EP3615642A1 - Lubricating oil composition for internal combustion engine - Google Patents

Lubricating oil composition for internal combustion engine

Info

Publication number
EP3615642A1
EP3615642A1 EP18725757.1A EP18725757A EP3615642A1 EP 3615642 A1 EP3615642 A1 EP 3615642A1 EP 18725757 A EP18725757 A EP 18725757A EP 3615642 A1 EP3615642 A1 EP 3615642A1
Authority
EP
European Patent Office
Prior art keywords
lubricating oil
oil composition
mass
less
base
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP18725757.1A
Other languages
German (de)
English (en)
French (fr)
Inventor
Kiyoshi Hanyuda
Izumi Kobayashi
Taku Saito
Akimitsu Fujiwara
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shell Internationale Research Maatschappij BV
Original Assignee
Shell Internationale Research Maatschappij BV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shell Internationale Research Maatschappij BV filed Critical Shell Internationale Research Maatschappij BV
Publication of EP3615642A1 publication Critical patent/EP3615642A1/en
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M171/00Lubricating compositions characterised by purely physical criteria, e.g. containing as base-material, thickener or additive, ingredients which are characterised exclusively by their numerically specified physical properties, i.e. containing ingredients which are physically well-defined but for which the chemical nature is either unspecified or only very vaguely indicated
    • C10M171/02Specified values of viscosity or viscosity index
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M141/00Lubricating compositions characterised by the additive being a mixture of two or more compounds covered by more than one of the main groups C10M125/00 - C10M139/00, each of these compounds being essential
    • C10M141/12Lubricating compositions characterised by the additive being a mixture of two or more compounds covered by more than one of the main groups C10M125/00 - C10M139/00, each of these compounds being essential at least one of them being an organic compound containing atoms of elements not provided for in groups C10M141/02 - C10M141/10
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M101/00Lubricating compositions characterised by the base-material being a mineral or fatty oil
    • C10M101/02Petroleum fractions
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M139/00Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing atoms of elements not provided for in groups C10M127/00 - C10M137/00
    • C10M139/06Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing atoms of elements not provided for in groups C10M127/00 - C10M137/00 having a metal-to-carbon bond
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M143/00Lubricating compositions characterised by the additive being a macromolecular hydrocarbon or such hydrocarbon modified by oxidation
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M145/00Lubricating compositions characterised by the additive being a macromolecular compound containing oxygen
    • C10M145/02Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • C10M145/10Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds containing monomers having an unsaturated radical bound to a carboxyl radical, e.g. acrylate
    • C10M145/12Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds containing monomers having an unsaturated radical bound to a carboxyl radical, e.g. acrylate monocarboxylic
    • C10M145/14Acrylate; Methacrylate
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M169/00Lubricating compositions characterised by containing as components a mixture of at least two types of ingredient selected from base-materials, thickeners or additives, covered by the preceding groups, each of these compounds being essential
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M169/00Lubricating compositions characterised by containing as components a mixture of at least two types of ingredient selected from base-materials, thickeners or additives, covered by the preceding groups, each of these compounds being essential
    • C10M169/04Mixtures of base-materials and additives
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M169/00Lubricating compositions characterised by containing as components a mixture of at least two types of ingredient selected from base-materials, thickeners or additives, covered by the preceding groups, each of these compounds being essential
    • C10M169/04Mixtures of base-materials and additives
    • C10M169/041Mixtures of base-materials and additives the additives being macromolecular compounds only
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2203/00Organic non-macromolecular hydrocarbon compounds and hydrocarbon fractions as ingredients in lubricant compositions
    • C10M2203/10Petroleum or coal fractions, e.g. tars, solvents, bitumen
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2203/00Organic non-macromolecular hydrocarbon compounds and hydrocarbon fractions as ingredients in lubricant compositions
    • C10M2203/10Petroleum or coal fractions, e.g. tars, solvents, bitumen
    • C10M2203/102Aliphatic fractions
    • C10M2203/1025Aliphatic fractions used as base material
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2205/00Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2205/00Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions
    • C10M2205/02Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions containing acyclic monomers
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2205/00Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions
    • C10M2205/17Fisher Tropsch reaction products
    • C10M2205/173Fisher Tropsch reaction products used as base material
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/02Hydroxy compounds
    • C10M2207/023Hydroxy compounds having hydroxy groups bound to carbon atoms of six-membered aromatic rings
    • C10M2207/026Hydroxy compounds having hydroxy groups bound to carbon atoms of six-membered aromatic rings with tertiary alkyl groups
