EP3782654A1 - Anti-her2 antibodies and immunoconjugates - Google Patents

Anti-her2 antibodies and immunoconjugates Download PDF

Info

Publication number
EP3782654A1
EP3782654A1 EP20185412.2A EP20185412A EP3782654A1 EP 3782654 A1 EP3782654 A1 EP 3782654A1 EP 20185412 A EP20185412 A EP 20185412A EP 3782654 A1 EP3782654 A1 EP 3782654A1
Authority
EP
European Patent Office
Prior art keywords
antibody
seq
her2
amino acid
hvr
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
EP20185412.2A
Other languages
German (de)
English (en)
French (fr)
Inventor
Xiaocheng Chen
Mark Dennis
Jagath Reddy Junutula
Gail Lewis Phillips
Thomas Harden Pillow
Mark X Sliwkowski
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Genentech Inc
Original Assignee
Genentech Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=54238547&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP3782654(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Genentech Inc filed Critical Genentech Inc
Publication of EP3782654A1 publication Critical patent/EP3782654A1/en
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • C07K16/28Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants
    • C07K16/2863Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants against receptors for growth factors, growth regulators
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/55Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having seven-membered rings, e.g. azelastine, pentylenetetrazole
    • A61K31/551Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having seven-membered rings, e.g. azelastine, pentylenetetrazole having two nitrogen atoms, e.g. dilazep
    • A61K31/55131,4-Benzodiazepines, e.g. diazepam or clozapine
    • A61K31/55171,4-Benzodiazepines, e.g. diazepam or clozapine condensed with five-membered rings having nitrogen as a ring hetero atom, e.g. imidazobenzodiazepines, triazolam
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/66Phosphorus compounds
    • A61K31/675Phosphorus compounds having nitrogen as a ring hetero atom, e.g. pyridoxal phosphate
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/7028Compounds having saccharide radicals attached to non-saccharide compounds by glycosidic linkages
    • A61K31/7034Compounds having saccharide radicals attached to non-saccharide compounds by glycosidic linkages attached to a carbocyclic compound, e.g. phloridzin
    • A61K31/704Compounds having saccharide radicals attached to non-saccharide compounds by glycosidic linkages attached to a carbocyclic compound, e.g. phloridzin attached to a condensed carbocyclic ring system, e.g. sennosides, thiocolchicosides, escin, daunorubicin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/395Antibodies; Immunoglobulins; Immune serum, e.g. antilymphocytic serum
    • A61K39/39533Antibodies; Immunoglobulins; Immune serum, e.g. antilymphocytic serum against materials from animals
    • A61K39/3955Antibodies; Immunoglobulins; Immune serum, e.g. antilymphocytic serum against materials from animals against proteinaceous materials, e.g. enzymes, hormones, lymphokines
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/51Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
    • A61K47/68Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an antibody, an immunoglobulin or a fragment thereof, e.g. an Fc-fragment
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/51Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
    • A61K47/68Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an antibody, an immunoglobulin or a fragment thereof, e.g. an Fc-fragment
    • A61K47/6801Drug-antibody or immunoglobulin conjugates defined by the pharmacologically or therapeutically active agent
    • A61K47/6803Drugs conjugated to an antibody or immunoglobulin, e.g. cisplatin-antibody conjugates
    • A61K47/6807Drugs conjugated to an antibody or immunoglobulin, e.g. cisplatin-antibody conjugates the drug or compound being a sugar, nucleoside, nucleotide, nucleic acid, e.g. RNA antisense
    • A61K47/6809Antibiotics, e.g. antitumor antibiotics anthracyclins, adriamycin, doxorubicin or daunomycin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/51Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
    • A61K47/68Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an antibody, an immunoglobulin or a fragment thereof, e.g. an Fc-fragment
    • A61K47/6835Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an antibody, an immunoglobulin or a fragment thereof, e.g. an Fc-fragment the modifying agent being an antibody or an immunoglobulin bearing at least one antigen-binding site
    • A61K47/6849Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an antibody, an immunoglobulin or a fragment thereof, e.g. an Fc-fragment the modifying agent being an antibody or an immunoglobulin bearing at least one antigen-binding site the antibody targeting a receptor, a cell surface antigen or a cell surface determinant
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/51Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
    • A61K47/68Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an antibody, an immunoglobulin or a fragment thereof, e.g. an Fc-fragment
    • A61K47/6835Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an antibody, an immunoglobulin or a fragment thereof, e.g. an Fc-fragment the modifying agent being an antibody or an immunoglobulin bearing at least one antigen-binding site
    • A61K47/6851Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an antibody, an immunoglobulin or a fragment thereof, e.g. an Fc-fragment the modifying agent being an antibody or an immunoglobulin bearing at least one antigen-binding site the antibody targeting a determinant of a tumour cell
    • A61K47/6855Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an antibody, an immunoglobulin or a fragment thereof, e.g. an Fc-fragment the modifying agent being an antibody or an immunoglobulin bearing at least one antigen-binding site the antibody targeting a determinant of a tumour cell the tumour determinant being from breast cancer cell
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/51Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
    • A61K47/68Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an antibody, an immunoglobulin or a fragment thereof, e.g. an Fc-fragment
    • A61K47/6835Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an antibody, an immunoglobulin or a fragment thereof, e.g. an Fc-fragment the modifying agent being an antibody or an immunoglobulin bearing at least one antigen-binding site
    • A61K47/6851Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an antibody, an immunoglobulin or a fragment thereof, e.g. an Fc-fragment the modifying agent being an antibody or an immunoglobulin bearing at least one antigen-binding site the antibody targeting a determinant of a tumour cell
    • A61K47/6863Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an antibody, an immunoglobulin or a fragment thereof, e.g. an Fc-fragment the modifying agent being an antibody or an immunoglobulin bearing at least one antigen-binding site the antibody targeting a determinant of a tumour cell the tumour determinant being from stomach or intestines cancer cell
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K49/00Preparations for testing in vivo
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • A61P35/04Antineoplastic agents specific for metastasis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • C07K16/28Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants
    • C07K16/30Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants from tumour cells
    • C07K16/3015Breast
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • C07K16/32Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against translation products of oncogenes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/574Immunoassay; Biospecific binding assay; Materials therefor for cancer
    • G01N33/57407Specifically defined cancers
    • G01N33/57415Specifically defined cancers of breast
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/574Immunoassay; Biospecific binding assay; Materials therefor for cancer
    • G01N33/57407Specifically defined cancers
    • G01N33/57446Specifically defined cancers of stomach or intestine
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/574Immunoassay; Biospecific binding assay; Materials therefor for cancer
    • G01N33/57484Immunoassay; Biospecific binding assay; Materials therefor for cancer involving compounds serving as markers for tumor, cancer, neoplasia, e.g. cellular determinants, receptors, heat shock/stress proteins, A-protein, oligosaccharides, metabolites
    • G01N33/57492Immunoassay; Biospecific binding assay; Materials therefor for cancer involving compounds serving as markers for tumor, cancer, neoplasia, e.g. cellular determinants, receptors, heat shock/stress proteins, A-protein, oligosaccharides, metabolites involving compounds localized on the membrane of tumor or cancer cells
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/20Immunoglobulins specific features characterized by taxonomic origin
    • C07K2317/24Immunoglobulins specific features characterized by taxonomic origin containing regions, domains or residues from different species, e.g. chimeric, humanized or veneered
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/30Immunoglobulins specific features characterized by aspects of specificity or valency
    • C07K2317/34Identification of a linear epitope shorter than 20 amino acid residues or of a conformational epitope defined by amino acid residues
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/50Immunoglobulins specific features characterized by immunoglobulin fragments
    • C07K2317/51Complete heavy chain or Fd fragment, i.e. VH + CH1
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/50Immunoglobulins specific features characterized by immunoglobulin fragments
    • C07K2317/515Complete light chain, i.e. VL + CL
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/50Immunoglobulins specific features characterized by immunoglobulin fragments
    • C07K2317/56Immunoglobulins specific features characterized by immunoglobulin fragments variable (Fv) region, i.e. VH and/or VL
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/50Immunoglobulins specific features characterized by immunoglobulin fragments
    • C07K2317/56Immunoglobulins specific features characterized by immunoglobulin fragments variable (Fv) region, i.e. VH and/or VL
    • C07K2317/565Complementarity determining region [CDR]
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/70Immunoglobulins specific features characterized by effect upon binding to a cell or to an antigen
    • C07K2317/73Inducing cell death, e.g. apoptosis, necrosis or inhibition of cell proliferation
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/90Immunoglobulins specific features characterized by (pharmaco)kinetic aspects or by stability of the immunoglobulin
    • C07K2317/92Affinity (KD), association rate (Ka), dissociation rate (Kd) or EC50 value
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2333/00Assays involving biological materials from specific organisms or of a specific nature
    • G01N2333/82Translation products from oncogenes

