366687A1 (en) * 2016-12-26 2019-12-05 Posco Zinc alloy plated steel having excellent weldability and corrosion resistance

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5494706A (en) * 1993-06-29 1996-02-27 Nkk Corporation Method for producing zinc coated steel sheet

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2148324A (en) * 1983-04-26 1985-05-30 British Steel Corp Plated steel products
DE4033230A1 (de) 1990-10-19 1992-04-23 Hueck Fa E Oberflaechenstrukturierte, grossformatige metallene pressplatten und/oder endlosbaender und verfahren zu deren herstellung
KR20020053290A (ko) * 2000-12-27 2002-07-05 이구택 광택성이 우수한 전기아연 도금강판의 제조방법
DE10320237A1 (de) 2003-05-07 2004-12-02 Dirk Kieslich Verfahren zur Herstellung durchleuchtbarer, galvanisch veredelter Thermoplastteile und durchleuchtbare Thermoplastteile mit galvanisch veredelter Oberfläche
DE102007010932A1 (de) 2007-03-05 2008-09-11 Hünnebeck Group GmbH Verzinkte längenverstellbare Stahlrohrstütze mit Markierungen und Verfahren zur Herstellung derselben
DE102011051266A1 (de) 2011-06-22 2012-12-27 Guido Schulte Presskörper zur Herstellung eines Laminats sowie Verfahren zur Herstellung eines Presskörpers
WO2013117249A1 (en) * 2012-02-06 2013-08-15 Nv Bekaert Sa Ternary or quaternary alloy coating for steam ageing and cured humidity adhesion elongated steel element comprising a ternary or quaternary brass alloy coating and corresponding method
US20180230625A1 (en) * 2012-02-06 2018-08-16 Nv Bekaert Sa Process for manufacturing an elongated steel element to reinforce rubber products
JP2018044190A (ja) * 2016-09-12 2018-03-22 東洋鋼鈑株式会社 亜鉛めっき鋼板の製造方法
US20190366687A1 (en) * 2016-12-26 2019-12-05 Posco Zinc alloy plated steel having excellent weldability and corrosion resistance
DE102017106672A1 (de) 2017-01-17 2018-07-19 Fontaine Holdings Nv Verfahren zur Kennzeichnung und/oder Markierung verzinkter, insbesondere feuerverzinkter Bauteile

Also Published As

Publication number Publication date
WO2021185914A1 (de) 2021-09-23
EP4121579A1 (de) 2023-01-25

Similar Documents

Publication Publication Date Title
EP2683848B1 (de) Verwendung eines stahlflachprodukts für die umformung zu einem bauteil durch warmpressformen und verfahren zur herstellung eines warmpressgeformten bauteils
DE2413669C3 (de) Verbundfolie, ihre Verwendung und Verfahren zu ihrer Herstellung
EP2507408B1 (de) Mehrstufiges vorbehandlungsverfahren für metallische bauteile mit zink- und eisenoberflächen
DE60220706T3 (de) Verfahren zum beschichten einer metalloberfläche
DE3902457C2 (de)
EP4076777B1 (de) Metallblech mit einer deterministischen oberflächenstruktur und verfahren zur herstellung eines umgeformten und lackierten blechbauteils
DE69906555T2 (de) Verzinkte, mit einer hydroxysulfat-schmierschicht überzogene stahlbleche und verfahren zur herstellung
DE2100021A1 (de) Verfahren zum Aufbringen von Phos phatschichten auf Stahl, Eisen und Zinkoberflachen
DE69106552T2 (de) Oberflächenbehandeltes Stahlband mit verbesserter Schweissfähigkeit und Beschichtungseigenschaften und seine Herstellung.
DE2017327B2 (de) Verfahren zur beschichtung von metalloberflaechen
DE2739006A1 (de) Verfahren zur oberflaechenbehandlung von zink oder zinklegierungen
EP3882374A1 (de) Verfahren zur erzeugung von bereichen mit unterschiedlichen optischen eigen-schaften auf verzinkten stahlbändern und verzinkte stahlbänder mit bereichen mit unterschiedlichen optischen eigenschaften
WO1991002829A2 (de) Verfahren zur herstellung von manganhaltigen zinkphosphatschichten auf verzinktem stahl
DE69027428T2 (de) Verzinktes stahlblech mit ausgezeichneter pressverformung, chemischer oberflächenumwandlung und ähnlichen eigenschaften sowie herstellung eines solchen bleches
EP4110970B1 (de) Verfahren zum herstellen gehärteter stahlbauteile mit einer konditionierten zinkkorrosionsschutzschicht
EP3728693B1 (de) Verfahren zur korrosionsschützenden und reinigenden vorbehandlung von metallischen bauteilen
DE19926102B4 (de) Verfahren und Anlage zur Herstellung eines elektrolytisch beschichteten Warmbandes
DE69218916T2 (de) Blech aus aluminium-legierung mit verbesserter pressverformbarkeit und verfahren zur herstellung
EP4110972B1 (de) Verfahren zum herstellen gehärteter stahlbauteile mit einer konditionierten zinklegierungskorrosionsschutzschicht
EP0096753B1 (de) Verfahren zur stromlosen Erzeugung von korrosionsschützenden Schichten auf Aluminiumbauteilen
EP1433879B1 (de) Verfahren zur Beschichtung von Metalloberflächen mit einer Alkaliphosphatierungslösung, wässeriges Konzentrat und Verwendung der derart beschichteten Metalloberflächen
WO2001059180A1 (de) Verfahren zur beschichtung von metalloberflächen, wässeriges konzentrat hierzu und verwendung der beschichteten metallteile
DE860307C (de) Verfahren zur Vorbereitung von Eisenblechen zur Anfertigung von Behaeltern
WO2020064548A1 (de) Verfahren zur verbesserung der phosphatierbarkeit von metallischen oberflächen, welche mit einer temporären vor- bzw. nachbehandlung versehen werden
EP4363632A2 (de) Verfahren für den sequenziellen aufbau einer konversionsschicht auf bauteilen umfassend stahloberflächen

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20220323