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2209/00Organic macromolecular compounds containing oxygen as ingredients in lubricant compositions
    • C10M2209/02Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • C10M2209/08Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds containing monomers having an unsaturated radical bound to a carboxyl radical, e.g. acrylate type
    • C10M2209/084Acrylate; Methacrylate
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/02Amines, e.g. polyalkylene polyamines; Quaternary amines
    • C10M2215/06Amines, e.g. polyalkylene polyamines; Quaternary amines having amino groups bound to carbon atoms of six-membered aromatic rings
    • C10M2215/064Di- and triaryl amines
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/28Amides; Imides
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/30Heterocyclic compounds
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2219/00Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions
    • C10M2219/06Thio-acids; Thiocyanates; Derivatives thereof
    • C10M2219/062Thio-acids; Thiocyanates; Derivatives thereof having carbon-to-sulfur double bonds
    • C10M2219/066Thiocarbamic type compounds
    • C10M2219/068Thiocarbamate metal salts
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2223/00Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions
    • C10M2223/02Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions having no phosphorus-to-carbon bonds
    • C10M2223/04Phosphate esters
    • C10M2223/045Metal containing thio derivatives
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2227/00Organic non-macromolecular compounds containing atoms of elements not provided for in groups C10M2203/00, C10M2207/00, C10M2211/00, C10M2215/00, C10M2219/00 or C10M2223/00 as ingredients in lubricant compositions
    • C10M2227/08Organic non-macromolecular compounds containing atoms of elements not provided for in groups C10M2203/00, C10M2207/00, C10M2211/00, C10M2215/00, C10M2219/00 or C10M2223/00 as ingredients in lubricant compositions having metal-to-carbon bonds
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2229/00Organic macromolecular compounds containing atoms of elements not provided for in groups C10M2205/00, C10M2209/00, C10M2213/00, C10M2217/00, C10M2221/00 or C10M2225/00 as ingredients in lubricant compositions
    • C10M2229/04Siloxanes with specific structure
    • C10M2229/041Siloxanes with specific structure containing aliphatic substituents
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2290/00Mixtures of base materials or thickeners or additives
    • C10M2290/02Mineral base oils; Mixtures of fractions
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2010/00Metal present as such or in compounds
    • C10N2010/04Groups 2 or 12
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2020/00Specified physical or chemical properties or characteristics, i.e. function, of component of lubricating compositions
    • C10N2020/01Physico-chemical properties
    • C10N2020/02Viscosity; Viscosity index
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2030/00Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
    • C10N2030/02Pour-point; Viscosity index
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2030/00Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
    • C10N2030/04Detergent property or dispersant property
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2030/00Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
    • C10N2030/10Inhibition of oxidation, e.g. anti-oxidants
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2030/00Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
    • C10N2030/12Inhibition of corrosion, e.g. anti-rust agents or anti-corrosives
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2030/00Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
    • C10N2030/54Fuel economy
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2030/00Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
    • C10N2030/68Shear stability
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2030/00Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
    • C10N2030/74Noack Volatility
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/25Internal-combustion engines

Definitions

  • the present invention relates to a lubricating oil composition for an internal combustion engine
  • an engine (hereinafter also referred to as an engine) that is excellent in fuel economy in a temperature range of practical use .
  • HTHSVl 50 150°C shear viscosity
  • KV100 for each viscosity grade. Because of this, when attempting to reduce the viscosity of engine oils, the lower limit values for HTHSVl 50 and KV100 become barriers, and no specific methods have been proposed for achieving further fuel economy at given viscosity grades, even for PHVs and for vehicles with functions for stopping idling.
  • the present invention is to achieve a lubricating oil composition for an internal combustion engine that is able to further improve fuel economy under general driving conditions, including a state wherein the engine itself is not running, while still maintaining HTHSVl 50 and KV100, stipulated in SAE J300, at no less than the lower limit value.
  • the present inventors based on the issues set forth above, used a new approach to be the first to discover that it is possible to improve fuel economy substantially through having both the shear viscosity and kinematic viscosity at 50°C be within a specific range (a specific range that corresponds to temperature characteristics in a higher temperature domain) , particularly in an idling stopping vehicle and a PHV wherein the engine is stopped and started repeatedly, through extensive research regarding characteristics in a variety of temperature ranges that are not normally examined.
  • the result was achievement of the present invention, which is able to improve the fuel economy of an internal combustion engine lubricating oil composition while maintaining the HTHSV 150°C and KV 100°C at no less than the lower limit values stipulated in SAE J300.