Definitions

  • the present invention relates to anti-HER2 antibodies and immunoconjugates and methods of using the same.
  • HER2 ErbB2 receptor tyrosine kinase
  • EGFR epidermal growth factor receptor
  • Overexpression of HER2 is observed in approximately 20% of human breast cancers and is implicated in the aggressive growth and poor clinical outcomes associated with these tumors ( Slamon et al (1987) Science 235:177-182 ).
  • HER2 protein overexpression can be determined using an immunohistochemistry based assessment of fixed tumor blocks ( Press MF, et al (1993) Cancer Res 53:4960-70 ).
  • Trastuzumab has been shown, in both in vitro assays and in animals, to inhibit the proliferation of human tumor cells that overexpress HER2 ( Hudziak et al (1989) Mol Cell Biol 9:1165-72 ; Lewis et al (1993) Cancer Immunol Immunother; 37:255-63 ; Baselga et al (1998) Cancer Res. 58:2825-2831 ).
  • Trastuzumab is a mediator of antibody-dependent cellular cytotoxicity, ADCC ( Lewis et al (1993) Cancer Immunol Immunother 37(4):255-263 ; Hotaling et al (1996) [abstract]. Proc.
  • HERCEPTIN® was approved in 1998 for the treatment of patients with HER2-overexpressing metastatic breast cancers ( Baselga et al, (1996) J. Clin. Oncol. 14:737-744 ) that have received extensive prior anti-cancer therapy, and has since been used in over 300,000 patients ( Slamon DJ, et al. N Engl J Med 2001;344:783-92 ; Vogel CL, et al. J Clin Oncol 2002;20:719-26 ; Marty M, et al. J Clin Oncol 2005;23:4265-74 ; Romond EH, et al. T N Engl J Med 2005;353:1673-84 ; Piccart-Gebhart MJ, et al.
  • Trastuzumab-MCC-DM1 (T-DM1, trastuzumab emtansine, ado-trastuzumab emtansine, KADCYLA®), a novel antibody-drug conjugate (ADC) for the treatment of HER2-positive breast cancer, is composed of the cytotoxic agent DM1 (a thiol-containing maytansinoid anti-microtubule agent) conjugated to trastuzumab at lysine side chains via an MCC linker, with an average drug load (drug to antibody ratio) of about 3.5. After binding to HER2 expressed on tumor cells, T-DM1 undergoes receptor-mediated internalization, resulting in intracellular release of cytotoxic catabolites containing DM1 and subsequent cell death.
  • DM1 a thiol-containing maytansinoid anti-microtubule agent conjugated to trastuzumab at lysine side chains via an MCC linker, with an average drug load
  • Pertuzumab also known as recombinant humanized monoclonal antibody 2C4, rhuMAb 2C4, PERJETA®, Genentech, Inc, South San Francisco
  • HER dimerization inhibitors HDI
  • functions to inhibit the ability of HER2 to form active heterodimers or homodimers with other HER receptors such as EGFR/HER1, HER2, HER3 and HER4.
  • Pertuzumab blockade of the formation of HER2-HER 3 heterodimers in tumor cells has been demonstrated to inhibit critical cell signaling, which results in reduced tumor proliferation and survival ( Agus et al. Cancer Cell 2:127-37 (2002 )).
  • Pertuzumab has been evaluated in Phase II studies in combination with trastuzumab in patients with HER2-positive metastatic breast cancer who have previously received trastuzumab for metastatic disease.
  • Pertuzumab marketed under the tradename PERJETA®, was approved in 2012 for the treatment of patients with advanced or late-stage (metastatic) HER2-positive breast cancer.
  • HER2-positive breast cancers have increased amounts of the HER2 protein that contributes to cancer cell growth and survival.
  • PERJETA® pertuzumab
  • EBC early stage breast cancer
  • PERJETA® is the first FDA-approved drug for the neoadjuvant treatment of breast cancer.
  • the invention provides anti-HER2 antibodies and immunoconjugates and methods of using the same.
  • an isolated antibody that binds to HER2 comprises (a) HVR-H1 comprising the amino acid sequence of SEQ ID NO:15; (b) HVR-H2 comprising the amino acid sequence of SEQ ID NO:16; (c) HVR-H3 comprising the amino acid sequence of SEQ ID NO:17; (d) HVR-L1 comprising the amino acid sequence of SEQ ID NO:12; (e) HVR-L2 comprising the amino acid sequence of SEQ ID NO:13; and (f) HVR-L3 comprising the amino acid sequence of SEQ ID NO: 14.
  • the antibody comprises a heavy chain variable region comprising the sequence of SEQ ID NO: 11 and a light chain variable region comprising the sequence of SEQ ID NO: 10.
  • the antibody is a monoclonal antibody.
  • the antibody is a humanized or chimeric antibody.
  • the antibody is an antibody fragment that binds HER2.
  • HER2 is human HER2 comprising amino acids 23 to 1255 of SEQ ID NO: 1.
  • the antibody binds to extracellular domain I of HER2.
  • extracellular domain I of HER2 has the sequence of SEQ ID NO: 35.
  • the antibody binds to loop 163-189 and loop 185-189 of extracellular domain I (e.g., a first loop defined by amino acids 163-189 and a second loop defined by amino acids 185-189 of extracellular domain I).
  • the antibody contacts His171, Ser186, Ser187 and Glu188 of extracellular domain I.
  • the antibody is an IgG1, IgG2a or IgG2b antibody. In some embodiments, the antibody comprises at least one mutation in the heavy chain constant region selected from A118C and S400C. In some embodiments, the antibody comprises at least one mutation in the light chain constant region selected from K149C and V205C.
  • the antibody comprises:
  • an isolated antibody that binds to HER2 comprises a heavy chain comprising the sequence of SEQ ID NO: 19 and a light chain comprising the sequence of SEQ ID NO: 23.
  • an isolated antibody that binds to HER2 is provided, wherein the antibody comprises a heavy chain comprising the sequence of SEQ ID NO: 24 and a light chain comprising the sequence of SEQ ID NO: 18.
  • an isolated nucleic acid is provided, which encodes an antibody described herein.
  • a host cell comprising the nucleic acid is provided.
  • a method of producing an antibody comprising culturing the host cell so that the antibody is produced.
  • an immunoconjugate which comprises an antibody described herein and a cytotoxic agent.
  • the immunoconjugate has the formula Ab-(L-D)p, wherein:
  • an immunoconjugate wherein D is a pyrrolobenzodiazepine of Formula A: wherein the dotted lines indicate the optional presence of a double bond between C1 and C2 or C2 and C3;
  • an immunoconjugate is provided, wherein D is a nemorubicin derivative.
  • D has a structure selected from: and
  • an immunoconjugate comprising a 1-(chloromethyl)-2,3-dihydro-1H-benzo[e]indole (CBI).
  • D has the formula: where
  • D has a structure selected from:
  • an immunoconjugate is provided, wherein the linker is cleavable by a protease.
  • the linker is acid-labile.
  • the linker comprises hydrazone.
  • the linker comprises a disulfide.
  • an immunoconjugate comprising a structure selected from: and wherein Ab is an antibody described herein.
  • an immunoconjugate comprising a structure selected from: and wherein Ab is an antibody described herein.
  • an immunoconjugate comprising a structure selected from: and wherein Ab is an antibody described herein.
  • p may range from 1.3-2, 1.4-2, 1.5-2, or 2-5.
  • a pharmaceutical formulation comprising an immunoconjugate described herein and a pharmaceutically acceptable carrier.
  • the pharmaceutical formulation further comprises an additional therapeutic agent.
  • the additional therapeutic agent is an antibody or immunoconjugate that binds to HER2.
  • the additional therapeutic agent is (i) an antibody or immunoconjugate that binds to domain II of HER2, and/or (ii) an antibody or immunoconjugate that binds to domain IV or HER2.
  • the additional therapeutic agent is (i) an antibody or immunoconjugate that binds to epitope 2C4, and/or (ii) an antibody or immunoconjugate that binds to epitope 4D5.
  • the additional therapeutic agent is selected from trastuzumab, trastuzumab-MCC-DM1 (T-DM1), and pertuzumab.
  • the pharmaceutical formulation further comprises (1) trastuzumab or T-DM1, and (2) pertuzumab.
  • a method comprises administering to the individual an effective amount of an immunoconjugate described herein, or a pharmaceutical composition described herein.
  • the HER2-positive cancer is breast cancer or gastric cancer.
  • the HER2-positive breast cancer is early-stage breast cancer.
  • the HER2-positive breast cancer is metastatic breast cancer.
  • the HER2-positive cancer is recurrent cancer.
  • the recurrent cancer is locally recurrent cancer.
  • the HER2-positive cancer is advanced cancer.
  • the HER2-positive cancer is non-resectable.
  • the method further comprises administering an additional therapeutic agent to the individual.
  • a method of treating an individual having a HER2-positive cancer comprises administering to the individual an effective amount of an immunoconjugate described herein and at least one additional therapeutic agent to the individual.
  • the additional therapeutic agent is an antibody or immunoconjugate that binds to HER2.
  • the additional therapeutic agent is (i) an antibody or immunoconjugate that binds to domain II of HER2, and/or (ii) an antibody or immunoconjugate that binds to domain IV or HER2.
  • the additional therapeutic agent is (i) an antibody or immunoconjugate that binds to epitope 2C4, and/or (ii) an antibody or immunoconjugate that binds to epitope 4D5.
  • the additional therapeutic agent is selected from trastuzumab, trastuzumab-MCC-DM1 (T-DM1), and pertuzumab. In some embodiments, the additional therapeutic agents are (1) trastuzumab or T-DM1, and (2) pertuzumab.
  • the HER2-positive cancer is breast cancer or gastric cancer. In some embodiments, the HER2-positive breast cancer is early-stage breast cancer. In some embodiments, the HER2-positive breast cancer is metastatic breast cancer. In some embodiments, the HER2-positive cancer is recurrent cancer. In some embodiments, the recurrent cancer is locally recurrent cancer. In some embodiments, the HER2-positive cancer is advanced cancer. In some embodiments, the HER2-positive cancer is non-resectable.
  • a method of treating an individual having a HER2-positive cancer comprises:
  • a method comprises exposing the cell to an immunoconjugate described herein under conditions permissive for binding of the immunoconjugate to HER2 on the surface of the cell, thereby inhibiting proliferation of the cell.
  • the cell is a breast cancer cell of a gastric cancer cell.
  • an antibody described herein conjugated to a label is provided.
  • the label is a positron emitter.
  • the positron emitter is 89 Zr.
  • a method comprises contacting the biological sample with an anti-HER2 antibody described herein under conditions permissive for binding of the anti-HER2 antibody to a naturally occurring human HER2, and detecting whether a complex is formed between the anti-HER2 antibody and a naturally occurring human HER2 in the biological sample.
  • the biological sample is a breast cancer or gastric cancer sample.
  • a method comprises (i) administering a labeled anti-HER2 antibody to a subject having or suspected of having a HER2-positive cancer, wherein the labeled anti-HER2 antibody comprises an anti-HER2 antibody described herein, and (ii) detecting the labeled anti-HER2 antibody in the subject, wherein detection of the labeled anti-HER2 antibody indicates a HER2-positive cancer in the subject.
  • the labeled anti-HER2 antibody comprises an anti-HER2 antibody conjugated to a positron emitter.
  • the positron emitter is 89 Zr.
  • acceptor human framework for the purposes herein is a framework comprising the amino acid sequence of a light chain variable domain (VL) framework or a heavy chain variable domain (VH) framework derived from a human immunoglobulin framework or a human consensus framework, as defined below.
  • An acceptor human framework "derived from” a human immunoglobulin framework or a human consensus framework may comprise the same amino acid sequence thereof, or it may contain amino acid sequence changes. In some embodiments, the number of amino acid changes are 10 or less, 9 or less, 8 or less, 7 or less, 6 or less, 5 or less, 4 or less, 3 or less, or 2 or less.
  • the VL acceptor human framework is identical in sequence to the VL human immunoglobulin framework sequence or human consensus framework sequence.
  • Binding affinity refers to the strength of the sum total of noncovalent interactions between a single binding site of a molecule (e.g., an antibody) and its binding partner (e.g., an antigen). Unless indicated otherwise, as used herein, "binding affinity” refers to intrinsic binding affinity which reflects a 1:1 interaction between members of a binding pair ( e.g ., antibody and antigen).
  • the affinity of a molecule X for its partner Y can generally be represented by the dissociation constant (Kd). Affinity can be measured by common methods known in the art, including those described herein. Specific illustrative and exemplary embodiments for measuring binding affinity are described in the following.
  • an “affinity matured” antibody refers to an antibody with one or more alterations in one or more hypervariable regions (HVRs), compared to a parent antibody which does not possess such alterations, such alterations resulting in an improvement in the affinity of the antibody for antigen.
  • HVRs hypervariable regions
  • anti-HER2 antibody and "an antibody that binds to HER2” refer to an antibody that is capable of binding HER2 with sufficient affinity such that the antibody is useful as a diagnostic and/or therapeutic agent in targeting HER2.
  • the extent of binding of an anti-HER2 antibody to an unrelated, non-HER2 protein is less than about 10% of the binding of the antibody to HER2 as measured, e.g ., by a radioimmunoassay (RIA).
  • an antibody that binds to HER2 has a dissociation constant (Kd) of ⁇ 1 ⁇ M, ⁇ 100 nM, ⁇ 10 nM, ⁇ 5 nm, ⁇ 4 nM, ⁇ 3 nM, ⁇ 2 nM, ⁇ 1 nM, ⁇ 0.1 nM, ⁇ 0.01 nM, or ⁇ 0.001 nM ( e.g., 10 -8 M or less, e.g. from 10 -8 M to 10 -13 M, e.g., from 10 -9 M to 10 -13 M).
  • an anti- HER2 antibody binds to an epitope of HER2 that is conserved among HER2 from different species.
  • antibody is used herein in the broadest sense and encompasses various antibody structures, including but not limited to monoclonal antibodies, polyclonal antibodies, multispecific antibodies (e.g., bispecific antibodies), and antibody fragments so long as they exhibit the desired antigen-binding activity.
  • antibody fragment refers to a molecule other than an intact antibody that comprises a portion of an intact antibody and that binds the antigen to which the intact antibody binds.
  • antibody fragments include but are not limited to Fv, Fab, Fab', Fab'-SH, F(ab') 2 ; diabodies; linear antibodies; single-chain antibody molecules ( e.g. scFv); and multispecific antibodies formed from antibody fragments.
  • an "antibody that binds to the same epitope” as a reference antibody refers to an antibody that blocks binding of the reference antibody to its antigen in a competition assay by 50% or more, and conversely, the reference antibody blocks binding of the antibody to its antigen in a competition assay by 50% or more.
  • An exemplary competition assay is provided herein.
  • cancer and “cancerous” refer to or describe the physiological condition in mammals that is typically characterized by unregulated cell growth/proliferation.
  • examples of cancer include, but are not limited to, carcinoma, lymphoma, blastoma, sarcoma, and leukemia.
  • the cancer is breast cancer or gastric cancer.
  • a cancer is any HER2-positive cancer.
  • a "HER2-positive” cancer comprises cancer cells which have higher than normal levels of HER2.
  • Examples of HER2-positive cancer include HER2-positive breast cancer and HER2-positive gastric cancer.
  • HER2-positive cancer has an immunohistochemistry (IHC) score of 2+ or 3+ and/or an in situ hybridization (ISH) amplification ratio ⁇ 2.0.
  • IHC immunohistochemistry
  • ISH in situ hybridization
  • EBC early stage breast cancer
  • early breast cancer or “early breast cancer” is used herein to refer to breast cancer that has not spread beyond the breast or the axillary lymph nodes. This includes ductal carcinoma in situ and stage I, stage IIA, stage IIB, and stage IIIA breast cancers.
  • Reference to a tumor or cancer as a “Stage 0," “Stage I,” “Stage II,” “Stage III,” or “Stage IV”, and various sub-stages within this classification, indicates classification of the tumor or cancer using the Overall Stage Grouping or Roman Numeral Staging methods known in the art.
  • a Stage 0 cancer is an in situ lesion
  • a Stage I cancer is small localized tumor
  • a Stage II and III cancer is a local advanced tumor which exhibits involvement of the local lymph nodes
  • a Stage IV cancer represents metastatic cancer.
  • the specific stages for each type of tumor is known to the skilled clinician.
  • metal breast cancer means the state of breast cancer where the cancer cells are transmitted from the original site to one or more sites elsewhere in the body, by the blood vessels or lymphatics, to form one or more secondary tumors in one or more organs besides the breast.
  • an “advanced” cancer is one which has spread outside the site or organ of origin, either by local invasion or metastasis. Accordingly, the term “advanced” cancer includes both locally advanced and metastatic disease.
  • a "recurrent" cancer is one which has regrown, either at the initial site or at a distant site, after a response to initial therapy, such as surgery.
  • a "locally recurrent" cancer is cancer that returns after treatment in the same place as a previously treated cancer.
  • An "operable” or “resectable” cancer is cancer which is confined to the primary organ and suitable for surgery (resection).
  • a “non-resectable” or “unresectable” cancer is not able to be removed (resected) by surgery.
  • chimeric antibody refers to an antibody in which a portion of the heavy and/or light chain is derived from a particular source or species, while the remainder of the heavy and/or light chain is derived from a different source or species.
  • the "class" of an antibody refers to the type of constant domain or constant region possessed by its heavy chain.
  • the heavy chain constant domains that correspond to the different classes of immunoglobulins are called ⁇ , ⁇ , ⁇ , ⁇ , and ⁇ , respectively.
  • cytotoxic agent refers to a substance that inhibits or prevents a cellular function and/or causes cell death or destruction.
  • Cytotoxic agents include, but are not limited to, radioactive isotopes (e.g ., At 211 , I 131 , I 125 , Y 90 , Re 186 , Re 188 , Sm 153 , Bi 212 , P 32 , Pb 212 and radioactive isotopes of Lu); chemotherapeutic agents or drugs (e.g., methotrexate, adriamicin, vinca alkaloids (vincristine, vinblastine, etoposide), doxorubicin, melphalan, mitomycin C, chlorambucil, daunorubicin or other intercalating agents); growth inhibitory agents; enzymes and fragments thereof such as nucleolytic enzymes; antibiotics; toxins such as small molecule toxins or enzymatically active toxins of bacterial,
  • Antibody effector functions refer to those biological activities attributable to the Fc region of an antibody, which vary with the antibody isotype. Examples of antibody effector functions include: C1q binding and complement dependent cytotoxicity (CDC); Fc receptor binding; antibody-dependent cell-mediated cytotoxicity (ADCC); phagocytosis; down regulation of cell surface receptors ( e.g. B cell receptor); and B cell activation.
  • an "effective amount" of an agent refers to an amount effective, at dosages and for periods of time necessary, to achieve the desired therapeutic or prophylactic result.
  • the effective amount of the drug for treating cancer may reduce the number of cancer cells; reduce the tumor size; inhibit ( i.e ., slow to some extent and preferably stop) cancer cell infiltration into peripheral organs; inhibit ( i.e ., slow to some extent and preferably stop) tumor metastasis; inhibit, to some extent, tumor growth; and/or relieve to some extent one or more of the symptoms associated with the cancer.
  • the drug may prevent growth and/or kill existing cancer cells, it may be cytostatic and/or cytotoxic.
  • the effective amount may extend progression free survival (e.g.
  • epitope refers to the particular site on an antigen molecule to which an antibody binds.
  • epitope 4D5 or “4D5 epitope” or “4D5" is the region in the extracellular domain of HER2 to which the antibody 4D5 (ATCC CRL 10463) and trastuzumab bind. This epitope is close to the transmembrane domain of HER2, and within domain IV of HER2.
  • a routine cross-blocking assay such as that described in Antibodies, A Laboratory Manual, Cold Spring Harbor Laboratory, Ed Harlow and David Lane (1988 ), can be performed.
  • epitope mapping can be performed to assess whether the antibody binds to the 4D5 epitope of HER2 (e.g. any one or more residues in the region from about residue 550 to about residue 610, inclusive, of HER2 (SEQ ID NO: 39).
  • epitope 2C4 is the region in the extracellular domain of HER2 to which the antibody 2C4 binds.
  • a routine cross-blocking assay such as that described in Antibodies, A Laboratory Manual, Cold Spring Harbor Laboratory, Ed Harlow and David Lane (1988 ) can be performed.
  • epitope mapping can be performed to assess whether the antibody binds to the 2C4 epitope of HER2.
  • Epitope 2C4 comprises residues from domain II in the extracellular domain of HER2.
  • the 2C4 antibody and pertuzumab bind to the extracellular domain of HER2 at the junction of domains I, II and III ( Franklin et al. Cancer Cell 5:317-328 (2004 )).
  • Fc region herein is used to define a C-terminal region of an immunoglobulin heavy chain that contains at least a portion of the constant region.
  • the term includes native sequence Fc regions and variant Fc regions.
  • a human IgG heavy chain Fc region extends from Cys226, or from Pro230, to the carboxyl-terminus of the heavy chain.
  • the C-terminal lysine (Lys447) of the Fc region may or may not be present.
  • numbering of amino acid residues in the Fc region or constant region is according to the EU numbering system, also called the EU index, as described in Kabat et al., Sequences of Proteins of Immunological Interest, 5th Ed. Public Health Service, National Institutes of Health, Bethesda, MD, 1991 .
  • FR Framework or "FR” refers to variable domain residues other than hypervariable region (HVR) residues.
  • the FR of a variable domain generally consists of four FR domains: FR1, FR2, FR3, and FR4. Accordingly, the HVR and FR sequences generally appear in the following sequence in VH (or VL): FR1-H1(L1)-FR2-H2(L2)-FR3-H3(L3)-FR4.
  • full length antibody “intact antibody,” and “whole antibody” are used herein interchangeably to refer to an antibody having a structure substantially similar to a native antibody structure or having heavy chains that contain an Fc region as defined herein.
  • glycosylated forms of HER2 refers to naturally occurring forms of HER2 that are post-translationally modified by the addition of carbohydrate residues.
  • host cell refers to cells into which exogenous nucleic acid has been introduced, including the progeny of such cells.
  • Host cells include “transformants” and “transformed cells,” which include the primary transformed cell and progeny derived therefrom without regard to the number of passages. Progeny may not be completely identical in nucleic acid content to a parent cell, but may contain mutations. Mutant progeny that have the same function or biological activity as screened or selected for in the originally transformed cell are included herein.
  • a "human antibody” is one which possesses an amino acid sequence which corresponds to that of an antibody produced by a human or a human cell or derived from a non-human source that utilizes human antibody repertoires or other human antibody-encoding sequences. This definition of a human antibody specifically excludes a humanized antibody comprising non-human antigen-binding residues.
  • a "human consensus framework” is a framework which represents the most commonly occurring amino acid residues in a selection of human immunoglobulin VL or VH framework sequences.
  • the selection of human immunoglobulin VL or VH sequences is from a subgroup of variable domain sequences.
  • the subgroup of sequences is a subgroup as in Kabat et al., Sequences of Proteins of Immunological Interest, Fifth Edition, NIH Publication 91-3242, Bethesda MD (1991), vols. 1-3 .
  • the subgroup is subgroup kappa I as in Kabat et al., supra.
  • the subgroup is subgroup III as in Kabat et al., supra.
  • a “humanized” antibody refers to a chimeric antibody comprising amino acid residues from non-human HVRs and amino acid residues from human FRs.
  • a humanized antibody will comprise substantially all of at least one, and typically two, variable domains, in which all or substantially all of the HVRs (e.g., CDRs) correspond to those of a non-human antibody, and all or substantially all of the FRs correspond to those of a human antibody.
  • a humanized antibody optionally may comprise at least a portion of an antibody constant region derived from a human antibody.
  • a "humanized form" of an antibody, e.g ., a non-human antibody refers to an antibody that has undergone humanization.
  • hypervariable region refers to each of the regions of an antibody variable domain which are hypervariable in sequence and/or form structurally defined loops ("hypervariable loops").
  • native four-chain antibodies comprise six HVRs; three in the VH (HI, H2, H3), and three in the VL (L1, L2, L3).
  • HVRs generally comprise amino acid residues from the hypervariable loops and/or from the "complementarity determining regions" (CDRs), the latter being of highest sequence variability and/or involved in antigen recognition.
  • CDRs complementarity determining regions
  • Exemplary hypervariable loops occur at amino acid residues 26-32 (L1), 50-52 (L2), 91-96 (L3), 26-32 (HI), 53-55 (H2), and 96-101 (H3).
  • Exemplary CDRs CDR-L1, CDR-L2, CDR-L3, CDR-H1, CDR-H2, and CDR-H3 occur at amino acid residues 24-34 of L1, 50-56 of L2, 89-97 of L3, 31-35B of H1, 50-65 of H2, and 95-102 of H3.
  • CDRs generally comprise the amino acid residues that form the hypervariable loops.
  • CDRs also comprise "specificity determining residues,” or "SDRs,” which are residues that contact antigen. SDRs are contained within regions of the CDRs called abbreviated-CDRs, or a-CDRs.
  • Exemplary a-CDRs (a-CDR-L1, a-CDR-L2, a-CDR-L3, a-CDR-H1, a-CDR-H2, and a-CDR-H3) occur at amino acid residues 31-34 of L1, 50-55 of L2, 89-96 of L3, 31-35B of H1, 50-58 of H2, and 95-102 of H3.
  • HVR residues and other residues in the variable domain e.g., FR residues
  • FR residues are numbered herein according to Kabat et al., supra.
  • an “immunoconjugate” is an antibody conjugated to one or more heterologous molecule(s), including but not limited to a cytotoxic agent.
  • a "patient” or “individual” or “subject” is a mammal. Mammals include, but are not limited to, domesticated animals (e.g., cows, sheep, cats, dogs, and horses), primates (e.g., humans and non-human primates such as monkeys), rabbits, and rodents (e.g., mice and rats).
  • the patient, individual, or subject is a human.
  • the patient may be a "cancer patient," i.e. one who is suffering or at risk for suffering from one or more symptoms of cancer, in particular gastric or breast cancer.
  • a "patient population” refers to a group of cancer patients. Such populations can be used to demonstrate statistically significant efficacy and/or safety of a drug.
  • a "relapsed" patient is one who has signs or symptoms of cancer after remission.
  • the patient has relapsed after adjuvant or neoadjuvant therapy.
  • a cancer or biological sample which "displays HER expression, amplification, or activation" is one which, in a diagnostic test, expresses (including overexpresses) a HER receptor, has amplified HER gene, and/or otherwise demonstrates activation or phosphorylation of a HER receptor.
  • Neoadjuvant therapy or "preoperative therapy” herein refers to therapy given prior to surgery.
  • the goal of neoadjuvant therapy is to provide immediate systemic treatment, potentially eradicating micrometastases that would otherwise proliferate if the standard sequence of surgery followed by systemic therapy were followed.
  • Neoadjuvant therapy may also help to reduce tumor size thereby allowing complete resection of initially unresectable tumors or preserving portions of the organ and its functions.
  • neoadjuvant therapy permits an in vivo assessment of drug efficacy, which may guide the choice of subsequent treatments.
  • adjuvant therapy herein refers to therapy given after definitive surgery, where no evidence of residual disease can be detected, so as to reduce the risk of disease recurrence.
  • the goal of adjuvant therapy is to prevent recurrence of the cancer, and therefore to reduce the chance of cancer-related death.
  • Adjuvant therapy herein specifically excludes neoadjuvant therapy.
  • Definitive surgery is used as that term is used within the medical community. Definitive surgery includes, for example, procedures, surgical or otherwise, that result in removal or resection of the tumor, including those that result in the removal or resection of all grossly visible tumor. Definitive surgery includes, for example, complete or curative resection or complete gross resection of the tumor. Definitive surgery includes procedures that occur in one or more stages, and includes, for example, multi-stage surgical procedures where one or more surgical or other procedures are performed prior to resection of the tumor. Definitive surgery includes procedures to remove or resect the tumor including involved organs, parts of organs and tissues, as well as surrounding organs, such as lymph nodes, parts of organs, or tissues. Removal may be incomplete such that tumor cells might remain even though undetected.
  • “Survival” refers to the patient remaining alive, and includes disease free survival (DFS), progression free survival (PFS) and overall survival (OS). Survival can be estimated by the Kaplan-Meier method, and any differences in survival are computed using the stratified log-rank test.
  • DFS disease free survival
  • PFS progression free survival
  • OS overall survival
  • PFS progression-Free Survival
  • DFS Disease free survival
  • Disease free survival refers to the patient remaining alive, without return of the cancer, for a defined period of time such as about 1 year, about 2 years, about 3 years, about 4 years, about 5 years, about 10 years, etc., from initiation of treatment or from initial diagnosis.
  • DFS is analyzed according to the intent-to-treat principle, i.e., patients are evaluated on the basis of their assigned therapy.
  • the events used in the analysis of DFS can include local, regional and distant recurrence of cancer, occurrence of secondary cancer, and death from any cause in patients without a prior event (e.g, breast cancer recurrence or second primary cancer).
  • “Overall survival” refers to the patient remaining alive for a defined period of time, such as about 1 year, about 2 years, about 3 years, about 4 years, about 5 years, about 10 years, etc., from initiation of treatment or from initial diagnosis. In the studies underlying the invention the event used for survival analysis was death from any cause.
  • extending survival is meant increasing DFS and/or OS in a treated patient relative to an untreated patient, or relative to a control treatment protocol. Survival is monitored for at least about six months, or at least about 1 year, or at least about 2 years, or at least about 3 years, or at least about 4 years, or at least about 5 years, or at least about 10 years, etc., following the initiation of treatment or following the initial diagnosis.
  • “monotherapy” is meant a therapeutic regimen that includes only a single therapeutic agent for the treatment of the cancer or tumor during the course of the treatment period.
  • maintenance therapy is meant a therapeutic regimen that is given to reduce the likelihood of disease recurrence or progression.
  • Maintenance therapy can be provided for any length of time, including extended time periods up to the life-span of the subject. Maintenance therapy can be provided after initial therapy or in conjunction with initial or additional therapies. Dosages used for maintenance therapy can vary and can include diminished dosages as compared to dosages used for other types of therapy.
  • Such antibody preferably comprises the light and heavy chain amino acid sequences shown in SEQ ID NO: 30 and SEQ ID NO. 29, respectively.
  • pertuzumab For the purposes herein, “pertuzumab”, “PERJETA®” and “rhuMAb 2C4", are used interchangeably.
  • Such antibody comprises a main species antibody having the light and heavy chain amino acid sequences in SEQ ID NOs: 32 and 31, respectively ( Figure 13A and B ).
  • pertuzumab comprises a variant species antibody with an amino-terminal leader extension, e.g., comprising a light chain amino acid sequence of SEQ ID NO: 34, and a heavy chain amino acid sequence of SEQ ID NO: 33.
  • the antibody is optionally produced by recombinant Chinese Hamster Ovary (CHO) cells.
  • T-DM1 trastuzumab linked through the linker moiety MCC to the maytansinoid drug moiety DM1, including all mixtures of variously loaded and attached antibody-drug conjugates where 1, 2, 3, 4, 5, 6, 7, and 8 drug moieties are covalently attached to the antibody trastuzumab ( US 7097840 ; US 8337856 ; US 2005/0276812 ; US 2005/0166993 ).
  • an “isolated antibody” is one which has been separated from a component of its natural environment.
  • an antibody is purified to greater than 95% or 99% purity as determined by, for example, electrophoretic (e.g., SDS-PAGE, isoelectric focusing (IEF), capillary electrophoresis) or chromatographic (e.g., ion exchange or reverse phase HPLC).
  • electrophoretic e.g., SDS-PAGE, isoelectric focusing (IEF), capillary electrophoresis
  • chromatographic e.g., ion exchange or reverse phase HPLC
  • isolated nucleic acid refers to a nucleic acid molecule that has been separated from a component of its natural environment.
  • An isolated nucleic acid includes a nucleic acid molecule contained in cells that ordinarily contain the nucleic acid molecule, but the nucleic acid molecule is present extrachromosomally or at a chromosomal location that is different from its natural chromosomal location.
  • isolated nucleic acid encoding an anti-HER2 antibody refers to one or more nucleic acid molecules encoding antibody heavy and light chains (or fragments thereof), including such nucleic acid molecule(s) in a single vector or separate vectors, and such nucleic acid molecule(s) present at one or more locations in a host cell.
  • HER2 refers to any native, mature HER2 which results from processing of a HER2 precursor protein in a cell.
  • the term includes HER2 from any vertebrate source, including mammals such as primates (e.g. humans and cynomolgus monkeys) and rodents ( e.g., mice and rats), unless otherwise indicated.
  • the term also includes naturally occurring variants of HER2, e.g ., splice variants or allelic variants.
  • the amino acid sequence of an exemplary human HER2 precursor protein, with signal sequence is shown in SEQ ID NO:1.
  • the amino acid sequence of an exemplary mature human HER2 is amino acids 23-1255 of SEQ ID NO: 1.
  • HER2-positive cell refers to a cell that expresses HER2 on its surface.
  • monoclonal antibody refers to an antibody obtained from a population of substantially homogeneous antibodies, i.e., the individual antibodies comprising the population are identical and/or bind the same epitope, except for possible variant antibodies, e.g ., containing naturally occurring mutations or arising during production of a monoclonal antibody preparation, such variants generally being present in minor amounts.
  • polyclonal antibody preparations typically include different antibodies directed against different determinants (epitopes)
  • each monoclonal antibody of a monoclonal antibody preparation is directed against a single determinant on an antigen.
  • the modifier "monoclonal” indicates the character of the antibody as being obtained from a substantially homogeneous population of antibodies, and is not to be construed as requiring production of the antibody by any particular method.
  • the monoclonal antibodies to be used in accordance with the present invention may be made by a variety of techniques, including but not limited to the hybridoma method, recombinant DNA methods, phage-display methods, and methods utilizing transgenic animals containing all or part of the human immunoglobulin loci, such methods and other exemplary methods for making monoclonal antibodies being described herein.
  • naked antibody refers to an antibody that is not conjugated to a heterologous moiety (e.g., a cytotoxic moiety) or radiolabel.
  • the naked antibody may be present in a pharmaceutical formulation.
  • Native antibodies refer to naturally occurring immunoglobulin molecules with varying structures.
  • native IgG antibodies are heterotetrameric glycoproteins of about 150,000 daltons, composed of two identical light chains and two identical heavy chains that are disulfide-bonded. From N-to C-terminus, each heavy chain has a variable region (VH), also called a variable heavy domain or a heavy chain variable domain, followed by three constant domains (CH1, CH2, and CH3).
  • VH variable region
  • VL variable region
  • the light chain of an antibody may be assigned to one of two types, called kappa ( ⁇ ) and lambda ( ⁇ ), based on the amino acid sequence of its constant domain.
  • a “vial” is a container suitable for holding a liquid or lyophilized preparation.
  • the vial is a single-use vial, e.g. a 20-cc single-use vial with a stopper.
  • package insert is used to refer to instructions customarily included in commercial packages of therapeutic products, that contain information about the indications, usage, dosage, administration, combination therapy, contraindications and/or warnings concerning the use of such therapeutic products.
  • Percent (%) amino acid sequence identity with respect to a reference polypeptide sequence is defined as the percentage of amino acid residues in a candidate sequence that are identical with the amino acid residues in the reference polypeptide sequence, after aligning the sequences and introducing gaps, if necessary, to achieve the maximum percent sequence identity, and not considering any conservative substitutions as part of the sequence identity. Alignment for purposes of determining percent amino acid sequence identity can be achieved in various ways that are within the skill in the art, for instance, using publicly available computer software such as BLAST, BLAST-2, ALIGN or Megalign (DNASTAR) software. Those skilled in the art can determine appropriate parameters for aligning sequences, including any algorithms needed to achieve maximal alignment over the full length of the sequences being compared.
  • % amino acid sequence identity values are generated using the sequence comparison computer program ALIGN-2.
  • the ALIGN-2 sequence comparison computer program was authored by Genentech, Inc., and the source code has been filed with user documentation in the U.S. Copyright Office, Washington D.C., 20559, where it is registered under U.S. Copyright Registration No. TXU510087.
  • the ALIGN-2 program is publicly available from Genentech, Inc., South San Francisco, California, or may be compiled from the source code.
  • the ALIGN-2 program should be compiled for use on a UNIX operating system, including digital UNIX V4.0D. All sequence comparison parameters are set by the ALIGN-2 program and do not vary.
  • the % amino acid sequence identity of a given amino acid sequence A to, with, or against a given amino acid sequence B is calculated as follows: 100 times the fraction X/Y where X is the number of amino acid residues scored as identical matches by the sequence alignment program ALIGN-2 in that program's alignment of A and B, and where Y is the total number of amino acid residues in B.
  • pharmaceutical formulation refers to a preparation which is in such form as to permit the biological activity of an active ingredient contained therein to be effective, and which contains no additional components which are unacceptably toxic to a subject to which the formulation would be administered.
  • a “pharmaceutically acceptable carrier” refers to an ingredient in a pharmaceutical formulation, other than an active ingredient, which is nontoxic to a subject.
  • a pharmaceutically acceptable carrier includes, but is not limited to, a buffer, excipient, stabilizer, or preservative.
  • treatment refers to clinical intervention in an attempt to alter the natural course of the individual being treated, and can be performed either for prophylaxis or during the course of clinical pathology. Desirable effects of treatment include, but are not limited to, preventing occurrence or recurrence of disease, alleviation of symptoms, diminishment of any direct or indirect pathological consequences of the disease, preventing metastasis, decreasing the rate of disease progression, amelioration or palliation of the disease state, and remission or improved prognosis.
  • antibodies of the invention are used to delay development of a disease or to slow the progression of a disease.
  • co-administering is meant intravenously administering two (or more) drugs during the same administration, rather than sequential infusions of the two or more drugs. Generally, this will involve combining the two (or more) drugs into the same IV bag prior to co-administration thereof.
  • a drug that is administered "concurrently" with one or more other drugs is administered during the same treatment cycle, on the same day of treatment as the one or more other drugs, and, optionally, at the same time as the one or more other drugs.
  • the concurrently administered drugs are each administered on day-1 of a 3-week cycle.
  • a “chemotherapy” is use of a chemotherapeutic agent useful in the treatment of cancer.
  • chemotherapeutic agent is a chemical compound useful in the treatment of cancer, regardless of mechanism of action.
  • Classes of chemotherapeutic agents include, but are not limited to: alkylating agents, antimetabolites, spindle poison plant alkaloids, cytotoxic/antitumor antibiotics, topoisomerase inhibitors, antibodies, photosensitizers, and kinase inhibitors.
  • chemotherapeutic agents include: anthracyclines, such as epirubicin or doxorubicin (ADRIAMYCIN®), cyclophosphamide (CYTOXAN®, NEOSAR®), anthracycline and cyclophosphamide in combination (“AC”); a taxane, e.g., docetaxel (TAXOTERE®,) or paclitaxel (TAXOL®), 5-FU (fluorouracil, 5-fluorouracil, CAS No. 51-21-8 ), lapatinib (TYKERB®), capecitabine (XELODA®), gemcitabine (GEMZAR®, Lilly), PD-0325901 ( CAS No.
  • anthracyclines such as epirubicin or doxorubicin (ADRIAMYCIN®), cyclophosphamide (CYTOXAN®, NEOSAR®), anthracycline and cyclophosphamide
  • tamoxifen (( Z )-2-[4-(1,2-diphenylbut-1-enyl)phenoxy]-N,N-dimethyl-ethanamine, NOLVADEX®, ISTUBAL®, VALODEX®).
  • chemotherapeutic agents include: oxaliplatin (ELOXATIN®, Sanofi), bortezomib (VELCADE®, Millennium Pharm.), sutent (SUNITINIB®, SU11248, Pfizer), letrozole (FEMARA®, Novartis), imatinib mesylate (GLEEVEC®, Novartis), XL-518 (MEK inhibitor, Exelixis, WO 2007/044515 ), ARRY-886 (Mek inhibitor, AZD6244, Array BioPharma, Astra Zeneca), SF-1126 (PI3K inhibitor, Semafore Pharmaceuticals), BEZ-235 (PI3K inhibitor, Novartis), XL-147 (PI3K inhibitor, Exelixis), PTK787/ZK 222584 (Novartis), fulvestrant (FASLODEX®, AstraZeneca), leucovorin (folinic acid), rapamycin (siroli
  • dynemicin dynemicin A
  • bisphosphonates such as clodronate
  • an esperamicin as well as neocarzinostatin chromophore and related chromoprotein enediyne antibiotic chromophores
  • aclacinomysins actinomycin, authramycin, azaserine, bleomycins, cactinomycin, carabicin, carminomycin, carzinophilin, chromomycinis, dactinomycin, daunorubicin, detorubicin, 6-diazo-5-oxo-L-norleucine, morpholino-doxorubicin, cyanomorpholino-doxorubicin, 2-pyrrolino-doxorubicin and deoxydoxorubicin), epirubicin, esorubicin, idarubicin,
  • a “fixed " or “flat” dose of a therapeutic agent herein refers to a dose that is administered to a human patient without regard for the weight (WT) or body surface area (BSA) of the patient.
  • the fixed or flat dose is therefore not provided as a mg/kg dose or a mg/m2 dose, but rather as an absolute amount of the therapeutic agent.
  • a “loading" dose herein generally comprises an initial dose of a therapeutic agent administered to a patient, and is followed by one or more maintenance dose(s) thereof. Generally, a single loading dose is administered, but multiple loading doses are contemplated herein. Usually, the amount of loading dose(s) administered exceeds the amount of the maintenance dose(s) administered and/or the loading dose(s) are administered more frequently than the maintenance dose(s), so as to achieve the desired steady-state concentration of the therapeutic agent earlier than can be achieved with the maintenance dose(s).
  • a “maintenance” dose herein refers to one or more doses of a therapeutic agent administered to the patient over a treatment period.
  • the maintenance doses are administered at spaced treatment intervals, such as approximately every week, approximately every 2 weeks, approximately every 3 weeks, or approximately every 4 weeks, preferably every 3 weeks.
  • Intravenous (IV) bag refers to the introduction of a drug-containing solution into the body through a vein for therapeutic purposes. Generally, this is achieved via an intravenous (IV) bag.
  • IV intravenous
  • IV bag is a bag that can hold a solution which can be administered via the vein of a patient.
  • the solution is a saline solution (e.g. about 0.9% or about 0.45% NaCl).
  • the IV bag is formed from polyolefin or polyvinal chloride.
  • variable region refers to the domain of an antibody heavy or light chain that is involved in binding the antibody to antigen.
  • the variable domains of the heavy chain and light chain (VH and VL, respectively) of a native antibody generally have similar structures, with each domain comprising four conserved framework regions (FRs) and three hypervariable regions (HVRs).
  • FRs conserved framework regions
  • HVRs hypervariable regions
  • antibodies that bind a particular antigen may be isolated using a VH or VL domain from an antibody that binds the antigen to screen a library of complementary VL or VH domains, respectively. See, e.g., Portolano et al., J. Immunol. 150:880-887 (1993 ); Clarkson et al., Nature 352:624-628 (1991 ).
  • vector refers to a nucleic acid molecule capable of propagating another nucleic acid to which it is linked.
  • the term includes the vector as a self-replicating nucleic acid structure as well as the vector incorporated into the genome of a host cell into which it has been introduced.
  • Certain vectors are capable of directing the expression of nucleic acids to which they are operatively linked. Such vectors are referred to herein as "expression vectors.”
  • Alkyl is C 1 -C 18 hydrocarbon containing normal, secondary, tertiary or cyclic carbon atoms. Examples are methyl (Me, -CH 3 ), ethyl (Et, -CH 2 CH 3 ), 1-propyl (n-Pr, n-propyl, -CH 2 CH 2 CH 3 ), 2-propyl (i-Pr, i-propyl, -CH(CH 3 ) 2 ), 1-butyl (n-Bu, n-butyl, -CH 2 CH 2 CH 2 CH 3 ), 2-methyl-1-propyl (i-Bu, i-butyl, -CH 2 CH(CH 3 ) 2 ), 2-butyl (s-Bu, s-butyl, -CH(CH 3 )CH 2 CH 3 ), 2-methyl-2-propyl (t-Bu, t-butyl, -C(CH 3 ) 3 ), 1-pentyl (n-pentyl,
  • C 1 -C 8 alkyl refers to a straight chain or branched, saturated or unsaturated hydrocarbon having from 1 to 8 carbon atoms.
  • Representative “C 1 -C 8 alkyl” groups include, but are not limited to, -methyl, -ethyl, -n-propyl, -n-butyl, -n-pentyl, -n-hexyl, -n-heptyl, -n-octyl, -n-nonyl and -n-decyl; while branched C 1 -C 8 alkyls include, but are not limited to, -isopropyl, - sec -butyl, -isobutyl,- tert -butyl, -isopentyl, 2-methylbutyl, unsaturated C 1 -C 8 alkyls include, but are not limited to, -vinyl, -allyl,-1-but
  • a C 1 -C 8 alkyl group can be unsubstituted or substituted with one or more groups including, but not limited to, -C 1 -C 8 alkyl, -O-(C 1 -C 8 alkyl), -aryl, -C(O)R', -OC(O)R', -C(O)OR', -C(O)NH 2 , -C(O)NHR', -C(O)N(R') 2 -NHC(O)R', -SO 3 R', -S(O) 2 R', -S(O)R', -OH, -halogen, -N 3 , -NH 2 , -NH(R'), -N(R') 2 and -CN; where each R' is independently selected from H, -C 1 -C 8 alkyl and aryl.
  • C 1 -C 12 alkyl refers to a straight chain or branched, saturated or unsaturated hydrocarbon having from 1 to 12 carbon atoms.
  • a C 1 -C 12 alkyl group can be unsubstituted or substituted with one or more groups including, but not limited to, -C 1 -C 8 alkyl, -O-(C 1 -C 8 alkyl), -aryl,-C(O)R', -OC(O)R', -C(O)OR', -C(O)NH 2 , -C(O)NHR', -C(O)N(R') 2 -NHC(O)R', -SO 3 R', -S(O) 2 R',-S(O)R', -OH, -halogen, -N 3 , -NH 2 , -NH(R'), -N(R') 2 and -CN; where each R' is independently selected from H
  • C 1 -C 6 alkyl refers to a straight chain or branched, saturated or unsaturated hydrocarbon having from 1 to 6 carbon atoms.
  • Representative “C 1 -C 6 alkyl” groups include, but are not limited to, -methyl, -ethyl, -n-propyl, -n-butyl, -n-pentyl, -and n-hexyl; while branched C 1 -C 6 alkyls include, but are not limited to, -isopropyl, - sec -butyl, -isobutyl, - tert -butyl, -isopentyl, and 2-methylbutyl; unsaturated C 1 -C 6 alkyls include, but are not limited to, -vinyl, -allyl, -1-butenyl, -2-butenyl, and -isobutylenyl, -1-pentenyl,
  • C 1 -C 4 alkyl refers to a straight chain or branched, saturated or unsaturated hydrocarbon having from 1 to 4 carbon atoms.
  • Representative “C 1 -C 4 alkyl” groups include, but are not limited to, -methyl, -ethyl, -n-propyl, -n-butyl; while branched C 1 -C 4 alkyls include, but are not limited to, -isopropyl, - sec -butyl, -isobutyl, - tert -butyl; unsaturated C 1 -C 4 alkyls include, but are not limited to, -vinyl, -allyl, -1-butenyl, -2-butenyl, and -isobutylenyl.
  • a C 1 -C 4 alkyl group can be unsubstituted or substituted with one or more groups, as described above for C 1 -C 8 alkyl group.
  • Alkoxy is an alkyl group singly bonded to an oxygen.
  • exemplary alkoxy groups include, but are not limited to, methoxy (-OCH 3 ) and ethoxy (-OCH 2 CH 3 ).
  • a "C 1 -C 5 alkoxy” is an alkoxy group with 1 to 5 carbon atoms. Alkoxy groups may can be unsubstituted or substituted with one or more groups, as described above for alkyl groups.
  • a "C 2 -C 8 alkenyl” is a hydrocarbon containing 2 to 8 normal, secondary, tertiary or cyclic carbon atoms with at least one site of unsaturation, i.e. a carbon-carbon, sp 2 double bond.
  • a "C 2 -C 8 alkynyl” is a hydrocarbon containing 2 to 8 normal, secondary, tertiary or cyclic carbon atoms with at least one site of unsaturation, i.e. a carbon-carbon, sp triple bond.
  • Alkylene refers to a saturated, branched or straight chain or cyclic hydrocarbon radical of 1-18 carbon atoms, and having two monovalent radical centers derived by the removal of two hydrogen atoms from the same or two different carbon atoms of a parent alkane.
  • Typical alkylene radicals include, but are not limited to: methylene (-CH 2 -) 1,2-ethyl (-CH 2 CH 2 -), 1,3-propyl (-CH 2 CH 2 CH 2 -), 1,4-butyl (-CH 2 CH 2 CH 2 CH 2 -), and the like.
  • alkenylene refers to an unsaturated, branched or straight chain or cyclic hydrocarbon radical of 2-18 carbon atoms, and having two monovalent radical centers derived by the removal of two hydrogen atoms from the same or two different carbon atoms of a parent alkene.
  • Alkynylene refers to an unsaturated, branched or straight chain or cyclic hydrocarbon radical of 2-18 carbon atoms, and having two monovalent radical centers derived by the removal of two hydrogen atoms from the same or two different carbon atoms of a parent alkyne.
  • Aryl refers to a carbocyclic aromatic group.
  • aryl groups include, but are not limited to, phenyl, naphthyl and anthracenyl.
  • a carbocyclic aromatic group or a heterocyclic aromatic group can be unsubstituted or substituted with one or more groups including, but not limited to, -C 1 -C 8 alkyl, -O-(C 1 -C 8 alkyl), -aryl, -C(O)R', -OC(O)R', -C(O)OR', -C(O)NH 2 , -C(O)NHR', -C(O)N(R') 2 -NHC(O)R', -S(O) 2 R', -S(O)R', -OH, -halogen, -N 3 , -NH 2 , -NH(R'), -N(R') 2 and -CN; wherein each R' is independently
  • a "C 5 -C 20 aryl” is an aryl group with 5 to 20 carbon atoms in the carbocyclic aromatic rings. Examples of C 5 -C 20 aryl groups include, but are not limited to, phenyl, naphthyl and anthracenyl. A C 5 -C 20 aryl group can be substituted or unsubstituted as described above for aryl groups.
  • a "C 5 -C 14 aryl” is an aryl group with 5 to 14 carbon atoms in the carbocyclic aromatic rings. Examples of C 5 -C 14 aryl groups include, but are not limited to, phenyl, naphthyl and anthracenyl. A C 5 -C 14 aryl group can be substituted or unsubstituted as described above for aryl groups.
  • arylene is an aryl group which has two covalent bonds and can be in the ortho, meta, or para configurations as shown in the following structures: in which the phenyl group can be unsubstituted or substituted with up to four groups including, but not limited to, -C 1 -C 8 alkyl, -O-(C 1 -C 8 alkyl), -aryl, -C(O)R', -OC(O)R', -C(O)OR', -C(O)NH 2 , -C(O)NHR',-C(O)N(R') 2 -NHC(O)R', -S(O) 2 R', -S(O)R', -OH, -halogen, -N 3 , -NH 2 , -NH(R'), -N(R') 2 and -CN; wherein each R' is independently selected from H, -C 1 -C 8 alkyl and aryl.
  • Arylalkyl refers to an acyclic alkyl radical in which one of the hydrogen atoms bonded to a carbon atom, typically a terminal or sp 3 carbon atom, is replaced with an aryl radical.
  • Typical arylalkyl groups include, but are not limited to, benzyl, 2-phenylethan-1-yl, 2-phenylethen-1-yl, naphthylmethyl, 2-naphthylethan-1-yl, 2-naphthylethen-1-yl, naphthobenzyl, 2-naphthophenylethan-1-yl and the like.
  • the arylalkyl group comprises 6 to 20 carbon atoms, e.g. the alkyl moiety, including alkanyl, alkenyl or alkynyl groups, of the arylalkyl group is 1 to 6 carbon atoms and the aryl moiety is 5 to 14 carbon atoms.
  • Heteroarylalkyl refers to an acyclic alkyl radical in which one of the hydrogen atoms bonded to a carbon atom, typically a terminal or sp 3 carbon atom, is replaced with a heteroaryl radical.
  • Typical heteroarylalkyl groups include, but are not limited to, 2-benzimidazolylmethyl, 2-furylethyl, and the like.
  • the heteroarylalkyl group comprises 6 to 20 carbon atoms, e.g.
  • the alkyl moiety, including alkanyl, alkenyl or alkynyl groups, of the heteroarylalkyl group is 1 to 6 carbon atoms and the heteroaryl moiety is 5 to 14 carbon atoms and 1 to 3 heteroatoms selected from N, O, P, and S.
  • the heteroaryl moiety of the heteroarylalkyl group may be a monocycle having 3 to 7 ring members (2 to 6 carbon atoms or a bicycle having 7 to 10 ring members (4 to 9 carbon atoms and 1 to 3 heteroatoms selected from N, O, P, and S), for example: a bicyclo [4,5], [5,5], [5,6], or [6,6] system.
  • Substituted alkyl means alkyl, aryl, and arylalkyl respectively, in which one or more hydrogen atoms are each independently replaced with a substituent.
  • Heteroaryl and “heterocycle” refer to a ring system in which one or more ring atoms is a heteroatom, e.g. nitrogen, oxygen, and sulfur.
  • the heterocycle radical comprises 3 to 20 carbon atoms and 1 to 3 heteroatoms selected from N, O, P, and S.
  • a heterocycle may be a monocycle having 3 to 7 ring members (2 to 6 carbon atoms and 1 to 3 heteroatoms selected from N, O, P, and S) or a bicycle having 7 to 10 ring members (4 to 9 carbon atoms and 1 to 3 heteroatoms selected from N, O, P, and S), for example: a bicyclo [4,5], [5,5], [5,6], or [6,6] system.
  • heterocycles are described, e.g ., in Paquette, Leo A., "Principles of Modern Heterocyclic Chemistry” (W.A. Benjamin, New York, 1968), particularly Chapters 1, 3, 4, 6, 7, and 9 ; " The Chemistry of Heterocyclic Compounds, A series of Monographs” (John Wiley & Sons, New York, 1950 to present), in particular Volumes 13, 14, 16, 19, and 28 ; and J. Am. Chem. Soc. (1960) 82:5566 .
  • heterocycles include by way of example and not limitation pyridyl, dihydroypyridyl, tetrahydropyridyl (piperidyl), thiazolyl, tetrahydrothiophenyl, sulfur oxidized tetrahydrothiophenyl, pyrimidinyl, furanyl, thienyl, pyrrolyl, pyrazolyl, imidazolyl, tetrazolyl, benzofuranyl, thianaphthalenyl, indolyl, indolenyl, quinolinyl, isoquinolinyl, benzimidazolyl, piperidinyl, 4-piperidonyl, pyrrolidinyl, 2-pyrrolidonyl, pyrrolinyl, tetrahydrofuranyl, bis-tetrahydrofuranyl, tetrahydropyranyl, bis-tetrahydropyranyl, tetra
  • carbon bonded heterocycles are bonded at position 2, 3, 4, 5, or 6 of a pyridine, position 3, 4, 5, or 6 of a pyridazine, position 2, 4, 5, or 6 of a pyrimidine, position 2, 3, 5, or 6 of a pyrazine, position 2, 3, 4, or 5 of a furan, tetrahydrofuran, thiofuran, thiophene, pyrrole or tetrahydropyrrole, position 2, 4, or 5 of an oxazole, imidazole or thiazole, position 3, 4, or 5 of an isoxazole, pyrazole, or isothiazole, position 2 or 3 of an aziridine, position 2, 3, or 4 of an azetidine, position 2, 3, 4, 5, 6, 7, or 8 of a quinoline or position 1, 3, 4, 5, 6, 7, or 8 of an isoquinoline.
  • carbon bonded heterocycles include 2-pyridyl, 3-pyridyl, 4-pyridyl, 5-pyridyl, 6-pyridyl, 3-pyridazinyl, 4-pyridazinyl, 5-pyridazinyl, 6-pyridazinyl, 2-pyrimidinyl, 4-pyrimidinyl, 5-pyrimidinyl, 6-pyrimidinyl, 2-pyrazinyl, 3-pyrazinyl, 5-pyrazinyl, 6-pyrazinyl, 2-thiazolyl, 4-thiazolyl, or 5-thiazolyl.
  • nitrogen bonded heterocycles are bonded at position 1 of an aziridine, azetidine, pyrrole, pyrrolidine, 2-pyrroline, 3-pyrroline, imidazole, imidazolidine, 2-imidazoline, 3-imidazoline, pyrazole, pyrazoline, 2-pyrazoline, 3-pyrazoline, piperidine, piperazine, indole, indoline, 1H-indazole, position 2 of a isoindole, or isoindoline, position 4 of a morpholine, and position 9 of a carbazole, or ⁇ -carboline.
  • nitrogen bonded heterocycles include 1-aziridyl, 1-azetedyl, 1-pyrrolyl, 1-imidazolyl, 1-pyrazolyl, and 1-piperidinyl.
  • C 3 -C 8 heterocycle refers to an aromatic or non-aromatic C 3 -C 8 carbocycle in which one to four of the ring carbon atoms are independently replaced with a heteroatom from the group consisting of O, S and N.
  • C 3 -C 8 heterocycle include, but are not limited to, benzofuranyl, benzothiophene, indolyl, benzopyrazolyl, coumarinyl, isoquinolinyl, pyrrolyl, thiophenyl, furanyl, thiazolyl, imidazolyl, pyrazolyl, triazolyl, quinolinyl, pyrimidinyl, pyridinyl, pyridonyl, pyrazinyl, pyridazinyl, isothiazolyl, isoxazolyl and tetrazolyl.
  • a C 3 -C 8 heterocycle can be unsubstituted or substituted with up to seven groups including, but not limited to, -C 1 -C 8 alkyl, -O-(C 1 -C 8 alkyl), -aryl, -C(O)R',-OC(O)R', -C(O)OR', -C(O)NH 2 , -C(O)NHR', -C(O)N(R') 2 -NHC(O)R', -S(O) 2 R', -S(O)R', -OH,-halogen, -N 3 , -NH 2 , -NH(R'), -N(R') 2 and -CN; wherein each R' is independently selected from H, -C 1 -C 8 alkyl and aryl.
  • C 3 -C 8 heterocyclo refers to a C 3 -C 8 heterocycle group defined above wherein one of the heterocycle group's hydrogen atoms is replaced with a bond.
  • a C 3 -C 8 heterocyclo can be unsubstituted or substituted with up to six groups including, but not limited to, -C 1 -C 8 alkyl, -O-(C 1 -C 8 alkyl), -aryl,-C(O)R', -OC(O)R', -C(O)OR', -C(O)NH 2 , -C(O)NHR', -C(O)N(R') 2 -NHC(O)R', -S(O) 2 R', -S(O)R',-OH, -halogen, -N 3 , -NH 2 , -NH(R'), -N(R') 2 and -CN; wherein each R' is independently selected from H,-C 1
  • C 3 -C 20 heterocycle refers to an aromatic or non-aromatic C 3 -C 8 carbocycle in which one to four of the ring carbon atoms are independently replaced with a heteroatom from the group consisting of O, S and N.
  • a C 3 -C 20 heterocycle can be unsubstituted or substituted with up to seven groups including, but not limited to, -C 1 -C 8 alkyl, -O-(C 1 -C 8 alkyl), -aryl, -C(O)R', -OC(O)R', -C(O)OR',-C(O)NH 2 , -C(O)NHR', -C(O)N(R') 2 -NHC(O)R', -S(O) 2 R', -S(O)R', -OH, -halogen, -N 3 , -NH 2 , -NH(R'), -N(R') 2 and -CN; wherein each R' is independently selected from H, -C 1 -C 8 alkyl and aryl.
  • C 3 -C 20 heterocyclo refers to a C 3 -C 20 heterocycle group defined above wherein one of the heterocycle group's hydrogen atoms is replaced with a bond.
  • Carbocycle means a saturated or unsaturated ring having 3 to 7 carbon atoms as a monocycle or 7 to 12 carbon atoms as a bicycle.
  • Monocyclic carbocycles have 3 to 6 ring atoms, still more typically 5 or 6 ring atoms.
  • Bicyclic carbocycles have 7 to 12 ring atoms, e.g. arranged as a bicyclo [4,5], [5,5], [5,6] or [6,6] system, or 9 or 10 ring atoms arranged as a bicyclo [5,6] or [6,6] system.
  • Examples of monocyclic carbocycles include cyclopropyl, cyclobutyl, cyclopentyl, 1-cyclopent-1-enyl, 1-cyclopent-2-enyl, 1-cyclopent-3-enyl, cyclohexyl, 1-cyclohex-1-enyl, 1-cyclohex-2-enyl, 1-cyclohex-3-enyl, cycloheptyl, and cyclooctyl.
  • C 3 -C 8 carbocycle is a 3-, 4-, 5-, 6-, 7- or 8-membered saturated or unsaturated non-aromatic carbocyclic ring.
  • Representative C 3 -C 8 carbocycles include, but are not limited to, -cyclopropyl, - cyclobutyl, -cyclopentyl, -cyclopentadienyl, -cyclohexyl, -cyclohexenyl, -1,3-cyclohexadienyl, -1,4-cyclohexadienyl, -cycloheptyl, -1,3-cycloheptadienyl, -1,3,5-cycloheptatrienyl, -cyclooctyl, and-cyclooctadienyl.
  • a C 3 -C 8 carbocycle group can be unsubstituted or substituted with one or more groups including, but not limited to, -C 1 -C 8 alkyl, -O-(C 1 -C 8 alkyl), -aryl, -C(O)R', -OC(O)R', -C(O)OR',-C(O)NH 2 , -C(O)NHR', -C(O)N(R') 2 -NHC(O)R', -S(O) 2 R', -S(O)R', -OH, -halogen, -N 3 , -NH 2 , -NH(R'), -N(R') 2 and -CN; where each R' is independently selected from H, -C 1 -C 8 alkyl and aryl.
  • C 3 -C 8 carbocyclo refers to a C 3 -C 8 carbocycle group defined above wherein one of the carbocycle groups' hydrogen atoms is replaced with a bond.
  • Linker refers to a chemical moiety comprising a covalent bond or a chain of atoms that covalently attaches an antibody to a drug moiety.
  • linkers include a divalent radical such as an alkyldiyl, an aryldiyl, a heteroaryldiyl, moieties such as: -(CR 2 ) n O(CR 2 ) n -, repeating units of alkyloxy (e.g. polyethylenoxy, PEG, polymethyleneoxy) and alkylamino ( e.g.
  • linkers can comprise one or more amino acid residues, such as valine, phenylalanine, lysine, and homolysine.
  • chiral refers to molecules which have the property of non-superimposability of the mirror image partner, while the term “achiral” refers to molecules which are superimposable on their mirror image partner.
  • stereoisomers refers to compounds which have identical chemical constitution, but differ with regard to the arrangement of the atoms or groups in space.
  • Diastereomer refers to a stereoisomer with two or more centers of chirality and whose molecules are not mirror images of one another. Diastereomers have different physical properties, e.g. melting points, boiling points, spectral properties, and reactivities. Mixtures of diastereomers may separate under high resolution analytical procedures such as electrophoresis and chromatography.
  • Enantiomers refer to two stereoisomers of a compound which are non-superimposable mirror images of one another.
  • d and 1 or (+) and (-) are employed to designate the sign of rotation of plane-polarized light by the compound, with (-) or 1 meaning that the compound is levorotatory.
  • a compound prefixed with (+) or d is dextrorotatory.
  • these stereoisomers are identical except that they are mirror images of one another.
  • a specific stereoisomer may also be referred to as an enantiomer, and a mixture of such isomers is often called an enantiomeric mixture.
  • a 50:50 mixture of enantiomers is referred to as a racemic mixture or a racemate, which may occur where there has been no stereoselection or stereospecificity in a chemical reaction or process.
  • racemic mixture and racemate refer to an equimolar mixture of two enantiomeric species, devoid of optical activity.
  • leaving group refers to a functional group that can be substituted by another functional group. Certain leaving groups are well known in the art, and examples include, but are not limited to, a halide (e.g., chloride, bromide, iodide), methanesulfonyl (mesyl), p-toluenesulfonyl (tosyl), trifluoromethylsulfonyl (triflate), and trifluoromethylsulfonate.
  • a halide e.g., chloride, bromide, iodide
  • methanesulfonyl methanesulfonyl
  • p-toluenesulfonyl tosyl
  • triflate trifluoromethylsulfonate
  • protecting group refers to a substituent that is commonly employed to block or protect a particular functionality while reacting other functional groups on the compound.
  • an "amino-protecting group” is a substituent attached to an amino group that blocks or protects the amino functionality in the compound.
  • Suitable amino-protecting groups include, but are not limited to, acetyl, trifluoroacetyl, t-butoxycarbonyl (BOC), benzyloxycarbonyl (CBZ) and 9-fluorenylmethylenoxycarbonyl (Fmoc).
  • the invention is based, in part, on antibodies that bind to HER2 and immunoconjugates comprising such antibodies.
  • Antibodies and immunoconjugates of the invention are useful, e.g ., for the diagnosis or treatment of HER2-positive cancers.
  • the antibodies that bind to domain I of HER2.
  • the antibodies do not interfere with trastuzumab and/or pertuzumab binding to HER2.
  • the antibodies do not interfere with trastuzumab binding to HER2 and do not interfere with pertuzumab binding to HER2.
  • the antibodies may be monoclonal antibodies.
  • the antibodies may be human antibodies, humanized antibodies, or chimeric antibodies.
  • HER2 precursor protein sequence with signal sequence (amino acids 1-22) is provided in SEQ ID NO: 1, and the corresponding mature HER2 protein sequence corresponds to amino acids 23-1255 of SEQ ID NO: 1.
  • domain I of HER2 has the amino acid sequence of SEQ ID NO: 35
  • domain II has the amino acid sequence of SEQ ID NO: 36
  • domain III has the amino acid sequence of SEQ ID NO: 37
  • domain IV has the amino acid sequence of SEQ ID NO: 38 ( see Figure 16 ).
  • the invention provides an anti-HER2 antibody comprising at least one, two, three, four, five, or six HVRs selected from (a) HVR-H1 comprising the amino acid sequence of SEQ ID NO: 15; (b) HVR-H2 comprising the amino acid sequence of SEQ ID NO: 16; (c) HVR-H3 comprising the amino acid sequence of SEQ ID NO: 17; (d) HVR-L1 comprising the amino acid sequence of SEQ ID NO: 12; (e) HVR-L2 comprising the amino acid sequence of SEQ ID NO: 13; and (f) HVR-L3 comprising the amino acid sequence of SEQ ID NO: 14.
  • the invention provides an anti-HER2 antibody comprising an HVR-H2 comprising the amino acid sequence of SEQ ID NO: 16 and at least one, two, three, four, or five HVRs selected from (a) HVR-H1 comprising the amino acid sequence of SEQ ID NO: 15; (b) HVR-H3 comprising the amino acid sequence of SEQ ID NO: 17; (c) HVR-L1 comprising the amino acid sequence of SEQ ID NO: 12; (d) HVR-L2 comprising the amino acid sequence of SEQ ID NO: 13; and (e) HVR-L3 comprising the amino acid sequence of SEQ ID NO: 14.
  • the invention provides an antibody comprising at least one, at least two, or all three VH HVR sequences selected from (a) HVR-H1 comprising the amino acid sequence of SEQ ID NO: 15; (b) HVR-H2 comprising the amino acid sequence of SEQ ID NO: 16; and (c) HVR-H3 comprising the amino acid sequence of SEQ ID NO: 17.
  • the antibody comprises HVR-H3 comprising the amino acid sequence of SEQ ID NO: 17.
  • the antibody comprises HVR-H2 comprising the amino acid sequence of SEQ ID NO: 16.
  • the antibody comprises HVR-H3 comprising the amino acid sequence of SEQ ID NO: 17 and HVR-L3 comprising the amino acid sequence of SEQ ID NO: 14.
  • the antibody comprises HVR-H3 comprising the amino acid sequence of SEQ ID NO: 17, HVR-L3 comprising the amino acid sequence of SEQ ID NO: 14, and HVR-H2 comprising the amino acid sequence of SEQ ID NO: 16.
  • the antibody comprises (a) HVR-H1 comprising the amino acid sequence of SEQ ID NO: 15; (b) HVR-H2 comprising the amino acid sequence of SEQ ID NO: 16; and (c) HVR-H3 comprising the amino acid sequence of SEQ ID NO: 17.
  • the invention provides an antibody comprising at least one, at least two, or all three VL HVR sequences selected from (a) HVR-L1 comprising the amino acid sequence of SEQ ID NO: 12; (b) HVR-L2 comprising the amino acid sequence of SEQ ID NO: 13; and (c) HVR-L3 comprising the amino acid sequence of SEQ ID NO: 14.
  • the antibody comprises (a) HVR-L1 comprising the amino acid sequence of SEQ ID NO: 12; (b) HVR-L2 comprising the amino acid sequence of SEQ ID NO: 13; and (c) HVR-L3 comprising the amino acid sequence of SEQ ID NO: 14.
  • an antibody of the invention comprises (a) a VH domain comprising at least one, at least two, or all three VH HVR sequences selected from (i) HVR-H1 comprising the amino acid sequence of SEQ ID NO: 15, (ii) HVR-H2 comprising the amino acid sequence of SEQ ID NO: 16, and (iii) HVR-H3 comprising an amino acid sequence selected from SEQ ID NO: 17; and (b) a VL domain comprising at least one, at least two, or all three VL HVR sequences selected from (i) HVR-L1 comprising the amino acid sequence of SEQ ID NO: 12, (ii) HVR-L2 comprising the amino acid sequence of SEQ ID NO: 13, and (c) HVR-L3 comprising the amino acid sequence of SEQ ID NO: 14.
  • the invention provides an antibody comprising (a) HVR-H1 comprising the amino acid sequence of SEQ ID NO: 15; (b) HVR-H2 comprising the amino acid sequence of SEQ ID NO: 16; (c) HVR-H3 comprising the amino acid sequence of SEQ ID NO: 17; (d) HVR-L1 comprising the amino acid sequence of SEQ ID NO: 12; (e) HVR-L2 comprising the amino acid sequence of SEQ ID NO: 13; and (f) HVR-L3 comprising the amino acid sequence of SEQ ID NO: 14.
  • an anti-HER2 antibody is humanized.
  • an anti-HER2 antibody comprises HVRs as in any of the above embodiments, and further comprises a human acceptor framework, e.g. a human immunoglobulin framework or a human consensus framework.
  • the human acceptor framework is the human VL kappa IV consensus (VL KIV ) framework and/or the VH framework VH 1 .
  • the human acceptor framework is the human VL kappa IV consensus (VL KIV ) framework and/or the VH framework VH 1 comprising any one of the mutations described herein.
  • an anti-HER2 antibody comprises a heavy chain variable domain (VH) sequence having at least 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% sequence identity to the amino acid sequence of SEQ ID NO: 11.
  • VH heavy chain variable domain
  • a VH sequence having at least 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, or 99% identity to the amino acid sequence of SEQ ID NO:11 contains substitutions (e.g., conservative substitutions), insertions, or deletions relative to the reference sequence, but an anti-HER2 antibody comprising that sequence retains the ability to bind to HER2.
  • the anti- HER2 antibody comprises the VH sequence of SEQ ID NO: 11, including post-translational modifications of that sequence.
  • the VH comprises one, two or three HVRs selected from: (a) HVR-H1 comprising the amino acid sequence of SEQ ID NO: 15, (b) HVR-H2 comprising the amino acid sequence of SEQ ID NO: 16, and (c) HVR-H3 comprising the amino acid sequence of SEQ ID NO: 17.
  • an anti-HER2 antibody comprising a light chain variable domain (VL) having at least 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% sequence identity to the amino acid sequence of SEQ ID NO: 10.
  • VL light chain variable domain
  • a VL sequence having at least 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, or 99% identity to the amino acid sequence of SEQ ID NO:10 contains substitutions (e.g., conservative substitutions), insertions, or deletions relative to the reference sequence, but an anti-HER2 antibody comprising that sequence retains the ability to bind to HER2.
  • the anti-HER2 antibody comprises the VL sequence of SEQ ID NO: 10, including post-translational modifications of that sequence.
  • the VL comprises one, two or three HVRs selected from (a) HVR-L1 comprising the amino acid sequence of SEQ ID NO: 12; (b) HVR-L2 comprising the amino acid sequence of SEQ ID NO: 13; and (c) HVR-L3 comprising the amino acid sequence of SEQ ID NO: 14.
  • an anti-HER2 antibody comprising a VH as in any of the embodiments provided above, and a VL as in any of the embodiments provided above.
  • the antibody comprises the VH and VL sequences in SEQ ID NO: 11 and SEQ ID NO: 10, respectively, including post-translational modifications of those sequences.
  • antibodies that bind to the same epitope as an anti-HER2 antibody provided herein.
  • an antibody that binds to the same epitope as an anti-HER2 antibody comprising a VH sequence of SEQ ID NO: 11 and a VL sequence of SEQ ID NO: 10, respectively.
  • an anti-HER2 antibody comprises a heavy chain sequence having at least 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% sequence identity to the amino acid sequence of SEQ ID NO: 19.
  • a heavy chain sequence having at least 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, or 99% identity to the amino acid sequence of SEQ ID NO:19 contains substitutions ( e.g., conservative substitutions), insertions, or deletions relative to the reference sequence, but an anti-HER2 antibody comprising that sequence retains the ability to bind to HER2.
  • the anti- HER2 antibody comprises the heavy chain sequence of SEQ ID NO: 19, including post-translational modifications of that sequence.
  • the heavy chain comprises one, two or three HVRs selected from: (a) HVR-H1 comprising the amino acid sequence of SEQ ID NO: 15, (b) HVR-H2 comprising the amino acid sequence of SEQ ID NO: 16, and (c) HVR-H3 comprising the amino acid sequence of SEQ ID NO: 17.
  • an anti-HER2 antibody comprising a light chain having at least 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% sequence identity to the amino acid sequence of SEQ ID NO: 18.
  • a light chain sequence having at least 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, or 99% identity to the amino acid sequence of SEQ ID NO:18 contains substitutions ( e.g., conservative substitutions), insertions, or deletions relative to the reference sequence, but an anti-HER2 antibody comprising that sequence retains the ability to bind to HER2.
  • the anti-HER2 antibody comprises the light chain sequence of SEQ ID NO: 18, including post-translational modifications of that sequence.
  • the light chain comprises one, two or three HVRs selected from (a) HVR-L1 comprising the amino acid sequence of SEQ ID NO: 12; (b) HVR-L2 comprising the amino acid sequence of SEQ ID NO: 13; and (c) HVR-L3 comprising the amino acid sequence of SEQ ID NO: 14.
  • an anti-HER2 antibody comprising a heavy chain as in any of the embodiments provided above, and a light chain as in any of the embodiments provided above.
  • the antibody comprises the heavy chain and light chain sequences in SEQ ID NO: 19 and SEQ ID NO: 18, respectively, including post-translational modifications of those sequences.
  • antibodies that bind to the same epitope as an anti-HER2 antibody provided herein.
  • an antibody that binds to the same epitope as an anti-HER2 antibody comprising a heavy chain sequence of SEQ ID NO: 19 and a light chain sequence of SEQ ID NO: 18, respectively.
  • antibodies comprising a light chain variable domain comprising the HVR1-LC, HVR2-LC and HVR3-LC sequence according to Kabat numbering as depicted in Figure 1 and a heavy chain variable domain comprising the HVR1-HC, HVR2-HC and HVR3-HC sequence according to Kabat numbering as depicted in Figure 2 .
  • the antibody comprises a light chain variable domain comprising the HVR1-LC, HVR2-LC and/or HVR3-LC sequence, and the FR1-LC, FR2-LC, FR3-LC and/or FR4-LC sequence as depicted in Figure 1 .
  • the antibody comprises a heavy chain variable domain comprising the HVR1-HC, HVR2-HC and/or HVR3-HC sequence, and the FR1-HC, FR2-HC, FR3-HC and/or FR4-HC sequence as depicted in Figure 2 .
  • an anti-HER2 antibody is a monoclonal antibody, including a human antibody.
  • an anti-HER2 antibody is an antibody fragment, e.g ., a Fv, Fab, Fab', scFv, diabody, or F(ab') 2 fragment.
  • the antibody is a substantially full length antibody, e.g ., an IgG1 antibody, IgG2a antibody or other antibody class or isotype as defined herein.
  • an anti-HER2 antibody may incorporate any of the features, singly or in combination, as described below.
  • an antibody provided herein has a dissociation constant (Kd) of ⁇ 1 ⁇ M, ⁇ 100 nM, ⁇ 50 nM, ⁇ 10 nM, ⁇ 5 nM, ⁇ 1 nM, ⁇ 0.1 nM, ⁇ 0.01 nM, or ⁇ 0.001 nM, and optionally is ⁇ 10 -13 M. ( e.g. 10 -8 M or less, e.g. from 10 -8 M to 10 -13 M, e.g., from 10 -9 M to 10 -13 M).
  • Kd dissociation constant
  • Kd is measured by a radiolabeled antigen binding assay (RIA) performed with the Fab version of an antibody of interest and its antigen as described by the following assay.
  • Solution binding affinity of Fabs for antigen is measured by equilibrating Fab with a minimal concentration of ( 125 I)-labeled antigen in the presence of a titration series of unlabeled antigen, then capturing bound antigen with an anti-Fab antibody-coated plate ( see, e.g., Chen et al., J. Mol. Biol. 293:865-881(1999 )).
  • MICROTITER® multi-well plates (Thermo Scientific) are coated overnight with 5 ⁇ g/ml of a capturing anti-Fab antibody (Cappel Labs) in 50 mM sodium carbonate (pH 9.6), and subsequently blocked with 2% (w/v) bovine serum albumin in PBS for two to five hours at room temperature (approximately 23°C).
  • a non-adsorbent plate (Nunc #269620)
  • 100 pM or 26 pM [ 125 I]-antigen are mixed with serial dilutions of a Fab of interest (e.g., consistent with assessment of the anti-VEGF antibody, Fab-12, in Presta et al., Cancer Res.
  • the Fab of interest is then incubated overnight; however, the incubation may continue for a longer period (e.g., about 65 hours) to ensure that equilibrium is reached. Thereafter, the mixtures are transferred to the capture plate for incubation at room temperature ( e.g., for one hour). The solution is then removed and the plate washed eight times with 0.1% polysorbate 20 (TWEEN-20®) in PBS. When the plates have dried, 150 ⁇ l/well of scintillant (MICROSCINT-20TM; Packard) is added, and the plates are counted on a TOPCOUNTTM gamma counter (Packard) for ten minutes. Concentrations of each Fab that give less than or equal to 20% of maximal binding are chosen for use in competitive binding assays.
  • Kd is measured using surface plasmon resonance assays using a BIACORE®-2000 or a BIACORE®-3000 (BIAcore, Inc., Piscataway, NJ) at 25°C with immobilized antigen CM5 chips at ⁇ 10 response units (RU).
  • CM5 carboxymethylated dextran biosensor chips
  • EDC N -ethyl- N' - (3-dimethylaminopropyl)-carbodiimide hydrochloride
  • NHS N -hydroxysuccinimide
  • Antigen is diluted with 10 mM sodium acetate, pH 4.8, to 5 ⁇ g/ml ( ⁇ 0.2 ⁇ M) before injection at a flow rate of 5 ⁇ l/minute to achieve approximately 10 response units (RU) of coupled protein. Following the injection of antigen, 1 M ethanolamine is injected to block unreacted groups. For kinetics measurements, two-fold serial dilutions of Fab (0.78 nM to 500 nM) are injected in PBS with 0.05% polysorbate 20 (TWEEN-20TM) surfactant (PBST) at 25°C at a flow rate of approximately 25 ⁇ l/min.
  • TWEEN-20TM polysorbate 20
  • association rates (k on ) and dissociation rates (k off ) are calculated using a simple one-to-one Langmuir binding model (BIACORE® Evaluation Software version 3.2) by simultaneously fitting the association and dissociation sensorgrams.
  • the equilibrium dissociation constant (Kd) is calculated as the ratio k off /k on . See, e.g., Chen et al., J. Mol. Biol. 293:865-881 (1999 ).
  • an antibody provided herein is an antibody fragment.
  • Antibody fragments include, but are not limited to, Fab, Fab', Fab'-SH, F(ab') 2 , Fv, and scFv fragments, and other fragments described below.
  • Fab fragment antigen
  • Fab' fragment antigen binding domain
  • Fab'-SH fragment antigen binding domain antigen binding domain antigen binding domain antigen binding domain antigen binding domain antigen binding domains
  • Fv fragment antigen binding domain antigen binding
  • scFv fragments see, e.g., Pluckthün, in The Pharmacology of Monoclonal Antibodies, vol. 113, Rosenburg and Moore eds., (Springer-Verlag, New York), pp. 269-315 (1994 ); see also WO 93/16185 ; and U.S.
  • Patent Nos. 5,571,894 and 5,587,458 For discussion of Fab and F(ab') 2 fragments comprising salvage receptor binding epitope residues and having increased in vivo half-life, see U.S. Patent No. 5,869,046 .
  • Diabodies are antibody fragments with two antigen-binding sites that may be bivalent or bispecific. See, for example, EP 404,097 ; WO 1993/01161 ; Hudson et al., Nat. Med. 9:129-134 (2003 ); and Hollinger et al., Proc. Natl. Acad. Sci. USA 90: 6444-6448 (1993 ). Triabodies and tetrabodies are also described in Hudson et al., Nat. Med. 9:129-134 (2003 ).
  • Single-domain antibodies are antibody fragments comprising all or a portion of the heavy chain variable domain or all or a portion of the light chain variable domain of an antibody.
  • a single-domain antibody is a human single-domain antibody (Domantis, Inc., Waltham, MA; see, e.g., U.S. Patent No. 6,248,516 B1 ).
  • Antibody fragments can be made by various techniques, including but not limited to proteolytic digestion of an intact antibody as well as production by recombinant host cells (e.g. E. coli or phage), as described herein.
  • recombinant host cells e.g. E. coli or phage
  • an antibody provided herein is a chimeric antibody.
  • Certain chimeric antibodies are described, e.g., in U.S. Patent No. 4,816,567 ; and Morrison et al., Proc. Natl. Acad. Sci. USA, 81:6851-6855 (1984 )).
  • a chimeric antibody comprises a non-human variable region (e.g., a variable region derived from a mouse, rat, hamster, rabbit, or non-human primate, such as a monkey) and a human constant region.
  • a chimeric antibody is a "class switched" antibody in which the class or subclass has been changed from that of the parent antibody. Chimeric antibodies include antigen-binding fragments thereof.
  • a chimeric antibody is a humanized antibody.
  • a non-human antibody is humanized to reduce immunogenicity to humans, while retaining the specificity and affinity of the parental non-human antibody.
  • a humanized antibody comprises one or more variable domains in which HVRs, e.g ., CDRs, (or portions thereof) are derived from a non-human antibody, and FRs (or portions thereof) are derived from human antibody sequences.
  • HVRs e.g ., CDRs, (or portions thereof) are derived from a non-human antibody
  • FRs or portions thereof
  • a humanized antibody optionally will also comprise at least a portion of a human constant region.
  • some FR residues in a humanized antibody are substituted with corresponding residues from a non-human antibody (e.g., the antibody from which the HVR residues are derived), e.g., to restore or improve antibody specificity or affinity.
  • a non-human antibody e.g., the antibody from which the HVR residues are derived
  • Human framework regions that may be used for humanization include but are not limited to: framework regions selected using the "best-fit" method (see, e.g., Sims et al. J. Immunol. 151:2296 (1993 )); framework regions derived from the consensus sequence of human antibodies of a particular subgroup of light or heavy chain variable regions (see, e.g., Carter et al. Proc. Natl. Acad. Sci. USA, 89:4285 (1992 ); and Presta et al. J. Immunol., 151:2623 (1993 )); human mature (somatically mutated) framework regions or human germline framework regions (see, e.g., Almagro and Fransson, Front. Biosci.
  • an antibody provided herein is a human antibody.
  • Human antibodies can be produced using various techniques known in the art. Human antibodies are described generally in van Dijk and van de Winkel, Curr. Opin. Pharmacol. 5: 368-74 (2001 ) and Lonberg, Curr. Opin. Immunol. 20:450-459 (2008 ).
  • Human antibodies may be prepared by administering an immunogen to a transgenic animal that has been modified to produce intact human antibodies or intact antibodies with human variable regions in response to antigenic challenge.
  • Such animals typically contain all or a portion of the human immunoglobulin loci, which replace the endogenous immunoglobulin loci, or which are present extrachromosomally or integrated randomly into the animal's chromosomes. In such transgenic mice, the endogenous immunoglobulin loci have generally been inactivated.
  • Human antibodies can also be made by hybridoma-based methods. Human myeloma and mouse-human heteromyeloma cell lines for the production of human monoclonal antibodies have been described. ( See, e.g., Kozbor J. Immunol., 133: 3001 (1984 ); Brodeur et al., Monoclonal Antibody Production Techniques and Applications, pp. 51-63 (Marcel Dekker, Inc., New York, 1987 ); and Boerner et al., J. Immunol., 147: 86 (1991 ).) Human antibodies generated via human B-cell hybridoma technology are also described in Li et al., Proc. Natl. Acad. Sci.
  • Human antibodies may also be generated by isolating Fv clone variable domain sequences selected from human-derived phage display libraries. Such variable domain sequences may then be combined with a desired human constant domain. Techniques for selecting human antibodies from antibody libraries are described below.
  • Antibodies of the invention may be isolated by screening combinatorial libraries for antibodies with the desired activity or activities. For example, a variety of methods are known in the art for generating phage display libraries and screening such libraries for antibodies possessing the desired binding characteristics. Such methods are reviewed, e.g., in Hoogenboom et al. in Methods in Molecular Biology 178:1-37 (O'Brien et al., ed., Human Press, Totowa, NJ, 2001 ) and further described, e.g ., in the McCafferty et al., Nature 348:552-554 ; Clackson et al., Nature 352: 624-628 (1991 ); Marks et al., J. Mol. Biol.
  • repertoires of VH and VL genes are separately cloned by polymerase chain reaction (PCR) and recombined randomly in phage libraries, which can then be screened for antigen-binding phage as described in Winter et al., Ann. Rev. Immunol., 12: 433-455 (1994 ).
  • Phage typically display antibody fragments, either as single-chain Fv (scFv) fragments or as Fab fragments.
  • scFv single-chain Fv
  • Libraries from immunized sources provide high-affinity antibodies to the immunogen without the requirement of constructing hybridomas.
  • naive repertoire can be cloned (e.g., from human) to provide a single source of antibodies to a wide range of non-self and also self antigens without any immunization as described by Griffiths et al., EMBO J, 12: 725-734 (1993 ).
  • naive libraries can also be made synthetically by cloning unrearranged V-gene segments from stem cells, and using PCR primers containing random sequence to encode the highly variable CDR3 regions and to accomplish rearrangement in vitro, as described by Hoogenboom and Winter, J. Mol. Biol., 227: 381-388 (1992 ).
  • Patent publications describing human antibody phage libraries include, for example: US Patent No.
  • Antibodies or antibody fragments isolated from human antibody libraries are considered human antibodies or human antibody fragments herein.
  • an antibody provided herein is a multispecific antibody, e.g. a bispecific antibody.
  • Multispecific antibodies are monoclonal antibodies that have binding specificities for at least two different sites.
  • one of the binding specificities is for HER2 and the other is for any other antigen.
  • one of the binding specificities is for HER2 and the other is for CD3. See, e.g., U.S. Patent No. 5,821,337 .
  • bispecific antibodies may bind to two different epitopes of HER2.
  • Bispecific antibodies may also be used to localize cytotoxic agents to cells which express HER2.
  • Bispecific antibodies can be prepared as full length antibodies or antibody fragments.
  • Techniques for making multispecific antibodies include, but are not limited to, recombinant co-expression of two immunoglobulin heavy chain-light chain pairs having different specificities (see Milstein and Cuello, Nature 305: 537 (1983 )), WO 93/08829 , and Traunecker et al., EMBO J. 10: 3655 (1991 )), and "knob-in-hole” engineering (see, e.g., U.S. Patent No. 5,731,168 ).
  • knock-into-hole or "KnH” technology as used herein refers to the technology directing the pairing of two polypeptides together in vitro or in vivo by introducing a protuberance (knob) into one polypeptide and a cavity (hole) into the other polypeptide at an interface in which they interact.
  • KnHs have been introduced in the Fc:Fc binding interfaces, CL:CH1 interfaces or VH/VL interfaces of antibodies (see, e.g., US 2011/0287009 , US2007/0178552 , WO 96/027011 , WO 98/050431 , Zhu et al., 1997, Protein Science 6:781-788 , and WO2012/106587 ).
  • KnHs drive the pairing of two different heavy chains together during the manufacture of multispecific antibodies.
  • multispecific antibodies having KnH in their Fc regions can further comprise single variable domains linked to each Fc region, or further comprise different heavy chain variable domains that pair with similar or different light chain variable domains.
  • KnH technology can be also be used to pair two different receptor extracellular domains together or any other polypeptide sequences that comprises different target recognition sequences (e.g., including affibodies, peptibodies and other Fc fusions).
  • knock mutation refers to a mutation that introduces a protuberance (knob) into a polypeptide at an interface in which the polypeptide interacts with another polypeptide.
  • the other polypeptide has a hole mutation.
  • hole mutation refers to a mutation that introduces a cavity (hole) into a polypeptide at an interface in which the polypeptide interacts with another polypeptide.
  • the other polypeptide has a knob mutation.
  • a “protuberance” refers to at least one amino acid side chain which projects from the interface of a first polypeptide and is therefore positionable in a compensatory cavity in the adjacent interface (i.e. the interface of a second polypeptide) so as to stabilize the heteromultimer, and thereby favor heteromultimer formation over homomultimer formation, for example.
  • the protuberance may exist in the original interface or may be introduced synthetically (e.g., by altering nucleic acid encoding the interface). In some embodiments, nucleic acid encoding the interface of the first polypeptide is altered to encode the protuberance.
  • nucleic acid encoding at least one "original” amino acid residue in the interface of the first polypeptide is replaced with nucleic acid encoding at least one "import” amino acid residue which has a larger side chain volume than the original amino acid residue. It will be appreciated that there can be more than one original and corresponding import residue.
  • the side chain volumes of the various amino residues are shown, for example, in Table 1 of US2011/0287009 .
  • a mutation to introduce a "protuberance" may be referred to as a "knob mutation.”
  • import residues for the formation of a protuberance are naturally occurring amino acid residues selected from arginine (R), phenylalanine (F), tyrosine (Y) and tryptophan (W).
  • an import residue is tryptophan or tyrosine.
  • the original residue for the formation of the protuberance has a small side chain volume, such as alanine, asparagine, aspartic acid, glycine, serine, threonine or valine.
  • a “cavity” refers to at least one amino acid side chain which is recessed from the interface of a second polypeptide and therefore accommodates a corresponding protuberance on the adjacent interface of a first polypeptide.
  • the cavity may exist in the original interface or may be introduced synthetically (e.g. by altering nucleic acid encoding the interface).
  • nucleic acid encoding the interface of the second polypeptide is altered to encode the cavity.
  • the nucleic acid encoding at least one "original” amino acid residue in the interface of the second polypeptide is replaced with DNA encoding at least one "import” amino acid residue which has a smaller side chain volume than the original amino acid residue. It will be appreciated that there can be more than one original and corresponding import residue.
  • import residues for the formation of a cavity are naturally occurring amino acid residues selected from alanine (A), serine (S), threonine (T) and valine (V).
  • an import residue is serine, alanine or threonine.
  • the original residue for the formation of the cavity has a large side chain volume, such as tyrosine, arginine, phenylalanine or tryptophan.
  • a mutation to introduce a "cavity" may be referred to as a "hole mutation.”
  • the protuberance is "positionable" in the cavity which means that the spatial location of the protuberance and cavity on the interface of a first polypeptide and second polypeptide respectively and the sizes of the protuberance and cavity are such that the protuberance can be located in the cavity without significantly perturbing the normal association of the first and second polypeptides at the interface.
  • protuberances such as Tyr, Phe and Trp do not typically extend perpendicularly from the axis of the interface and have preferred conformations
  • the alignment of a protuberance with a corresponding cavity may, in some instances, rely on modeling the protuberance/cavity pair based upon a three-dimensional structure such as that obtained by X-ray crystallography or nuclear magnetic resonance (NMR). This can be achieved using widely accepted techniques in the art.
  • a knob mutation in an IgG1 constant region is T366W (EU numbering).
  • a hole mutation in an IgG1 constant region comprises one or more mutations selected from T366S, L368A and Y407V (EU numbering).
  • a hole mutation in an IgG1 constant region comprises T366S, L368A and Y407V (EU numbering).
  • a knob mutation in an IgG4 constant region is T366W (EU numbering).
  • a hole mutation in an IgG4 constant region comprises one or more mutations selected from T366S, L368A, and Y407V (EU numbering).
  • a hole mutation in an IgG4 constant region comprises T366S, L368A, and Y407V (EU numbering).
  • Multi-specific antibodies may also be made by engineering electrostatic steering effects for making antibody Fc-heterodimeric molecules ( WO 2009/089004A1 ); cross-linking two or more antibodies or fragments ( see, e.g., US Patent No. 4,676,980 , and Brennan et al., Science, 229: 81 (1985 )); using leucine zippers to produce bi-specific antibodies ( see, e.g., Kostelny et al., J. Immunol., 148(5): 1547-1553 (1992 )); using "diabody” technology for making bispecific antibody fragments (see, e.g., Hollinger et al., Proc. Natl. Acad. Sci.
  • the antibody or fragment herein also includes a "Dual Acting FAb” or “DAF” comprising an antigen binding site that binds to HER2 as well as another, different antigen ( see, US 2008/0069820 , for example).
  • a “Dual Acting FAb” or “DAF” comprising an antigen binding site that binds to HER2 as well as another, different antigen ( see, US 2008/0069820 , for example).
  • amino acid sequence variants of the antibodies provided herein are contemplated.
  • Amino acid sequence variants of an antibody may be prepared by introducing appropriate modifications into the nucleotide sequence encoding the antibody, or by peptide synthesis. Such modifications include, for example, deletions from, and/or insertions into and/or substitutions of residues within the amino acid sequences of the antibody. Any combination of deletion, insertion, and substitution can be made to arrive at the final construct, provided that the final construct possesses the desired characteristics, e.g ., antigen-binding.
  • antibody variants having one or more amino acid substitutions are provided.
  • Sites of interest for substitutional mutagenesis include the HVRs and FRs.
  • Conservative substitutions are shown in Table 1 under the heading of "preferred substitutions.” More substantial changes are provided in Table 1 under the heading of "exemplary substitutions,” and as further described below in reference to amino acid side chain classes.
  • Amino acid substitutions may be introduced into an antibody of interest and the products screened for a desired activity, e.g ., retained/improved antigen binding, decreased immunogenicity, or improved ADCC or CDC.
  • Amino acids may be grouped according to common side-chain properties:
  • Non-conservative substitutions will entail exchanging a member of one of these classes for another class.
  • substitutional variant involves substituting one or more hypervariable region residues of a parent antibody (e.g. a humanized or human antibody).
  • a parent antibody e.g. a humanized or human antibody
  • the resulting variant(s) selected for further study will have modifications (e.g., improvements) in certain biological properties (e.g., increased affinity, reduced immunogenicity) relative to the parent antibody and/or will have substantially retained certain biological properties of the parent antibody.
  • An exemplary substitutional variant is an affinity matured antibody, which may be conveniently generated, e.g ., using phage display-based affinity maturation techniques such as those described herein. Briefly, one or more HVR residues are mutated and the variant antibodies displayed on phage and screened for a particular biological activity (e.g. binding affinity).
  • Alterations may be made in HVRs, e.g., to improve antibody affinity. Such alterations may be made in HVR "hotspots," i.e., residues encoded by codons that undergo mutation at high frequency during the somatic maturation process ( see, e.g., Chowdhury, Methods Mol. Biol. 207:179-196 (2008 )), and/or SDRs (a-CDRs), with the resulting variant VH or VL being tested for binding affinity.
  • HVR "hotspots” i.e., residues encoded by codons that undergo mutation at high frequency during the somatic maturation process ( see, e.g., Chowdhury, Methods Mol. Biol. 207:179-196 (2008 )
  • SDRs a-CDRs
  • affinity maturation diversity is introduced into the variable genes chosen for maturation by any of a variety of methods (e.g., error-prone PCR, chain shuffling, or oligonucleotide-directed mutagenesis).
  • a secondary library is then created. The library is then screened to identify any antibody variants with the desired affinity.
  • Another method to introduce diversity involves HVR-directed approaches, in which several HVR residues ( e.g ., 4-6 residues at a time) are randomized. HVR residues involved in antigen binding may be specifically identified, e.g ., using alanine scanning mutagenesis or modeling. CDR-H3 and CDR-L3 in particular are often targeted.
  • substitutions, insertions, or deletions may occur within one or more HVRs so long as such alterations do not substantially reduce the ability of the antibody to bind antigen.
  • conservative alterations e.g ., conservative substitutions as provided herein
  • Such alterations may be outside of HVR "hotspots" or SDRs.
  • each HVR either is unaltered, or contains no more than one, two or three amino acid substitutions.
  • a useful method for identification of residues or regions of an antibody that may be targeted for mutagenesis is called "alanine scanning mutagenesis" as described by Cunningham and Wells (1989) Science, 244:1081-1085 .
  • a residue or group of target residues e.g., charged residues such as arg, asp, his, lys, and glu
  • a neutral or negatively charged amino acid e.g., alanine or polyalanine
  • a crystal structure of an antigen-antibody complex is used to identify contact points between the antibody and antigen. Such contact residues and neighboring residues may be targeted or eliminated as candidates for substitution. Variants may be screened to determine whether they contain the desired properties.
  • Amino acid sequence insertions include amino- and/or carboxyl-terminal fusions ranging in length from one residue to polypeptides containing a hundred or more residues, as well as intrasequence insertions of single or multiple amino acid residues.
  • terminal insertions include an antibody with an N-terminal methionyl residue.
  • Other insertional variants of the antibody molecule include the fusion to the N- or C-terminus of the antibody to an enzyme (e.g. for ADEPT) or a polypeptide which increases the serum half-life of the antibody.
  • an antibody provided herein is altered to increase or decrease the extent to which the antibody is glycosylated.
  • Addition or deletion of glycosylation sites to an antibody may be conveniently accomplished by altering the amino acid sequence such that one or more glycosylation sites is created or removed.
  • the carbohydrate attached thereto may be altered.
  • Native antibodies produced by mammalian cells typically comprise a branched, biantennary oligosaccharide that is generally attached by an N-linkage to Asn297 of the CH2 domain of the Fc region. See, e.g., Wright et al. TIBTECH 15:26-32 (1997 ).
  • the oligosaccharide may include various carbohydrates, e.g ., mannose, N-acetyl glucosamine (GlcNAc), galactose, and sialic acid, as well as a fucose attached to a GlcNAc in the "stem" of the biantennary oligosaccharide structure.
  • modifications of the oligosaccharide in an antibody of the invention may be made in order to create antibody variants with certain improved properties.
  • antibody variants having a carbohydrate structure that lacks fucose attached (directly or indirectly) to an Fc region.
  • the amount of fucose in such antibody may be from 1% to 80%, from 1% to 65%, from 5% to 65% or from 20% to 40%.
  • the amount of fucose is determined by calculating the average amount of fucose within the sugar chain at Asn297, relative to the sum of all glycostructures attached to Asn 297 (e. g. complex, hybrid and high mannose structures) as measured by MALDI-TOF mass spectrometry, as described in WO 2008/077546 , for example.
  • Asn297 refers to the asparagine residue located at about position 297 in the Fc region (Eu numbering of Fc region residues); however, Asn297 may also be located about ⁇ 3 amino acids upstream or downstream of position 297, i.e., between positions 294 and 300, due to minor sequence variations in antibodies. Such fucosylation variants may have improved ADCC function. See, e.g., US Patent Publication Nos. US 2003/0157108 (Presta, L. ); US 2004/0093621 (Kyowa Hakko Kogyo Co., Ltd).
  • Examples of publications related to "defucosylated” or “fucose-deficient” antibody variants include: US 2003/0157108 ; WO 2000/61739 ; WO 2001/29246 ; US 2003/0115614 ; US 2002/0164328 ; US 2004/0093621 ; US 2004/0132140 ; US 2004/0110704 ; US 2004/0110282 ; US 2004/0109865 ; WO 2003/085119 ; WO 2003/084570 ; WO 2005/035586 ; WO 2005/035778 ; WO2005/053742 ; WO2002/031140 ; Okazaki et al. J. Mol. Biol.
  • Examples of cell lines capable of producing defucosylated antibodies include Lec13 CHO cells deficient in protein fucosylation ( Ripka et al. Arch. Biochem. Biophys. 249:533-545 (1986 ); US Pat Appl No US 2003/0157108 A1, Presta, L ; and WO 2004/056312 A1, Adams et al. , especially at Example 11), and knockout cell lines, such as alpha-1,6-fucosyltransferase gene, FUT8, knockout CHO cells ( see, e.g., Yamane-Ohnuki et al. Biotech. Bioeng. 87: 614 (2004 ); Kanda, Y. et al., Biotechnol. Bioeng., 94(4):680-688 (2006 ); and WO2003/085107 ).
  • Antibodies variants are further provided with bisected oligosaccharides, e.g ., in which a biantennary oligosaccharide attached to the Fc region of the antibody is bisected by GlcNAc. Such antibody variants may have reduced fucosylation and/or improved ADCC function. Examples of such antibody variants are described, e.g ., in WO 2003/011878 (Jean-Mairet et al. ); US Patent No. 6,602,684 (Umana et al. ); and US 2005/0123546 (Umana et al. ). Antibody variants with at least one galactose residue in the oligosaccharide attached to the Fc region are also provided.
  • Such antibody variants may have improved CDC function.
  • Such antibody variants are described, e.g ., in WO 1997/30087 (Patel et al. ); WO 1998/58964 (Raju, S. ); and WO 1999/22764 (Raju, S. ).
  • one or more amino acid modifications may be introduced into the Fc region of an antibody provided herein, thereby generating an Fc region variant.
  • the Fc region variant may comprise a human Fc region sequence (e.g ., a human IgG1, IgG2, IgG3 or IgG4 Fc region) comprising an amino acid modification (e.g . a substitution) at one or more amino acid positions.
  • the invention contemplates an antibody variant that possesses some but not all effector functions, which make it a desirable candidate for applications in which the half life of the antibody in vivo is important yet certain effector functions (such as complement and ADCC) are unnecessary or deleterious.
  • In vitro and/or in vivo cytotoxicity assays can be conducted to confirm the reduction/depletion of CDC and/or ADCC activities.
  • Fc receptor (FcR) binding assays can be conducted to ensure that the antibody lacks Fc ⁇ R binding (hence likely lacking ADCC activity), but retains FcRn binding ability.
  • NK cells express Fc(RIII only, whereas monocytes express Fc(RI, Fc(RII and Fc(RIII.
  • FcR expression on hematopoietic cells is summarized in Table 3 on page 464 of Ravetch and Kinet, Annu. Rev. Immunol. 9:457-492 (1991 ).
  • Non-limiting examples of in vitro assays to assess ADCC activity of a molecule of interest is described in U.S. Patent No. 5,500,362 ( see, e.g. Hellstrom, I. et al. Proc. Nat'l Acad. Sci. USA 83:7059-7063 (1986 )) and Hellstrom, I et al., Proc.
  • non-radioactive assays methods may be employed (see, for example, ACTITM non-radioactive cytotoxicity assay for flow cytometry (CellTechnology, Inc. Mountain View, CA; and CytoTox 96® non-radioactive cytotoxicity assay (Promega, Madison, WI).
  • Useful effector cells for such assays include peripheral blood mononuclear cells (PBMC) and Natural Killer (NK) cells.
  • ADCC activity of the molecule of interest may be assessed in vivo, e.g., in a animal model such as that disclosed in Clynes et al. Proc. Nat'l Acad. Sci. USA 95:652-656 (1998 ).
  • C1q binding assays may also be carried out to confirm that the antibody is unable to bind C1q and hence lacks CDC activity. See, e.g., C1q and C3c binding ELISA in WO 2006/029879 and WO 2005/100402 .
  • a CDC assay may be performed (see, for example, Gazzano-Santoro et al., J. Immunol.
  • FcRn binding and in vivo clearance/half life determinations can also be performed using methods known in the art (see, e.g., Petkova, S.B. et al., Int'l. Immunol. 18(12): 1759-1769 (2006 )).
  • one or more amino acid modifications may be introduced into the Fc portion of the antibody provided herein in order to increase IgG binding to the neonatal Fc receptor.
  • the antibody comprises the following three mutations according to EU numbering: M252Y, S254T, and T256E (the "YTE mutation") ( US Patent No. 8,697,650 ; see also Dall'Acqua et al., Journal of Biological Chemistry 281(33):23514-23524 (2006 ).
  • the YTE mutation does not affect the ability of the antibody to bind to its cognate antigen.
  • the YTE mutation increases the antibody's serum half-life compared to the native (i.e., non-YTE mutant) antibody. In some embodiments, the YTE mutation increases the serum half-life of the antibody by 3-fold compared to the native (i.e., non-YTE mutant) antibody. In some embodiments, the YTE mutation increases the serum half-life of the antibody by 2-fold compared to the native (i.e., non-YTE mutant) antibody. In some embodiments, the YTE mutation increases the serum half-life of the antibody by 4-fold compared to the native (i.e., non-YTE mutant) antibody.
  • the YTE mutation increases the serum half-life of the antibody by at least 5-fold compared to the native (i.e., non-YTE mutant) antibody. In some embodiments, the YTE mutation increases the serum half-life of the antibody by at least 10-fold compared to the native (i.e., non-YTE mutant) antibody. See, e.g., US Patent No. 8,697,650 ; see also Dall'Acqua et al., Journal of Biological Chemistry 281(33):23514-23524 (2006 ).
  • the YTE mutant provides a means to modulate antibody-dependent cell-mediated cytotoxicity (ADCC) activity of the antibody.
  • ADCC antibody-dependent cell-mediated cytotoxicity
  • the YTEO mutant provides a means to modulate ADCC activity of a humanized IgG antibody directed against a human antigen. See, e.g., US Patent No. 8,697,650 ; see also Dall'Acqua et al., Journal of Biological Chemistry 281(33):23514-23524 (2006 ).
  • the YTE mutant allows the simultaneous modulation of serum half-life, tissue distribution, and antibody activity (e.g., the ADCC activity of an IgG antibody). See, e.g., US Patent No. 8,697,650 ; see also Dall'Acqua et al., Journal of Biological Chemistry 281(33):23514-23524 (2006 ).
  • Antibodies with reduced effector function include those with substitution of one or more of Fc region residues 238, 265, 269, 270, 297, 327 and 329 ( U.S. Patent No. 6,737,056 ).
  • Fc mutants include Fc mutants with substitutions at two or more of amino acid positions 265, 269, 270, 297 and 327, including the so-called "DANA" Fc mutant with substitution of residues 265 and 297 to alanine ( US Patent No. 7,332,581 ).
  • the proline at position329 (EU numbering) (P329) of a wild-type human Fc region is substituted with glycine or arginine or an amino acid residue large enough to destroy the proline sandwich within the Fc/Fc ⁇ receptor interface, that is formed between the P329 of the Fc and tryptophane residues W87 and W110 of FcgRIII ( Sondermann et al.: Nature 406, 267-273 (20 July 2000 )).
  • At least one further amino acid substitution in the Fc variant is S228P, E233P, L234A, L235A, L235E, N297A, N297D, or P331S and still in another embodiment said at least one further amino acid substitution is L234A and L235A of the human IgG1 Fc region or S228P and L235E of the human IgG4 Fc region, all according to EU numbering ( U.S. Patent No. 8,969,526 which is incorporated by reference in its entirety).
  • a polypeptide comprises the Fc variant of a wild-type human IgG Fc region wherein the polypeptide has P329 of the human IgG Fc region substituted with glycine and wherein the Fc variant comprises at least two further amino acid substitutions at L234A and L235A of the human IgG1 Fc region or S228P and L235E of the human IgG4 Fc region, and wherein the residues are numbered according to the EU numbering ( U.S. Patent No. 8,969,526 which is incorporated by reference in its entirety).
  • the polypeptide comprising the P329G, L234A and L235A (EU numbering) substitutions exhibit a reduced affinity to the human Fc ⁇ RIIIA and Fc ⁇ RIIA, for down-modulation of ADCC to at least 20% of the ADCC induced by the polypeptide comprising the wildtype human IgG Fc region, and/or for down-modulation of ADCP ( U.S. Patent No. 8,969,526 which is incorporated by reference in its entirety).
  • polypeptide comprising an Fc variant of a wildtype human Fc polypeptide comprises a triple mutation: an amino acid substitution at position Pro329, a L234A and a L235A mutation according to EU numbering (P329 / LALA) ( U.S. Patent No. 8,969,526 which is incorporated by reference in its entirety).
  • the polypeptide comprises the following amino acid substitutions: P329G, L234A, and L235A according to EU numbering.
  • an antibody variant comprises an Fc region with one or more amino acid substitutions which improve ADCC, e.g ., substitutions at positions 298, 333, and/or 334 of the Fc region (EU numbering of residues).
  • alterations are made in the Fc region that result in altered ( i.e., either improved or diminished) C1q binding and/or Complement Dependent Cytotoxicity (CDC), e.g., as described in US Patent No. 6,194,551 , WO 99/51642 , and Idusogie et al. J. Immunol. 164: 4178-4184 (2000 ).
  • CDC Complement Dependent Cytotoxicity
  • Antibodies with increased half lives and improved binding to the neonatal Fc receptor (FcRn), which is responsible for the transfer of maternal IgGs to the fetus are described in US2005/0014934A1 (Hinton et al. ). Those antibodies comprise an Fc region with one or more substitutions therein which improve binding of the Fc region to FcRn.
  • Such Fc variants include those with substitutions at one or more of Fc region residues: 238, 256, 265, 272, 286, 303, 305, 307, 311, 312, 317, 340, 356, 360, 362, 376, 378, 380, 382, 413, 424 or 434, e.g., substitution of Fc region residue 434 ( US Patent No. 7,371,826 ).
  • cysteine engineered antibodies e.g., a "THIOMABTM”
  • one or more residues of an antibody are substituted with cysteine residues.
  • the substituted residues occur at sites of the antibody that are available for conjugation.
  • reactive thiol groups are thereby positioned at accessible sites of the antibody and may be used to conjugate the antibody to other moieties, such as drug moieties or linker-drug moieties, to create an immunoconjugate, as described further herein.
  • any one or more of the following residues may be substituted with cysteine: K149 (Kabat numbering) of the light chain; V205 (Kabat numbering) of the light chain; A118 (EU numbering) of the heavy chain; A140 (EU numbering) of the heavy chain; L174 (EU numbering) of the heavy chain; Y373 (EU numbering) of the heavy chain; and S400 (EU numbering) of the heavy chain Fc region.
  • the antibodies described herein comprise the HC-A140C (EU numbering) cysteine substitution.
  • the antibodies described herein comprise the LC-K149C (Kabat numbering) cysteine substitution.
  • the antibodies described herein comprise the HC-A118C (EU numbering) cysteine substitution.
  • Cysteine engineered antibodies may be generated as described, e.g ., in U.S. Patent No. 7,521,541 .
  • the antibody comprises one of the following heavy chain cysteine substitutions: Chain (HC/LC) Residue EU Mutation Site # Kabat Mutation Site # HC T 114 110 HC A 140 136 HC L 174 170 HC L 179 175 HC T 187 183 HC T 209 205 HC V 262 258 HC G 371 367 HC Y 373 369 HC E 382 378 HC S 424 420 HC N 434 430 HC Q 438 434
  • the antibody comprises one of the following light chain cysteine substitutions: Chain (HC/LC) Residue EU Mutation Site # Kabat Mutation Site # LC I 106 106 LC R 108 108 LC R 142 142 LC K 149 149 LC V 205 205
  • a nonlimiting exemplary hu7C2.v2.2.LA light chain (LC) K149C THIOMABTM has the heavy chain and light chain amino acid sequences of SEQ ID NOs: 19 and 23, respectively.
  • a nonlimiting exemplary hu7C2.v2.2.LA heavy chain (HC) A118C THIOMABTM has the heavy chain and light chain amino acid sequences of SEQ ID NOs: 24 and 18, respectively.
  • S400C cysteine engineered heavy chain constant region is shown in SEQ ID NO: 28.
  • the S400C cysteine engineered heavy chain constant region may be fused to the C-terminus of the hu7C2.v2.2.LA heavy chain variable region shown in SEQ ID NO: 11.
  • the resulting hu7C2.v2.2.LA HC S400C heavy chain may be paired with a hu7C2.v2.2.LA kappa light chain, such as the light chain shown in SEQ ID NO: 18.
  • V205C cysteine engineered light chain constant region is shown in SEQ ID NO: 25.
  • the V205C cysteine engineered light chain constant region may be fused to the C-terminus of the hu7C2.v2.2.LA light chain variable region shown in SEQ ID NO: 10.
  • the resulting hu7C2.v2.2.LA LC V205C light chain may be paired with a hu7C2.v2.2.LA IgG heavy chain, such as the heavy chain shown in SEQ ID NO: 19.
  • an antibody provided herein may be further modified to contain additional nonproteinaceous moieties that are known in the art and readily available.
  • the moieties suitable for derivatization of the antibody include but are not limited to water soluble polymers.
  • water soluble polymers include, but are not limited to, polyethylene glycol (PEG), copolymers of ethylene glycol/propylene glycol, carboxymethylcellulose, dextran, polyvinyl alcohol, polyvinyl pyrrolidone, poly-1, 3-dioxolane, poly-1,3,6-trioxane, ethylene/maleic anhydride copolymer, polyaminoacids (either homopolymers or random copolymers), and dextran or poly(n-vinyl pyrrolidone)polyethylene glycol, propropylene glycol homopolymers, prolypropylene oxide/ethylene oxide co-polymers, polyoxyethylated polyols ( e.g .,
  • Polyethylene glycol propionaldehyde may have advantages in manufacturing due to its stability in water.
  • the polymer may be of any molecular weight, and may be branched or unbranched.
  • the number of polymers attached to the antibody may vary, and if more than one polymer are attached, they can be the same or different molecules. In general, the number and/or type of polymers used for derivatization can be determined based on considerations including, but not limited to, the particular properties or functions of the antibody to be improved, whether the antibody derivative will be used in a therapy under defined conditions, etc.
  • conjugates of an antibody and nonproteinaceous moiety that may be selectively heated by exposure to radiation are provided.
  • the nonproteinaceous moiety is a carbon nanotube ( Kam et al., Proc. Natl. Acad. Sci. USA 102: 11600-11605 (2005 )).
  • the radiation may be of any wavelength, and includes, but is not limited to, wavelengths that do not harm ordinary cells, but which heat the nonproteinaceous moiety to a temperature at which cells proximal to the antibody-nonproteinaceous moiety are killed.
  • Antibodies may be produced using recombinant methods and compositions, e.g ., as described in U.S. Patent No. 4,816,567 .
  • isolated nucleic acid encoding an anti-HER2 antibody described herein is provided.
  • Such nucleic acid may encode an amino acid sequence comprising the VL and/or an amino acid sequence comprising the VH of the antibody (e.g ., the light and/or heavy chains of the antibody).
  • one or more vectors e.g ., expression vectors
  • a host cell comprising such nucleic acid is provided.