  • the present invention specifically, provides (1) to (5) as follows:
  • a lubricating oil composition for an internal combustion engine comprising a GTL (Gas To Liquid) base oil synthesized by the Fischer-Tropsch method and a viscosity index improver, wherein the content of the viscosity index improver relative to the total amount of lubricating oil composition is 0.1 to 20 mass% by resin amount, and the lubricating oil composition satisfies the following (A) to (E) :
  • HTHSV high temperature high shear viscosity
  • 106s-l is 1.0 mPa * s or more ;
  • kinematic viscosity (KV (JIS K2283)) at 100°C is 3.0 mm2/s or more;
  • HTHSV50°C/HTHSV 150°C is 6.50 or less
  • KV50°C/HTHSV150°C is 8.00 or less
  • the lubricating oil composition of (1) including: one or more base oils having KV100°C of 1 to 8 mm2/s, a viscosity index of 110 or more, %CA by ASTM D3238 of 5 or less, and %CP by ASTM D3238 of 60 or more, wherein:
  • the content of the base oils relative to the total amount of the lubricating oil composition is 50 mass% or less, and a fraction of an entire base oil at 380°C or less in gas chromatography distillation by ASTM D2887 is 10 mass% or less.
  • succinimide ashless dispersant and/or a boron modified succinimide ashless dispersant are 0.01 to 0.20 mass% (based on a total amount of the lubricating oil composition) in terms of nitrogen concentration ;
  • the lubricating oil composition includes ZnDTP of 0.03 to 0.09 mass% (based on the total amount of the lubricating oil composition) in terms of phosphorus concentration;
  • the lubricating oil composition includes an organic molybdenum compound of 0.01 to 0.12 mass% (based on the total amount of the lubricating oil composition) in terms of Mo concentration.
  • (3) including at least one selection from a corrosion inhibitor, a phenol-based antioxidant, an amine-based antioxidant, and a sulfur-containing additive.
  • the viscosity index improver is a comb polymer, preferably wherein the comb polymer comprises (1) repeating units derived from polyolefin-based macro monomers, and (2) repeating units derived from low- molecular-weight monomers selected from a group
  • styrene monomers having between 8 and 17 carbon atoms, alkyl (meth) acrylates having between 1 and 10 carbon atoms in an alcohol base, vinyl esters having between 1 and 11 carbon atoms in an acyl, vinyl ethers having between 1 and 10 carbon atoms in an alcohol base, (di) alkyl fumarate having between 1 and 10 carbon atoms in an alcohol base, (di) alkyl maleates having between 1 and 10 carbon atoms in an alcohol base, and mixtures of these monomers, included in the main chain.
  • compositions of the present invention are particularly well-suited for PHVs and/or stop-idle vehicles .
  • the present invention provides an internal
  • combustion engine lubricating oil composition able to improve fuel economy while maintaining the HTHSV 150 and KV 100 at no less than the lower limit values stipulated in SAE J300.
  • an internal combustion engine lubricating oil composition satisfies the 150°C 106s-l high-temperature/high-shear viscosity ⁇ (ASTM D4683 or ASTM D5481), hereinafter termed "HTHSV” ⁇ is no less than 1.0 MPA-s, and the 100°C kinematic velocity ⁇ (JIS K2283), hereinafter termed "KV”) is no less that 3.0 mm2/s, and the NOACK evaporation (JPI-5S-41) is no less that 15 mass%, and HDHSV 50°C/HTHSV 150°C ⁇ 6.50 and KV 50°C/HTHSV 150°C ⁇ 8.00.
  • HTHSV high-temperature/high-shear viscosity ⁇
  • KV 100°C kinematic velocity ⁇
  • NOACK evaporation JPI-5S-41
  • composition methods for manufacturing,
  • the internal combustion engine lubricating oil composition according to the present invention includes a base oil and a viscosity index improving agent, and, if necessary, includes other additives as well.
  • composition according to the present invention will be explained below.
  • the base oil in the lubricating oil composition according to the present invention includes, as an essential component, a GTL (gas-to-liquid) base oil, synthesized using the Fischer-Tropsch method.
  • GTL (gas-to-liquid) base oil that is synthesized using the Fischer-Tropsch method, which is a technology for turning natural gas into a liquid fuel, when compared to a mineral oil base oil that is refined from crude oil, is extremely low in sulfur content and aromatic components, and extremely high in its proportion of paraffin
  • the kinematic viscosity at 100°C may be between 1.0 and 50.0 mm 2 /s, more preferably between 1.0 and 12.0 mm 2 /s, and, more preferably, between 3.0 and 10.0 mm 2 /s.