  • a host cell comprises ( e.g ., has been transformed with): (1) a vector comprising a nucleic acid that encodes an amino acid sequence comprising the VL of the antibody and an amino acid sequence comprising the VH of the antibody, or (2) a first vector comprising a nucleic acid that encodes an amino acid sequence comprising the VL of the antibody and a second vector comprising a nucleic acid that encodes an amino acid sequence comprising the VH of the antibody.
  • the host cell is eukaryotic, e.g. a Chinese Hamster Ovary (CHO) cell or lymphoid cell (e.g., Y0, NS0, Sp20 cell).
  • a method of making an anti-HER2 antibody comprises culturing a host cell comprising a nucleic acid encoding the antibody, as provided above, under conditions suitable for expression of the antibody, and optionally recovering the antibody from the host cell (or host cell culture medium).
  • nucleic acid encoding an antibody is isolated and inserted into one or more vectors for further cloning and/or expression in a host cell.
  • nucleic acid may be readily isolated and sequenced using conventional procedures (e.g ., by using oligonucleotide probes that are capable of binding specifically to genes encoding the heavy and light chains of the antibody).
  • Suitable host cells for cloning or expression of antibody-encoding vectors include prokaryotic or eukaryotic cells described herein.
  • antibodies may be produced in bacteria, in particular when glycosylation and Fc effector function are not needed.
  • U.S. Patent Nos. 5,648,237 , 5,789,199 , and 5,840,523 See also Charlton, Methods in Molecular Biology, Vol. 248 (B.K.C. Lo, ed., Humana Press, Totowa, NJ, 2003), pp. 245-254 , describing expression of antibody fragments in E. coli .
  • the antibody may be isolated from the bacterial cell paste in a soluble fraction and can be further purified.
  • eukaryotic microbes such as filamentous fungi or yeast are suitable cloning or expression hosts for antibody-encoding vectors, including fungi and yeast strains whose glycosylation pathways have been "humanized,” resulting in the production of an antibody with a partially or fully human glycosylation pattern. See Gerngross, Nat. Biotech. 22:1409-1414 (2004 ), and Li et al., Nat. Biotech. 24:210-215 (2006 ).
  • Suitable host cells for the expression of glycosylated antibody are also derived from multicellular organisms (invertebrates and vertebrates). Examples of invertebrate cells include plant and insect cells. Numerous baculoviral strains have been identified which may be used in conjunction with insect cells, particularly for transfection of Spodoptera frugiperda cells.
  • Plant cell cultures can also be utilized as hosts. See, e.g., US Patent Nos. 5,959,177 , 6,040,498 , 6,420,548 , 7,125,978 , and 6,417,429 (describing PLANTIBODIESTM technology for producing antibodies in transgenic plants).
  • Vertebrate cells may also be used as hosts.
  • mammalian cell lines that are adapted to grow in suspension may be useful.
  • Other examples of useful mammalian host cell lines are monkey kidney CV1 line transformed by SV40 (COS-7); human embryonic kidney line (293 or 293 cells as described, e.g., in Graham et al., J. Gen Virol. 36:59 (1977 )); baby hamster kidney cells (BHK); mouse sertoli cells (TM4 cells as described, e.g., in Mather, Biol. Reprod.
  • monkey kidney cells (CV1); African green monkey kidney cells (VERO-76); human cervical carcinoma cells (HELA); canine kidney cells (MDCK; buffalo rat liver cells (BRL 3A); human lung cells (W138); human liver cells (Hep G2); mouse mammary tumor (MMT 060562); TRI cells, as described, e.g., in Mather et al., Annals N.Y. Acad. Sci. 383:44-68 (1982 ); MRC 5 cells; and FS4 cells.
  • Other useful mammalian host cell lines include Chinese hamster ovary (CHO) cells, including DHFR - CHO cells ( Urlaub et al., Proc. Natl. Acad. Sci.
  • Anti-HER2 antibodies provided herein may be identified, screened for, or characterized for their physical/chemical properties and/or biological activities by various assays known in the art.
  • an antibody of the invention is tested for its antigen binding activity, e.g ., by known methods such as ELISA, BIACore®, FACS, or Western blot.
  • competition assays may be used to identify an antibody that competes with any of the antibodies described herein for binding to HER2.
  • a competing antibody binds to the same epitope (e.g., a linear or a conformational epitope) that is bound by an antibody described herein.
  • epitope e.g., a linear or a conformational epitope
  • Detailed exemplary methods for mapping an epitope to which an antibody binds are provided in Morris (1996) "Epitope Mapping Protocols," in Methods in Molecular Biology vol. 66 (Humana Press, Totowa, NJ ).
  • immobilized HER2 is incubated in a solution comprising a first labeled antibody that binds to HER2 (e.g ., any of the antibodies described herein) and a second unlabeled antibody that is being tested for its ability to compete with the first antibody for binding to HER2.
  • the second antibody may be present in a hybridoma supernatant.
  • immobilized HER2 is incubated in a solution comprising the first labeled antibody but not the second unlabeled antibody. After incubation under conditions permissive for binding of the first antibody to HER2, excess unbound antibody is removed, and the amount of label associated with immobilized HER2 is measured.
  • the invention also provides immunoconjugates comprising any anti-HER2 antibody provided herein conjugated to one or more cytotoxic agents, such as chemotherapeutic agents or drugs, growth inhibitory agents, toxins (e.g ., protein toxins, enzymatically active toxins of bacterial, fungal, plant, or animal origin, or fragments thereof), or radioactive isotopes ( i.e., a radioconjugate).
  • cytotoxic agents such as chemotherapeutic agents or drugs, growth inhibitory agents, toxins (e.g ., protein toxins, enzymatically active toxins of bacterial, fungal, plant, or animal origin, or fragments thereof), or radioactive isotopes (i.e., a radioconjugate).
  • Immunoconjugates allow for the targeted delivery of a drug moiety to a tumor, and, in some embodiments intracellular accumulation therein, where systemic administration of unconjugated drugs may result in unacceptable levels of toxicity to normal cells ( Polakis P. (2005) Current Opinion in Pharmacology 5:382-387 ).
  • Antibody-drug conjugates are targeted chemotherapeutic molecules which combine properties of both antibodies and cytotoxic drugs by targeting potent cytotoxic drugs to antigen-expressing tumor cells ( Teicher, B.A. (2009) Current Cancer Drug Targets 9:982-1004 ), thereby enhancing the therapeutic index by maximizing efficacy and minimizing off-target toxicity ( Carter, P.J. and Senter P.D. (2008) The Cancer Jour. 14(3):154-169 ; Chari, R.V. (2008) Acc. Chem. Res. 41:98-107 .
  • the ADC compounds of the invention include those with anticancer activity.
  • the ADC compounds include an antibody conjugated, i.e . covalently attached, to the drug moiety.
  • the antibody is covalently attached to the drug moiety through a linker.
  • the antibody-drug conjugates (ADC) of the invention selectively deliver an effective dose of a drug to tumor tissue whereby greater selectivity, i.e. a lower efficacious dose, may be achieved while increasing the therapeutic index ("therapeutic window").
  • the drug moiety (D) of the antibody-drug conjugates (ADC) may include any compound, moiety or group that has a cytotoxic or cytostatic effect.
  • Drug moieties may impart their cytotoxic and cytostatic effects by mechanisms including but not limited to tubulin binding, DNA binding or intercalation, and inhibition of RNA polymerase, protein synthesis, and/or topoisomerase.
  • Exemplary drug moieties include, but are not limited to, a maytansinoid, dolastatin, auristatin, calicheamicin, pyrrolobenzodiazepine (PBD), nemorubicin and its derivatives, PNU-159682, anthracycline, duocarmycin, vinca alkaloid, taxane, trichothecene, CC1065, camptothecin, elinafide, and stereoisomers, isosteres, analogs, and derivatives thereof that have cytotoxic activity.
  • PBD pyrrolobenzodiazepine
  • nemorubicin and its derivatives PNU-159682, anthracycline, duocarmycin, vinca alkaloid, taxane, trichothecene, CC1065, camptothecin, elinafide, and stereoisomers, isosteres, analogs, and derivatives thereof that have cytotoxic activity.
  • immunoconjugates are discussed in further
  • an exemplary embodiment of an antibody-drug conjugate (ADC) compound comprises an antibody (Ab) which targets a tumor cell, a drug moiety (D), and a linker moiety (L) that attaches Ab to D.
  • the antibody is attached to the linker moiety (L) through one or more amino acid residues, such as lysine and/or cysteine.
  • An exemplary ADC has Formula I: Ab-(L-D) p I where p is 1 to about 20.
  • the number of drug moieties that can be conjugated to an antibody is limited by the number of free cysteine residues.
  • free cysteine residues are introduced into the antibody amino acid sequence by the methods described herein.
  • Exemplary ADC of Formula I include, but are not limited to, antibodies that have 1, 2, 3, or 4 engineered cysteine amino acids ( Lyon, R. et al (2012) Methods in Enzym. 502:123-138 ).
  • one or more free cysteine residues are already present in an antibody, without the use of engineering, in which case the existing free cysteine residues may be used to conjugate the antibody to a drug.
  • an antibody is exposed to reducing conditions prior to conjugation of the antibody in order to generate one or more free cysteine residues.
  • a “Linker” (L) is a bifunctional or multifunctional moiety that can be used to link one or more drug moieties (D) to an antibody (Ab) to form an antibody-drug conjugate (ADC) of Formula I.
  • antibody-drug conjugates (ADC) can be prepared using a Linker having reactive functionalities for covalently attaching to the drug and to the antibody.
  • a cysteine thiol of an antibody (Ab) can form a bond with a reactive functional group of a linker or a drug-linker intermediate to make an ADC.
  • a linker has a functionality that is capable of reacting with a free cysteine present on an antibody to form a covalent bond.
  • reactive functionalities include maleimide, haloacetamides, ⁇ -haloacetyl, activated esters such as succinimide esters, 4-nitrophenyl esters, pentafluorophenyl esters, tetrafluorophenyl esters, anhydrides, acid chlorides, sulfonyl chlorides, isocyanates, and isothiocyanates.
  • a linker has a functionality that is capable of reacting with an electrophilic group present on an antibody.
  • electrophilic groups include, but are not limited to, aldehyde and ketone carbonyl groups.
  • a heteroatom of the reactive functionality of the linker can react with an electrophilic group on an antibody and form a covalent bond to an antibody unit.
  • Nonlimiting exemplary such reactive functionalities include, but are not limited to, hydrazide, oxime, amino, hydrazine, thiosemicarbazone, hydrazine carboxylate, and arylhydrazide.
  • a linker may comprise one or more linker components.
  • exemplary linker components include 6-maleimidocaproyl ("MC"), maleimidopropanoyl ("MP”), valine-citrulline (“val-cit” or “vc”), alanine-phenylalanine (“ala-phe”), p-aminobenzyloxycarbonyl (a "PAB”), N-Succinimidyl 4-(2-pyridylthio) pentanoate (“SPP”), and 4-(N-maleimidomethyl) cyclohexane-1 carboxylate (“MCC”).
  • MC 6-maleimidocaproyl
  • MP maleimidopropanoyl
  • val-cit valine-citrulline
  • alanine-phenylalanine ala-phe
  • PAB p-aminobenzyloxycarbonyl
  • SPP N-Succinimidyl 4-(2-pyridylthio
  • a linker may be a "cleavable linker," facilitating release of a drug.
  • Nonlimiting exemplary cleavable linkers include acid-labile linkers (e.g., comprising hydrazone), protease-sensitive (e.g., peptidase-sensitive) linkers, photolabile linkers, or disulfide-containing linkers ( Chari et al., Cancer Research 52:127-131 (1992 ); US 5208020 ).
  • a linker has the following Formula II: -A a -W w -Y y - II wherein A is a "stretcher unit", and a is an integer from 0 to 1; W is an "amino acid unit”, and w is an integer from 0 to 12; Y is a "spacer unit”, and y is 0, 1, or 2; and Ab, D, and p are defined as above for Formula I. Exemplary embodiments of such linkers are described in U.S. Patent No. 7,498,298 , which is expressly incorporated herein by reference.
  • a linker component comprises a "stretcher unit” that links an antibody to another linker component or to a drug moiety.
  • stretcher units are shown below (wherein the wavy line indicates sites of covalent attachment to an antibody, drug, or additional linker components):
  • a linker component comprises an "amino acid unit".
  • the amino acid unit allows for cleavage of the linker by a protease, thereby facilitating release of the drug from the immunoconjugate upon exposure to intracellular proteases, such as lysosomal enzymes ( Doronina et al. (2003) Nat. Biotechnol. 21:778-784 ).
  • Exemplary amino acid units include, but are not limited to, dipeptides, tripeptides, tetrapeptides, and pentapeptides.
  • Exemplary dipeptides include, but are not limited to, valine-citrulline (vc or val-cit), alanine-phenylalanine (af or ala-phe); phenylalanine-lysine (fk or phe-lys); phenylalanine-homolysine (phe-homolys); and N-methyl-valine-citrulline (Me-val-cit).
  • Exemplary tripeptides include, but are not limited to, glycine-valine-citrulline (gly-val-cit) and glycine-glycine-glycine (gly-gly-gly).
  • amino acid unit may comprise amino acid residues that occur naturally and/or minor amino acids and/or non-naturally occurring amino acid analogs, such as citrulline.
  • Amino acid units can be designed and optimized for enzymatic cleavage by a particular enzyme, for example, a tumor-associated protease, cathepsin B, C and D, or a plasmin protease.
  • a linker component comprises a "spacer” unit that links the antibody to a drug moiety, either directly or through a stretcher unit and/or an amino acid unit.
  • a spacer unit may be "self-immolative” or a "non-self-immolative.”
  • a "non-self-immolative" spacer unit is one in which part or all of the spacer unit remains bound to the drug moiety upon cleavage of the ADC. Examples of non-self-immolative spacer units include, but are not limited to, a glycine spacer unit and a glycine-glycine spacer unit.
  • enzymatic cleavage of an ADC containing a glycine-glycine spacer unit by a tumor-cell associated protease results in release of a glycine-glycine-drug moiety from the remainder of the ADC.
  • the glycine-glycine-drug moiety is subjected to a hydrolysis step in the tumor cell, thus cleaving the glycine-glycine spacer unit from the drug moiety.
  • a spacer unit of a linker comprises a p-aminobenzyl unit.
  • a p-aminobenzyl alcohol is attached to an amino acid unit via an amide bond, and a carbamate, methylcarbamate, or carbonate is made between the benzyl alcohol and the drug ( Hamann et al. (2005) Expert Opin. Ther. Patents (2005) 15:1087-1103 ).
  • the spacer unit is p-aminobenzyloxycarbonyl (PAB).
  • an ADC comprising a self-immolative linker has the structure: wherein Q is -C 1 -C 8 alkyl, -O-(C 1 -C 8 alkyl), -halogen, -nitro, or -cyno; m is an integer ranging from 0 to 4; and p ranges from 1 to about 20. In some embodiments, p ranges from 1 to 10, 1 to 7, 1 to 5, or 1 to 4.
  • self-immolative spacers include, but are not limited to, aromatic compounds that are electronically similar to the PAB group, such as 2-aminoimidazol-5-methanol derivatives ( U.S. Patent No. 7,375,078 ; Hay et al. (1999) Bioorg. Med. Chem. Lett. 9:2237 ) and ortho- or para-aminobenzylacetals.
  • spacers can be used that undergo cyclization upon amide bond hydrolysis, such as substituted and unsubstituted 4-aminobutyric acid amides ( Rodrigues et al (1995) Chemistry Biology 2:223 ), appropriately substituted bicyclo[2.2.1] and bicyclo[2.2.2] ring systems ( Storm et al (1972) J. Amer. Chem. Soc. 94:5815 ) and 2-aminophenylpropionic acid amides ( Amsberry, et al (1990) J. Org. Chem. 55:5867 ).
  • Linkage of a drug to the ⁇ -carbon of a glycine residue is another example of a self-immolative spacer that may be useful in ADC ( Kingsbury et al (1984) J. Med. Chem. 27:1447 ).
  • linker L may be a dendritic type linker for covalent attachment of more than one drug moiety to an antibody through a branching, multifunctional linker moiety ( Sun et al (2002) Bioorganic & Medicinal Chemistry Letters 12:2213-2215 ; Sun et al (2003) Bioorganic & Medicinal Chemistry 11:1761-1768 ).
  • Dendritic linkers can increase the molar ratio of drug to antibody, i.e. loading, which is related to the potency of the ADC.
  • an antibody bears only one reactive cysteine thiol group, a multitude of drug moieties may be attached through a dendritic linker.
  • Nonlimiting exemplary linkers are shown below in the context of an ADC of Formula I:
  • ADCs include the structures: where X is: Y is: each R is independently H or C 1 -C 6 alkyl; and n is 1 to 12.
  • peptide-type linkers can be prepared by forming a peptide bond between two or more amino acids and/or peptide fragments.
  • Such peptide bonds can be prepared, for example, according to a liquid phase synthesis method (e.g., E. Schröder and K. Lübke (1965) "The Peptides", volume 1, pp 76-136, Academic Press ).
  • a linker is substituted with groups that modulate solubility and/or reactivity.
  • a charged substituent such as sulfonate (-SO 3 - ) or ammonium may increase water solubility of the linker reagent and facilitate the coupling reaction of the linker reagent with the antibody and/or the drug moiety, or facilitate the coupling reaction of Ab-L (antibody-linker intermediate) with D, or D-L (drug-linker intermediate) with Ab, depending on the synthetic route employed to prepare the ADC.
  • a portion of the linker is coupled to the antibody and a portion of the linker is coupled to the drug, and then the Ab-(linker portion) a is coupled to drug-(linker portion) b to form the ADC of Formula I.
  • the antibody comprises more than one (linker portion) a substituents, such that more than one drug is coupled to the antibody in the ADC of Formula I.
  • the compounds of the invention expressly contemplate, but are not limited to, ADC prepared with the following linker reagents: bis-maleimido-trioxyethylene glycol (BMPEO), N-( ⁇ -maleimidopropyloxy)-N-hydroxy succinimide ester (BMPS), N-( ⁇ -maleimidocaproyloxy) succinimide ester (EMCS), N-[ ⁇ -maleimidobutyryloxy]succinimide ester (GMBS), 1,6-hexane-bis-vinylsulfone (HBVS), succinimidyl 4-(N-maleimidomethyl)cyclohexane-1-carboxy-(6-amidocaproate) (LC-SMCC), m-maleimidobenzoyl-N-hydroxysuccinimide ester (MBS), 4-(4-N-Maleimidophenyl)butyric acid hydrazide (MPBH), succinimidyl 3-(bromoacetamid
  • bis-maleimide reagents allow the attachment of the thiol group of a cysteine in the antibody to a thiol-containing drug moiety, linker, or linker-drug intermediate.
  • Other functional groups that are reactive with thiol groups include, but are not limited to, iodoacetamide, bromoacetamide, vinyl pyridine, disulfide, pyridyl disulfide, isocyanate, and isothiocyanate.
  • Certain useful linker reagents can be obtained from various commercial sources, such as Pierce Biotechnology, Inc. (Rockford, IL), Molecular Biosciences Inc.(Boulder, CO), or synthesized in accordance with procedures described in the art; for example, in Toki et al (2002) J. Org. Chem. 67:1866-1872 ; Dubowchik, et al. (1997) Tetrahedron Letters, 38:5257-60 ; Walker, M.A. (1995) J. Org. Chem. 60:5352-5355 ; Frisch et al (1996) Bioconjugate Chem. 7:180-186 ; US 6214345 ; WO 02/088172 ; US 2003130189 ; US2003096743 ; WO 03/026577 ; WO 03/043583 ; and WO 04/032828 .
  • Carbon-14-labeled 1-isothiocyanatobenzyl-3-methyldiethylene triaminepentaacetic acid is an exemplary chelating agent for conjugation of radionucleotide to the antibody. See, e.g., WO94/11026 .
  • an immunoconjugate comprises an antibody conjugated to one or more maytansinoid molecules.
  • Maytansinoids are derivatives of maytansine, and are mitototic inhibitors which act by inhibiting tubulin polymerization. Maytansine was first isolated from the east African shrub Maytenus serrata ( U.S. Patent No. 3896111 ). Subsequently, it was discovered that certain microbes also produce maytansinoids, such as maytansinol and C-3 maytansinol esters ( U.S. Patent No. 4,151,042 ). Synthetic maytansinoids are disclosed, for example, in U.S. Patent Nos.
  • Maytansinoid drug moieties are attractive drug moieties in antibody-drug conjugates because they are: (i) relatively accessible to prepare by fermentation or chemical modification or derivatization of fermentation products, (ii) amenable to derivatization with functional groups suitable for conjugation through non-disulfide linkers to antibodies, (iii) stable in plasma, and (iv) effective against a variety of tumor cell lines.
  • Certain maytansinoids suitable for use as maytansinoid drug moieties are known in the art and can be isolated from natural sources according to known methods or produced using genetic engineering techniques (see, e.g., Yu et al (2002) PNAS 99:7968-7973 ). Maytansinoids may also be prepared synthetically according to known methods.
  • Exemplary maytansinoid drug moieties include, but are not limited to, those having a modified aromatic ring, such as: C-19-dechloro ( US Pat. No. 4256746 ) (prepared, for example, by lithium aluminum hydride reduction of ansamytocin P2); C-20-hydroxy (or C-20-demethyl) +/-C-19-dechloro ( US Pat. Nos. 4361650 and 4307016 ) (prepared, for example, by demethylation using Streptomyces or Actinomyces or dechlorination using LAH); and C-20-demethoxy, C-20-acyloxy (-OCOR), +/-dechloro ( U.S. Pat. No. 4,294,757 ) (prepared, for example, by acylation using acyl chlorides), and those having modifications at other positions of the aromatic ring.
  • C-19-dechloro US Pat. No. 4256746
  • Exemplary maytansinoid drug moieties also include those having modifications such as: C-9-SH ( US Pat. No. 4424219 ) (prepared, for example, by the reaction of maytansinol with H 2 S or P 2 S 5 ); C-14-alkoxymethyl(demethoxy/CH 2 OR)( US 4331598 ); C-14-hydroxymethyl or acyloxymethyl (CH 2 OH or CH 2 OAC) ( US Pat. No. 4450254 ) (prepared, for example, from Nocardia); C-15-hydroxy/acyloxy ( US 4364866 ) (prepared, for example, by the conversion of maytansinol by Streptomyces); C-15-methoxy ( US Pat. Nos.
  • an ester linkage may be formed by reaction with a hydroxyl group using conventional coupling techniques.
  • the reaction may occur at the C-3 position having a hydroxyl group, the C-14 position modified with hydroxymethyl, the C-15 position modified with a hydroxyl group, and the C-20 position having a hydroxyl group.
  • the linkage is formed at the C-3 position of maytansinol or a maytansinol analogue.
  • Maytansinoid drug moieties include those having the structure: where the wavy line indicates the covalent attachment of the sulfur atom of the maytansinoid drug moiety to a linker of an ADC.
  • Each R may independently be H or a C 1 -C 6 alkyl.
  • the alkylene chain attaching the amide group to the sulfur atom may be methanyl, ethanyl, or propyl, i.e., m is 1, 2, or 3 ( US 633410 ; US 5208020 ; Chari et al (1992) Cancer Res. 52:127-131 ; Liu et al (1996) Proc. Natl. Acad. Sci USA 93:8618-8623 ).
  • the maytansinoid drug moiety has the following stereochemistry:
  • Exemplary embodiments of maytansinoid drug moieties include, but are not limited to, DM1; DM3; and DM4, having the structures: wherein the wavy line indicates the covalent attachment of the sulfur atom of the drug to a linker (L) of an antibody-drug conjugate.
  • exemplary maytansinoid antibody-drug conjugates have the following structures and abbreviations (wherein Ab is antibody and p is 1 to about 20. In some embodiments, p is 1 to 10, p is 1 to 7, p is 1 to 5, or p is 1 to 4):
  • Exemplary antibody-drug conjugates where DM1 is linked through a BMPEO linker to a thiol group of the antibody have the structure and abbreviation: where Ab is antibody; n is 0, 1, or 2; and p is 1 to about 20. In some embodiments, p is 1 to 10, p is 1 to 7, p is 1 to 5, or p is 1 to 4.
  • Immunoconjugates containing maytansinoids, methods of making the same, and their therapeutic use are disclosed, for example, in U.S. Patent Nos. 5,208,020 and 5,416,064 ; US 2005/0276812 A1 ; and European Patent EP 0 425 235 B1 , the disclosures of which are hereby expressly incorporated by reference. See also Liu et al. Proc. Natl. Acad. Sci. USA 93:8618-8623 (1996 ); and Chari et al. Cancer Research 52:127-131 (1992 ).
  • antibody-maytansinoid conjugates may be prepared by chemically linking an antibody to a maytansinoid molecule without significantly diminishing the biological activity of either the antibody or the maytansinoid molecule. See, e.g., U.S. Patent No. 5,208,020 (the disclosure of which is hereby expressly incorporated by reference).
  • ADC with an average of 3-4 maytansinoid molecules conjugated per antibody molecule has shown efficacy in enhancing cytotoxicity of target cells without negatively affecting the function or solubility of the antibody. In some instances, even one molecule of toxin/antibody is expected to enhance cytotoxicity over the use of naked antibody.
  • Exemplary linking groups for making antibody-maytansinoid conjugates include, for example, those described herein and those disclosed in U.S. Patent No. 5208020 ; EP Patent 0 425 235 B1 ; Chari et al. Cancer Research 52:127-131 (1992 ); US 2005/0276812 A1 ; and US 2005/016993 A1 , the disclosures of which are hereby expressly incorporated by reference.
  • Drug moieties include dolastatins, auristatins, and analogs and derivatives thereof ( US 5635483 ; US 5780588 ; US 5767237 ; US 6124431 ).
  • Auristatins are derivatives of the marine mollusk compound dolastatin-10. While not intending to be bound by any particular theory, dolastatins and auristatins have been shown to interfere with microtubule dynamics, GTP hydrolysis, and nuclear and cellular division ( Woyke et al (2001) Antimicrob. Agents and Chemother. 45(12):3580-3584 ) and have anticancer ( US 5663149 ) and antifungal activity ( Pettit et al (1998) Antimicrob. Agents Chemother.
  • the dolastatin/auristatin drug moiety may be attached to the antibody through the N (amino) terminus or the C (carboxyl) terminus of the peptidic drug moiety ( WO 02/088172 ; Doronina et al (2003) Nature Biotechnology 21(7):778-784 ; Francisco et al (2003) Blood 102(4): 1458-1465 ).
  • Exemplary auristatin embodiments include the N-terminus linked monomethylauristatin drug moieties D E and D F , disclosed in US 7498298 and US 7659241 , the disclosures of which are expressly incorporated by reference in their entirety: wherein the wavy line of D E and D F indicates the covalent attachment site to an antibody or antibody-linker component, and independently at each location:
  • R 3 , R 4 and R 7 are independently isopropyl or sec-butyl and R 5 is -H or methyl. In an exemplary embodiment, R 3 and R 4 are each isopropyl, R 5 is -H, and R 7 is sec-butyl.
  • R 2 and R 6 are each methyl, and R 9 is -H.
  • each occurrence of R 8 is -OCH3.
  • R 3 and R 4 are each isopropyl
  • R 2 and R 6 are each methyl
  • R 5 is -H
  • R 7 is sec-butyl
  • each occurrence of R 8 is -OCH3
  • R 9 is -H.
  • Z is -O- or -NH-.
  • R 10 is aryl
  • R 10 is -phenyl
  • R 11 when Z is -O-, R 11 is -H, methyl or t-butyl.
  • R 11 is -CH(R 15 ) 2 , wherein R 15 is -(CH 2 ) n -N(R 16 ) 2 , and R 16 is -C 1 -C 8 alkyl or -(CH 2 ) n -COOH.
  • R 11 is -CH(R 15 ) 2 , wherein R 15 is -(CH 2 ) n -SO 3 H.
  • An exemplary auristatin embodiment of formula D E is MMAE, wherein the wavy line indicates the covalent attachment to a linker (L) of an antibody-drug conjugate:
  • An exemplary auristatin embodiment of formula D F is MMAF, wherein the wavy line indicates the covalent attachment to a linker (L) of an antibody-drug conjugate:
  • exemplary embodiments include monomethylvaline compounds having phenylalanine carboxy modifications at the C-terminus of the pentapeptide auristatin drug moiety ( WO 2007/008848 ) and monomethylvaline compounds having phenylalanine sidechain modifications at the C-terminus of the pentapeptide auristatin drug moiety ( WO 2007/008603 ).
  • Nonlimiting exemplary embodiments of ADC of Formula I comprising MMAE or MMAF and various linker components have the following structures and abbreviations (wherein “Ab” is an antibody; p is 1 to about 8, “Val-Cit” is a valine-citrulline dipeptide; and “S” is a sulfur atom:
  • Nonlimiting exemplary embodiments of ADCs of Formula I comprising MMAF and various linker components further include Ab-MC-PAB-MMAF and Ab-PAB-MMAF.
  • Immunoconjugates comprising MMAF attached to an antibody by a linker that is not proteolytically cleavable have been shown to possess activity comparable to immunoconjugates comprising MMAF attached to an antibody by a proteolytically cleavable linker ( Doronina et al. (2006) Bioconjugate Chem. 17:114-124 ). In some such embodiments, drug release is believed to be effected by antibody degradation in the cell.
  • peptide-based drug moieties can be prepared by forming a peptide bond between two or more amino acids and/or peptide fragments.
  • Such peptide bonds can be prepared, for example, according to a liquid phase synthesis method (see, e.g., E. Schröder and K. Lübke, "The Peptides", volume 1, pp 76-136, 1965, Academic Press ).
  • Auristatin/dolastatin drug moieties may, in some embodiments, be prepared according to the methods of: US 7498298 ; US 5635483 ; US 5780588 ; Pettit et al (1989) J. Am. Chem. Soc.
  • auristatin/dolastatin drug moieties of formulas D E such as MMAE, and D F , such as MMAF, and drug-linker intermediates and derivatives thereof, such as MC-MMAF, MC-MMAE, MC-vc-PAB-MMAF, and MC-vc-PAB-MMAE may be prepared using methods described in US 7498298 ; Doronina et al. (2006) Bioconjugate Chem. 17:114-124 ; and Doronina et al. (2003) Nat. Biotech. 21:778-784 and then conjugated to an antibody of interest.
  • the immunoconjugate comprises an antibody conjugated to one or more calicheamicin molecules.
  • the calicheamicin family of antibiotics, and analogues thereof, are capable of producing double-stranded DNA breaks at sub-picomolar concentrations ( Hinman et al., (1993) Cancer Research 53:3336-3342 ; Lode et al., (1998) Cancer Research 58:2925-2928 ).
  • Calicheamicin has intracellular sites of action but, in certain instances, does not readily cross the plasma membrane. Therefore, cellular uptake of these agents through antibody-mediated internalization may, in some embodiments, greatly enhances their cytotoxic effects.
  • Nonlimiting exemplary methods of preparing antibody-drug conjugates with a calicheamicin drug moiety are described, for example, in US 5712374 ; US 5714586 ; US 5739116 ; and US 5767285 .
  • the calicheamicin drug moiety conjugated to the antibody is a compound having the formula:
  • X is Br
  • R a is hydrogen
  • R is isopropyl
  • X is Br
  • R a is hydrogen
  • R is ethyl
  • X is I
  • R a is hydrogen
  • R is isopropyl
  • X is I
  • R a is hydrogen
  • R is ethyl
  • X is Br
  • R a is hydrogen
  • X is I
  • R a is hydrogen
  • X is I
  • X is Br
  • R a is ethyl
  • an ADC comprises a pyrrolobenzodiazepine (PBD).
  • PBD dimers recognize and bind to specific DNA sequences.
  • the natural product anthramycin, a PBD was first reported in 1965 ( Leimgruber, et al., (1965) J. Am. Chem. Soc., 87:5793-5795 ; Leimgruber, et al., (1965) J. Am. Chem. Soc., 87:5791-5793 ). Since then, a number of PBDs, both naturally-occurring and analogues, have been reported ( Thurston, et al., (1994) Chem. Rev.
  • dimer structure imparts the appropriate three-dimensional shape for isohelicity with the minor groove of B-form DNA, leading to a snug fit at the binding site ( Kohn, In Antibiotics III. Springer-Verlag, New York, pp. 3-11 (1975 ); Hurley and Needham-VanDevanter, (1986) Acc. Chem. Res., 19:230-237 ).
  • PBD compounds can be employed as prodrugs by protecting them at the N10 position with a nitrogen protecting group which is removable in vivo ( WO 00/12507 ; WO 2005/023814 ).
  • Nonlimiting exemplary linkage sites on the PBD dimer include the five-membered pyrrolo ring, the tether between the PBD units, and the N10-C11 imine group ( WO 2009/016516 ; US 2009/304710 ; US 2010/047257 ; US 2009/036431 ; US 2011/0256157 ; WO 2011/130598 ).
  • Nonlimiting exemplary PBD dimer components of ADCs are of Formula A: and salts and solvates thereof, wherein:
  • R and R' are each independently selected from optionally substituted C 1-12 alkyl, C 3-20 heterocycle, and C 5-20 aryl groups, and optionally in relation to the group NRR', R and R' together with the nitrogen atom to which they are attached form an optionally substituted 4-, 5-, 6- or 7-membered heterocyclic ring.
  • R 9 and R 19 are H.
  • R 6 and R 16 are H.
  • R 7 are R 17 are both OR 7A , where R 7A is optionally substituted C 1-4 alkyl. In some embodiments, R 7A is Me. In some embodiments, R 7A is is Ch 2 Ph, where Ph is a phenyl group.
  • X is O.
  • R 11 is H.
  • each group may independently have either configuration shown below:
  • a CH-R D is in configuration (I).
  • R" is a C 3 alkylene group or a C 5 alkylene group.
  • an exemplary PBD dimer component of an ADC has the structure of Formula A(I): wherein n is 0 or 1.
  • an exemplary PBD dimer component of an ADC has the structure of Formula A(II): wherein n is 0 or 1.
  • an exemplary PBD dimer component of an ADC has the structure of Formula A(III): wherein R E and R E" are each independently selected from H or R D , wherein R D is defined as above; and wherein n is 0 or 1.
  • n is 0. In some embodiments, n is 1. In some embodiments, R E and/or R E" is H. In some embodiments, R E and R E" are H. In some embodiments, R E and/or R E" is R D , wherein R D is optionally substituted C 1-12 alkyl. In some embodiments, R E and/or R E" is R D , wherein R D is methyl.
  • an exemplary PBD dimer component of an ADC has the structure of Formula A(IV):
  • an exemplary PBD dimer component of an ADC has the structure of Formula A(V):
  • Ar 1 and Ar 2 are each independently selected from optionally substituted phenyl, furanyl, thiophenyl and pyridyl. In some embodiments, Ar 1 and Ar 2 are each independently optionally substituted phenyl. In some embodiments, Ar 1 and Ar 2 are each independently optionally substituted thien-2-yl or thien-3-yl. In some embodiments, Ar 1 and Ar 2 are each independently optionally substituted quinolinyl or isoquinolinyl. The quinolinyl or isoquinolinyl group may be bound to the PBD core through any available ring position.
  • the quinolinyl may be quinolin-2-yl, quinolin-3-yl, quinolin-4yl, quinolin-5-yl, quinolin-6-yl, quinolin-7-yl and quinolin-8-yl.
  • the quinolinyl is selected from quinolin-3-yl and quinolin-6-yl.
  • the isoquinolinyl may be isoquinolin-1-yl, isoquinolin-3-yl, isoquinolin-4yl, isoquinolin-5-yl, isoquinolin-6-yl, isoquinolin-7-yl and isoquinolin-8-yl.
  • the isoquinolinyl is selected from isoquinolin-3-yl and isoquinolin-6-yl.
  • PBD dimer components of ADCs are of Formula B: and salts and solvates thereof, wherein:
  • R V1 and R V2 are independently selected from H, phenyl, and 4-fluorophenyl.
  • a linker may be attached at one of various sites of the PBD dimer drug moiety, including the N10 imine of the B ring, the C-2 endo/exo position of the C ring, or the tether unit linking the A rings (see structures C(I) and C(II) below).
  • Nonlimiting exemplary PBD dimer components of ADCs include Formulas C(I) and C(II):
  • Formulas C(I) and C(II) are shown in their N10-C11 imine form.
  • Exemplary PBD drug moieties also include the carbinolamine and protected carbinolamine forms as well, as shown in the table below: wherein:
  • Exemplary PBD dimer portions of ADC include, but are not limited to (the wavy line indicates the site of covalent attachment to the linker): PBD dimer;
  • Nonlimiting exemplary embodiments of ADCs comprising PBD dimers have the following structures: PBD dimer-val-cit-PAB-Ab; PBD dimer-Phe-Lys-PAB-Ab, wherein: n is 0 to 12. In some embodiments, n is 2 to 10. In some embodiments, n is 4 to 8. In some embodiments, n is selected from 4, 5, 6, 7, and 8.
  • a further non-limiting exemplary ADC comprising a PBD dimer may be made by conjugating a monomethyl disulfide N10-linked PBD (shown below) to an antibody: to produce a monomethyl disulfide N10-linked PBD antibody-drug conjugate: See, e.g., PCT Publication No. WO 2013/055987 .
  • linkers of PBD dimer-val-cit-PAB-Ab and the PBD dimer-Phe-Lys-PAB-Ab are protease cleavable, while the linker of PBD dimer-maleimide-acetal is acid-labile.
  • PBD dimers and ADC comprising PBD dimers may be prepared according to methods known in the art. See, e.g., WO 2009/016516 ; US 2009/304710 ; US 2010/047257 ; US 2009/036431 ; US 2011/0256157 ; WO 2011/130598 ; WO 2013/055987 .
  • an ADC comprises an anthracycline.
  • Anthracyclines are antibiotic compounds that exhibit cytotoxic activity. While not intending to be bound by any particular theory, studies have indicated that anthracyclines may operate to kill cells by a number of different mechanisms, including: 1) intercalation of the drug molecules into the DNA of the cell thereby inhibiting DNA-dependent nucleic acid synthesis; 2) production by the drug of free radicals which then react with cellular macromolecules to cause damage to the cells, and/or 3) interactions of the drug molecules with the cell membrane ( see, e.g., C.
  • Nonlimiting exemplary anthracyclines include doxorubicin, epirubicin, idarubicin, daunomycin, nemorubicin, and derivatives thereof. Immunoconjugates and prodrugs of daunorubicin and doxorubicin have been prepared and studied ( Kratz et al (2006) Current Med. Chem. 13:477-523 ; Jeffrey et al (2006) Bioorganic & Med. Chem. Letters 16:358-362 ; Torgov et al (2005) Bioconj. Chem. 16:717-721 ; Nagy et al (2000) Proc. Natl. Acad. Sci. USA 97:829-834 ; Dubowchik et al (2002) Bioorg.
  • PNU-159682 is a potent metabolite (or derivative) of nemorubicin ( Quintieri, et al. (2005) Clinical Cancer Research 11(4):1608-1617 ).
  • Nemorubicin is a semisynthetic analog of doxorubicin with a 2-methoxymorpholino group on the glycoside amino of doxorubicin and has been under clinical evaluation ( Grandi et al (1990) Cancer Treat. Rev. 17:133 ; Ripamonti et al (1992) Brit. J.
  • a nonlimiting exemplary ADC comprising nemorubicin or nemorubicin derivatives is shown in Formula Ia:
  • R 1 and R 2 are both methoxy (-OMe).
  • a further nonlimiting exemplary ADC comprising nemorubicin or nemorubicin derivatives is shown in Formula Ib:
  • R 1 and R 2 are both methoxy (-OMe).
  • the nemorubicin component of a nemorubicin-containing ADC is PNU-159682.
  • the drug portion of the ADC may have one of the following structures: or wherein the wavy line indicates the attachment to the linker (L).
  • Anthracyclines including PNU-159682, may be conjugated to antibodies through several linkage sites and a variety of linkers ( US 2011/0076287 ; WO2009/099741 ; US 2010/0034837 ; WO 2010/009124 ), including the linkers described herein.
  • Exemplary ADCs comprising a nemorubicin and linker include, but are not limited to: PNU-159682 maleimide acetal-Ab; PNU-159682-val-cit-PAB-Ab; PNU-159682-val-cit-PAB-spacer-Ab; PNU-159682-val-cit-PAB-spacer(R 1 R 2 )-Ab, wherein: R 1 and R 2 are independently selected from H and C 1 -C 6 alkyl; and PNU-159682-maleimide-Ab.
  • a further non-limiting exemplary ADC comprising a PBD dimer may be made by conjugating a pyridyl disulfide PNU amide (shown below) to an antibody: to produce a disulfide-linked PNU-159682 antibody-drug conjugate:
  • linker of PNU-159682 maleimide acetal-Ab is acid-labile, while the linkers of PNU-159682-val-cit-PAB-Ab, PNU-159682-val-cit-PAB-spacer-Ab, and PNU-159682-val-cit-PAB-spacer(R 1 R 2 )-Ab are protease cleavable.
  • an ADC comprises 1-(chloromethyl)-2,3-dihydro-1H-benzo[e]indole (CBI).
  • CBI The 5-amino-1-(chloromethyl)-1,2-dihydro-3H-benz[e]indole
  • amino CBI The 5-amino-1-(chloromethyl)-1,2-dihydro-3H-benz[e]indole
  • DNA minor groove alkylators are potent cytotoxins ( Atwell, et al (1999) J. Med. Chem., 42:3400 ), and have been utilized as effector units in a number of classes of prodrugs designed for cancer therapy. These have included antibody conjugates, ( Jeffrey, et al. (2005) J. Med.
  • an ADC comprises a 1-(chloromethyl)-2,3-dihydro-1H-benzo[e]indole (CBI) dimer.
  • the dimer is a heterodimer wherein one half of the dimer is a CBI moiety and the other half of the dimer is a PBD moiety.
  • a CBI dimer comprises the formula: where
  • Linker-drug intermediates 51-86 of Table A were prepared by coupling a CBI dimer or a CBI/PBD heterodimer drug moiety with a linker reagent, according to the procedures of WO 2015/023355 , incorporated by reference herein in its entirety.
  • Table A Linker-CBI dimer and CBI/PBD heterodimer drug intermediates 51-86 No.
  • Linker-drug intermediates 87 and 88 of Table B were prepared by coupling a PBD dimer drug moiety with a linker reagent according to the procedures of WO 2013/055987 , incorporated by reference herein in its entirety.
  • Table B PBD dimer drug intermediates 87-88 No.
  • Linker-drug intermediates 89 and 90 of Table C were prepared by coupling a CBI dimer drug moiety with a peptidomimetic linker reagent according to the procedures of WO 2015/095227 , incorporated by reference herein in its entirety.
  • Table C CBI dimer peptidomimetic linker drug intermediates 89-90 No.
  • Exemplary CBI dimer portions of ADCs include, but are not limited to, the following CBI-PBD dimers (the wavy line indicates the site of covalent attachment to the linker): and the following CBI-CBI dimer:
  • Nonlimiting exemplary embodiments of ADCs comprising CBI dimers have the following structures: CBI-PBD-disulfide-Ab; or CBI-PBD (piperazine-carbamate prodrug)-disulfide-Ab; CBI-PBD (phosphate)-disulfide-Ab; and CBI-CBI (phosphate)-acetal-maleimide-Ab.
  • Nonlimiting exemplary CBI-PBD heterodimer linker-drug intermediates that can be conjugated to antibodies to form ADCs include, but are not limited to: CBI-PBD-2-propyl pyridyl disulfide 83; CBI-PBD (piperazine-carbamate prodrug)- 2-propyl pyridyl disulfide 81; CBI-PBD-(phosphate)-2-propyl pyridyl disulfide 82; CBI-PBD-(phosphate)-2-propyl, nitropyridyl disulfide 85; and CBI-PBD-(phosphate)-peptidomimetic linker 86.
  • Nonlimiting exemplary CBI-CBI homodimer linker-drug intermediates that can be conjugated to antibodies to form ADCs include, but are not limited to: CBI-CBI (phosphate)-acetal-maleimide 78 ; CBI-CBI (phosphate)-peptidomimetic PAB linker 89 ; and CBI-CBI (phosphate)-peptidomimetic EDA linker 90.
  • the immunoconjugate comprises an antibody conjugated to one or more amatoxin molecules.
  • Amatoxins are cyclic peptides composed of 8 amino acids. They can be isolated from Amanita phalloides mushrooms or prepared synthetically. Amatoxins specifically inhibit the DNA-dependent RNA polymerase II of mammalian cells, and thereby also the transcription and protein biosynthesis of the affected cells. Inhibition of transcription in a cell causes stop of growth and proliferation. See e.g., Moldenhauer et al.
  • the one or more amatoxin molecules are one or more ⁇ -amanitin molecules.
  • Drug moieties also include geldanamycin ( Mandler et al (2000) J. Nat. Cancer Inst. 92(19):1573-1581 ; Mandler et al (2000) Bioorganic & Med. Chem. Letters 10:1025-1028 ; Mandler et al (2002) Bioconjugate Chem.
  • enzymatically active toxins and fragments thereof including, but not limited to, diphtheria A chain, nonbinding active fragments of diphtheria toxin, exotoxin A chain (from Pseudomonas aeruginosa), ricin A chain, abrin A chain, modeccin A chain, alpha-sarcin, Aleurites fordii proteins, dianthin proteins, Phytolaca americana proteins (PAPI, PAPII, and PAP-S), momordica charantia inhibitor, curcin, crotin, sapaonaria officinalis inhibitor, gelonin, mitogellin, restrictocin, phenomycin, enomycin and the tricothecenes. See, e.g., WO 93/21232 .
  • Drug moieties also include compounds with nucleolytic activity (e.g ., a ribonuclease or a DNA endonuclease).
  • nucleolytic activity e.g ., a ribonuclease or a DNA endonuclease.
  • an immunoconjugate may comprise a radioactive atom.
  • radioactive isotopes are available for the production of radioconjugated antibodies. Examples include At 211 , I 131 , I 125 , Y 90 , Re 186 , Re 188 , Sm 153 , Bi 212 , P 32 , Pb 212 and radioactive isotopes of Lu.
  • an immunoconjugate when used for detection, it may comprise a radioactive atom for scintigraphic studies, for example Tc 99 or I 123 , or a spin label for nuclear magnetic resonance (NMR) imaging (also known as magnetic resonance imaging, MRI), such as zirconium-89, iodine-123, iodine-131, indium-111, fluorine-19, carbon-13, nitrogen-15, oxygen-17, gadolinium, manganese or iron.
  • NMR nuclear magnetic resonance
  • zirconium-89 zirconium-89, iodine-123, iodine-131, indium-111, fluorine-19, carbon-13, nitrogen-15, oxygen-17, gadolinium, manganese or iron.
  • Zirconium-89 may be complexed to various metal chelating agents and conjugated to antibodies, e.g ., for PET imaging ( WO 2011/056983 ).
  • radio- or other labels may be incorporated in the immunoconjugate in known ways.
  • a peptide may be biosynthesized or chemically synthesized using suitable amino acid precursors comprising, for example, one or more fluorine-19 atoms in place of one or more hydrogens.
  • labels such as Tc 99 , I 123 , Re 186 , Re 188 and In 111 can be attached via a cysteine residue in the antibody.
  • yttrium-90 can be attached via a lysine residue of the antibody.
  • the IODOGEN method Fraker et al (1978) Biochem. Biophys. Res. Commun. 80: 49-57 can be used to incorporate iodine-123. " Monoclonal Antibodies in Immunoscintigraphy" (Chatal, CRC Press 1989 ) describes certain other methods.
  • an immunoconjugate may comprise an antibody conjugated to a prodrug-activating enzyme.
  • a prodrug-activating enzyme converts a prodrug (e.g., a peptidyl chemotherapeutic agent, see WO 81/01145 ) to an active drug, such as an anti-cancer drug.
  • ADEPT antibody-dependent enzyme-mediated prodrug therapy
  • Enzymes that may be conjugated to an antibody include, but are not limited to, alkaline phosphatases, which are useful for converting phosphate-containing prodrugs into free drugs; arylsulfatases, which are useful for converting sulfate-containing prodrugs into free drugs; cytosine deaminase, which is useful for converting non-toxic 5-fluorocytosine into the anti-cancer drug, 5-fluorouracil; proteases, such as serratia protease, thermolysin, subtilisin, carboxypeptidases and cathepsins (such as cathepsins B and L), which are useful for converting peptide-containing prodrugs into free drugs; D-alanylcarboxypeptidases, which are useful for converting prodrugs that contain D-amino acid substituents; carbohydrate-cleaving enzymes such as ⁇ -galactosidase and neuraminidase, which are useful for converting glycosy
  • Drug loading is represented by p, the average number of drug moieties per antibody in a molecule of Formula I. Drug loading may range from 1 to 20 drug moieties (D) per antibody.
  • ADCs of Formula I include collections of antibodies conjugated with a range of drug moieties, from 1 to 20.
  • the average number of drug moieties per antibody in preparations of ADC from conjugation reactions may be characterized by conventional means such as mass spectroscopy, ELISA assay, and HPLC.
  • the quantitative distribution of ADC in terms of p may also be determined. In some instances, separation, purification, and characterization of homogeneous ADC where p is a certain value from ADC with other drug loadings may be achieved by means such as reverse phase HPLC or electrophoresis.
  • p may be limited by the number of attachment sites on the antibody.
  • an antibody may have only one or several cysteine thiol groups, or may have only one or several sufficiently reactive thiol groups through which a linker may be attached.
  • higher drug loading e.g. p >5
  • the average drug loading for an ADC ranges from 1 to about 8; from about 2 to about 6; or from about 3 to about 5. Indeed, it has been shown that for certain ADCs, the optimal ratio of drug moieties per antibody may be less than 8, and may be about 2 to about 5 ( US 7498298 ).
  • an antibody may contain, for example, lysine residues that do not react with the drug-linker intermediate or linker reagent, as discussed below. Generally, antibodies do not contain many free and reactive cysteine thiol groups which may be linked to a drug moiety; indeed most cysteine thiol residues in antibodies exist as disulfide bridges.
  • an antibody may be reduced with a reducing agent such as dithiothreitol (DTT) or tricarbonylethylphosphine (TCEP), under partial or total reducing conditions, to generate reactive cysteine thiol groups.
  • DTT dithiothreitol
  • TCEP tricarbonylethylphosphine
  • an antibody is subjected to denaturing conditions to reveal reactive nucleophilic groups such as lysine or cysteine.
  • the loading (drug/antibody ratio) of an ADC may be controlled in different ways, and for example, by: (i) limiting the molar excess of drug-linker intermediate or linker reagent relative to antibody, (ii) limiting the conjugation reaction time or temperature, and (iii) partial or limiting reductive conditions for cysteine thiol modification.
  • the resulting product is a mixture of ADC compounds with a distribution of one or more drug moieties attached to an antibody.
  • the average number of drugs per antibody may be calculated from the mixture by a dual ELISA antibody assay, which is specific for antibody and specific for the drug.
  • Individual ADC molecules may be identified in the mixture by mass spectroscopy and separated by HPLC, e.g. hydrophobic interaction chromatography ( see, e.g., McDonagh et al (2006) Prot. Engr. Design & Selection 19(7):299-307 ; Hamblett et al (2004) Clin. Cancer Res.
  • a homogeneous ADC with a single loading value may be isolated from the conjugation mixture by electrophoresis or chromatography.
  • An ADC of Formula I may be prepared by several routes employing organic chemistry reactions, conditions, and reagents known to those skilled in the art, including: (1) reaction of a nucleophilic group of an antibody with a bivalent linker reagent to form Ab-L via a covalent bond, followed by reaction with a drug moiety D; and (2) reaction of a nucleophilic group of a drug moiety with a bivalent linker reagent, to form D-L, via a covalent bond, followed by reaction with a nucleophilic group of an antibody. Exemplary methods for preparing an ADC of Formula I via the latter route are described in US 7498298 , which is expressly incorporated herein by reference.
  • Nucleophilic groups on antibodies include, but are not limited to: (i) N-terminal amine groups, (ii) side chain amine groups, e.g. lysine, (iii) side chain thiol groups, e.g. cysteine, and (iv) sugar hydroxyl or amino groups where the antibody is glycosylated.
  • Amine, thiol, and hydroxyl groups are nucleophilic and capable of reacting to form covalent bonds with electrophilic groups on linker moieties and linker reagents including: (i) active esters such as NHS esters, HOBt esters, haloformates, and acid halides; (ii) alkyl and benzyl halides such as haloacetamides; and (iii) aldehydes, ketones, carboxyl, and maleimide groups. Certain antibodies have reducible interchain disulfides, i.e. cysteine bridges.
  • Antibodies may be made reactive for conjugation with linker reagents by treatment with a reducing agent such as DTT (dithiothreitol) or tricarbonylethylphosphine (TCEP), such that the antibody is fully or partially reduced.
  • a reducing agent such as DTT (dithiothreitol) or tricarbonylethylphosphine (TCEP)
  • TCEP tricarbonylethylphosphine
  • Each cysteine bridge will thus form, theoretically, two reactive thiol nucleophiles.
  • Additional nucleophilic groups can be introduced into antibodies through modification of lysine residues, e.g ., by reacting lysine residues with 2-iminothiolane (Traut's reagent), resulting in conversion of an amine into a thiol.
  • Reactive thiol groups may also be introduced into an antibody by introducing one, two, three, four, or more cysteine residues (
  • Antibody-drug conjugates of the invention may also be produced by reaction between an electrophilic group on an antibody, such as an aldehyde or ketone carbonyl group, with a nucleophilic group on a linker reagent or drug.
  • an electrophilic group on an antibody such as an aldehyde or ketone carbonyl group
  • nucleophilic groups on a linker reagent or drug include, but are not limited to, hydrazide, oxime, amino, hydrazine, thiosemicarbazone, hydrazine carboxylate, and arylhydrazide.
  • an antibody is modified to introduce electrophilic moieties that are capable of reacting with nucleophilic substituents on the linker reagent or drug.
  • the sugars of glycosylated antibodies may be oxidized, e.g . with periodate oxidizing reagents, to form aldehyde or ketone groups which may react with the amine group of linker reagents or drug moieties.
  • the resulting imine Schiff base groups may form a stable linkage, or may be reduced, e.g . by borohydride reagents to form stable amine linkages.
  • reaction of the carbohydrate portion of a glycosylated antibody with either galactose oxidase or sodium meta-periodate may yield carbonyl (aldehyde and ketone) groups in the antibody that can react with appropriate groups on the drug (Hermanson, Bioconjugate Techniques).
  • antibodies containing N-terminal serine or threonine residues can react with sodium meta-periodate, resulting in production of an aldehyde in place of the first amino acid ( Geoghegan & Stroh, (1992) Bioconjugate Chem. 3:138-146 ; US 5362852 ).
  • Such an aldehyde can be reacted with a drug moiety or linker nucleophile.
  • nucleophilic groups on a drug moiety include, but are not limited to: amine, thiol, hydroxyl, hydrazide, oxime, hydrazine, thiosemicarbazone, hydrazine carboxylate, and arylhydrazide groups capable of reacting to form covalent bonds with electrophilic groups on linker moieties and linker reagents including: (i) active esters such as NHS esters, HOBt esters, haloformates, and acid halides; (ii) alkyl and benzyl halides such as haloacetamides; (iii) aldehydes, ketones, carboxyl, and maleimide groups.
  • active esters such as NHS esters, HOBt esters, haloformates, and acid halides
  • alkyl and benzyl halides such as haloacetamides
  • aldehydes ketones, carboxyl, and maleimide groups.
  • Nonlimiting exemplary cross-linker reagents that may be used to prepare ADC are described herein in the section titled "Exemplary Linkers.” Methods of using such cross-linker reagents to link two moieties, including a proteinaceous moiety and a chemical moiety, are known in the art.
  • a fusion protein comprising an antibody and a cytotoxic agent may be made, e.g ., by recombinant techniques or peptide synthesis.
  • a recombinant DNA molecule may comprise regions encoding the antibody and cytotoxic portions of the conjugate either adjacent to one another or separated by a region encoding a linker peptide which does not destroy the desired properties of the conjugate.
  • an antibody may be conjugated to a "receptor” (such as streptavidin) for utilization in tumor pre-targeting wherein the antibody-receptor conjugate is administered to the patient, followed by removal of unbound conjugate from the circulation using a clearing agent and then administration of a "ligand” (e.g., avidin) which is conjugated to a cytotoxic agent (e.g., a drug or radionucleotide).
  • a "receptor” such as streptavidin
  • a ligand e.g., avidin
  • cytotoxic agent e.g., a drug or radionucleotide
  • the present invention includes therapeutic treatments with trastuzumab-MCC-DMl (T-DM1, also referred to as trastuzumab emtansine), an antibody-drug conjugate (CAS Reg. No. 139504-50-0 ), which has the structure: where Tr is trastuzumab linked through linker moiety MCC to the maytansinoid drug moiety DM1 ( US 5208020 ; US 6441163 ).
  • the drug to antibody ratio or drug loading is represented by p in the above structure of trastuzumab-MCC-DM1, and ranges in integer values from 1 to about 8.
  • Trastuzumab-MCC-DM1 includes all mixtures of variously loaded and attached antibody-drug conjugates where 1, 2, 3, 4, 5, 6, 7, and 8 drug moieties are covalently attached to the antibody trastuzumab ( US 7097840 ; US 8337856 ; US 2005/0276812 ; US 2005/0166993 ).
  • Trastuzumab can be produced by a mammalian cell (Chinese Hamster Ovary, CHO) suspension culture.
  • the HER2 (or c-erbB2) proto-oncogene encodes a transmembrane receptor protein of 185kDa, which is structurally related to the epidermal growth factor receptor.
  • Trastuzumab is an antibody that has antigen binding residues of, or derived from, the murine 4D5 antibody (ATCC CRL 10463, deposited with American Type Culture Collection, 12301 Parklawn Drive, Rockville, Md. 20852 under the Budapest Treaty on May 24, 1990).
  • Exemplary humanized 4D5 antibodies include huMAb4D5-1, huMAb4D5-2, huMAb4D5-3, huMAb4D5-4, huMAb4D5-5, huMAb4D5-6, huMAb4D5-7 and huMAb4D5-8 (trastuzumab, HERCEPTIN®) as in US 5821337 .
  • the antibody portion of T-DM1 comprises the light and heavy chain amino acid sequences shown in SEQ ID NO: 30 and SEQ ID NO. 29, respectively.
  • Trastuzumab-MCC-DMl may be prepared according to Example 1 of U.S. Application Publication No. 20110165155 , for example.
  • the initial pharmaceutically effective amount of trastuzumab-MCC-DM1 administered per dose will be in the range of about 0.3 to 15 mg/kg/day of patient body weight.
  • a commercial T-DM1 fomulation (KADCYLA®, ado-trastuzumab emtansine) is a sterile, white to off-white preservative free lyophilized powder in single-use vials.
  • Each vial contains 100 mg or 160 mg ado-trastuzumab emtansine.
  • each single-use vial contains ado-trastuzumab emtansine (20 mg/mL), polysorbate 20 [0.02% (w/v)], sodium succinate (10 mM), and sucrose [6% (w/v)] with a pH of 5.0 and density of 1.026 g/mL.
  • ado-trastuzumab emtansine is administered by intravenous infusion following dilution.
  • ado-trastuzumab emtansine is administered at a dose of 3.6 mg/kg every three weeks.
  • ado-trastuzumab emtansine is administered at a dose of 2.4 mg/kg every week.
  • the pertuzumab composition comprises a mixture of a main species pertuzumab antibody, as hereinabove defined, and one or more variants thereof.
  • the preferred embodiment herein of a pertuzumab main species antibody is one comprising a light chain amino acid sequence of SEQ ID NO: 32, and a heavy chain amino acid sequence of SEQ ID NO: 31 (including deamidated and/or oxidized variants of those sequences).
  • the composition comprises a mixture of the main species pertuzumab antibody and an amino acid sequence variant thereof comprising an amino-terminal leader extension, e.g., comprising a light chain amino acid sequence of SEQ ID NO: 34, and a heavy chain amino acid sequence of SEQ ID NO: 33.
  • the amino-terminal leader extension is on a light chain of the antibody variant (e.g. on one or two light chains of the antibody variant).
  • the main species HER2 antibody or the antibody variant may be an full length antibody or antibody fragment (e.g. Fab of F(ab')2 fragments), but preferably both are full length antibodies.
  • the antibody variant herein may comprise an amino-terminal leader extension on any one or more of the heavy or light chains thereof.
  • the amino-terminal leader extension is on one or two light chains of the antibody.
  • the amino-terminal leader extension preferably comprises or consists of VHS--.
  • Presence of the amino-terminal leader extension in the composition can be detected by various analytical techniques including, but not limited to, N-terminal sequence analysis, assay for charge heterogeneity (for instance, cation exchange chromatography or capillary zone electrophoresis), mass spectrometry, etc.
  • the amount of the antibody variant in the composition generally ranges from an amount that constitutes the detection limit of any assay (preferably N-terminal sequence analysis) used to detect the variant to an amount less than the amount of the main species antibody. Generally, about 20% or less (e.g. from about 1% to about 15%, for instance from 5% to about 15%) of the antibody molecules in the composition comprise an amino-terminal leader extension.
  • Such percentage amounts are preferably determined using quantitative N-terminal sequence analysis or cation exchange analysis (preferably using a high-resolution, weak cation-exchange column, such as a PROPAC WCX-10TM cation exchange column).
  • a high-resolution, weak cation-exchange column such as a PROPAC WCX-10TM cation exchange column.
  • further amino acid sequence alterations of the main species antibody and/or variant are contemplated, including but not limited to an antibody comprising a C-terminal lysine residue on one or both heavy chains thereof, a deamidated antibody variant, etc.
  • the main species antibody or variant may further comprise glycosylation variations, non-limiting examples of which include antibody comprising a G1 or G2 oligosaccharide structure attached to the Fc region thereof, antibody comprising a carbohydrate moiety attached to a light chain thereof (e.g. one or two carbohydrate moieties, such as glucose or galactose, attached to one or two light chains of the antibody, for instance attached to one or more lysine residues), antibody comprising one or two non-glycosylated heavy chains, or antibody comprising a sialidated oligosaccharide attached to one or two heavy chains thereof etc.
  • glycosylation variations non-limiting examples of which include antibody comprising a G1 or G2 oligosaccharide structure attached to the Fc region thereof, antibody comprising a carbohydrate moiety attached to a light chain thereof (e.g. one or two carbohydrate moieties, such as glucose or galactose, attached to one or two light chains of the antibody, for instance attached to
  • composition may be recovered from a genetically engineered cell line, e.g. a Chinese Hamster Ovary (CHO) cell line expressing the HER2 antibody, or may be prepared by peptide synthesis.
  • a genetically engineered cell line e.g. a Chinese Hamster Ovary (CHO) cell line expressing the HER2 antibody
  • CHO Chinese Hamster Ovary
  • pertuzumab therapy comprises administration of an initial loading dose of 840 mg, following by administration of a flat maintenance dose of 420 mg every three weeks.
  • any of the anti-HER2 antibodies provided herein is useful for detecting the presence of HER2 in a biological sample.
  • the term “detecting” as used herein encompasses quantitative or qualitative detection.
  • a “biological sample” comprises, e.g., a cell or tissue (e.g., biopsy material, including cancerous or potentially cancerous breast tissue).
  • an anti-HER2 antibody for use in a method of diagnosis or detection is provided.
  • a method of detecting the presence of HER2 in a biological sample comprises contacting the biological sample with an anti-HER2 antibody as described herein under conditions permissive for binding of the anti-HER2 antibody to HER2, and detecting whether a complex is formed between the anti-HER2 antibody and HER2 in the biological sample.
  • Such method may be an in vitro or in vivo method.
  • an anti-HER2 antibody is used to select subjects eligible for therapy with an anti-HER2 antibody, e.g . where HER2 is a biomarker for selection of patients.
  • the biological sample is a cell or tissue.
  • an anti-HER2 antibody is used in vivo to detect, e.g., by in vivo imaging, a HER2-positive cancer in a subject, e.g ., for the purposes of diagnosing, prognosing, or staging cancer, determining the appropriate course of therapy, or monitoring response of a cancer to therapy.
  • a method known in the art for in vivo detection is immuno-positron emission tomography (immuno-PET), as described, e.g., in van Dongen et al., The Oncologist 12:1379-1389 (2007 ) and Verel et al., J. Nucl. Med. 44:1271-1281 (2003 ).
  • a method for detecting a HER2-positive cancer in a subject comprising administering a labeled anti-HER2antibody to a subject having or suspected of having a HER2-positive cancer, and detecting the labeled anti-HER2 antibody in the subject, wherein detection of the labeled anti-HER2 antibody indicates a HER2-positive cancer in the subject.
  • the labeled anti-HER2 antibody comprises an anti-HER2 antibody conjugated to a positron emitter, such as 68 Ga, 18 F, 64 Cu, 86 Y, 76 Br, 89 Zr, and 124 I.
  • the positron emitter is 89 Zr.
  • a method of diagnosis or detection comprises contacting a first anti-HER2 antibody immobilized to a substrate with a biological sample to be tested for the presence of HER2, exposing the substrate to a second anti-HER2 antibody, and detecting whether the second anti-HER2 is bound to a complex between the first anti-HER2 antibody and HER2in the biological sample.
  • a substrate may be any supportive medium, e.g ., glass, metal, ceramic, polymeric beads, slides, chips, and other substrates.
  • a biological sample comprises a cell or tissue.
  • the first or second anti-HER2 antibody is any of the antibodies described herein.
  • HER2-positive cancers such as HER2-positive breast cancer and HER2-positive gastric cancer.
  • HER2-positive cancer has an immunohistochemistry (IHC) score of 2+ or 3+ and/or an in situ hybridization (ISH) amplification ratio ⁇ 2.0.
  • IHC immunohistochemistry
  • ISH in situ hybridization
  • labeled anti-HER2 antibodies include, but are not limited to, labels or moieties that are detected directly (such as fluorescent, chromophoric, electron-dense, chemiluminescent, and radioactive labels), as well as moieties, such as enzymes or ligands, that are detected indirectly, e.g., through an enzymatic reaction or molecular interaction.
  • Exemplary labels include, but are not limited to, the radioisotopes 32 P, 14 C, 125 I, 3 H, and 131 I, fluorophores such as rare earth chelates or fluorescein and its derivatives, rhodamine and its derivatives, dansyl, umbelliferone, luceriferases, e.g ., firefly luciferase and bacterial luciferase ( U.S. Patent No.
  • luciferin 2,3-dihydrophthalazinediones, horseradish peroxidase (HRP), alkaline phosphatase, ⁇ -galactosidase, glucoamylase, lysozyme, saccharide oxidases, e.g ., glucose oxidase, galactose oxidase, and glucose-6-phosphate dehydrogenase, heterocyclic oxidases such as uricase and xanthine oxidase, coupled with an enzyme that employs hydrogen peroxide to oxidize a dye precursor such as HRP, lactoperoxidase, or microperoxidase, biotin/avidin, spin labels, bacteriophage labels, stable free radicals, and the like.
  • HRP horseradish peroxidase
  • lactoperoxidase lactoperoxidase
  • microperoxidase biotin/avidin
  • spin labels bacteriophage labels
  • a label is a positron emitter.
  • Positron emitters include but are not limited to 68 Ga, 18 F, 64 Cu, 86 Y, 76 Br, 89 Zr, and 124 I.
  • a positron emitter is 89 Zr.
  • compositions of an anti-HER2 antibody or immunoconjugate as described herein are prepared by mixing such antibody or immunoconjugate having the desired degree of purity with one or more optional pharmaceutically acceptable carriers ( Remington's Pharmaceutical Sciences 16th edition, Osol, A. Ed. (1980 )), in the form of lyophilized formulations or aqueous solutions.
  • Pharmaceutically acceptable carriers are generally nontoxic to recipients at the dosages and concentrations employed, and include, but are not limited to: buffers such as phosphate, citrate, and other organic acids; antioxidants including ascorbic acid and methionine; preservatives (such as octadecyldimethylbenzyl ammonium chloride; hexamethonium chloride; benzalkonium chloride; benzethonium chloride; phenol, butyl or benzyl alcohol; alkyl parabens such as methyl or propyl paraben; catechol; resorcinol; cyclohexanol; 3-pentanol; and m-cresol); low molecular weight (less than about 10 residues) polypeptides; proteins, such as serum albumin, gelatin, or immunoglobulins; hydrophilic polymers such as polyvinylpyrrolidone; amino acids such as glycine, glutamine, asparagine, histidine, arg
  • sHASEGP soluble neutral-active hyaluronidase glycoproteins
  • rHuPH20 HYLENEX®, Baxter International, Inc.
  • Certain exemplary sHASEGPs and methods of use, including rHuPH20, are described in US Patent Publication Nos. 2005/0260186 and 2006/0104968 .
  • a sHASEGP is combined with one or more additional glycosaminoglycanases such as chondroitinases.
  • Exemplary lyophilized antibody or immunoconjugate formulations are described in US Patent No. 6,267,958 .
  • Aqueous antibody or immunoconjugate formulations include those described in US Patent No. 6,171,586 and WO2006/044908 , the latter formulations including a histidine-acetate buffer.
  • the formulation herein may also contain more than one active ingredient as necessary for the particular indication being treated, preferably those with complementary activities that do not adversely affect each other.
  • Active ingredients may be entrapped in microcapsules prepared, for example, by coacervation techniques or by interfacial polymerization, for example, hydroxymethylcellulose or gelatin-microcapsules and poly-(methylmethacylate) microcapsules, respectively, in colloidal drug delivery systems (for example, liposomes, albumin microspheres, microemulsions, nano-particles and nanocapsules) or in macroemulsions.
  • colloidal drug delivery systems for example, liposomes, albumin microspheres, microemulsions, nano-particles and nanocapsules
  • Sustained-release preparations may be prepared. Suitable examples of sustained-release preparations include semipermeable matrices of solid hydrophobic polymers containing the antibody or immunoconjugate, which matrices are in the form of shaped articles, e.g . films, or microcapsules.
  • the formulations to be used for in vivo administration are generally sterile. Sterility may be readily accomplished, e.g., by filtration through sterile filtration membranes.
  • anti-HER2 antibodies or immunoconjugates may be used in methods, e.g ., therapeutic methods.
  • an anti-HER2 antibody or immunoconjugate provided herein is used in a method of inhibiting proliferation of a HER2-positive cell, the method comprising exposing the cell to the anti-HER2 antibody or immunoconjugate under conditions permissive for binding of the anti-HER2 antibody or immunoconjugate to HER2 on the surface of the cell, thereby inhibiting the proliferation of the cell.
  • the method is an in vitro or an in vivo method.
  • the cell is a breast cancer cell or a gastric cancer cell.
  • Inhibition of cell proliferation in vitro may be assayed using the CellTiter-GloTM Luminescent Cell Viability Assay, which is commercially available from Promega (Madison, WI). That assay determines the number of viable cells in culture based on quantitation of ATP present, which is an indication of metabolically active cells. See Crouch et al. (1993) J. Immunol. Meth. 160:81-88 , US Pat. No. 6602677 . The assay may be conducted in 96- or 384-well format, making it amenable to automated high-throughput screening (HTS). See Cree et al. (1995) AntiCancer Drugs 6:398-404 .
  • HTS high-throughput screening
  • the assay procedure involves adding a single reagent (CellTiter-Glo® Reagent) directly to cultured cells. This results in cell lysis and generation of a luminescent signal produced by a luciferase reaction.
  • the luminescent signal is proportional to the amount of ATP present, which is directly proportional to the number of viable cells present in culture. Data can be recorded by luminometer or CCD camera imaging device.
  • the luminescence output is expressed as relative light units (RLU).
  • an anti-HER2 antibody or immunoconjugate for use as a medicament is provided.
  • an anti-HER2 antibody or immunoconjugate for use in a method of treatment is provided.
  • an anti-HER2 antibody or immunoconjugate for use in treating HER2-positive cancer is provided.
  • the invention provides an anti-HER2 antibody or immunoconjugate for use in a method of treating an individual having a HER2-positive cancer, the method comprising administering to the individual an effective amount of the anti-HER2 antibody or immunoconjugate.
  • the method further comprises administering to the individual an effective amount of at least one additional therapeutic agent, e.g., as described below.
  • the invention provides for the use of an anti-HER2 antibody or immunoconjugate in the manufacture or preparation of a medicament.
  • the medicament is for treatment of HER2-positive cancer.
  • the medicament is for use in a method of treating HER2-positive cancer, the method comprising administering to an individual having HER2-positive cancer an effective amount of the medicament.
  • the method further comprises administering to the individual an effective amount of at least one additional therapeutic agent, e.g., as described below.
  • the invention provides a method for treating HER2-positive cancer.
  • the method comprises administering to an individual having such HER2-positive cancer an effective amount of an anti-HER2 antibody or immunoconjugate.
  • the method further comprises administering to the individual an effective amount of at least one additional therapeutic agent, as described below.
  • a HER2-positive cancer according to any of the above embodiments may be, e.g., HER2-positive breast cancer or HER2-positive gastric cancer.
  • HER2-positive cancer has an immunohistochemistry (IHC) score of 2+ or 3+ and/or an in situ hybridization (ISH) amplification ratio ⁇ 2.0.
  • IHC immunohistochemistry
  • ISH in situ hybridization
  • An “individual,” “patient,” or “subject” according to any of the above embodiments may be a human.
  • the invention provides pharmaceutical formulations comprising any of the anti-HER2 antibodies or immunoconjugate provided herein, e.g., for use in any of the above therapeutic methods.
  • a pharmaceutical formulation comprises any of the anti-HER2 antibodies or immunoconjugates provided herein and a pharmaceutically acceptable carrier.
  • a pharmaceutical formulation comprises any of the anti-HER2 antibodies or immunoconjugates provided herein and at least one additional therapeutic agent, e.g., as described below.
  • Antibodies or immunoconjugates of the invention can be used either alone or in combination with other agents in a therapy.
  • an antibody or immunoconjugate of the invention e.g., a hu7C2.v.2.2.LA antibody-drug conjugate (hu7C2 ADC)
  • the additional therapeutic agent is also an antibody or immunoconjugate that binds to HER2.
  • the additional therapeutic agent is (i) an antibody or immunoconjugate that binds to domain II of HER2, and/or (ii) an antibody or immunoconjugate that binds to domain IV or HER2.
  • the additional therapeutic agent is (i) an antibody or immunoconjugate that binds to epitope 2C4, and/or (ii) an antibody or immunoconjugate that binds to epitope 4D5.
  • a hu7C2.v.2.2.LA antibody-drug conjugate (hu7C2 ADC) is co-administered with one or more additional therapeutic agents selected from trastuzumab (Herceptin®), T-DM1 (Kadcyla®) and pertuzumab (Perjeta®).
  • an hu7C2 ADC is co-administered with trastuzumab.
  • a hu7C2 ADC is co-administered with T-DM1.
  • a hu7C2 ADC is co-administered with pertuzumab.
  • a hu7C2 ADC is co-administered with trastuzumab and pertuzumab. In some embodiments, a hu7C2 ADC is co-administered with T-DM1 and pertuzumab.
  • Such combination therapies noted above encompass combined administration (where two or more therapeutic agents are included in the same or separate formulations), and separate administration, in which case, administration of the antibody or immunoconjugate of the invention can occur prior to, simultaneously, and/or following, administration of the additional therapeutic agent and/or adjuvant.
  • Antibodies or immunoconjugates of the invention can also be used in combination with radiation therapy.
  • An antibody or immunoconjugate of the invention can be administered by any suitable means, including parenteral, intrapulmonary, and intranasal, and, if desired for local treatment, intralesional administration.
  • Parenteral infusions include intramuscular, intravenous, intraarterial, intraperitoneal, or subcutaneous administration. Dosing can be by any suitable route, e.g. by injections, such as intravenous or subcutaneous injections, depending in part on whether the administration is brief or chronic.
  • Various dosing schedules including but not limited to single or multiple administrations over various time-points, bolus administration, and pulse infusion are contemplated herein.
  • Antibodies or immunoconjugates of the invention would be formulated, dosed, and administered in a fashion consistent with good medical practice. Factors for consideration in this context include the particular disorder being treated, the particular mammal being treated, the clinical condition of the individual patient, the cause of the disorder, the site of delivery of the agent, the method of administration, the scheduling of administration, and other factors known to medical practitioners.
  • the antibody or immunoconjugate need not be, but is optionally formulated with one or more agents currently used to prevent or treat the disorder in question. The effective amount of such other agents depends on the amount of antibody or immunoconjugate present in the formulation, the type of disorder or treatment, and other factors discussed above. These are generally used in the same dosages and with administration routes as described herein, or about from 1 to 99% of the dosages described herein, or in any dosage and by any route that is empirically/clinically determined to be appropriate.
  • an antibody or immunoconjugate of the invention when used alone or in combination with one or more other additional therapeutic agents, will depend on the type of disease to be treated, the type of antibody or immunoconjugate, the severity and course of the disease, whether the antibody or immunoconjugate is administered for preventive or therapeutic purposes, previous therapy, the patient's clinical history and response to the antibody or immunoconjugate, and the discretion of the attending physician.
  • the antibody or immunoconjugate is suitably administered to the patient at one time or over a series of treatments. Depending on the type and severity of the disease, about 1 ⁇ g/kg to 15 mg/kg ( e.g .
  • 0.1mg/kg-10mg/kg) of antibody or immunoconjugate can be an initial candidate dosage for administration to the patient, whether, for example, by one or more separate administrations, or by continuous infusion.
  • One typical daily dosage might range from about 1 ⁇ g/kg to 100 mg/kg or more, depending on the factors mentioned above.
  • the treatment would generally be sustained until a desired suppression of disease symptoms occurs.
  • One exemplary dosage of the antibody or immunoconjugate would be in the range from about 0.05 mg/kg to about 10 mg/kg.
  • one or more doses of about 0.5 mg/kg, 2.0 mg/kg, 4.0 mg/kg or 10 mg/kg (or any combination thereof) may be administered to the patient.
  • Such doses may be administered intermittently, e.g . every week or every three weeks ( e.g. such that the patient receives from about two to about twenty, or e.g. about six doses of the antibody).
  • An initial higher loading dose, followed by one or more lower doses may be administered.
  • other dosage regimens may be useful. The progress of this therapy is easily monitored by conventional techniques and assays.
  • any of the above formulations or therapeutic methods may be carried out using both an immunoconjugate of the invention and an anti-HER2 antibody.
  • kits containing a hu7C2.v.2.2.LA antibody-drug conjugate (hu7C2 ADC) and trastuzumab-MCC-DMl and/or pertuzumab useful for the treatment methods herein are provided.
  • the kit comprises a container comprising a hu7C2 ADC.
  • the kit further comprises a container comprising trastuzumab-MCC-DM1.
  • the kit further comprises container comprising pertuzumab.
  • a kit further comprises a container comprising trastuzumab-MCC-DMl and a container comprising pertuzumab.
  • the kit comprises two or more of hu7C2 ADC, trastuzumab-MCC-DM1, and pertuzumab in the same container.
  • the kit may further comprise a label or package insert, on or associated with the container.
  • package insert is used to refer to instructions customarily included in commercial packages of therapeutic products, that contain information about the indications, usage, dosage, administration, contraindications and/or warnings concerning the use of such therapeutic products.
  • Suitable containers include, for example, bottles, vials, syringes, blister pack, etc.
  • the container may be formed from a variety of materials such as glass or plastic.
  • the container may hold hu7C2 ADC and, optionally, trastuzumab-MCC-DMl and/or pertuzumab or a formulation thereof which is effective for use in a treatment method herein, and may have a sterile access port (for example, the container may be an intravenous solution bag or a vial having a stopper pierceable by a hypodermic injection needle).
  • the label or package insert indicates that the composition is used in a treatment method as described and claimed herein.
  • the article of manufacture may also contain a further container comprising a pharmaceutically acceptable buffer, such as bacteriostatic water for injection (BWFI), phosphate-buffered saline, Ringer's solution and dextrose solution. It may further include other materials desirable from a commercial and user standpoint, including other buffers, diluents, filters, needles, and syringes.
  • BWFI bacteriostatic water for injection
  • phosphate-buffered saline such
  • the kit may further comprise directions for the administration of hu7C2 ADC and, optionally, trastuzumab-MCC-DMl and/or pertuzumab.
  • the kit may further comprise directions for the simultaneous, sequential or separate administration of the first and second pharmaceutical compositions to a patient in need thereof.
  • kits are suitable for the delivery of solid oral forms of hu7C2 ADC and, optionally, trastuzumab-MCC-DMl and/or pertuzumab, such as tablets or capsules.
  • a kit preferably includes a number of unit dosages.
  • Such kits can include a card having the dosages oriented in the order of their intended use.
  • An example of such a kit is a "blister pack".
  • Blister packs are well known in the packaging industry and are widely used for packaging pharmaceutical unit dosage forms.
  • a memory aid can be provided, for example in the form of numbers, letters, or other markings or with a calendar insert, designating the days in the treatment schedule in which the dosages can be administered.
  • a kit may comprise (a) a first container with hu7C2 ADC, and optionally, (b) a second container with trastuzumab-MCC-DMl contained therein and/or with pertuzumab contained therein.
  • a kit may comprise (a) a first container with hu7C2 ADC, (b) a second container with trastuzumab-MCC-DMl contained therein, and (c) a third container with pertuzumab contained therein.
  • the kit may further comprise a container comprising a pharmaceutically-acceptable buffer, such as bacteriostatic water for injection (BWFI), phosphate-buffered saline, Ringer's solution and dextrose solution. It may further include other materials desirable from a commercial and user standpoint, including other buffers, diluents, filters, needles, and syringes.
  • a pharmaceutically-acceptable buffer such as bacteriostatic water for injection (BWFI), phosphate-buffered saline, Ringer's solution and dextrose solution.
  • the kit may comprise a container for containing the separate compositions such as a divided bottle or a divided foil packet, however, the separate compositions may also be contained within a single, undivided container.
  • the kit comprises directions for the administration of the separate components.
  • the kit form is particularly advantageous when the separate components are preferably administered in different dosage forms (e.g., oral and parenteral), are administered at different dosage intervals, or when titration of the individual components of the combination is desired by the prescribing physician.
  • an article of manufacture herein comprises an intravenous (IV) bag containing a stable mixture of a hu7C2 ADC and pertuzumab and/or T-DM1 suitable for administration to a cancer patient.
  • the mixture is in saline solution; for example comprising about 0.9% NaCl or about 0.45% NaCl.
  • An exemplary IV bag is a polyolefin or polyvinyl chloride infusion bag, e.g. a 250mL IV bag.
  • the mixture includes about 420mg or about 840mg of pertuzumab and from about 100 mg to about 160 mg T-DM1.
  • the mixture in the IV bag is stable for up to 24 hours at 5°C or 30°C.
  • Stability of the mixture can be evaluated by one or more assays selected from the group consisting of: color, appearance and clarity (CAC), concentration and turbidity analysis, particulate analysis, size exclusion chromatography (SEC), ion-exchange chromatography (IEC), capillary zone electrophoresis (CZE), image capillary isoelectric focusing (iCIEF), and potency assay.
  • assays selected from the group consisting of: color, appearance and clarity (CAC), concentration and turbidity analysis, particulate analysis, size exclusion chromatography (SEC), ion-exchange chromatography (IEC), capillary zone electrophoresis (CZE), image capillary isoelectric focusing (iCIEF), and potency assay.
  • Anti-HER2 murine antibody 7C2 binds to an epitope in domain I of HER2. See, e.g., PCT Publication No. WO 98/17797 .
  • This epitope is distinct from the epitope bound by trastuzumab, which binds to domain IV of HER2, and the epitope bound by pertuzumab, which binds to domain II of HER2. See Figures 3 , 16 , and 18 .
  • trastuzumab disrupts ligand-independent HER2-HER3 complexes, thereby inhibiting downstream signaling (e.g. PI3K/AKT).
  • pertuzumab binding to domain II prevents ligand-driven HER2 interaction with other HER family members (e.g. HER3, HER1 or HER4), thus also preventing downstream signal transduction.
  • Binding of MAb 7C2 to domain I does not result in interference of trastuzumab or pertuzumab binding to domains IV and II, respectively, thereby offering the potential of combining a MAb 7C2 ADC with trastuzumab, trastuzumab emtansine (T-DM-1), and/or pertuzumab.
  • Murine antibody 7C2 (7C2.B9, see PCT Publication No. WO 98/17797 ) was humanized as follows.
  • Residue numbers are according to Kabat ( Kabat et al., Sequences of proteins of immunological interest, 5th Ed., Public Health Service, National Institutes of Health, Bethesda, MD (1991 )).
  • HVR From the mu7C2 VH domain, positions 26-35 (HI), 50-65 (H2) and 95-102 (H3) were grafted into VH I ( Figures 1 and 2 ).
  • the HVR definitions are defined by their sequence hypervariability (Wu, T. T. & Kabat, E. A. (1970)), their structural location (Chothia, C. & Lesk, A. M. (1987)) and their involvement in antigen-antibody contacts ( MacCallum et al. J. Mol. Biol. 262: 732-745 (1996 )).
  • the vernier positions include positions 4 and 49 in VL and positions 37, 67, 69, 71 and 73 in VH.
  • Three different versions of VL sequences and VH sequences were synthesized (Blue Heron, Bothell, WA) and subsequently subcloned into mammalian expression vectors.
  • HC a total of nine different hu7C2 graft variants (v1.1, v1.2, v1.3, v2.1, v2.2, v2.3, v3.1, v3.2 and v3.3) were generated.
  • Affinity maturation library A monovalent Fab-g3 display phagemid vector with 2 open reading frames under control of a single phoA promoter was used.
  • the first open reading frame consists of the stII signal sequence fused to the VL and CH1 domains of the acceptor light chain and the second consists of the stII signal sequence fused to the VH and CH1 domains of the acceptor heavy chain followed by the minor phage coat protein P3.
  • the HVR graft variant (7C2.v2.1) was generated by Kunkel mutagenesis using separate oligonucleotides for each hypervariable region, and displayed on phage as a Fab.
  • phage libraries containing changes in each hypervariable region were generated. Sequence diversity was introduced separately at each position in the hypervariable regions of 7C2.v2.1 using Kunkel mutagenesis. Positions in the hypervariable region of 7C2.v2.1 were each fully randomized one at a time to all possible 20 amino acids using oligonucleotides encoding NNS. A total of 68 libraries, each consisting of 20 members, were made having a single position located within one of the hypervariable regions of 7C2 fully randomized. Libraries with positions in the same hypervariable region were pooled to generate a total of six libraries.
  • Oligonucleotides designed to introduce diversity into each hypervariable region as outlined above were phosphorylated separately in 20 ⁇ l reactions containing 660 ng of oligonucleotide, 50 mM Tris pH 7.5, 10 mM MgCl 2 , 1 mM ATP, 20 mM DTT, and 5 U polynucleotide kinase for 1 h at 37°C.
  • Kunkel mutagenesis reactions were performed in a 96-well PCR plate. From the phosphorylated oligonucleotides reactions (above), 2 ⁇ l was added to 500 ng Kunkel template in 50 mM Tris pH 7.5, 10 mM MgCl 2 in a final volume of 25 ⁇ l. The mixture was annealed at 90°C for 1 min, 50°C for 3 min and then cooled on ice.
  • the annealed template was then filled in by adding 0.5 ⁇ l 10 mM ATP, 0.5 ⁇ l 10 mM dNTPs (10 mM each of dATP, dCTP, dGTP and dTTP), 1 ⁇ l 100 mM DTT, 1 ⁇ l 10X TM buffer (0.5 M Tris pH 7.5, 0.1 M MgCl 2 ), 80 U T4 ligase, and 4 U T7 polymerase in a total volume of 30 ⁇ l for 2 h at room temperature. These filled-in and ligated products were then each transformed into XL1-blue cells. The libraries containing positions in the same CDR region were pooled and recovered in 10ml SOC media for 1 hour at 37°C.
  • Carbenacillin 50 ⁇ g/ml
  • M13/KO7 helper phage MOI 10
  • the cultures were incubated for another 30mins at 37°C and transferred to 500 ml 2YT containing 50 ⁇ g/ml carbenacillin and 50 ⁇ g/ml kanamycin and grown 20 h at 37°C.
  • Her2 extracellular domain (Her2 ECD) was biotinylated through free amines using NHS-PEG4-Biotin (Pierce). For biotinylation reactions, a 4-fold molar excess of biotin reagent was used in PBS. Reactions were followed by dialysis in PBS.
  • Phage were harvested from the cell culture supernatant and suspended in PBS containing 1% BSA.
  • the phage libraries were incubated with biotinylated Her2 ECD at room temperature and the phage bound to biotin-Her2 was then captured for 5 min on neutrAvidin (10 ⁇ g/ml) that had been immobilized in PBS on MaxiSorp microtiter plates (Nunc) overnight at 4°C.
  • Microtiter wells were washed extensively with PBS containing 0.05% Tween 20 (PBST) and bound phage were eluted by incubating the wells with 20 mM HCl, 500 mM KCl for 30 min.
  • Eluted phage were neutralized with 1 M Tris, pH 7.5 and amplified using XL1-Blue cells and M13/KO7 helper phage and grown overnight at 37°C in 2YT, 50 ⁇ g/ml carbenacillin and 50 ⁇ g/ml Kanamycin.
  • the titers of phage eluted from a target containing well were compared to titers of phage recovered from a non-target containing well to assess enrichment.
  • Selection stringency was increased by both decreasing concentration of biotinylated Her2 ECD (from 5 nM to 0.2 nM) during binding and increasing the competition time (from 0 to 60 min at room temperature) with 1 ⁇ M of unlabeled Her2 ECD in solution.
  • 7C2 variants were expressed as IgG by 293 transient transfection. IgG was purified with protein G affinity chromatography. The affinity of each 7C2 IgG variant for Her2 was determined by surface plasmon resonance using a BIAcoreT100. Biacore Series S CM5 sensor chips were immobilized with monoclonal mouse anti-human IgG (Fc) antibody (Human antibody capture kit, GE Healthcare). Serial 3-fold dilutions of each 7C2 variant were injected at a flow rate of 30 ⁇ l/min. Each sample was analyzed with 3-minute association and 10-minute dissociation. After each injection the chip was regenerated using 3 M MgCl 2 . Binding response was corrected by subtracting the RU from a flow cell capturing an irrelevant IgG at similar density. A 1:1 Languir model of simultaneous fitting of k on and k off was used for kinetics analysis.
  • the human acceptor frameworks used for humanization of 7C2 are based on the human VL kappa IV consensus (VL KIV ) and the human VH I consensus.
  • the VL and VH domains of murine 7C2 were aligned with the human VL KIV and VH I domains; hypervariable regions were identified and grafted into the human acceptor framework to generate 7C2.v1.1.
  • the monovalent affinity of 7C2.v1.1 is decreased 2.5-fold relative to mu7C2.B9 as assessed by SPR ( see Table 2).
  • positions 4 and 49 in the light chain and positions 37, 67, 69, 71 and 73 in the heavy chain were changed to residues found at these positions in mu7C2.B9.
  • Combinations of these altered light and heavy chains with chains from 7C2.v1.1 were transfected into 293 cells, expressed as IgG and purified, and assessed for binding to Her2 ECD by SPR ( see Table 2).
  • Variant 7C2.v3.3 which contains 2 altered positions in light chain and 5 altered positions in heavy chain, had a monovalent affinity comparable to chimeric mu7C2.B9 ( see Table 2).
  • Affinity maturation libraries were explored in an effort to recruit further improvements using the framework of 7C2.v2.1, which contains minimal altered vernier position (Y49K) in light chain. For each hypervariable region, all 20 amino acids were introduced separately at individual position using Kunkle mutagenesis (a total of 68 libraries, each containing 20 members, pooled into six affinity maturation libraries). The six affinity maturation libraries were panned for 4 rounds in solution with biotinylated Her2 ECD. Selection stringency was gradually increased by decreasing the concentration of biotin-Her2 ECD (from 5 to 0.2 nM) and increasing the competition time (from 0 to 1 hour at room temperature) with saturated amount of unlabeled Her2 ECD. A two thousand fold of phage enrichment was observed for the H2 library.
  • Table 3 Kinetics of affinity-improved variants Variant HVR-H1 HVR-H2 HVR-H3 k a (1/Ms) k d (1/s) K D (nM) v2.1 GYWMN (SEQ ID MIHPSDSEIRANQKFRD (SEQ ID NO: 8) GTYDGGFEY (SEQ ID NO: 2.6E+05 4.1E-03 15.5 NO: 15) 17) v2.1.S53M MIHP M DSEIRANQKFRD (SEQ ID NO: 20) 2.7E+05 6.7E-04 2.4 v2.1.S53L MIHP L DSEIRANQKFRD (SEQ ID NO: 21) 2.5E+05 2.5E+05 8.5E-04 3.4 v2.1.E101K GTYDGGF K Y (SEQ ID NO: 22) 2.2E+05 1.5E-03 6.8
  • Table 4 Summary of hu7C2 variant affinities hu7C2 variant K D (nM) mu7C
  • antibodies were produced in CHO cells.
  • Vectors coding for heavy chain and light chain were transfected into CHO cells and IgG was purified from cell culture media by protein A affinity chromatography.
  • the pyridyl disulfide PNU amide linker drug intermediate ((2S,4S)-4-[[(1S,3R,4aS,9S,9aR,10aS)-9-methoxy-1-methyl-3,4,4a,6,7,9,9a,10a-octahydro-1H-pyrano[1,2]oxazolo[3,4-b][1,4]oxazin-3-yl]oxy]-2,5,12-trihydroxy-7-methoxy-6,11-dioxo-N-[2-(2-pyridyldisulfanyl)ethyl]-3,4-dihydro-1H-tetracene-2-carboxamide; "LD-51”) having the following formula: was synthesized as follows.
  • Diphosgene (0.22 mL, 1.82 mmol) was added to a mixture of 5 (726 mg, 1.52 mmol) and DMAP (557 mg, 4.56 mmol) in dry DCM (25 mL) at r.t. under nitrogen. After 30 mins a solution of 6 (2.60 g, 12.9 mmol; freshly made by the procedure mentioned above - no number previously assigned to alcohol) in dry DCM (25 mL) was added and the mixture stirred at r.t. overnight. After 18 h the reaction mixture was washed with H 2 O (1 x), dried (Na 2 SO 4 ) and solvent removed under vacuum.
  • Compound 85 was prepared as follows: To a solution of 82 (15 mg, 16.64 umol) in DMF (1.0 mL) was added a solution of 5-nitropyridine-2-thiol (25.99 mg, 166.41 umol) at 20 °C. The reaction mixture was stirred at 20°C for 1 h.
  • Step A Synthesis of (S)-di-tert-butyl (1-(chloromethyl)-3-(2,2,2-trifluoroacetyl)-2,3-dihydro-1H-benzo[e]indol-5-yl) phosphate 1u
  • the final reaction mixture was stirred further at 20 °C under nitrogen for 19 h.
  • the mixture was cooled in an ice-bath and 30% H 2 O 2 (11.3 mL, 100.0 mmol) was added. After addition the reaction mixture was stirred at 20 °C for a further 1h 30 min.
  • the mixture was diluted with ethyl acetate (300 mL) and 10% aqueous Na 2 S 2 O 3 (500 mL) at stirred at 0 °C for 20 min.
  • Step B Synthesis of ((S)-1-(2-((((4-((S)-2-(((allyloxy)carbonyl)amino)-6-((tert-butoxycarbonyl)amino)hexanamido)benzyl)oxy)carbonyl)amino)-4-((6-((S)-1-(chloromethyl)-5-((di-tert-butoxyphosphoryl)oxy)-1,2-dihydro-3H-benzo[e]indol-3-yl)-6-oxohexyl)oxy)-5-methoxybenzoyl)pyrrolidin-2-yl)methyl acetate 3g
  • the CBI-CBI dimer ([(1S)-1-(chloromethyl)-3-[(E)-3-[4-[(E)-3-[(1S)-1-(chloromethyl)-5-phosphonooxy-1,2-dihydrobenzo[e]indol-3-yl]-3-oxo-prop-1-enyl]-2-[2-[2-(2,5-dioxopyrrol-1-yl)ethoxy]ethoxy]phenyl]prop-2-enoyl]-1,2-dihydrobenzo[e]indol-5-yl] dihydrogen phosphate; compound 78 of Table A) having the formula: was synthesized as follows. For the reaction scheme, including reagent and intermediate formulae, see Figure 11 .
  • the aqueous phase was extracted with ethyl acetate three times.
  • the combined organic extracts were washed with water and brine, dried over anhydrous Na 2 SO 4 , and filtered through celite.
  • the solvent was removed by rotary evaporator and the excess benzyl bromide was pumped off.
  • the resultant residue was redistributed between ethyl acetate and cold aqueous 5% ammonia.
  • the aqueous phase was extracted with ethyl acetate three times.
  • the combined organic extracts were washed with water followed by brine, dried over anhydrous Na 2 SO 4 , and filtered through celite.
  • the reaction was quenched by the addition of 10% aqueous sodium sulphite with cooling in an ice bath. Organic volatiles were removed by rotary evaporator. The resultant mixture was redistributed between ethyl acetate and water. The aqueous phase was extracted with ethyl acetate three times. The combined organic extracts were washed with water followed by brine, dried over anhydrous Na 2 SO 4 , and filtered through celite.
  • Hu7C2 antibody-drug conjugates are produced by conjugating hu7C2.v.2.2.LA with a heavy chain A118C mutation (thio-hu7C2-HC A118C) or a light chain K149C mutation (thio-hu7C2-LC-K149C) to the selected drug-linker moiety.
  • ADCs Hu7C2 antibody-drug conjugates
  • mice (Charles River Laboratory) were implanted with ⁇ 2x2 mm fragments of MMTV-Her2 Fo5 transgenic breast tumors. When tumors reached a mean tumor volume of 100-250 mm 3 , animals were grouped into 7 groups of 8-10 mice each.
  • mice received a single administration on day 1 of one of the following treatments, via intravenous tail vein injection: (1) vehicle (20 mM L-histidine, 240 mM sucrose, 0.02% Tween-20, pH 5.5), (2) thio-hu7C2-HC-A118C-disulfide-PBD, 0.3 mg/kg; (3) thio-hu7C2-HC-A118C-disulfide-PBD, 1 mg/kg; (4) thio-hu7C2-LC-K149C-disulfide-PBD, 0.3 mg/kg; (5) thio-hu7C2-LC-K149C-disulfide-PBD, 1 mg/kg; (6) thio-controlAb-HC-A118C-disulfide-PBD, 1 mg/kg; or (7) thio-controlAb-LC-K149C-disulfide-PBD, 1 mg/kg.
  • vehicle (20 mM L-histidine, 240
  • the results of that experiment are shown in Table 5 and Figure 4 .
  • the data in Table 5 is from day 21, except for the vehicle control group, which is from day 10.
  • Each group contained 8 mice at the beginning of the study and 8 mice at day 21 (or 8 mice at day 10 for vehicle control group).
  • AUC/day % TGI tumor growth inhibition
  • %TGI 100 x (1 - AUCtreatment/Day ⁇ AUCvehicle/Day).
  • PR partial response, which is defined as more than 50% but less than 100% reduction in tumor volume, compared with the starting tumor volume, on any day during the study. No animals showed a complete response in this experiment.
  • Table 5 Efficacy of hu7C2 ADCs in MMTV-Her2 Fo5 transgenic mammary tumor xenograft model Group tumor volume, last day AUC/day % TGI (lower, upper) PR % BW change, last day (1) vehicle 1258 0 (0, 0) 0 12.65 (2) thio-hu7C2-HC-A118C-disulfide-PBD, 0.3 mg/kg 604 72 (51,87) 0 5.34 (3) thio-hu7C2-HC-A118C-disulfide-PBD, 1 mg/kg 127 98 (89, 108) 2 2.81 (4) thio-hu7C2-LC-K149C-disulfide-PBD, 0.3 mg/kg 208 82 (67,93) 1 3.83 (5) thio-hu7C2-LC-K149C-disulfide-PBD, 1 mg/kg 70 99 (88, 107) 8 1.90 (6) thio-
  • thio-hu7C2-LC-K149C-disulfide-PBD showed 8 partial responses at 1 mg/kg and 1 partial response at 0.3 mg/kg.
  • Thio-hu7C2-HC-A118C-disulfide-PBD showed 2 partial responses at 1 mg/kg and no partial responses at 0.3 mg/kg.
  • mice (Charles River Laboratory) were implanted with ⁇ 2x2 mm fragments of MMTV-Her2 Fo5 transgenic breast tumors. When tumors reached a mean tumor volume of 100-250 mm 3 , animals were grouped into 9 groups of 8-10 mice each.
  • mice received a single administration on day 1 of one of the following treatments, via intravenous tail vein injection: (1) vehicle (20 mM L-histidine, 240 mM sucrose, 0.02% Tween-20, pH 5.5), (2) thio-hu7C2-LC-K149C-CBI dimer, 1 mg/kg; (3) thio-hu7C2-LC-K149C-CBI dimer, 3 mg/kg; (4) thio-hu7C2-LC-K149C-CBI dimer, 6 mg/kg; (5) thio-hu7C2-LC-K149C-disulfide-CBI-PBD, 1 mg/kg; (6) thio-hu7C2-LC-K149C-disulfide-CBI-PBD, 3 mg/kg; (7) thio-hu7C2-LC-K149C-disulfide-CBI-PBD, 6 mg/kg; (8) thio-controlAb-LC-K149C-CBI
  • the results of that experiment are shown in Table 6 and Figure 5 .
  • the data in Table 6 is from day 21, except for the vehicle control group, which is from day 14.
  • Each group contained 8 mice at the beginning of the study and 8 mice at day 21, except the vehicle control group, which had 8 mice at the beginning of the study and 7 mice at day 14.
  • AUC/day % TGI (tumor growth inhibition) and PR were determined as described in the previous example.
  • CR complete response, which is defined as a 100% reduction in tumor volume (no measurable tumor), on any day during the study.
  • the drug:antibody ratio (DAR) for each antibody-drug conjugate used in the experiment is shown in the second column.
  • Table 6 Efficacy of hu7C2 ADCs in MMTV-Her2 Fo5 transgenic mammary tumor xenograft model Group DAR tumor volume, last day AUC/day % TGI (lower, upper) PR CR % BW change, last day (1) vehicle 1331 0 (0, 0) 0 0 11.41 (2) thio-hu7C2-LC-K149C-CBI dimer, 1 mg/kg 2 151 101 (93, 109) 1 0 3.77 (3) thio-hu7C2-LC-K149C-CBI dimer, 3 mg/kg 2 72 109 (103, 119) 6 0 6.18 (4) thio-hu7C2-LC-K149C-CBI dimer, 6 mg/kg 2 32 114 (107, 124) 5 2 0.07 (5) thio-hu7C2-LC-K149C-disulfide-CBI-PBD, 1 mg/kg 1.4 1095 69 (40, 86) 0
  • thio-hu7C2-LC-K149C-CBI dimer showed 1 partial response at 1 mg/kg, 6 partial responses at 3 mg/kg, and 5 partial responses and 2 complete responses at 6 mg/kg.
  • Thio-hu7C2-LC-K149C-disulfide-CBI-PBD showed 1 partial response at 6 mg/kg.
  • thio-hu7C2-LC-K149C-CBI dimer at 1 mg/kg caused tumor regressions while the thio-controlAb-LC-K149C-CBI dimer at 1 mg/kg caused %TGI of 60%. Without intending to be bound by any particular theory, it is believed that the activity of the control reflects non-targeted activity.
  • mice (Charles River Laboratory) were implanted with ⁇ 2x2 mm fragments of MMTV-Her2 Fo5 transgenic breast tumors. When tumors reached a mean tumor volume of 100-250 mm 3 , animals were grouped into 7 groups of 8-10 mice each.
  • mice received a single administration on day 1 of one of the following treatments, via intravenous tail vein injection: (1) vehicle (20 mM L-histidine, 240 mM sucrose, 0.02% Tween-20, pH 5.5), (2) thio-hu7C2-LC-K149C-disulfide-PNU, 1 mg/kg; (3) thio-hu7C2-LC-K149C-disulfide-PNU, 3 mg/kg; (4) thio-controlAb-LC-K149C-disulfide-PNU, 1 mg/kg; (5) thio-controlAb-LC-K149C-disulfide-PNU, 3 mg/kg; (6) trastuzumab-MCC-DM1 (T-DM1, trastuzumab emtansine, ado-trastuzumab emtansine), 3 mg/kg; or (7) T-DM1, 10 mg/kg.
  • vehicle (20 mM L-histidine,
  • the results of that experiment are shown in Table 7 and Figure 6 .
  • the data in Table 7 is from day 20, except for the vehicle control group, thio-controlAb-LC-K149C-disulfide-PNU 1 mg/kg group, and T-DM1 3 mg/kg group, which are from day 14.
  • Each group contained 8 mice at the beginning of the study and 8 mice at the end, except the vehicle control group, which had 8 mice at the beginning of the study and 7 mice at the end.
  • AUC/day % TGI tumor growth inhibition was determined as described in the previous examples. In this experiment, there were no partial or complete responses.
  • the drug:antibody ratio (DAR) for each antibody-drug conjugate used in the experiment is shown in the second column.
  • Table 7 Efficacy of hu7C2 ADCs in MMTV-Her2 Fo5 transgenic mammary tumor xenograft model Group DAR tumor volume, last day AUC/day % TGI (lower,upper) % BW change, last day (1) vehicle 1663 0 (0, 0) 8.08 (2) thio-hu7C2-LC-K149C-disulfide-PNU, 1 mg/kg 1.9 616 87 (72, 95) 0.52 (3) thio-hu7C2-LC-K149C-disulfide-PNU, 3 mg/kg 1.9 162 104 (99, 110) 3.17 (4) thio-controlAb-LC-K149C-disulfide-PNU, 1 1.9 1160 31 (-21,60) 6.26 mg/kg (5) thio-controlAb-LC-K149C-disulfide-PNU, 3 mg/kg 1.9 607 81 (61,92) 5.48 (6) T-DM1, 3 mg
  • mice (Charles River Laboratory) were implanted with ⁇ 2x2 mm fragments of MMTV-Her2 Fo5 transgenic breast tumors. When tumors reached a mean tumor volume of 100-250 mm 3 , animals were grouped into 9 groups of 8-10 mice each.
  • mice received a single administration on day 1 of one of the following treatments, via intravenous tail vein injection: (1) vehicle (20 mM L-histidine, 240 mM sucrose, 0.02% Tween-20, pH 5.5), (2) thio-hu7C2-HC-A1 18C-maleimide-PNU, ⁇ 1 mg/kg (drug dose matched to group IV); (3) thio-hu7C2-LC-K149C-maleimide-PNU, 0.3 mg/kg; (4) thio-hu7C2-LC-K149C-maleimide-PNU, 1 mg/kg; (5) thio-hu7C2-LC-K149C- maleimide-PNU, 3 mg/kg; (6) thio-controlAb-LC-K149C-maleimide-PNU, 3 mg/kg; (7) thio-hu7C2-LC-K149C-CBI dimer, 0.3 mg/kg; (8) thio-hu7C2-LC-K149C
  • Table 8 Efficacy of hu7C2 ADCs in MMTV-Her2 Fo5 transgenic mammary tumor xenograft model Group DAR last day tumor volume, last day AUC/day % TGI (lower, upper) PR CR % BW change, last day (1) vehicle 14 1681 0 (0,0) 0 0 9.98 (2) thio-hu7C2-HC-A1 18C-maleimide-PNU, ⁇ 1 mg/kg 1.73 28 1054 88 (69, 99) 0 0 10.21 (3) thio-hu7C2-LC-K149C-maleimide-PNU, 0.3 mg/kg 1.8 20 1469 62 (25, 82) 0 0 8.11 (4) thio-hu7C2-LC-K149C-maleimide-PNU, 1 mg/kg 1.8 35 288 103 (94, 111) 3 0 8.73 (5) thio-hu7C2-LC-K149C-maleimide-PNU,
  • thio-hu7C2-LC-K149C-maleimide-PNU showed 3 partial responses at 1 mg/kg and 8 complete responses at 3 mg/kg.
  • Thio-hu7C2-LC-K149C-CBI dimer showed 5 partial responses at 1 mg/kg.
  • SCID beige mice (C.B-17 SCID.bg, Charles River Laboratories) were inoculated with 3 million cells per mouse suspended in HBSS/matrigel into the thoracic mammary fat pad in a volume of 0.2 ml. When tumors reached a mean tumor volume of 100-250 mm 3 , animals were grouped into 9 groups of 8-10 mice each.
  • mice received a single administration on day 1 of one of the following treatments, via intravenous tail vein injection: (1) vehicle (20 mM L-histidine, 240 mM sucrose, 0.02% Tween-20, pH 5.5), (2) thio-hu7C2-LC-K149C-maleimide-PNU, 0.3 mg/kg; (3) thio-hu7C2-LC-K149C-maleimide-PNU, 1 mg/kg; (4) thio-hu7C2-LC-K149C- maleimide-PNU, 3 mg/kg; (5) thio-hu7C2-LC-K149C-disulfide-PNU, 0.3 mg/kg; (6) thio-hu7C2-LC-K149C-disulfide-PNU, 1 mg/kg; (7) thio-hu7C2-LC-K149C-disulfide-PNU, 3 mg/kg; (8) thio-controlAb-LC-K149C-maleimide
  • the results of that experiment are shown in Table 9 and Figure 8 .
  • the data in Table 9 is from day 22 for all groups except the vehicle control group and the thio-controlAb-LC-K149C-disulfide-PNU group, which are from day 18.
  • Each group contained 8 mice at the beginning of the study and 8 mice at the end, except group (6), which had 7 mice at the end of the study.
  • AUC/day % TGI (tumor growth inhibition), PR, and CR were determined as described in the previous examples.
  • the drug:antibody ratio (DAR) for each antibody-drug conjugate used in the experiment is shown in the second column.
  • Table 9 Efficacy of hu7C2 ADCs in KPL4 breast cancer cell line xenograft model Group DAR tumor volume, last day AUC/day % TGI (lower,upper) PR CR % BW change, last day (1) vehicle 1084 0 (0, 0) 0 0 -3.73 (2) thio-hu7C2-LC-K149C-maleimide-PNU, 0.3 mg/kg 1.8 867 43 (-18, 75) 0 0 -3.98 (3) thio-hu7C2-LC-K149C-maleimide-PNU, 1 mg/kg 1.8 736 59 (11, 83) 0 0 0.01 (4) thio-hu7C2-LC-K149C-maleimide-PNU, 3 mg/kg 1.8 51 127 (115, 151) 7 1 3.61 (5) thio-hu7C2-LC-K149C-disulfide-PNU, 0.3 mg/kg 1.9 1237 21 (-
  • thio-hu7C2-LC-K149C- maleimide-PNU showed 7 partial responses and 1 complete response at 3 mg/kg.
  • Thio-hu7C2-LC-K149C-disulfide-PNU showed 7 partial responses at 3 mg/kg.
  • Example 8 Efficacy of hu7C2 Antibody Drug Conjugates in MMTV-Her2 Fo5 Transgenic Mammary Tumor Transplant Xenograft Model
  • mice (Charles River Laboratory) were implanted with ⁇ 2x2 mm fragments of MMTV-Her2 Fo5 transgenic breast tumors. When tumors reached a mean tumor volume of 100-250 mm 3 , animals were grouped into 7 groups of 8-10 mice each.
  • mice received a single administration on day 0 of one of the following treatments, via intravenous tail vein injection: (1) vehicle (20 mM L-histidine, 240 mM sucrose, 0.02% Tween-20, pH 5.5), (2) thio-hu7C2-LC-K149C-disulfide-CBI-PBD, 2 mg/kg; (3) thio-hu7C2-LC-K149C-disulfide-CBI-PBD, 5 mg/kg; (4) thio-controlAb-LC-K149C-disulfide-CBI-PBD, 5 mg/kg; (5) thio-hu7C2-LC-K149C-disulfide-CBI-PBD (phosphate), 2 mg/kg; (6) thio-hu7C2-LC-K149C-disulfide-CBI-PBD (phosphate), 5 mg/kg; or (7) thio-controlAb-LC-K149C-disulfide-CBI-
  • mice The results of that experiment are shown in Table 10 and Figure 17 .
  • the data in Table 10 is from day 21.
  • Each group contained 7 mice at the beginning of the study and 7 mice at the end, except group (1), which had 5 mice at the end of the study, and group (4), which had 6 mice at the end of the study.
  • AUC/day % TGI (tumor growth inhibition) and PR were determined as described in the previous examples. No mice showed a complete response in this experiment.
  • the drug:antibody ratio (DAR) for each antibody-drug conjugate used in the experiment is shown in the second column.
  • Table 10 Efficacy of hu7C2 ADCs in MMTV-Her2 Fo5 transgenic mammary tumor xenograft model Group DAR tumor volume, last day AUC/day % TGI (lower,upper) PR % BW change, last day (1) vehicle 2109 0 (0, 0) 0 5.36 (2) thio-hu7C2-LC-K149C-disulfide-CBI-PBD, 2 mg/kg 1.4 83 105 (100, 111) 2 1.02 (3) thio-hu7C2-LC-K149C-disulfide-CBI-PBD, 5 mg/kg 1.4 71 108 (103, 106) 4 0.81 (4) thio-controlAb-LC-K149C-disulfide-CBI-PBD, 5 mg/kg 1.4 635 75 (35, 92) 0 0.82 (5) thio-hu7C2-LC-K149C-disulfide-CBI-PBD (phosphate),
  • thio-hu7C2-LC-K149C-disulfide-CBI-PBD showed 2 partial responses at 2 mg/kg and 4 partial responses at 5 mg/kg.
  • Thio-hu7C2-LC-K149C--disulfide-CBI-PBD (phosphate) showed 1 partial response at 2 mg/kg and 7 partial responses at 5 mg/kg.
  • the HCC1569 human breast cancer cell line was obtained from ATCC (American Type Culture Collection; Manassas, VA) and a sub-line HCC1569X2 was generated at Genentech for optimal growth in mice.
  • mice Female C.B-17 SCID-beige mice (Charles River Laboratory) were each inoculated in the thoracic mammary fat pad area with 5 million HCC1569X2 cells suspended in HBSS/matrigel (1:1 ratio). When the xenograft tumors reached an average tumor volume of 100-300 mm3 (Day 0), animals were randomized into 7 groups with 7 mice per group and received a single administration of one of the following treatments, via intravenous tail vein injection: (1) vehicle (20 mM L-histidine, 240 mM sucrose, 0.02% Tween-20, pH 5.5), (2) trastuzumab-MCC-DM1 (T-DM1, trastuzumab emtansine, ado-trastuzumab emtansine).
  • vehicle (20 mM L-histidine, 240 mM sucrose, 0.02% Tween-20, pH 5.5
  • trastuzumab-MCC-DM1 T-DM1, trast
  • Table 11 The results of that experiment are shown in Table 11 and Figure 18 .
  • the data in Table 11 is from day 14 with all groups having 7 mice.
  • Table 11 Efficacy of hu7C2 Antibody Drug Conjugates in HCC1569X2 Transplant Xenograft Model.
  • Group DAR tumor volume last day AUC/day % TGI (lower,upper) % BW change, last day 01 - Vehicle 1200 0 (0, 0) 5.15 02 - T-DM1, 3mg/kg 3.8 506 84 (42, 104) 4.91 03 - thio-hu7C2-LC-K149C-disulfide-CBI-PBD, 0.5mg/kg 1.9 364 75 (28, 95) 5.65 04 - thio-hu7C2-LC-K149C-disulfide-CBI-PBD, 1mg/kg 1.9 212 87 (53, 102) 5.21 05 - thio-hu7C2-LC-K149C-disulfide-CBI-PBD, 2mg/kg 1.9 94 106 (91, 123) 3.85 06 - T-DM1, 3mg/kg + thio-hu7C2-LC-K149C-disulfide-CBI-PBD,
  • thio-hu7C2-LC-K149C-disulfide-CBI-PBD demonstrated dose-dependent inhibition of tumor growth, with tumor regression observed at 2 mg/kg dose.
  • the combination of thio-hu7C2-LC-K149C-disulfide-CBI-PBD and T-DM1 resulted in greater efficacy than either agent alone and was well tolerated based on minimal changes in animal body weights compared with vehicle group.
  • Expression, purification, and crystallization of the 7C2 / HER2 complex - 7C2 Fab was expressed in E. coli and purified using Protein G sepharose affinity resin (GE), SP sepharose cation exchange chromatography, and size exclusion chromatography (SEC).
  • GE Protein G sepharose affinity resin
  • SEC size exclusion chromatography
  • HER2 extracellular domain (ECD) was expressed in CHO cells and purified by affinity chromatography using trastuzumab antibody linked to controlled pore glass beads, followed by DEAE anion exchange and size exclusion chromatography.
  • the complex between Fab 7C2 and HER2 ECD was purified by SEC.
  • the complex was deglycosylated using a combination of enzymes (Endo F1, F2, F3, Endo H and PNGase), followed by purification by SEC into 0.1M NaCl, 20mM HEPES pH 7.2 and 2% glycerol.
  • the complex was crystallized resulting in thick plates after one week in hanging drops using equal parts of protein at 10 mg/mL and reservoir (30% v/v PEG 550 monomethylether, 0.1M Sodium citrate tribasic dihydrate pH 5.0) and treated briefly with reservoir prior to immersion in liquid nitrogen.
  • the diffraction data for the complex extending to 2.7 ⁇ resolution were collected at ⁇ 110 K at SSRL beam line 11-1.
  • the diffraction images were integrated and scaled using the program HKL2000 and elements of the CCP4 suite. See Winn et al., 2011, Acta Crystallogr D. Biol. Crystallogr. 67: 235-42 .
  • the structure was solved by molecular replacement (MR) using program Phaser. See McCoy et al., 2005, Acta Crystallogr D. Biol. Crystallogr. 61: 458-64 .
  • the MR search models include the HER2 ECD domain derived from a crystal structure of HER2/Herceptin Fab complex (PDB code: 1N8Z), Fab constant domain (PDB code: 1N8Z) and a predicted model for the variable domain generated by the program Modeller. See Fiser et al., 2003, Methods Enzymol., 374: 461-91 .
  • the structure was refined with programs REFMAC5 ( Marshudov et al., 2011, Acta Crystallogr D. Biol. Crystallogr.
  • Table 12 Statistics of x-ray diffraction data collection and structure refinement (values in parentheses are for last resolution shell)
  • the crystal structure of the 7C2 Fab/HER2 complex was determined at 2.75 ⁇ resolution. Each asymmetric unit cell contains one Fab/HER2 complex. The structure revealed that the 7C2 Fab binds to domain I of HER2 ECD ( Figure 19A ). The binding epitope is distinct from those in the previously characterized complexes of HER2 ECD with Fab fragments of therapeutic antibodies trastuzumab (Tmab) or pertuzumab (Pmab), which are located at domains IV and II, respectively.
  • Tmab trastuzumab
  • Pmab pertuzumab
  • the 7C2 Fab binds to the loop 163-175 and the loop 185-189 within the HER2 domain I (i.e., amino acids 163-175 and 185-189 of mature HER2, e.g., SEQ ID NO: 39; domain I is shown in SEQ ID NO: 35).
  • the side chain of His171 makes contacts with the heavy chain residues His52 and Asp55.
  • the HER2 residues Ser186, Ser187 and Glu188 form hydrogen bonding with the D102 from heavy chain and the two Tyr residues (Tyr36 and Tyr54) from the light chain.
  • the 7C2 binding epitope partially overlaps with that from a previously reported anti-HER2 antibody, chA21 ( Figure 19D ). See Zhou et al., 2011, JBC, 286: 31676-83 . Both epitopes include a loop in domain I (residues 163-187). Interestingly, the residue His171 plays a role in the interaction with both antibodies. However, the chA21 binding epitope spans ⁇ 1820 ⁇ 2 of solvent accessible surface area, which is ⁇ 660 ⁇ 2 bigger than the 7C2 epitope and includes two additional N-terminal loops, residues 100-105 and residues 135-144.
  • v2.1.S53L S55A HVR-H2) MIHPLDAEIRANQKFRD 16 Hu7C2 HVR-H3 GTYDGGFEY 17 Humanized 7C2.v2.2.LA (hu7C2) kappa light chain 18 Hu7C2IgG1 heavy chain 19 Hu7C2.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Immunology (AREA)
  • Engineering & Computer Science (AREA)
  • Medicinal Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Animal Behavior & Ethology (AREA)
  • Molecular Biology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Cell Biology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Epidemiology (AREA)
  • Organic Chemistry (AREA)
  • Oncology (AREA)
  • Biochemistry (AREA)
  • Urology & Nephrology (AREA)
  • Hematology (AREA)
  • Biomedical Technology (AREA)
  • Microbiology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Genetics & Genomics (AREA)
  • Biophysics (AREA)
  • Analytical Chemistry (AREA)
  • Hospice & Palliative Care (AREA)
  • Biotechnology (AREA)
  • Pathology (AREA)
  • General Physics & Mathematics (AREA)
  • Food Science & Technology (AREA)
  • Physics & Mathematics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Endocrinology (AREA)
  • Mycology (AREA)
  • Peptides Or Proteins (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
EP20185412.2A 2014-09-12 2015-09-11 Anti-her2 antibodies and immunoconjugates Pending EP3782654A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201462049594P 2014-09-12 2014-09-12
PCT/US2015/049549 WO2016040723A1 (en) 2014-09-12 2015-09-11 Anti-her2 antibodies and immunoconjugates
EP15772090.5A EP3191135B1 (en) 2014-09-12 2015-09-11 Anti-her2 antibodies and immunoconjugates