  • the viscosity index may be between 100 and 180, and preferably between 105 and 160, and more preferably be between 110 and 150.
  • the total sulfur content may be less than 10 ppm, and the total nitrogen content may be less than 1 ppm.
  • the GTL base oil product may be Shell XHVI (registered trademark) .
  • the lubricating oil composition according to the present invention may include other base oils if necessary.
  • Mineral oils and hydrocarbon-based synthetic oils known as highly refined base oils, may be used as the other base oils, and, in particular, a base oil selected from a group comprising base oils classified in group 2, group 3, and group 4 of the API (American Petroleum Institute) Base Oil Classifications may be used.
  • the base oil used here has a 100°C kinematic viscosity of between 3.0 and 12.0 mm 2 /s, but preferably may be between 3.0 and 10.0 mm 2 /s, and more preferably between 3.0 and 8.0 mm 2 /s.
  • the viscosity index of the base oil may be between 100 and 180, and preferably between 100 and 160, and more preferably between 100 and 150.
  • the sulfur element content of the base oil may be no greater than 300 ppm, and preferably no greater than 200 ppm, more preferably no greater than 100 ppm, and even more preferably no greater that 50 ppm.
  • the density of the base oil at 15°C may be between 0.80 and 0.95 g/cm 3 , preferably between 0.80 and 0.90 g/cm 3 , and more preferably between 0.80 and 0.85 g/cm 3 .
  • the group 2 base oil may be a paraffin-based mineral oil obtained through, for example, the use of an
  • a group 2 base oil refined through the hydrorefining of Gulf Corporation, or the like has a total sulfur content of less than 10 ppm, and an aromatic content %CA of no greater than 5 ppm, and is suitable for use as a base oil that is mixed into the lubricating oil composition according to the present invention.
  • the viscosity index (where the viscosity index in the present invention is measured using ASTM D2270 or JIS K2283) is no less than 100 and is less than 120, and more
  • the 100°C kinematic viscosity of the group 2 base oil (where the kinematic viscosity in the present invention is measured using ASTM D445 or JIS K 2283) preferably is between 3.0 and 12.0 mm 2 /s, and more preferably between 3.0 and 9.0 mm 2 /s.
  • the total sulfur content is less than 300 ppm, more preferably less than 200 ppm, even more preferably less than 100 ppm, and particularly preferably less that 10 ppm.
  • the total sulfur content is a value that is measured using a radioexcitation method (based on ASTM D4294 and JIS K2541-4) .
  • the total nitrogen content of the group 2 base oil may be less than 10 ppm, and preferably less than 1 ppm.
  • the aniline point of the group 2 base oil (where the aniline point in the present invention is measured through ASTM D611 and JIS K2256) preferably is between 80 and 150°C, and more preferably between 100 and 135°C.
  • the group 3 base oil may be, for example, a
  • the group 3 base oil viscosity index preferably is between 120 and 150, and more preferably is between 120 and 140.
  • the group 3 base oil 100°C kinematic viscosity preferably is between 3.0 and 12.0 mm 2 /s, and more preferably between 3.0 and 9.0 mm/s .
  • the group 3 base oil total sulfur content preferably is less than 100 ppm, and more preferably is less than 10 ppm.
  • the group 3 base oil total nitrogen content preferably is less than 10 ppm, and more preferably less than 1 ppm.
  • the group 3 base oil aniline point is preferably between 80 and 150°C, and more preferably between 110 and 140°C.
  • the group 4 base oil may be, for example, a
  • polyalphaolyfin an alphaolefin oligomer, a mixture thereof (a polyalphaolyfin and an alphaolefin oligomer) , or the like.
  • the polyalphaolyfin (PAO) is any of a variety of polymers of alphaolefins (monomers) .
  • polyalphaolyfin may be a mixture wherein a plurality of types of copolymers of "alphaolefins
  • alphaolefin oligomer is any of a variety of types of oligomers of alphaolefins (monomers), and includes hydrogenated oligomers of alphaolefins (monomers) .
  • alphaolefins are any of a variety of types of oligomers of alphaolefins (monomers), and includes hydrogenated oligomers of alphaolefins (monomers) .
  • the hydrocarbon-based synthetic oil may be, for example, a polyolefin, including a PAO, or the like, described above, alkyl benzene, alkyl naphthalene, or the like, or a mixture, or the like, thereof.