Related Parent Applications (2)

Application Number Title Priority Date Filing Date
EP15772090.5A Division-Into EP3191135B1 (en) 2014-09-12 2015-09-11 Anti-her2 antibodies and immunoconjugates
EP15772090.5A Division EP3191135B1 (en) 2014-09-12 2015-09-11 Anti-her2 antibodies and immunoconjugates

Publications (1)

Publication Number Publication Date
EP3782654A1 true EP3782654A1 (en) 2021-02-24

Family

ID=54238547

Family Applications (2)

Application Number Title Priority Date Filing Date
EP20185412.2A Pending EP3782654A1 (en) 2014-09-12 2015-09-11 Anti-her2 antibodies and immunoconjugates
EP15772090.5A Active EP3191135B1 (en) 2014-09-12 2015-09-11 Anti-her2 antibodies and immunoconjugates

Family Applications After (1)

Application Number Title Priority Date Filing Date
EP15772090.5A Active EP3191135B1 (en) 2014-09-12 2015-09-11 Anti-her2 antibodies and immunoconjugates

Country Status (31)

Country Link
US (5) US9518118B2 (pt)
EP (2) EP3782654A1 (pt)
JP (2) JP7085837B2 (pt)
KR (1) KR102508173B1 (pt)
CN (2) CN107001479B (pt)
AR (1) AR101845A1 (pt)
AU (2) AU2015314954B2 (pt)
BR (1) BR112017004631A2 (pt)
CA (1) CA2957238C (pt)
CL (1) CL2017000545A1 (pt)
CO (1) CO2017001919A2 (pt)
CR (2) CR20170131A (pt)
DK (1) DK3191135T3 (pt)
EA (1) EA201790545A1 (pt)
ES (1) ES2830385T3 (pt)
HR (1) HRP20201719T1 (pt)
HU (1) HUE052460T2 (pt)
IL (1) IL250440B (pt)
LT (1) LT3191135T (pt)
MA (1) MA40576B1 (pt)
MX (1) MX2017003126A (pt)
MY (1) MY186334A (pt)
PE (1) PE20170935A1 (pt)
PH (1) PH12017500322A1 (pt)
PL (1) PL3191135T3 (pt)
PT (1) PT3191135T (pt)
RS (1) RS61019B1 (pt)
SG (2) SG10201809668TA (pt)
SI (1) SI3191135T1 (pt)
TW (2) TWI702231B (pt)
WO (1) WO2016040723A1 (pt)

Families Citing this family (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2579897A1 (en) * 2010-06-08 2013-04-17 Genentech, Inc. Cysteine engineered antibodies and conjugates
AU2015314954B2 (en) 2014-09-12 2021-05-13 Genentech, Inc. Anti-HER2 antibodies and immunoconjugates
AR101844A1 (es) * 2014-09-12 2017-01-18 Genentech Inc Anticuerpos y conjugados modificados genéticamente con cisteína
KR20170055521A (ko) * 2014-09-17 2017-05-19 제넨테크, 인크. 항-her2 항체를 포함하는 면역콘주게이트
CA2979527A1 (en) 2015-03-13 2016-09-22 Endocyte, Inc. Conjugates of pyrrolobenzodiazepine (pbd) prodrugs for treating disease
GB201510010D0 (en) 2015-06-09 2015-07-22 King S College London PDD and BPD compounds
EP3307780A1 (en) * 2015-06-15 2018-04-18 Genentech, Inc. Antibodies and immunoconjugates
GB201514928D0 (en) 2015-08-21 2015-10-07 King S College London PDD compounds
US20180339985A1 (en) 2015-08-21 2018-11-29 Femtogenix Limited Pdd compounds
MA43345A (fr) 2015-10-02 2018-08-08 Hoffmann La Roche Conjugués anticorps-médicaments de pyrrolobenzodiazépine et méthodes d'utilisation
US20200323991A1 (en) * 2016-03-29 2020-10-15 Endocyte, Inc. Pbd conjugates for treating diseases
WO2017173359A2 (en) * 2016-03-31 2017-10-05 University Of Southern California Methods of constructing immunoglobulin fusion proteins inhibiting cathepsin b and compositions thereof
WO2017223275A1 (en) 2016-06-24 2017-12-28 Mersana Therapeutics, Inc. Pyrrolobenzodiazepines and conjugates thereof
JP7093767B2 (ja) * 2016-08-11 2022-06-30 ジェネンテック, インコーポレイテッド ピロロベンゾジアゼピンプロドラッグ及びその抗体コンジュゲート
JP7105235B2 (ja) 2016-12-01 2022-07-22 リジェネロン・ファーマシューティカルズ・インコーポレイテッド 免疫petイメージングのための放射性標識された抗pd-l1抗体
IL268667B1 (en) 2017-02-10 2024-08-01 Regeneron Pharma Radiolabeled antibodies against LAG3 for immuno-PET imaging
NZ756323A (en) 2017-02-28 2022-07-01 Seagen Inc Cysteine mutated antibodies for conjugation
AR111651A1 (es) * 2017-04-28 2019-08-07 Novartis Ag Conjugados de anticuerpos que comprenden agonistas del receptor de tipo toll y terapias de combinación
CA3065919A1 (en) * 2017-06-07 2018-12-13 Silverback Therapeutics, Inc. Antibody construct conjugates
US11318211B2 (en) * 2017-06-14 2022-05-03 Adc Therapeutics Sa Dosage regimes for the administration of an anti-CD19 ADC
SG11202000073XA (en) 2017-07-24 2020-02-27 Regeneron Pharma Anti-cd8 antibodies and uses thereof
PT3441386T (pt) * 2017-08-11 2024-07-04 Georg August Univ Goettingen Método para a síntese de profármacos bifuncionais monoprotegidos e conjugados anticorpo-fármaco neles baseados assim como um método para preparação de conjugados anticorpo-fármaco
MX2020008289A (es) 2018-02-08 2020-09-25 Genentech Inc Moleculas biespecificas de union al antigeno y metodos de uso.
PE20210652A1 (es) 2018-04-13 2021-03-26 Hoffmann La Roche Moleculas de union a antigeno dirigidas a her2 que comprenden 4-1bbl
GB201814281D0 (en) 2018-09-03 2018-10-17 Femtogenix Ltd Cytotoxic agents
US20200179500A1 (en) * 2018-12-05 2020-06-11 Wayne State University Methods and immunogenic compositions relating to her2 with selective sequence modifications
GB201901197D0 (en) 2019-01-29 2019-03-20 Femtogenix Ltd G-A Crosslinking cytotoxic agents
KR20210127714A (ko) * 2019-03-07 2021-10-22 에이비엘바이오 주식회사 항체-약물 접합체 및 이의 용도
JP2023502929A (ja) 2019-11-15 2023-01-26 シージェン インコーポレイテッド Her2陽性乳がんを抗her2抗体-薬物コンジュゲートと併用してツカチニブで治療する方法
KR20220119445A (ko) * 2019-12-20 2022-08-29 화이자 인코포레이티드 부위 특이적 her2 항체-약물 접합체를 사용한 치료
CN111606996B (zh) * 2020-06-05 2020-12-25 北京鼎成肽源生物技术有限公司 一种靶向4d5的鼠源单克隆抗体及其制备方法和应用
CR20220627A (es) 2020-06-23 2023-02-17 Hoffmann La Roche Moléculas agonistas de unión al antígeno cd28 que se derigen a her2
GB2597532A (en) 2020-07-28 2022-02-02 Femtogenix Ltd Cytotoxic compounds
AR124414A1 (es) 2020-12-18 2023-03-22 Century Therapeutics Inc Sistema de receptor de antígeno quimérico con especificidad de receptor adaptable
EP4345113A1 (en) * 2022-09-30 2024-04-03 SDS Optic Spolka Akcyjna Anti-her2 antibody, a nucleic acid molecule encoding the variable region of said antibody, a method of detecting her2 in a biological sample, an immuno-enzymatic elisa assay and use of said anti-her2 antibody or fragments therefof
WO2024127332A1 (en) 2022-12-14 2024-06-20 Pheon Therapeutics Ltd Cytotoxic compounds
WO2024138128A2 (en) 2022-12-23 2024-06-27 Genentech, Inc. Cereblon degrader conjugates, and uses thereof