  • the viscosity index of the synthetic base oil preferably is between 10 and 120, more preferably between 20 and 120, and even more preferably between 20 and 110, and, in the case of a polyalphaolefin, preferably is between 100 and 170, more preferably between 110 and 170, and even more preferably between 110 and 155.
  • the 15°C density of the synthetic base oil is preferably between 0.8000 and 0.9500 g/cm 3 , more preferably between 0.8100 and 0.9500 g/cm 3 , and even more preferably between 0.8100 and 0.9200 g/cm 3 .
  • the base oil of the present lubricating oil composition may have a base oil belonging to group 1 of the Base Oil Categories of the API (American Petroleum Institute), mixed into the base oil described above.
  • the group 1 base oil may be a paraffin-based mineral oil obtained through, for example, the use of an appropriate combination of refining means, such as solvent refining, hydrorefining, dewaxing, and the like, to a lubricating oil fraction that is obtained through atmospheric- pressure distillation of crude oil.
  • the 100°C kinematic viscosity may be between 3.0 and 35.0 mm 2 /s, but preferably may be between 3.0 and 10.0 mm 2 /s, and more preferably between 3.0 and 8.0 mm 2 /s.
  • the viscosity index may be between 90 and 120, and preferably between 95 and 115, and more preferably be between 95 and 110.
  • the sulfur content may be between 0.03 and 0.7 mass%, and preferably between 0.1 and 0.7 mass%, and more preferably between 0.4 and 0.7 massl.
  • the %CA, in ASTM D3238 may be 5 or less, or preferably no greater than 4, or more preferably no greater than 3.4.
  • the %CP, in ASTM D3238 may be 60 or more, or preferably no less than 63, or more preferably no less than 66.
  • one or more base oils wherein the KV 100°C is between 1 and 8 mm 2 /s, the viscosity index is no less than 110, and the %CA is no greater than 5 and the %CP is no less than 60, according to ASTM D3238, may be included, so as to be no more than 50 mass% of the lubricating oil composition as a whole, so that the fracture at 380°C or less in gas
  • Viscosity index improving agents generally are polymer substrates that have the effect of improving the viscosity index.
  • a variety of viscosity index improving agents may be used in the present invention. Examples of viscosity index improving agents include
  • poly (meth) acrylate and olefin copolymers such as
  • a comb polymer which has a high viscosity index improving effect and is useful in reduction of (design of) the low-temperature viscosity, is preferred as a viscosity index improving agent.
  • the comb polymer is a polymer that forms a comb shape through combining, with polymer main chains, relatively long side chains that are known polymers .
  • a known comb polymer may be used as such a comb polymer. More specifically, a comb polymer may be used wherein (1) repeating units derived from polyolefin-based macro monomers and (2) repeating units derived from low- molecular-weight monomers selected from a group
  • styrene monomers having between 8 and 17 carbon atoms, alkyl (meth) acrylates having between 1 and 10 carbon atoms in an alcohol base, vinyl esters having between 1 and 11 carbon atoms in an acyl, vinyl ethers having between 1 and 10 carbon atoms in an alcohol base, (di) alkyl fumarate having between 1 and 10 carbon atoms in an alcohol base, (di) alkyl maleates having between 1 and 10 carbon atoms in an alcohol base, and mixtures of these monomers, are included in the main chain.
  • that which is suitable has a molar branching level of between 0.3 and 1.1 mol%, wherein, in relation to the mass of the repeating units, described above, the total of the (1) repeating units derived from polyolefin- based macro monomers and (2) repeating units derived from low-molecular-weight monomers selected from a group comprising styrene monomers having between 8 and 17 carbon atoms, alkyl (meth) acrylates having between 1 and 10 carbon atoms in an alcohol base, vinyl esters having between 1 and 11 carbon atoms in an acyl, vinyl ethers having between 1 and 10 carbon atoms in an alcohol base, (di) alkyl fumarate having between 1 and 10 carbon atoms in an alcohol base, (di) alkyl maleates having between 1 and 10 carbon atoms in an alcohol base, and mixtures of these monomers, is no less than 80 mass%, with the repeating units derived from the polyolefin-based macro molecule being between 8 and 30
  • the inclusion proportion of the viscosity index improving agent is between 0.1 and 15 mass%, in terms of the amount of resin, relative to the lubricating oil composition as a whole, and, more preferably, is between 0.1 and 10 mass%, in terms of the amount of resin.