Citations (183)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US633410A (en) 1898-09-22 1899-09-19 George A Ames Ice-cutter.
US3896111A (en) 1973-02-20 1975-07-22 Research Corp Ansa macrolides
US4137230A (en) 1977-11-14 1979-01-30 Takeda Chemical Industries, Ltd. Method for the production of maytansinoids
US4151042A (en) 1977-03-31 1979-04-24 Takeda Chemical Industries, Ltd. Method for producing maytansinol and its derivatives
US4248870A (en) 1978-10-27 1981-02-03 Takeda Chemical Industries, Ltd. Maytansinoids and use
US4256746A (en) 1978-11-14 1981-03-17 Takeda Chemical Industries Dechloromaytansinoids, their pharmaceutical compositions and method of use
US4260608A (en) 1978-11-14 1981-04-07 Takeda Chemical Industries, Ltd. Maytansinoids, pharmaceutical compositions thereof and methods of use thereof
WO1981001145A1 (en) 1979-10-18 1981-04-30 Univ Illinois Hydrolytic enzyme-activatible pro-drugs
US4265814A (en) 1978-03-24 1981-05-05 Takeda Chemical Industries Matansinol 3-n-hexadecanoate
US4294757A (en) 1979-01-31 1981-10-13 Takeda Chemical Industries, Ltd 20-O-Acylmaytansinoids
US4307016A (en) 1978-03-24 1981-12-22 Takeda Chemical Industries, Ltd. Demethyl maytansinoids
US4308268A (en) 1979-06-11 1981-12-29 Takeda Chemical Industries, Ltd. Maytansinoids, pharmaceutical compositions thereof and method of use thereof
US4308269A (en) 1979-06-11 1981-12-29 Takeda Chemical Industries, Ltd. Maytansinoids, pharmaceutical compositions thereof and method of use thereof
US4309428A (en) 1979-07-30 1982-01-05 Takeda Chemical Industries, Ltd. Maytansinoids
US4313946A (en) 1981-01-27 1982-02-02 The United States Of America As Represented By The Secretary Of Agriculture Chemotherapeutically active maytansinoids from Trewia nudiflora
US4315929A (en) 1981-01-27 1982-02-16 The United States Of America As Represented By The Secretary Of Agriculture Method of controlling the European corn borer with trewiasine
US4317821A (en) 1979-06-08 1982-03-02 Takeda Chemical Industries, Ltd. Maytansinoids, their use and pharmaceutical compositions thereof
US4322348A (en) 1979-06-05 1982-03-30 Takeda Chemical Industries, Ltd. Maytansinoids
US4331598A (en) 1979-09-19 1982-05-25 Takeda Chemical Industries, Ltd. Maytansinoids
US4362663A (en) 1979-09-21 1982-12-07 Takeda Chemical Industries, Ltd. Maytansinoid compound
US4364866A (en) 1979-09-21 1982-12-21 Takeda Chemical Industries, Ltd. Maytansinoids
US4371533A (en) 1980-10-08 1983-02-01 Takeda Chemical Industries, Ltd. 4,5-Deoxymaytansinoids, their use and pharmaceutical compositions thereof
US4424219A (en) 1981-05-20 1984-01-03 Takeda Chemical Industries, Ltd. 9-Thiomaytansinoids and their pharmaceutical compositions and use
US4450254A (en) 1980-11-03 1984-05-22 Standard Oil Company Impact improvement of high nitrile resins
US4676980A (en) 1985-09-23 1987-06-30 The United States Of America As Represented By The Secretary Of The Department Of Health And Human Services Target specific cross-linked heteroantibodies
US4737456A (en) 1985-05-09 1988-04-12 Syntex (U.S.A.) Inc. Reducing interference in ligand-receptor binding assays
US4816567A (en) 1983-04-08 1989-03-28 Genentech, Inc. Recombinant immunoglobin preparations
EP0328147A2 (en) 1988-02-11 1989-08-16 Bristol-Myers Squibb Company Anthracycline immunoconjugates having a novel linker and methods for their production
EP0404097A2 (de) 1989-06-22 1990-12-27 BEHRINGWERKE Aktiengesellschaft Bispezifische und oligospezifische, mono- und oligovalente Rezeptoren, ihre Herstellung und Verwendung
WO1993001161A1 (en) 1991-07-11 1993-01-21 Pfizer Limited Process for preparing sertraline intermediates
US5208020A (en) 1989-10-25 1993-05-04 Immunogen Inc. Cytotoxic agents comprising maytansinoids and their therapeutic use
WO1993008829A1 (en) 1991-11-04 1993-05-13 The Regents Of The University Of California Compositions that mediate killing of hiv-infected cells
WO1993016185A2 (en) 1992-02-06 1993-08-19 Creative Biomolecules, Inc. Biosynthetic binding protein for cancer marker
WO1993021232A1 (en) 1992-04-10 1993-10-28 Research Development Foundation IMMUNOTOXINS DIRECTED AGAINST c-erbB-2 (HER-2/neu) RELATED SURFACE ANTIGENS
WO1994011026A2 (en) 1992-11-13 1994-05-26 Idec Pharmaceuticals Corporation Therapeutic application of chimeric and radiolabeled antibodies to human b lymphocyte restricted differentiation antigen for treatment of b cell lymphoma
US5362852A (en) 1991-09-27 1994-11-08 Pfizer Inc. Modified peptide derivatives conjugated at 2-hydroxyethylamine moieties
WO1994029351A2 (en) 1993-06-16 1994-12-22 Celltech Limited Antibodies
US5500362A (en) 1987-01-08 1996-03-19 Xoma Corporation Chimeric antibody with specificity to human B cell surface antigen
WO1996027011A1 (en) 1995-03-01 1996-09-06 Genentech, Inc. A method for making heteromultimeric polypeptides
EP0425235B1 (en) 1989-10-25 1996-09-25 Immunogen Inc Cytotoxic agents comprising maytansinoids and their therapeutic use
US5571894A (en) 1991-02-05 1996-11-05 Ciba-Geigy Corporation Recombinant antibodies specific for a growth factor receptor
US5587458A (en) 1991-10-07 1996-12-24 Aronex Pharmaceuticals, Inc. Anti-erbB-2 antibodies, combinations thereof, and therapeutic and diagnostic uses thereof
US5624821A (en) 1987-03-18 1997-04-29 Scotgen Biopharmaceuticals Incorporated Antibodies with altered effector functions
US5635483A (en) 1992-12-03 1997-06-03 Arizona Board Of Regents Acting On Behalf Of Arizona State University Tumor inhibiting tetrapeptide bearing modified phenethyl amides
US5648237A (en) 1991-09-19 1997-07-15 Genentech, Inc. Expression of functional antibody fragments
WO1997030087A1 (en) 1996-02-16 1997-08-21 Glaxo Group Limited Preparation of glycosylated antibodies
US5663149A (en) 1994-12-13 1997-09-02 Arizona Board Of Regents Acting On Behalf Of Arizona State University Human cancer inhibitory pentapeptide heterocyclic and halophenyl amides
US5677171A (en) 1988-01-12 1997-10-14 Genentech, Inc. Monoclonal antibodies directed to the HER2 receptor
WO1998002446A1 (en) 1996-07-11 1998-01-22 Pharmacia & Upjohn S.P.A. Morpholinyl anthracycline derivatives
US5712374A (en) 1995-06-07 1998-01-27 American Cyanamid Company Method for the preparation of substantiallly monomeric calicheamicin derivative/carrier conjugates
US5714586A (en) 1995-06-07 1998-02-03 American Cyanamid Company Methods for the preparation of monomeric calicheamicin derivative/carrier conjugates
US5739116A (en) 1994-06-03 1998-04-14 American Cyanamid Company Enediyne derivatives useful for the synthesis of conjugates of methyltrithio antitumor agents
WO1998017797A1 (en) 1996-10-18 1998-04-30 Genentech, Inc. ANTI-ErbB2 ANTIBODIES
US5750373A (en) 1990-12-03 1998-05-12 Genentech, Inc. Enrichment method for variant proteins having altered binding properties, M13 phagemids, and growth hormone variants
US5767237A (en) 1993-10-01 1998-06-16 Teikoku Hormone Mfg. Co., Ltd. Peptide derivatives
US5770429A (en) 1990-08-29 1998-06-23 Genpharm International, Inc. Transgenic non-human animals capable of producing heterologous antibodies
US5780588A (en) 1993-01-26 1998-07-14 Arizona Board Of Regents Elucidation and synthesis of selected pentapeptides
US5789199A (en) 1994-11-03 1998-08-04 Genentech, Inc. Process for bacterial production of polypeptides
US5821337A (en) 1991-06-14 1998-10-13 Genentech, Inc. Immunoglobulin variants
WO1998050431A2 (en) 1997-05-02 1998-11-12 Genentech, Inc. A method for making multispecific antibodies having heteromultimeric and common components
US5840523A (en) 1995-03-01 1998-11-24 Genetech, Inc. Methods and compositions for secretion of heterologous polypeptides
WO1998058964A1 (en) 1997-06-24 1998-12-30 Genentech, Inc. Methods and compositions for galactosylated glycoproteins
US5869046A (en) 1995-04-14 1999-02-09 Genentech, Inc. Altered polypeptides with increased half-life
WO1999022764A1 (en) 1997-10-31 1999-05-14 Genentech, Inc. Methods and compositions comprising glycoprotein glycoforms
US5959177A (en) 1989-10-27 1999-09-28 The Scripps Research Institute Transgenic plants expressing assembled secretory antibodies
WO1999051642A1 (en) 1998-04-02 1999-10-14 Genentech, Inc. Antibody variants and fragments thereof
WO2000012507A2 (en) 1998-08-27 2000-03-09 Spirogen Limited Pyrrolobenzodiazepines
US6040498A (en) 1998-08-11 2000-03-21 North Caroline State University Genetically engineered duckweed
US6054297A (en) 1991-06-14 2000-04-25 Genentech, Inc. Humanized antibodies and methods for making them
US6075181A (en) 1990-01-12 2000-06-13 Abgenix, Inc. Human antibodies derived from immunized xenomice
WO2000061739A1 (en) 1999-04-09 2000-10-19 Kyowa Hakko Kogyo Co., Ltd. Method for controlling the activity of immunologically functional molecule
US6150584A (en) 1990-01-12 2000-11-21 Abgenix, Inc. Human antibodies derived from immunized xenomice
US6171586B1 (en) 1997-06-13 2001-01-09 Genentech, Inc. Antibody formulation
US6194551B1 (en) 1998-04-02 2001-02-27 Genentech, Inc. Polypeptide variants
US6214345B1 (en) 1993-05-14 2001-04-10 Bristol-Myers Squibb Co. Lysosomal enzyme-cleavable antitumor drug conjugates
WO2001029246A1 (fr) 1999-10-19 2001-04-26 Kyowa Hakko Kogyo Co., Ltd. Procede de production d'un polypeptide
US6248516B1 (en) 1988-11-11 2001-06-19 Medical Research Council Single domain ligands, receptors comprising said ligands methods for their production, and use of said ligands and receptors
US6267958B1 (en) 1995-07-27 2001-07-31 Genentech, Inc. Protein formulation
US6339142B1 (en) 1998-05-06 2002-01-15 Genentech, Inc. Protein purification
WO2002031140A1 (fr) 2000-10-06 2002-04-18 Kyowa Hakko Kogyo Co., Ltd. Cellules produisant des compositions d'anticorps
US6420548B1 (en) 1999-10-04 2002-07-16 Medicago Inc. Method for regulating transcription of foreign genes
US6441163B1 (en) 2001-05-31 2002-08-27 Immunogen, Inc. Methods for preparation of cytotoxic conjugates of maytansinoids and cell binding agents
US20020164328A1 (en) 2000-10-06 2002-11-07 Toyohide Shinkawa Process for purifying antibody
WO2002088172A2 (en) 2001-04-30 2002-11-07 Seattle Genetics, Inc. Pentapeptide compounds and uses related thereto
WO2003011878A2 (en) 2001-08-03 2003-02-13 Glycart Biotechnology Ag Antibody glycosylation variants having increased antibody-dependent cellular cytotoxicity
WO2003026577A2 (en) 2001-09-24 2003-04-03 Seattle Genetics, Inc. P-amidobenzylethers in drug delivery agents
US20030096743A1 (en) 2001-09-24 2003-05-22 Seattle Genetics, Inc. p-Amidobenzylethers in drug delivery agents
WO2003043583A2 (en) 2001-11-20 2003-05-30 Seattle Genetics, Inc. Treatment of immunological disorders using anti-cd30 antibodies
US20030115614A1 (en) 2000-10-06 2003-06-19 Yutaka Kanda Antibody composition-producing cell
US6602684B1 (en) 1998-04-20 2003-08-05 Glycart Biotechnology Ag Glycosylation engineering of antibodies for improving antibody-dependent cellular cytotoxicity
US6602677B1 (en) 1997-09-19 2003-08-05 Promega Corporation Thermostable luciferases and methods of production
US20030157108A1 (en) 2001-10-25 2003-08-21 Genentech, Inc. Glycoprotein compositions
US6630579B2 (en) 1999-12-29 2003-10-07 Immunogen Inc. Cytotoxic agents comprising modified doxorubicins and daunorubicins and their therapeutic use
WO2003085119A1 (fr) 2002-04-09 2003-10-16 Kyowa Hakko Kogyo Co., Ltd. Procede d'amelioration de l'activite d'une composition d'anticorps de liaison avec le recepteur fc$g(g) iiia
WO2003084570A1 (fr) 2002-04-09 2003-10-16 Kyowa Hakko Kogyo Co., Ltd. Medicament contenant une composition d'anticorps appropriee au patient souffrant de polymorphisme fc$g(g)riiia
WO2003085107A1 (fr) 2002-04-09 2003-10-16 Kyowa Hakko Kogyo Co., Ltd. Cellules à génome modifié
WO2004032828A2 (en) 2002-07-31 2004-04-22 Seattle Genetics, Inc. Anti-cd20 antibody-drug conjugates for the treatment of cancer and immune disorders
US20040093621A1 (en) 2001-12-25 2004-05-13 Kyowa Hakko Kogyo Co., Ltd Antibody composition which specifically binds to CD20
US6737056B1 (en) 1999-01-15 2004-05-18 Genentech, Inc. Polypeptide variants with altered effector function
US20040109865A1 (en) 2002-04-09 2004-06-10 Kyowa Hakko Kogyo Co., Ltd. Antibody composition-containing medicament
US20040110282A1 (en) 2002-04-09 2004-06-10 Kyowa Hakko Kogyo Co., Ltd. Cells in which activity of the protein involved in transportation of GDP-fucose is reduced or lost
US20040132140A1 (en) 2002-04-09 2004-07-08 Kyowa Hakko Kogyo Co., Ltd. Production process for antibody composition
WO2004056312A2 (en) 2002-12-16 2004-07-08 Genentech, Inc. Immunoglobulin variants and uses thereof
WO2004065491A1 (en) 2003-01-24 2004-08-05 Schering Ag Hydrophilic, thiol-reactive cyanine dyes and conjugates thereof with biomolecules for fluorescence diagnosis
US6800738B1 (en) 1991-06-14 2004-10-05 Genentech, Inc. Method for making humanized antibodies
US20050014934A1 (en) 2002-10-15 2005-01-20 Hinton Paul R. Alteration of FcRn binding affinities or serum half-lives of antibodies by mutagenesis
US20050016993A1 (en) 2003-04-17 2005-01-27 Koskey James Donald Heated pet mat
WO2005023814A1 (en) 2003-09-11 2005-03-17 Spirogen Limited Synthesis of protected pyrrolobenzodiazepines
US20050079574A1 (en) 2003-01-16 2005-04-14 Genentech, Inc. Synthetic antibody phage libraries
WO2005035586A1 (ja) 2003-10-08 2005-04-21 Kyowa Hakko Kogyo Co., Ltd. 融合蛋白質組成物
WO2005035778A1 (ja) 2003-10-09 2005-04-21 Kyowa Hakko Kogyo Co., Ltd. α1,6-フコシルトランスフェラーゼの機能を抑制するRNAを用いた抗体組成物の製造法
US6884799B2 (en) 2003-03-31 2005-04-26 Council Of Scientific And Industrial Research Non-cross-linking pyrrolo[2,1-c][1,4]benzodiazepines and process thereof
US20050119455A1 (en) 2002-06-03 2005-06-02 Genentech, Inc. Synthetic antibody phage libraries
US20050123546A1 (en) 2003-11-05 2005-06-09 Glycart Biotechnology Ag Antigen binding molecules with increased Fc receptor binding affinity and effector function
WO2005053742A1 (ja) 2003-12-04 2005-06-16 Kyowa Hakko Kogyo Co., Ltd. 抗体組成物を含有する医薬
US6913748B2 (en) 2002-08-16 2005-07-05 Immunogen, Inc. Cross-linkers with high reactivity and solubility and their use in the preparation of conjugates for targeted delivery of small molecule drugs
US20050166993A1 (en) 2004-01-29 2005-08-04 Viken James P. Automatic fluid exchanger
US20050208043A1 (en) * 1999-06-25 2005-09-22 Genentech, Inc. Humanized anti-ErbB2 antibodies and treatment with anti-ErbB2 antibodies
WO2005100402A1 (en) 2004-04-13 2005-10-27 F.Hoffmann-La Roche Ag Anti-p-selectin antibodies
US20050260186A1 (en) 2003-03-05 2005-11-24 Halozyme, Inc. Soluble glycosaminoglycanases and methods of preparing and using soluble glycosaminoglycanases
US20050266000A1 (en) 2004-04-09 2005-12-01 Genentech, Inc. Variable domain library and uses
US20050276812A1 (en) 2004-06-01 2005-12-15 Genentech, Inc. Antibody-drug conjugates and methods
US6982321B2 (en) 1986-03-27 2006-01-03 Medical Research Council Altered antibodies
US20060025576A1 (en) 2000-04-11 2006-02-02 Genentech, Inc. Multivalent antibodies and uses therefor
WO2006029879A2 (en) 2004-09-17 2006-03-23 F.Hoffmann-La Roche Ag Anti-ox40l antibodies
WO2006044908A2 (en) 2004-10-20 2006-04-27 Genentech, Inc. Antibody formulation in histidine-acetate buffer
US7041870B2 (en) 2000-11-30 2006-05-09 Medarex, Inc. Transgenic transchromosomal rodents for making human antibodies
US20060104968A1 (en) 2003-03-05 2006-05-18 Halozyme, Inc. Soluble glycosaminoglycanases and methods of preparing and using soluble glycosaminogly ycanases
US7049311B1 (en) 1998-08-27 2006-05-23 Spirogen Limited Pyrrolbenzodiazepines
US7087409B2 (en) 1997-12-05 2006-08-08 The Scripps Research Institute Humanization of murine antibody
US7097840B2 (en) 2000-03-16 2006-08-29 Genentech, Inc. Methods of treatment using anti-ErbB antibody-maytansinoid conjugates
US7125978B1 (en) 1999-10-04 2006-10-24 Medicago Inc. Promoter for regulating expression of foreign genes
WO2007008603A1 (en) 2005-07-07 2007-01-18 Seattle Genetics, Inc. Monomethylvaline compounds having phenylalanine side-chain modifications at the c-terminus
WO2007008848A2 (en) 2005-07-07 2007-01-18 Seattle Genetics, Inc. Monomethylvaline compounds having phenylalanine carboxy modifications at the c-terminus
US7189826B2 (en) 1997-11-24 2007-03-13 Institute For Human Genetics And Biochemistry Monoclonal human natural antibodies
US20070061900A1 (en) 2000-10-31 2007-03-15 Murphy Andrew J Methods of modifying eukaryotic cells
WO2007044515A1 (en) 2005-10-07 2007-04-19 Exelixis, Inc. Azetidines as mek inhibitors for the treatment of proliferative diseases
US20070117126A1 (en) 1999-12-15 2007-05-24 Genentech, Inc. Shotgun scanning
US20070160598A1 (en) 2005-11-07 2007-07-12 Dennis Mark S Binding polypeptides with diversified and consensus vh/vl hypervariable sequences
US7276497B2 (en) 2003-05-20 2007-10-02 Immunogen Inc. Cytotoxic agents comprising new maytansinoids
US20070237764A1 (en) 2005-12-02 2007-10-11 Genentech, Inc. Binding polypeptides with restricted diversity sequences
US20070292936A1 (en) 2006-05-09 2007-12-20 Genentech, Inc. Binding polypeptides with optimized scaffolds
US20080069820A1 (en) 2006-08-30 2008-03-20 Genentech, Inc. Multispecific antibodies
US7371826B2 (en) 1999-01-15 2008-05-13 Genentech, Inc. Polypeptide variants with altered effector function
US7375078B2 (en) 2004-02-23 2008-05-20 Genentech, Inc. Heterocyclic self-immolative linkers and conjugates
WO2008077546A1 (en) 2006-12-22 2008-07-03 F. Hoffmann-La Roche Ag Antibodies against insulin-like growth factor i receptor and uses thereof
US20090002360A1 (en) 2007-05-25 2009-01-01 Innolux Display Corp. Liquid crystal display device and method for driving same
US20090036431A1 (en) 2006-01-25 2009-02-05 Sanofi-Aventis Cytotoxic Agents Comprising New Tomaymycin Derivatives
WO2009016516A2 (en) 2007-07-19 2009-02-05 Sanofi-Aventis Cytotoxic agents comprising new tomaymycin derivatives and their therapeutic use
US7498298B2 (en) 2003-11-06 2009-03-03 Seattle Genetics, Inc. Monomethylvaline compounds capable of conjugation to ligands
US7511032B2 (en) 2003-10-22 2009-03-31 The United States Of America As Represented By The Secretary, Department Of Health And Human Services Pyrrolobenzodiazepine derivatives, compositions comprising the same and methods related thereto
US7521541B2 (en) 2004-09-23 2009-04-21 Genetech Inc. Cysteine engineered antibodies and conjugates
US7527791B2 (en) 2004-03-31 2009-05-05 Genentech, Inc. Humanized anti-TGF-beta antibodies
US7528126B2 (en) 2004-03-09 2009-05-05 Spirogen Limited Pyrrolobenzodiazepines
US7557099B2 (en) 2004-03-01 2009-07-07 Spirogen Limited Pyrrolobenzodiazepines as key intermediates in the synthesis of dimeric cytotoxic pyrrolobenzodiazepines
US7560111B2 (en) 2004-07-22 2009-07-14 Genentech, Inc. HER2 antibody composition
WO2009089004A1 (en) 2008-01-07 2009-07-16 Amgen Inc. Method for making antibody fc-heterodimeric molecules using electrostatic steering effects
US20090202546A1 (en) 2008-01-30 2009-08-13 Genentech, Inc. Composition comprising antibody that binds to domain ii of her2 and acidic variants thereof
WO2009099741A1 (en) 2008-02-01 2009-08-13 Genentech, Inc. Nemorubicin metabolite and analog reagents, antibody-drug conjugates and methods
US20090304710A1 (en) 2006-10-19 2009-12-10 Sanofi-Aventis Novel anti-cd38 antibodies for the treatment of cancer
WO2010009124A2 (en) 2008-07-15 2010-01-21 Genentech, Inc. Anthracycline derivative conjugates, process for their preparation and their use as antitumor compounds
US7659241B2 (en) 2002-07-31 2010-02-09 Seattle Genetics, Inc. Drug conjugates and their use for treating cancer, an autoimmune disease or an infectious disease
US20100047257A1 (en) 2006-07-18 2010-02-25 Sanofi-Aventis Antagonist antibody for the treatment of cancer
US20100203007A1 (en) 2009-02-05 2010-08-12 Immunogen Inc. Novel benzodiazepine derivatives
WO2010115629A2 (en) 2009-04-08 2010-10-14 Deutsches Krebsforschungszentrum Amatoxin-armed therapeutic cell surface binding components designed for tumour therapy
WO2011056983A1 (en) 2009-11-05 2011-05-12 Genentech, Inc. Zirconium-radiolabeled, cysteine engineered antibody conjugates
US20110165155A1 (en) 2009-12-04 2011-07-07 Genentech, Inc. Methods of treating metastatic breast cancer with trastuzumab-mcc-dm1
US20110256157A1 (en) 2010-04-15 2011-10-20 Spirogen Limited Pyrrolobenzodiazepines and conjugates thereof
US20110287009A1 (en) 2010-04-23 2011-11-24 Genentech, Inc. Production of Heteromultimeric Proteins
US20110301334A1 (en) 2010-06-08 2011-12-08 Sunil Bhakta Cysteine engineered antibodies and conjugates
WO2012041504A1 (en) 2010-09-30 2012-04-05 Heidelberg Pharma Gmbh Amatoxin-conjugates with improved linkers
WO2012106587A1 (en) 2011-02-04 2012-08-09 Genentech, Inc. Fc VARIANTS AND METHODS FOR THEIR PRODUCTION
WO2012119787A1 (en) 2011-03-10 2012-09-13 Heidelberg Pharma Gmbh Amatoxin-conjugates with improved linkages
EP2540745A1 (en) * 2010-02-25 2013-01-02 Shanghai Biomabs Pharmaceuticals Co., Ltd Fully humanized anti-her2 antibody, preparation method and use thereof
WO2013055987A1 (en) 2011-10-14 2013-04-18 Spirogen Sàrl Pyrrolobenzodiazepines and conjugates thereof
US8470984B2 (en) 2010-12-02 2013-06-25 Nerviano Medical Sciences S.R.L. Process for the preparation of morpholinyl anthracycline derivatives
US20130195845A1 (en) * 1996-10-18 2013-08-01 Brian M. Fendly Anti-erbb2 antibodies
WO2014043403A1 (en) 2012-09-12 2014-03-20 Agensys, Inc. Amatoxin derivatives and cell-permeable conjugates thereof as inhibitors of rna polymerase
US8697650B2 (en) 2010-02-16 2014-04-15 Medimmune, Llc HSA-related compositions and methods of use
WO2014135282A1 (en) 2013-03-04 2014-09-12 Heidelberg Pharma Gmbh Amatoxin derivatives
WO2015023355A1 (en) 2013-08-12 2015-02-19 Genentech, Inc. 1-(chloromethyl)-2,3-dihydro-1h-benzo[e]indole dimer antibody-drug conjugate compounds, and methods of use and treatment
US8969526B2 (en) 2011-03-29 2015-03-03 Roche Glycart Ag Antibody Fc variants
WO2015095227A2 (en) 2013-12-16 2015-06-25 Genentech, Inc. Peptidomimetic compounds and antibody-drug conjugates thereof

Family Cites Families (46)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4427588A (en) 1982-11-08 1984-01-24 Bristol-Myers Company Process for conversion of oxotomaymycin to tomaymycin
DE69211691T2 (de) 1991-04-19 1997-01-16 Nexstar Pharmaceuticals Inc., Boulder, Col. Pharmazeutische formulierung und pharmazeutisches verfahren
PT1064027E (pt) 1998-03-27 2008-09-29 Genentech Inc Sinergismo de ligando de apo-2 e anticorpo anti-her-2
US7041292B1 (en) 1999-06-25 2006-05-09 Genentech, Inc. Treating prostate cancer with anti-ErbB2 antibodies
CN101711868A (zh) 2000-05-19 2010-05-26 杰南技术公司 用于提高对ErbB拮抗剂癌症治疗的有效应答可能性的基因检测试验
US6984494B2 (en) 2000-08-15 2006-01-10 Genentech, Inc. Analytical method
US6660856B2 (en) 2002-03-08 2003-12-09 Kaohsiung Medical University Synthesis of pyrrolo[2,1-c][1,4]benzodiazepine analogues
AR040956A1 (es) 2002-07-31 2005-04-27 Schering Ag Nuevos conjugados de efectores, procedimientos para su preparacion y su uso farmaceutico
SI2270010T1 (sl) 2004-03-01 2012-05-31 Spirogen Ltd hidroksi H pirolo c benzodiazepin onski derivati kot ključni intermediati za pripravo C substituiranih pirolobenzodiazepinov
FR2869231B1 (fr) 2004-04-27 2008-03-14 Sod Conseils Rech Applic Composition therapeutique contenant au moins un derive de la pyrrolobenzodiazepine et la fludarabine
US7449184B2 (en) 2005-01-21 2008-11-11 Genentech, Inc. Fixed dosing of HER antibodies
EP1850874B1 (en) 2005-02-23 2013-10-16 Genentech, Inc. Extending time to disease progression or survival in ovarian cancer patients using pertuzumab
GB0819095D0 (en) 2008-10-17 2008-11-26 Spirogen Ltd Pyrrolobenzodiazepines
GB0819097D0 (en) 2008-10-17 2008-11-26 Spirogen Ltd Pyrrolobenzodiazepines
FR2949469A1 (fr) 2009-08-25 2011-03-04 Sanofi Aventis Derives anticancereux, leur preparation et leur application en therapeutique
KR101671360B1 (ko) 2010-04-15 2016-11-01 시애틀 지네틱스, 인크. 표적화된 피롤로벤조디아제핀 접합체
WO2011130616A1 (en) 2010-04-15 2011-10-20 Spirogen Limited Pyrrolobenzodiazepines used to treat proliferative diseases
FR2963007B1 (fr) 2010-07-26 2013-04-05 Sanofi Aventis Derives anticancereux, leur preparation et leur application therapeutique
EP3666289A1 (en) 2011-02-15 2020-06-17 ImmunoGen, Inc. Cytotoxic benzodiazepine derivatives
CN202049853U (zh) 2011-03-01 2011-11-23 旭丽电子(广州)有限公司 薄型变压器及灯管
CN103987718A (zh) 2011-09-20 2014-08-13 斯皮罗根有限公司 作为非对称二聚体pbd化合物用于内含在靶向结合物中的吡咯并苯并二氮杂卓
EA028457B1 (ru) 2011-10-14 2017-11-30 Медимьюн Лимитед Пирролобензодиазепины
EP3388435B1 (en) 2011-10-14 2023-05-03 Seagen Inc. Pyrrolobenzodiazepines and targeted conjugates
EA036202B1 (ru) 2011-10-14 2020-10-14 Сиэтл Дженетикс, Инк. Пирролбензодиазепины и конъюгаты направленного действия
AR091033A1 (es) 2012-05-14 2014-12-30 Sanofi Sa Metodo para producir 11-des-o-metiltomaimicina recombinante
WO2013177481A1 (en) 2012-05-25 2013-11-28 Immunogen, Inc. Benzodiazepines and conjugates thereof
US20140030279A1 (en) 2012-07-09 2014-01-30 Spirogen Sarl Anti-cd22 antibodies and immunoconjugates
EP2906250B1 (en) 2012-10-12 2018-05-30 ADC Therapeutics SA Pyrrolobenzodiazepine-anti-psma antibody conjugates
WO2014057072A1 (en) 2012-10-12 2014-04-17 Spirogen Sàrl Synthesis and intermediates of pyrrolobenzodiazepine derivatives for conjugation
SI2906251T1 (en) 2012-10-12 2018-01-31 Adc Therapeutics Sa Pyrrolobenzodiazepine-anti-CD22 antibody conjugates
WO2014057118A1 (en) 2012-10-12 2014-04-17 Adc Therapeutics Sarl Pyrrolobenzodiazepine-anti-cd22 antibody conjugates
SI2906298T1 (sl) 2012-10-12 2018-12-31 Adc Therapeutics Sa Konjugati pirolobenzodiazepin-protitelo
DK2906252T3 (en) 2012-10-12 2017-09-11 Adc Therapeutics Sa Pyrrolobenzodiazepine Anti-Her2 antibody conjugates
PT2906296T (pt) 2012-10-12 2018-06-01 Medimmune Ltd Conjugados de pirrolobenzodiazepina-anticorpo
KR101986404B1 (ko) 2012-10-12 2019-06-07 에이디씨 테라퓨틱스 에스에이 피롤로벤조디아제핀-항체 컨주게이트
NZ705910A (en) 2012-10-12 2018-09-28 Medimmune Ltd Pyrrolobenzodiazepines and conjugates thereof
WO2014057120A1 (en) 2012-10-12 2014-04-17 Adc Therapeutics Sàrl Pyrrolobenzodiazepine-antibody conjugates
CN105246894A (zh) 2012-12-21 2016-01-13 斯皮罗根有限公司 用于治疗增殖性和自身免疫疾病的非对称吡咯并苯并二氮杂卓二聚物
EP2935268B2 (en) 2012-12-21 2021-02-17 MedImmune Limited Pyrrolobenzodiazepines and conjugates thereof
ME03394B (me) 2013-02-22 2020-01-20 Medimmune Ltd Antidllз-antitelo-pbd konjugati i nihovа upotreba
KR102405762B1 (ko) 2013-12-16 2022-06-07 제넨테크, 인크. 펩타이드 모방체 화합물 및 이의 항체-약물 컨쥬게이트
AU2015314954B2 (en) 2014-09-12 2021-05-13 Genentech, Inc. Anti-HER2 antibodies and immunoconjugates
AR101844A1 (es) 2014-09-12 2017-01-18 Genentech Inc Anticuerpos y conjugados modificados genéticamente con cisteína
KR20170055521A (ko) 2014-09-17 2017-05-19 제넨테크, 인크. 항-her2 항체를 포함하는 면역콘주게이트
CR20170099A (es) 2014-09-17 2017-07-19 Genentech Inc Pirrolobenzodiazepinas y conjugados de anticuerpos-disulfuro de las mismas
MA43345A (fr) 2015-10-02 2018-08-08 Hoffmann La Roche Conjugués anticorps-médicaments de pyrrolobenzodiazépine et méthodes d'utilisation

Patent Citations (207)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US633410A (en) 1898-09-22 1899-09-19 George A Ames Ice-cutter.
US3896111A (en) 1973-02-20 1975-07-22 Research Corp Ansa macrolides
US4151042A (en) 1977-03-31 1979-04-24 Takeda Chemical Industries, Ltd. Method for producing maytansinol and its derivatives
US4137230A (en) 1977-11-14 1979-01-30 Takeda Chemical Industries, Ltd. Method for the production of maytansinoids
US4265814A (en) 1978-03-24 1981-05-05 Takeda Chemical Industries Matansinol 3-n-hexadecanoate
US4307016A (en) 1978-03-24 1981-12-22 Takeda Chemical Industries, Ltd. Demethyl maytansinoids
US4361650A (en) 1978-03-24 1982-11-30 Takeda Chemical Industries, Ltd. Fermentation process of preparing demethyl maytansinoids
US4248870A (en) 1978-10-27 1981-02-03 Takeda Chemical Industries, Ltd. Maytansinoids and use
US4256746A (en) 1978-11-14 1981-03-17 Takeda Chemical Industries Dechloromaytansinoids, their pharmaceutical compositions and method of use
US4260608A (en) 1978-11-14 1981-04-07 Takeda Chemical Industries, Ltd. Maytansinoids, pharmaceutical compositions thereof and methods of use thereof
US4294757A (en) 1979-01-31 1981-10-13 Takeda Chemical Industries, Ltd 20-O-Acylmaytansinoids
US4322348A (en) 1979-06-05 1982-03-30 Takeda Chemical Industries, Ltd. Maytansinoids
US4317821A (en) 1979-06-08 1982-03-02 Takeda Chemical Industries, Ltd. Maytansinoids, their use and pharmaceutical compositions thereof
US4308269A (en) 1979-06-11 1981-12-29 Takeda Chemical Industries, Ltd. Maytansinoids, pharmaceutical compositions thereof and method of use thereof
US4308268A (en) 1979-06-11 1981-12-29 Takeda Chemical Industries, Ltd. Maytansinoids, pharmaceutical compositions thereof and method of use thereof
US4309428A (en) 1979-07-30 1982-01-05 Takeda Chemical Industries, Ltd. Maytansinoids
US4331598A (en) 1979-09-19 1982-05-25 Takeda Chemical Industries, Ltd. Maytansinoids
US4364866A (en) 1979-09-21 1982-12-21 Takeda Chemical Industries, Ltd. Maytansinoids
US4362663A (en) 1979-09-21 1982-12-07 Takeda Chemical Industries, Ltd. Maytansinoid compound
WO1981001145A1 (en) 1979-10-18 1981-04-30 Univ Illinois Hydrolytic enzyme-activatible pro-drugs
US4371533A (en) 1980-10-08 1983-02-01 Takeda Chemical Industries, Ltd. 4,5-Deoxymaytansinoids, their use and pharmaceutical compositions thereof
US4450254A (en) 1980-11-03 1984-05-22 Standard Oil Company Impact improvement of high nitrile resins
US4313946A (en) 1981-01-27 1982-02-02 The United States Of America As Represented By The Secretary Of Agriculture Chemotherapeutically active maytansinoids from Trewia nudiflora
US4315929A (en) 1981-01-27 1982-02-16 The United States Of America As Represented By The Secretary Of Agriculture Method of controlling the European corn borer with trewiasine
US4424219A (en) 1981-05-20 1984-01-03 Takeda Chemical Industries, Ltd. 9-Thiomaytansinoids and their pharmaceutical compositions and use
US4816567A (en) 1983-04-08 1989-03-28 Genentech, Inc. Recombinant immunoglobin preparations
US4737456A (en) 1985-05-09 1988-04-12 Syntex (U.S.A.) Inc. Reducing interference in ligand-receptor binding assays
US4676980A (en) 1985-09-23 1987-06-30 The United States Of America As Represented By The Secretary Of The Department Of Health And Human Services Target specific cross-linked heteroantibodies
US6982321B2 (en) 1986-03-27 2006-01-03 Medical Research Council Altered antibodies
US5500362A (en) 1987-01-08 1996-03-19 Xoma Corporation Chimeric antibody with specificity to human B cell surface antigen
US5648260A (en) 1987-03-18 1997-07-15 Scotgen Biopharmaceuticals Incorporated DNA encoding antibodies with altered effector functions
US5624821A (en) 1987-03-18 1997-04-29 Scotgen Biopharmaceuticals Incorporated Antibodies with altered effector functions
US5677171A (en) 1988-01-12 1997-10-14 Genentech, Inc. Monoclonal antibodies directed to the HER2 receptor
US6165464A (en) 1988-01-12 2000-12-26 Genetech, Inc. Monoclonal antibodies directed to the HER2 receptor
EP0328147A2 (en) 1988-02-11 1989-08-16 Bristol-Myers Squibb Company Anthracycline immunoconjugates having a novel linker and methods for their production
US6248516B1 (en) 1988-11-11 2001-06-19 Medical Research Council Single domain ligands, receptors comprising said ligands methods for their production, and use of said ligands and receptors
EP0404097A2 (de) 1989-06-22 1990-12-27 BEHRINGWERKE Aktiengesellschaft Bispezifische und oligospezifische, mono- und oligovalente Rezeptoren, ihre Herstellung und Verwendung
US5416064A (en) 1989-10-25 1995-05-16 Immunogen, Inc. Cytotoxic agents comprising maytansinoids and their therapeutic use
US5208020A (en) 1989-10-25 1993-05-04 Immunogen Inc. Cytotoxic agents comprising maytansinoids and their therapeutic use
EP0425235B1 (en) 1989-10-25 1996-09-25 Immunogen Inc Cytotoxic agents comprising maytansinoids and their therapeutic use
US6417429B1 (en) 1989-10-27 2002-07-09 The Scripps Research Institute Transgenic plants expressing assembled secretory antibodies
US5959177A (en) 1989-10-27 1999-09-28 The Scripps Research Institute Transgenic plants expressing assembled secretory antibodies
US6150584A (en) 1990-01-12 2000-11-21 Abgenix, Inc. Human antibodies derived from immunized xenomice
US6075181A (en) 1990-01-12 2000-06-13 Abgenix, Inc. Human antibodies derived from immunized xenomice
US5770429A (en) 1990-08-29 1998-06-23 Genpharm International, Inc. Transgenic non-human animals capable of producing heterologous antibodies
US5750373A (en) 1990-12-03 1998-05-12 Genentech, Inc. Enrichment method for variant proteins having altered binding properties, M13 phagemids, and growth hormone variants
US5571894A (en) 1991-02-05 1996-11-05 Ciba-Geigy Corporation Recombinant antibodies specific for a growth factor receptor
US6407213B1 (en) 1991-06-14 2002-06-18 Genentech, Inc. Method for making humanized antibodies
US6639055B1 (en) 1991-06-14 2003-10-28 Genentech, Inc. Method for making humanized antibodies
US6719971B1 (en) 1991-06-14 2004-04-13 Genentech, Inc. Method for making humanized antibodies
US6054297A (en) 1991-06-14 2000-04-25 Genentech, Inc. Humanized antibodies and methods for making them
US6800738B1 (en) 1991-06-14 2004-10-05 Genentech, Inc. Method for making humanized antibodies
US5821337A (en) 1991-06-14 1998-10-13 Genentech, Inc. Immunoglobulin variants
WO1993001161A1 (en) 1991-07-11 1993-01-21 Pfizer Limited Process for preparing sertraline intermediates
US5648237A (en) 1991-09-19 1997-07-15 Genentech, Inc. Expression of functional antibody fragments
US5362852A (en) 1991-09-27 1994-11-08 Pfizer Inc. Modified peptide derivatives conjugated at 2-hydroxyethylamine moieties
US5587458A (en) 1991-10-07 1996-12-24 Aronex Pharmaceuticals, Inc. Anti-erbB-2 antibodies, combinations thereof, and therapeutic and diagnostic uses thereof
WO1993008829A1 (en) 1991-11-04 1993-05-13 The Regents Of The University Of California Compositions that mediate killing of hiv-infected cells
WO1993016185A2 (en) 1992-02-06 1993-08-19 Creative Biomolecules, Inc. Biosynthetic binding protein for cancer marker
WO1993021232A1 (en) 1992-04-10 1993-10-28 Research Development Foundation IMMUNOTOXINS DIRECTED AGAINST c-erbB-2 (HER-2/neu) RELATED SURFACE ANTIGENS
WO1994011026A2 (en) 1992-11-13 1994-05-26 Idec Pharmaceuticals Corporation Therapeutic application of chimeric and radiolabeled antibodies to human b lymphocyte restricted differentiation antigen for treatment of b cell lymphoma
US5635483A (en) 1992-12-03 1997-06-03 Arizona Board Of Regents Acting On Behalf Of Arizona State University Tumor inhibiting tetrapeptide bearing modified phenethyl amides
US5780588A (en) 1993-01-26 1998-07-14 Arizona Board Of Regents Elucidation and synthesis of selected pentapeptides
US6214345B1 (en) 1993-05-14 2001-04-10 Bristol-Myers Squibb Co. Lysosomal enzyme-cleavable antitumor drug conjugates
WO1994029351A2 (en) 1993-06-16 1994-12-22 Celltech Limited Antibodies
US5767237A (en) 1993-10-01 1998-06-16 Teikoku Hormone Mfg. Co., Ltd. Peptide derivatives
US6124431A (en) 1993-10-01 2000-09-26 Teikoku Hormone Mfg. Co., Ltd. Peptide derivatives
US5767285A (en) 1994-06-03 1998-06-16 American Cyanamid Company Linkers useful for the synthesis of conjugates of methyltrithio antitumor agents
US5739116A (en) 1994-06-03 1998-04-14 American Cyanamid Company Enediyne derivatives useful for the synthesis of conjugates of methyltrithio antitumor agents
US5789199A (en) 1994-11-03 1998-08-04 Genentech, Inc. Process for bacterial production of polypeptides
US5663149A (en) 1994-12-13 1997-09-02 Arizona Board Of Regents Acting On Behalf Of Arizona State University Human cancer inhibitory pentapeptide heterocyclic and halophenyl amides
US5731168A (en) 1995-03-01 1998-03-24 Genentech, Inc. Method for making heteromultimeric polypeptides
US5840523A (en) 1995-03-01 1998-11-24 Genetech, Inc. Methods and compositions for secretion of heterologous polypeptides
WO1996027011A1 (en) 1995-03-01 1996-09-06 Genentech, Inc. A method for making heteromultimeric polypeptides
US5869046A (en) 1995-04-14 1999-02-09 Genentech, Inc. Altered polypeptides with increased half-life
US5714586A (en) 1995-06-07 1998-02-03 American Cyanamid Company Methods for the preparation of monomeric calicheamicin derivative/carrier conjugates
US5712374A (en) 1995-06-07 1998-01-27 American Cyanamid Company Method for the preparation of substantiallly monomeric calicheamicin derivative/carrier conjugates
US6267958B1 (en) 1995-07-27 2001-07-31 Genentech, Inc. Protein formulation
WO1997030087A1 (en) 1996-02-16 1997-08-21 Glaxo Group Limited Preparation of glycosylated antibodies
WO1998002446A1 (en) 1996-07-11 1998-01-22 Pharmacia & Upjohn S.P.A. Morpholinyl anthracycline derivatives
US20130195845A1 (en) * 1996-10-18 2013-08-01 Brian M. Fendly Anti-erbb2 antibodies
WO1998017797A1 (en) 1996-10-18 1998-04-30 Genentech, Inc. ANTI-ErbB2 ANTIBODIES
US20070178552A1 (en) 1997-05-02 2007-08-02 Genentech, Inc. Method for Making Multispecific Antibodies Having Heteromultimeric and Common Components
WO1998050431A2 (en) 1997-05-02 1998-11-12 Genentech, Inc. A method for making multispecific antibodies having heteromultimeric and common components
US6171586B1 (en) 1997-06-13 2001-01-09 Genentech, Inc. Antibody formulation
WO1998058964A1 (en) 1997-06-24 1998-12-30 Genentech, Inc. Methods and compositions for galactosylated glycoproteins
US6602677B1 (en) 1997-09-19 2003-08-05 Promega Corporation Thermostable luciferases and methods of production
WO1999022764A1 (en) 1997-10-31 1999-05-14 Genentech, Inc. Methods and compositions comprising glycoprotein glycoforms
US7189826B2 (en) 1997-11-24 2007-03-13 Institute For Human Genetics And Biochemistry Monoclonal human natural antibodies
US7087409B2 (en) 1997-12-05 2006-08-08 The Scripps Research Institute Humanization of murine antibody
US6194551B1 (en) 1998-04-02 2001-02-27 Genentech, Inc. Polypeptide variants
WO1999051642A1 (en) 1998-04-02 1999-10-14 Genentech, Inc. Antibody variants and fragments thereof
US6602684B1 (en) 1998-04-20 2003-08-05 Glycart Biotechnology Ag Glycosylation engineering of antibodies for improving antibody-dependent cellular cytotoxicity
US7074404B2 (en) 1998-05-06 2006-07-11 Genentech, Inc. Protein purification
US6339142B1 (en) 1998-05-06 2002-01-15 Genentech, Inc. Protein purification
US6040498A (en) 1998-08-11 2000-03-21 North Caroline State University Genetically engineered duckweed
US7049311B1 (en) 1998-08-27 2006-05-23 Spirogen Limited Pyrrolbenzodiazepines
US7067511B2 (en) 1998-08-27 2006-06-27 Spirogen Limited Pyrrolobenzodiazepines
US7265105B2 (en) 1998-08-27 2007-09-04 Spirogen Limited Pyrrolobenzodiazepines
WO2000012507A2 (en) 1998-08-27 2000-03-09 Spirogen Limited Pyrrolobenzodiazepines
US7371826B2 (en) 1999-01-15 2008-05-13 Genentech, Inc. Polypeptide variants with altered effector function
US6737056B1 (en) 1999-01-15 2004-05-18 Genentech, Inc. Polypeptide variants with altered effector function
US7332581B2 (en) 1999-01-15 2008-02-19 Genentech, Inc. Polypeptide variants with altered effector function
WO2000061739A1 (en) 1999-04-09 2000-10-19 Kyowa Hakko Kogyo Co., Ltd. Method for controlling the activity of immunologically functional molecule
US20050208043A1 (en) * 1999-06-25 2005-09-22 Genentech, Inc. Humanized anti-ErbB2 antibodies and treatment with anti-ErbB2 antibodies
US6420548B1 (en) 1999-10-04 2002-07-16 Medicago Inc. Method for regulating transcription of foreign genes
US7125978B1 (en) 1999-10-04 2006-10-24 Medicago Inc. Promoter for regulating expression of foreign genes
WO2001029246A1 (fr) 1999-10-19 2001-04-26 Kyowa Hakko Kogyo Co., Ltd. Procede de production d'un polypeptide
US20070117126A1 (en) 1999-12-15 2007-05-24 Genentech, Inc. Shotgun scanning
US6630579B2 (en) 1999-12-29 2003-10-07 Immunogen Inc. Cytotoxic agents comprising modified doxorubicins and daunorubicins and their therapeutic use
US7097840B2 (en) 2000-03-16 2006-08-29 Genentech, Inc. Methods of treatment using anti-ErbB antibody-maytansinoid conjugates
US8337856B2 (en) 2000-03-16 2012-12-25 Immunogen, Inc. Methods of treatment using anti-ERBB antibody-maytansinoid conjugates
US20060025576A1 (en) 2000-04-11 2006-02-02 Genentech, Inc. Multivalent antibodies and uses therefor
US20030115614A1 (en) 2000-10-06 2003-06-19 Yutaka Kanda Antibody composition-producing cell
WO2002031140A1 (fr) 2000-10-06 2002-04-18 Kyowa Hakko Kogyo Co., Ltd. Cellules produisant des compositions d'anticorps
US20020164328A1 (en) 2000-10-06 2002-11-07 Toyohide Shinkawa Process for purifying antibody
US20070061900A1 (en) 2000-10-31 2007-03-15 Murphy Andrew J Methods of modifying eukaryotic cells
US7041870B2 (en) 2000-11-30 2006-05-09 Medarex, Inc. Transgenic transchromosomal rodents for making human antibodies
WO2002088172A2 (en) 2001-04-30 2002-11-07 Seattle Genetics, Inc. Pentapeptide compounds and uses related thereto
US6441163B1 (en) 2001-05-31 2002-08-27 Immunogen, Inc. Methods for preparation of cytotoxic conjugates of maytansinoids and cell binding agents
WO2003011878A2 (en) 2001-08-03 2003-02-13 Glycart Biotechnology Ag Antibody glycosylation variants having increased antibody-dependent cellular cytotoxicity
WO2003026577A2 (en) 2001-09-24 2003-04-03 Seattle Genetics, Inc. P-amidobenzylethers in drug delivery agents
US20030096743A1 (en) 2001-09-24 2003-05-22 Seattle Genetics, Inc. p-Amidobenzylethers in drug delivery agents
US20030130189A1 (en) 2001-09-24 2003-07-10 Senter Peter D. P-amidobenzylethers in drug delivery agents
US20030157108A1 (en) 2001-10-25 2003-08-21 Genentech, Inc. Glycoprotein compositions
WO2003043583A2 (en) 2001-11-20 2003-05-30 Seattle Genetics, Inc. Treatment of immunological disorders using anti-cd30 antibodies
US20040093621A1 (en) 2001-12-25 2004-05-13 Kyowa Hakko Kogyo Co., Ltd Antibody composition which specifically binds to CD20
WO2003085107A1 (fr) 2002-04-09 2003-10-16 Kyowa Hakko Kogyo Co., Ltd. Cellules à génome modifié
US20040109865A1 (en) 2002-04-09 2004-06-10 Kyowa Hakko Kogyo Co., Ltd. Antibody composition-containing medicament
WO2003084570A1 (fr) 2002-04-09 2003-10-16 Kyowa Hakko Kogyo Co., Ltd. Medicament contenant une composition d'anticorps appropriee au patient souffrant de polymorphisme fc$g(g)riiia
WO2003085119A1 (fr) 2002-04-09 2003-10-16 Kyowa Hakko Kogyo Co., Ltd. Procede d'amelioration de l'activite d'une composition d'anticorps de liaison avec le recepteur fc$g(g) iiia
US20040132140A1 (en) 2002-04-09 2004-07-08 Kyowa Hakko Kogyo Co., Ltd. Production process for antibody composition
US20040110282A1 (en) 2002-04-09 2004-06-10 Kyowa Hakko Kogyo Co., Ltd. Cells in which activity of the protein involved in transportation of GDP-fucose is reduced or lost
US20040110704A1 (en) 2002-04-09 2004-06-10 Kyowa Hakko Kogyo Co., Ltd. Cells of which genome is modified
US20050119455A1 (en) 2002-06-03 2005-06-02 Genentech, Inc. Synthetic antibody phage libraries
US7659241B2 (en) 2002-07-31 2010-02-09 Seattle Genetics, Inc. Drug conjugates and their use for treating cancer, an autoimmune disease or an infectious disease
WO2004032828A2 (en) 2002-07-31 2004-04-22 Seattle Genetics, Inc. Anti-cd20 antibody-drug conjugates for the treatment of cancer and immune disorders
US6913748B2 (en) 2002-08-16 2005-07-05 Immunogen, Inc. Cross-linkers with high reactivity and solubility and their use in the preparation of conjugates for targeted delivery of small molecule drugs
US20050014934A1 (en) 2002-10-15 2005-01-20 Hinton Paul R. Alteration of FcRn binding affinities or serum half-lives of antibodies by mutagenesis
WO2004056312A2 (en) 2002-12-16 2004-07-08 Genentech, Inc. Immunoglobulin variants and uses thereof
US20050079574A1 (en) 2003-01-16 2005-04-14 Genentech, Inc. Synthetic antibody phage libraries
WO2004065491A1 (en) 2003-01-24 2004-08-05 Schering Ag Hydrophilic, thiol-reactive cyanine dyes and conjugates thereof with biomolecules for fluorescence diagnosis
US20060104968A1 (en) 2003-03-05 2006-05-18 Halozyme, Inc. Soluble glycosaminoglycanases and methods of preparing and using soluble glycosaminogly ycanases
US20050260186A1 (en) 2003-03-05 2005-11-24 Halozyme, Inc. Soluble glycosaminoglycanases and methods of preparing and using soluble glycosaminoglycanases
US6884799B2 (en) 2003-03-31 2005-04-26 Council Of Scientific And Industrial Research Non-cross-linking pyrrolo[2,1-c][1,4]benzodiazepines and process thereof
US20050016993A1 (en) 2003-04-17 2005-01-27 Koskey James Donald Heated pet mat
US7276497B2 (en) 2003-05-20 2007-10-02 Immunogen Inc. Cytotoxic agents comprising new maytansinoids
WO2005023814A1 (en) 2003-09-11 2005-03-17 Spirogen Limited Synthesis of protected pyrrolobenzodiazepines
WO2005035586A1 (ja) 2003-10-08 2005-04-21 Kyowa Hakko Kogyo Co., Ltd. 融合蛋白質組成物
WO2005035778A1 (ja) 2003-10-09 2005-04-21 Kyowa Hakko Kogyo Co., Ltd. α1,6-フコシルトランスフェラーゼの機能を抑制するRNAを用いた抗体組成物の製造法
US7511032B2 (en) 2003-10-22 2009-03-31 The United States Of America As Represented By The Secretary, Department Of Health And Human Services Pyrrolobenzodiazepine derivatives, compositions comprising the same and methods related thereto
US20050123546A1 (en) 2003-11-05 2005-06-09 Glycart Biotechnology Ag Antigen binding molecules with increased Fc receptor binding affinity and effector function
US7498298B2 (en) 2003-11-06 2009-03-03 Seattle Genetics, Inc. Monomethylvaline compounds capable of conjugation to ligands
WO2005053742A1 (ja) 2003-12-04 2005-06-16 Kyowa Hakko Kogyo Co., Ltd. 抗体組成物を含有する医薬
US20050166993A1 (en) 2004-01-29 2005-08-04 Viken James P. Automatic fluid exchanger
US7375078B2 (en) 2004-02-23 2008-05-20 Genentech, Inc. Heterocyclic self-immolative linkers and conjugates
US7557099B2 (en) 2004-03-01 2009-07-07 Spirogen Limited Pyrrolobenzodiazepines as key intermediates in the synthesis of dimeric cytotoxic pyrrolobenzodiazepines
US7528126B2 (en) 2004-03-09 2009-05-05 Spirogen Limited Pyrrolobenzodiazepines
US7527791B2 (en) 2004-03-31 2009-05-05 Genentech, Inc. Humanized anti-TGF-beta antibodies
US20050266000A1 (en) 2004-04-09 2005-12-01 Genentech, Inc. Variable domain library and uses
WO2005100402A1 (en) 2004-04-13 2005-10-27 F.Hoffmann-La Roche Ag Anti-p-selectin antibodies
US20050276812A1 (en) 2004-06-01 2005-12-15 Genentech, Inc. Antibody-drug conjugates and methods
US7879325B2 (en) 2004-07-22 2011-02-01 Genentech, Inc. HER2 antibody composition
US7560111B2 (en) 2004-07-22 2009-07-14 Genentech, Inc. HER2 antibody composition
WO2006029879A2 (en) 2004-09-17 2006-03-23 F.Hoffmann-La Roche Ag Anti-ox40l antibodies
US7521541B2 (en) 2004-09-23 2009-04-21 Genetech Inc. Cysteine engineered antibodies and conjugates
WO2006044908A2 (en) 2004-10-20 2006-04-27 Genentech, Inc. Antibody formulation in histidine-acetate buffer
WO2007008848A2 (en) 2005-07-07 2007-01-18 Seattle Genetics, Inc. Monomethylvaline compounds having phenylalanine carboxy modifications at the c-terminus
WO2007008603A1 (en) 2005-07-07 2007-01-18 Seattle Genetics, Inc. Monomethylvaline compounds having phenylalanine side-chain modifications at the c-terminus
WO2007044515A1 (en) 2005-10-07 2007-04-19 Exelixis, Inc. Azetidines as mek inhibitors for the treatment of proliferative diseases
US20070160598A1 (en) 2005-11-07 2007-07-12 Dennis Mark S Binding polypeptides with diversified and consensus vh/vl hypervariable sequences
US20070237764A1 (en) 2005-12-02 2007-10-11 Genentech, Inc. Binding polypeptides with restricted diversity sequences
US20090036431A1 (en) 2006-01-25 2009-02-05 Sanofi-Aventis Cytotoxic Agents Comprising New Tomaymycin Derivatives
US20070292936A1 (en) 2006-05-09 2007-12-20 Genentech, Inc. Binding polypeptides with optimized scaffolds
US20100047257A1 (en) 2006-07-18 2010-02-25 Sanofi-Aventis Antagonist antibody for the treatment of cancer
US20080069820A1 (en) 2006-08-30 2008-03-20 Genentech, Inc. Multispecific antibodies
US20090304710A1 (en) 2006-10-19 2009-12-10 Sanofi-Aventis Novel anti-cd38 antibodies for the treatment of cancer
WO2008077546A1 (en) 2006-12-22 2008-07-03 F. Hoffmann-La Roche Ag Antibodies against insulin-like growth factor i receptor and uses thereof
US20090002360A1 (en) 2007-05-25 2009-01-01 Innolux Display Corp. Liquid crystal display device and method for driving same
WO2009016516A2 (en) 2007-07-19 2009-02-05 Sanofi-Aventis Cytotoxic agents comprising new tomaymycin derivatives and their therapeutic use
WO2009089004A1 (en) 2008-01-07 2009-07-16 Amgen Inc. Method for making antibody fc-heterodimeric molecules using electrostatic steering effects
US20090202546A1 (en) 2008-01-30 2009-08-13 Genentech, Inc. Composition comprising antibody that binds to domain ii of her2 and acidic variants thereof
WO2009099741A1 (en) 2008-02-01 2009-08-13 Genentech, Inc. Nemorubicin metabolite and analog reagents, antibody-drug conjugates and methods
US20110076287A1 (en) 2008-02-01 2011-03-31 Robert L Cohen Nemorubicin metabolite and analog reagents, antibody-drug conjugates and methods
US20100034837A1 (en) 2008-07-15 2010-02-11 Italo Beria Anthracycline derivative conjugates, process for their preparation and their use as antitumor compounds
WO2010009124A2 (en) 2008-07-15 2010-01-21 Genentech, Inc. Anthracycline derivative conjugates, process for their preparation and their use as antitumor compounds
US8389697B2 (en) 2008-07-15 2013-03-05 Genentech, Inc. Anthracycline derivative conjugates, process for their preparation and their use as antitumor compounds
US20100203007A1 (en) 2009-02-05 2010-08-12 Immunogen Inc. Novel benzodiazepine derivatives
WO2010115629A2 (en) 2009-04-08 2010-10-14 Deutsches Krebsforschungszentrum Amatoxin-armed therapeutic cell surface binding components designed for tumour therapy
WO2011056983A1 (en) 2009-11-05 2011-05-12 Genentech, Inc. Zirconium-radiolabeled, cysteine engineered antibody conjugates
US20110165155A1 (en) 2009-12-04 2011-07-07 Genentech, Inc. Methods of treating metastatic breast cancer with trastuzumab-mcc-dm1
US8697650B2 (en) 2010-02-16 2014-04-15 Medimmune, Llc HSA-related compositions and methods of use
EP2540745A1 (en) * 2010-02-25 2013-01-02 Shanghai Biomabs Pharmaceuticals Co., Ltd Fully humanized anti-her2 antibody, preparation method and use thereof
US20110256157A1 (en) 2010-04-15 2011-10-20 Spirogen Limited Pyrrolobenzodiazepines and conjugates thereof
WO2011130598A1 (en) 2010-04-15 2011-10-20 Spirogen Limited Pyrrolobenzodiazepines and conjugates thereof
US20110287009A1 (en) 2010-04-23 2011-11-24 Genentech, Inc. Production of Heteromultimeric Proteins
US20110301334A1 (en) 2010-06-08 2011-12-08 Sunil Bhakta Cysteine engineered antibodies and conjugates
WO2012041504A1 (en) 2010-09-30 2012-04-05 Heidelberg Pharma Gmbh Amatoxin-conjugates with improved linkers
US8470984B2 (en) 2010-12-02 2013-06-25 Nerviano Medical Sciences S.R.L. Process for the preparation of morpholinyl anthracycline derivatives
WO2012106587A1 (en) 2011-02-04 2012-08-09 Genentech, Inc. Fc VARIANTS AND METHODS FOR THEIR PRODUCTION
WO2012119787A1 (en) 2011-03-10 2012-09-13 Heidelberg Pharma Gmbh Amatoxin-conjugates with improved linkages
US8969526B2 (en) 2011-03-29 2015-03-03 Roche Glycart Ag Antibody Fc variants
WO2013055987A1 (en) 2011-10-14 2013-04-18 Spirogen Sàrl Pyrrolobenzodiazepines and conjugates thereof
WO2014043403A1 (en) 2012-09-12 2014-03-20 Agensys, Inc. Amatoxin derivatives and cell-permeable conjugates thereof as inhibitors of rna polymerase
WO2014135282A1 (en) 2013-03-04 2014-09-12 Heidelberg Pharma Gmbh Amatoxin derivatives
WO2015023355A1 (en) 2013-08-12 2015-02-19 Genentech, Inc. 1-(chloromethyl)-2,3-dihydro-1h-benzo[e]indole dimer antibody-drug conjugate compounds, and methods of use and treatment
WO2015095227A2 (en) 2013-12-16 2015-06-25 Genentech, Inc. Peptidomimetic compounds and antibody-drug conjugates thereof

Non-Patent Citations (191)

* Cited by examiner, † Cited by third party
Title
"Remington's Pharmaceutical Sciences", 1980
"The Chemistry of Heterocyclic Compounds, A series of Monographs", 1950, JOHN WILEY & SONS
ADAMS ET AL., ACTA CRYSTALLOGR D. BIOL. CRYSTALLOGR., vol. 66, no. 2, 2010, pages 213 - 21
AGUS ET AL., CANCER CELL, vol. 2, 2002, pages 127 - 37
AJANI ET AL., CANCER JOUR., vol. 6, 2000, pages 78 - 81
ALLEY, S.C. ET AL.: "Controlling the location of drug attachment in antibody-drug conjugates", AMERICAN ASSOCIATION FOR CANCER RESEARCH, 2004 ANNUAL MEETING, MARCH 27-31, 2004, PROCEEDINGS OF THE AACR, vol. 45, March 2004 (2004-03-01)
ALMAGROFRANSSON, FRONT. BIOSCI., vol. 13, 2008, pages 1619 - 1633
ANGEW CHEM. INTL. ED. ENGL., vol. 33, 1994, pages 183 - 186
ANTONOW, J. MED. CHEM., vol. 53, no. 7, 2010, pages 2927 - 2941
ATWELL ET AL., J. MED. CHEM., vol. 42, 1999, pages 3400
BACA ET AL., J. BIOL. CHEM., vol. 272, 1997, pages 10678 - 10684
BASELGA ET AL., CANCER RES., vol. 58, 1998, pages 2825 - 2831
BASELGA ET AL., J CLIN ONCOL 2007 ASCO ANNUAL MEETING PROCEEDINGS, vol. 25, pages 18 S
BASELGA ET AL., J. CLIN. ONCOL., vol. 14, 1996, pages 737 - 744
BOERNER ET AL., J. IMMUNOL., vol. 147, 1991, pages 60
BOGER D.ISHIZAKILB T.KITOS P.SUNTORNWAT O., J. ORG. CHEM., vol. 55, 1990, pages 5823 - 5832
BRUGGEMANN, M. ET AL., J. EXP. MED., vol. 166, 1987, pages 1351 - 1361
C. PETERSON ET AL.: "Transport And Storage Of Anthracycline In Experimental Systems And Human Leukemia", ANTHRACYCLINE ANTIBIOTICS IN CANCER THERAPY
CARTER ET AL., PROC. NATL. ACAD. SCI. USA, vol. 89, 1992, pages 4285
CARTER, P.J.SENTER P.D., THE CANCER JOUR., vol. 14, no. 3, 2008, pages 154 - 169
CHARI ET AL., CANCER RES., vol. 52, 1992, pages 127 - 131
CHARI ET AL., CANCER RESEARCH, vol. 52, 1992, pages 127 - 131
CHARI, R.V., ACC. CHEM. RES., vol. 41, 2008, pages 98 - 107
CHATAL: "Monoclonal Antibodies in Immunoscintigraphy", 1989, CRC PRESS
CHEMICAL ABSTRACTS, Columbus, Ohio, US; abstract no. 106139-15-5
CHEN ET AL., J. MOL. BIOL., vol. 293, 1999, pages 865 - 881
CHO ET AL., NATURE, vol. 421, 2003, pages 756 - 60
CHOTHIALESK, J. MOL. BIOL., vol. 196, 1987, pages 901 - 917
CHOWDHURY, METHODS MOL. BIOL., vol. 207, 2008, pages 179 - 196
CLACKSON ET AL., NATURE, vol. 352, 1991, pages 624 - 628
CLYNES ET AL., PROC. NAT'L ACAD. SCI. USA, vol. 95, 1998, pages 652 - 656
COUSSENS ET AL., SCIENCE, vol. 229, 1985, pages 1132 - 9
CRAGG, M.S. ET AL., BLOOD, vol. 102, no. 4, 2003, pages 1458 - 1465
CRAGG, M.S.M.J. GLENNIE, BLOOD, vol. 103, 2004, pages 2738 - 2743
CREE ET AL., ANTICANCER DRUGS, vol. 6, 1995, pages 398 - 404
CROUCH ET AL., J. IMMUNOL. METH., vol. 160, 1993, pages 81 - 88
CUNNINGHAMWELLS, SCIENCE, vol. 244, 1989, pages 1081 - 1085
DALL'ACQUA ET AL., JOURNAL OF BIOLOGICAL CHEMISTRY, vol. 281, no. 33, 2006, pages 23514 - 23524
DALL'ACQUA ET AL., METHODS, vol. 36, 2005, pages 61 - 68
DORONINA ET AL., BIOCONJUGATE CHEM., vol. 17, 2006, pages 114 - 124
DORONINA ET AL., NAT. BIOTECH., vol. 21, 2003, pages 778 - 784
DORONINA ET AL., NAT. BIOTECHNOL., vol. 21, no. 7, 2003, pages 778 - 784
DORONINA ET AL., NATURE BIOTECHNOLOGY, vol. 21, no. 7, 2003, pages 778 - 784
DUBOWCHIK ET AL., BIOORG. & MED. CHEM. LETTERS, vol. 12, 2002, pages 1529 - 1532
DUBOWCHIK ET AL., TETRAHEDRON LETTERS, vol. 38, 1997, pages 5257 - 60
EIGENBROT ET AL., PNAS, vol. 107, 2010, pages 15039 - 44
FELLOUSE, PROC. NATL. ACAD. SCI. USA, vol. 101, no. 34, 2004, pages 12467 - 12472
FISER ET AL., METHODS ENZYMOL., vol. 374, 2003, pages 461 - 91
FLATMAN ET AL., J. CHROMATOGR. B, vol. 848, 2007, pages 79 - 87
FRAKER ET AL., BIOCHEM. BIOPHYS. RES. COMMUN., vol. 80, 1978, pages 49 - 57
FRANKLIN ET AL., CANCER CELL, vol. 5, 2004, pages 317 - 328
FRANKLIN ET AL., CANER CELL, vol. 5, 2004, pages 17 - 28
FRISCH ET AL., BIOCONJUGATE CHEM., vol. 7, 1996, pages 180 - 186
GAZZANO-SANTORO ET AL., J. IMMUNOL. METHODS, vol. 202, 1996, pages 163
GEOGHEGANSTROH, BIOCONJUGATE CHEM., vol. 3, 1992, pages 138 - 146
GERNGROSS, NAT. BIOTECH., vol. 22, 2004, pages 1409 - 1414
GRAHAM ET AL., J. GEN VIROL., vol. 36, 1977, pages 59
GRANDI ET AL., CANCER TREAT. REV., vol. 17, 1990, pages 133
GRIFFITHS ET AL., EMBO J, vol. 12, 1993, pages 725 - 734
GRUBER ET AL., J. IMMUNOL., vol. 152, 1994, pages 5368
GUYER ET AL., J. IMMUNOL., vol. 117, 1976, pages 587
HAMANN ET AL., EXPERT OPIN. THER. PATENTS, vol. 15, 2005, pages 1087 - 1103
HAMBLETT ET AL., CLIN. CANCER RES., vol. 10, 2004, pages 7063 - 7070
HAMBLETT, K.J. ET AL.: "Effect of drug loading on the pharmacology, pharmacokinetics, and toxicity of an anti-CD30 antibody-drug conjugate", AMERICAN ASSOCIATION FOR CANCER RESEARCH, 2004 ANNUAL MEETING, MARCH 27-31, 2004, PROCEEDINGS OF THE AACR, vol. 45, March 2004 (2004-03-01)
HARARIYARDEN, ONCOGENE, vol. 19, 2000, pages 6102 - 14
HARLOWLANE: "Antibodies: A Laboratory Manual", 1988, COLD SPRING HARBOR LABORATORY
HARTLEY ET AL., CANCER RES., vol. 70, no. 17, 2010, pages 6849 - 6858
HAY ET AL., BIOORG. MED. CHEM. LETT., vol. 9, 1999, pages 2237
HAY ET AL., J. MED. CHEM., vol. 46, 2003, pages 2132 - 2151
HELLSTROM, I ET AL., PROC. NAT'L ACAD. SCI. USA, vol. 82, 1985, pages 1499 - 1502
HELLSTROM, I. ET AL., PROC. NAT'L ACAD. SCI. USA, vol. 83, 1986, pages 7059 - 7063
HINMAN ET AL., CANCER RESEARCH, vol. 53, 1993, pages 3336 - 3342
HOLLINGER ET AL., PROC. NATL. ACAD. SCI. USA, vol. 90, 1993, pages 6444 - 6448
HOOGENBOOMWINTER, J. MOL. BIOL., vol. 227, 1992, pages 381 - 388
HOTALING ET AL., PROC. ANNUAL MEETING AM ASSOC CANCER RES, vol. 37, 1996, pages 471
HOWARD ET AL., BIOORGANIC AND MED. CHEM. LETTERS, vol. 19, no. 22, 2009, pages 6463 - 6466
HUDSON ET AL., NAT. MED., vol. 9, 2003, pages 129 - 134
HUDZIAK ET AL., MOL CELL BIOL, vol. 9, 1989, pages 1165 - 72
HURLEYNEEDHAM-VANDEVANTER, ACC. CHEM. RES., vol. 19, 1986, pages 230 - 237
IDUSOGIE ET AL., J. IMMUNOL., vol. 164, 2000, pages 4178 - 4184
J. AM. CHEM. SOC., vol. 82, 1960, pages 5566
JEFFREY ET AL., BIOORGANIC & MED. CHEM. LETTERS, vol. 16, 2006, pages 358 - 362
JEFFREY ET AL., J. MED. CHEM., vol. 48, 2005, pages 1344
JEMAL ABRAY FCENTER M ET AL.: "Global cancer statistics", CA CANCER J CLIN, vol. 61, no. 2, 2011, pages 69 - 90
JUNUTULA ET AL., NAT. BIOTECHNOL., vol. 26, 2008, pages 925 - 932
KABAT ET AL.: "Sequences of proteins of immunological interest", 1991, PUBLIC HEALTH SERVICE, NATIONAL INSTITUTES OF HEALTH
KAM ET AL., PROC. NATL. ACAD. SCI. USA, vol. 102, 2005, pages 11600 - 11605
KANDA, Y. ET AL., BIOTECHNOL. BIOENG., vol. 94, no. 4, 2006, pages 680 - 688
KING ET AL., J. MED. CHEM., vol. 45, 2002, pages 4336 - 4343
KINGSBURY ET AL., J. MED. CHEM., vol. 27, 1984, pages 1447
KLIMKA ET AL., BR. J. CANCER, vol. 83, 2000, pages 252 - 260
KLUSSMAN ET AL., BIOCONJUGATE CHEMISTRY, vol. 15, no. 4, 2004, pages 765 - 773
KOHN: "Antibiotics III", 1975, SPRINGER-VERLAG, pages: 3 - 11
KOSTELNY ET AL., J. IMMUNOL., vol. 148, no. 5, 1992, pages 1547 - 1553
KOZBOR, J. IMMUNOL., vol. 133, 1984, pages 3001
KRATZ ET AL., CURRENT MED. CHEM., vol. 13, 2006, pages 477 - 523
LEE ET AL., J. IMMUNOL. METHODS, vol. 284, no. 1-2, 2004, pages 119 - 132
LEIMGRUBER ET AL., J. AM. CHEM. SOC., vol. 87, 1965, pages 5791 - 5793
LEWIS ET AL., CANCER IMMUNOL IMMUNOTHER, vol. 37, no. 4, 1993, pages 255 - 263
LI ET AL., NAT. BIOTECH., vol. 24, 2006, pages 210 - 215
LI ET AL., PROC. NATL. ACAD. SCI. USA, vol. 103, 2006, pages 3557 - 3562
LIU ET AL., PROC. NATL. ACAD. SCI USA, vol. 93, 1996, pages 8618 - 8623
LIU ET AL., PROC. NATL. ACAD. SCI. USA, vol. 93, 1996, pages 8618 - 8623
LODE ET AL., CANCER RESEARCH, vol. 58, 1998, pages 2925 - 2928
LONBERG, CURR. OPIN. IMMUNOL., vol. 20, 2008, pages 450 - 459
LONBERG, NAT. BIOTECH., vol. 23, 2005, pages 1117 - 1125
LYON, R. ET AL., METHODS IN ENZYM., vol. 502, 2012, pages 123 - 138
MACCALLUM ET AL., J. MOL. BIOL., vol. 262, 1996, pages 732 - 745
MALIK ET AL., PRO AM SOC CANCER RES, vol. 44, 2003, pages 176 - 7
MANDLER ET AL., BIOCONJUGATE CHEM., vol. 13, 2002, pages 786 - 791
MANDLER ET AL., BIOORGANIC & MED. CHEM. LETTERS, vol. 10, 2000, pages 1025 - 1028
MANDLER ET AL., J. NAT. CANCER INST., vol. 92, no. 19, 2000, pages 1573 - 1581
MARSHUDOV ET AL., ACTA CRYSTALLOGR D. BIOL. CRYSTALLOGR., vol. 67, 2011, pages 355 - 67
MARTY M ET AL., J CLIN ONCOL, vol. 23, 2005, pages 4265 - 74
MATHER ET AL., ANNALS N.Y. ACAD. SCI., vol. 383, 1982, pages 44 - 68
MATHER, BIOL. REPROD., vol. 23, 1980, pages 243 - 251
MCCAFFERTY ET AL., NATURE, vol. 305, 1983, pages 537 - 554
MCCOY ET AL., ACTA CRYSTALLOGR D. BIOL. CRYSTALLOGR., vol. 61, 2005, pages 458 - 64
MCDONAGH ET AL., PROT. ENGR. DESIGN & SELECTION, vol. 19, no. 7, 2006, pages 299 - 307
MOLDENHAUER ET AL., JNCI, vol. 104, 2012, pages 1 - 13
MORRISON ET AL., PROC. NATL. ACAD. SCI. USA, vol. 81, 1984, pages 6851 - 6855
N.R. BACHUR, FREE RADICAL DAMAGE, pages 97 - 102
NAGY ET AL., PROC. NATL. ACAD. SCI. USA, vol. 97, 2000, pages 829 - 834
NEUBERGER ET AL., NATURE, vol. 312, 1984, pages 604 - 608
NI, XIANDAI MIANYIXUE, vol. 26, no. 4, 2006, pages 265 - 268
OKAZAKI ET AL., J. MOL. BIOL., vol. 336, no. 5, 2004, pages 1239 - 1249
P.H- WIERNIK, ANTHRACYCLINE: CURRENT STATUS AND NEW DEVELOPMENTS, pages 11
PACCIARINI ET AL., JOUR. CLIN. ONCOLOGY, vol. 24, 2006, pages 14116
PADLAN, MOL. IMMUNOL., vol. 28, 1991, pages 489 - 498
PAQUETTE, LEO A.: "Principles of Modern Heterocyclic Chemistry", 1968, W.A. BENJAMIN
PEGRAM MD ET AL., PROC AM ASSOC CANCER RES, vol. 38, 1997, pages 602
PETKOVA, S.B. ET AL., INT'L. IMMUNOL., vol. 18, no. 12, 2006, pages 1759 - 1769
PETTIT ET AL., ANTI-CANCER DRUG DESIGN, vol. 13, 1998, pages 243 - 277
PETTIT ET AL., ANTIMICROB. AGENTS CHEMOTHER., vol. 42, 1998, pages 2961 - 2965
PETTIT ET AL., J. AM. CHEM. SOC., vol. 111, 1989, pages 5463 - 5465
PETTIT ET AL., J. CHEM. SOC. PERKIN TRANS., vol. 1, no. 5, 1996, pages 859 - 863
PETTIT, G.R. ET AL., SYNTHESIS, 1996, pages 719 - 725
PICCART-GEBHART MJ ET AL., N ENGL J MED, vol. 353, 2005, pages 1659 - 72
POLAKIS P., CURRENT OPINION IN PHARMACOLOGY, vol. 5, 2005, pages 382 - 387
PORTOLANO ET AL., J. IMMUNOL., vol. 151, 1993, pages 2623 - 887
PRESS MF ET AL., CANCER RES, vol. 53, 1993, pages 4960 - 70
PRESTA ET AL., CANCER RES., vol. 57, 1997, pages 4593 - 4599
QUEEN ET AL., PROC. NAT'L ACAD. SCI. USA, vol. 86, 1989, pages 10029 - 10033
QUINTIERI ET AL., CLINICAL CANCER RESEARCH, vol. 11, no. 4, 2005, pages 1608 - 1617
RAVETCHKINET, ANNU. REV. IMMUNOL., vol. 9, 1991, pages 457 - 492
RIECHMANN ET AL., NATURE, vol. 322, 1988, pages 738 - 329
RIPAMONTI ET AL., BRIT. J. CANCER, vol. 65, 1992, pages 703
RIPKA ET AL., ARCH. BIOCHEM. BIOPHYS, vol. 249, 1986, pages 533 - 545
RODRIGUES ET AL., CHEMISTRY BIOLOGY, vol. 2, 1995, pages 223
ROMOND EH ET AL., T N ENGL J MED, vol. 353, 2005, pages 1673 - 84
ROSOK ET AL., J. BIOL. CHEM., vol. 271, 1996, pages 22611 - 22618
SALEH ET AL., J. CLIN. ONCOLOGY, vol. 18, 2000, pages 2282 - 2292
SHIELDS ET AL., J. BIOL. CHEM., vol. 9, no. 2, 2001, pages 6591 - 6604
SLAMON D ET AL., BREAST CANCER RES TREAT, vol. 100, no. 1, 2006, pages 52
SLAMON DJ ET AL., N ENGL J MED, vol. 344, 2001, pages 783 - 137
SLAMON ET AL., NEW ENGL. J. MED., vol. 344, 2001, pages 783 - 792
SLAMON ET AL., SCIENCE, vol. 235, 1987, pages 177 - 182
SLIWKOWSKI ET AL., SEMINARS IN ONCOLOGY, vol. 26, no. 4, 1999, pages 60 - 70
SLIWKOWSKI, NAT STRUCT BIOL, vol. 10, 2003, pages 158 - 9
SONDERMANN ET AL., NATURE, vol. 406, 20 July 2000 (2000-07-20), pages 267 - 273
STORM ET AL., J. AMER. CHEM. SOC., vol. 94, 1972, pages 5815
SUN ET AL., BIOORGANIC & MEDICINAL CHEMISTRY LETTERS, vol. 12, 2002, pages 2213 - 2215
SUN ET AL., BIOORGANIC & MEDICINAL CHEMISTRY, vol. 11, 2003, pages 1761 - 1768
SUN ET AL., PROCEEDINGS OF THE AMERICAN SOCIETY FOR CLINICAL ONCOLOGY, vol. 22, 2003
TEICHER, B.A., CURRENT CANCER DRUG TARGETS, vol. 9, 2009, pages 982 - 1004
TERCEL ET AL., ANGEW. CHEM., INT. ED., vol. 50, 2011, pages 2606 - 2609
TERCEL ET AL., J. MED. CHEM, vol. 46, 2003, pages 2132 - 2151
THURSTON ET AL., CHEM. REV., 1994, pages 433 - 465
TOKI ET AL., J. ORG. CHEM., vol. 67, 2002, pages 1866 - 1872
TOLCHER ET AL., J. CLIN. ONCOLOGY, vol. 17, 1999, pages 478 - 484
TORGOV ET AL., BIOCONJ. CHEM., vol. 16, 2005, pages 717 - 721
TRAUNECKER ET AL., EMBO J., vol. 10, 1991, pages 3655
URLAUB ET AL., PROC. NATL. ACAD. SCI. USA, vol. 77, 1980, pages 4216
VAN DIJKVAN DE WINKEL, CURR. OPIN. PHARMACOL., vol. 5, 2001, pages 368 - 74
VAN DONGEN ET AL., THE ONCOLOGIST, vol. 12, 2007, pages 1379 - 1389
VEREL ET AL., J. NUCL. MED., vol. 44, 2003, pages 1271 - 1281
VOGEL CL ET AL., J CLIN ONCOL, vol. 20, 2002, pages 719 - 26
VOLLMERSBRANDLEIN, HISTOLOGY AND HISTOPATHOLOGY, vol. 20, no. 3, 2005, pages 927 - 937
VOLLMERSBRANDLEIN, METHODS AND FINDINGS IN EXPERIMENTAL AND CLINICAL PHARMACOLOGY, vol. 27, no. 3, 2005, pages 185 - 91
WALKER, M.A., J. ORG. CHEM., vol. 60, 1995, pages 5352 - 5355
WIDDISON ET AL., J. MED. CHEM., vol. 49, 2006, pages 4392 - 4408
WINTER ET AL., ANN. REV. IMMUNOL., vol. 113, 1994, pages 433 - 455
WOYKE ET AL., ANTIMICROB. AGENTS AND CHEMOTHER., vol. 45, no. 12, 2001, pages 3580 - 3584
WRIGHT ET AL., TIBTECH, vol. 15, 1997, pages 26 - 32
YAMANE-OHNUKI ET AL., BIOTECH. BIOENG, vol. 87, 2004, pages 614
YAMANE-OHNUKI ET AL., BIOTECH. BIOENG., vol. 87, 2004, pages 614
YARDENSLIWKOWSKI, NAT REV MOL CELL BIOL, vol. 2, 2001, pages 127 - 37
YAZAKIWU: "Methods in Molecular Biology", vol. 248, 1996, HUMANA PRESS, article "Epitope Mapping Protocols", pages: 255 - 268
YU ET AL., PNAS, vol. 99, 2002, pages 7968 - 7973
ZHOU ET AL., JBC, vol. 286, 2011, pages 31676 - 83
ZHU ET AL., PROTEIN SCIENCE, vol. 6, 1997, pages 781 - 788

Also Published As

Publication number Publication date
CL2017000545A1 (es) 2017-10-06
TWI758784B (zh) 2022-03-21
TW201619199A (zh) 2016-06-01
CA2957238C (en) 2024-02-20
AU2015314954A1 (en) 2017-03-02
AU2021215166A1 (en) 2021-09-02
IL250440A0 (en) 2017-03-30
US10556966B2 (en) 2020-02-11
MA40576A (fr) 2017-07-19
CN107001479A (zh) 2017-08-01
SG11201701623UA (en) 2017-03-30
SI3191135T1 (sl) 2021-01-29
MY186334A (en) 2021-07-12
LT3191135T (lt) 2020-11-25
CR20170131A (es) 2017-07-19
MA40576B1 (fr) 2020-11-30
KR102508173B1 (ko) 2023-03-10
US10179820B2 (en) 2019-01-15
EP3191135B1 (en) 2020-08-19
JP2020124196A (ja) 2020-08-20
US20160096893A1 (en) 2016-04-07
CN114106185A (zh) 2022-03-01
CA2957238A1 (en) 2016-03-17
BR112017004631A2 (pt) 2018-01-30
JP7250724B2 (ja) 2023-04-03
HRP20201719T1 (hr) 2020-12-25
US20170174782A1 (en) 2017-06-22
AR101845A1 (es) 2017-01-18
US20190177429A1 (en) 2019-06-13
PH12017500322A1 (en) 2017-07-10
RS61019B1 (sr) 2020-12-31
SG10201809668TA (en) 2018-11-29
JP7085837B2 (ja) 2022-06-17
TWI702231B (zh) 2020-08-21
DK3191135T3 (da) 2020-10-12
US9518118B2 (en) 2016-12-13
PT3191135T (pt) 2020-11-12
HUE052460T2 (hu) 2021-04-28
EP3191135A1 (en) 2017-07-19
US20200255539A1 (en) 2020-08-13
IL250440B (en) 2021-06-30
US20230041134A1 (en) 2023-02-09
AU2015314954B2 (en) 2021-05-13
CN107001479B (zh) 2021-09-28
ES2830385T3 (es) 2021-06-03
JP2017534253A (ja) 2017-11-24
EA201790545A1 (ru) 2017-07-31
CR20180210A (es) 2018-07-31
PL3191135T3 (pl) 2021-01-25
CO2017001919A2 (es) 2017-07-19
PE20170935A1 (es) 2017-07-13
KR20170057280A (ko) 2017-05-24
TW202118785A (zh) 2021-05-16
MX2017003126A (es) 2017-08-28
WO2016040723A1 (en) 2016-03-17

Similar Documents

Publication Publication Date Title
US20230041134A1 (en) Anti-HER2 Antibodies and Immunoconjugates
US11084877B2 (en) Anti-CLL-1 antibodies and immunoconjugates
US10314846B2 (en) Immunoconjugates comprising anti-HER2 antibodies and pyrrolobenzodiazepines
EP2844300B1 (en) Anti-pmel17 antibodies and immunoconjugates
EP3046940B1 (en) Methods of using anti-lgr5 antibodies

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED

AC Divisional application: reference to earlier application

Ref document number: 3191135

Country of ref document: EP

Kind code of ref document: P

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20210823

RAV Requested validation state of the european patent: fee paid

Extension state: MA

Effective date: 20210823

RAX Requested extension states of the european patent have changed

Extension state: ME

Payment date: 20210823

Extension state: BA

Payment date: 20210823

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20230419