  • additives other than the viscosity index improving agent may include Ca/Mg-based cleaning agents (metal-including cleaning agents that include at least one selection from Ca and Mg) , succinimide-based/boron-modified succinimide-based ashless dispersing agents, ZnDTP, and/or friction adjusting agents (which may be organic molybdenum compounds) .
  • Ca/Mg-based cleaning agents metal-including cleaning agents that include at least one selection from Ca and Mg
  • succinimide-based/boron-modified succinimide-based ashless dispersing agents ZnDTP
  • friction adjusting agents which may be organic molybdenum compounds
  • corrosion inhibitors, phenol-based oxidation inhibitors, amine-based oxidation inhibitors, and/or sulfur-including additives may be used suitably as other additives. Other additives such as these will be explained below.
  • [Ca] + [Mg] may be 0 (that is, no Mg is included) or [Mg] may be greater than zero (that is, some or all of the Ca-based cleaning agent is replaced with a Mg-based cleaning agent) .
  • [Ca] + [Mg] does not exceed 0.25, there is the benefit of achieving an improvement in the torque improvement ratio, and when not less than 0.10, cleanliness will be improved.
  • the Ca/Mg cleaning agent may be a known metal- including cleaning agent, including calcium and/or magnesium as an alkaline earth metal.
  • a metal-including cleaning agent may include a phenate, a salicylate, a carboxylate, or a sulfonate as the main component thereof.
  • the lubricating oil composition according to the present invention may include a succinimide-based ashless dispersing agent and/or a boron-modified succinimide- based ashless dispersing agent, and the inclusion proportion thereof may satisfy a condition between 0.01 and 0.20 mass% (in reference to the total amount of the lubricating oil composition) , in terms of the nitrogen concentration. Note that being no greater than 0.20 mass%, in terms of the nitrogen concentration, is useful in wear resistance .
  • That which is known may be used for a bis-type succinimide-based ashless dispersing agent that does not include boron, and a bis-type succinimide wherein, at the time of imidization, anhydrous succinic acid is added to both ends of a polyamine may be used.
  • a bis-type succinimide-based ashless dispersing agent that does not include boron
  • a bis-type succinimide wherein, at the time of imidization, anhydrous succinic acid is added to both ends of a polyamine may be used.
  • boron-modified that which is known may be used for the boron-modified
  • succinimide-based ashless dispersing agent may be used, and may be a succinimide wherein a mono-type succinimide, to which, at the time of imidization, anhydrous succinic acid has been added to one end of a polyamine, and/or a bis-type succinimide wherein anhydrous succinic acid has been added to both ends of a polyamine, has been boron- modified .
  • the lubricating oil composition according to the present invention may include ZnDTP, and the inclusion portion thereof may be between 0.03 and 0.09 mass%, as a phosphorous inclusion proportion (in reference to the total amount of the lubricating oil composition) .
  • ZnDTP has a function as an anti-wear agent, and if the phosphorus inclusion proportion is no less than 0.03 mass%, the wear resistance will be more superior. Moreover, if the phosphorus inclusion proportion is no greater than 0.09 mass%, it is unlikely to interfere with the effect of the friction adjusting agent.
  • ZnDTP is an abbreviation for Zinc
  • Dialkyldithiophosphate and is expressed by structural formula (1), below.
  • R indicates mutually independent hydrocarbon groups.
  • they are primary or secondary alkyl groups of between C3 and C20. More preferably, they are primary or secondary alkyl groups of between C3 and CIO.
  • An arbitrary compound that is normally used as a lubricating oil friction adjusting agent may be used in the lubricating oil composition according to the present invention, and may be, for example, an organic molybdenum compound or ashless friction adjusting agent.
  • An organic molybdenum compound and an ashless friction adjusting agent may be used either singly or in combination.
  • the organic molybdenum compound may be, for example, molybdenum dithiocarbamate (which may be abbreviated simply MoDTC, or the like) , a trinuclear molybdenum compound as described in WO-98/26030, a sulfide of molybdenum, a molybdenum dihiophosphate salt, a molybdenum-amine complex, a molybdenum-succinimide complex, a molybdenum salt of an organic acid, a molybdenum salt of an alcohol, or the like.
  • molybdenum dithiocarbamate which may be abbreviated simply MoDTC, or the like
  • MoDTC molybdenum dithiocarbamate
  • a trinuclear molybdenum compound as described in WO-98/26030
  • a sulfide of molybdenum a molybdenum dihiophosphate salt
  • the compounds may satisfy between 0.01 and 0.12 mass% in terms of the Mo concentration (in reference to the total amount of the lubricating oil composition) . Note that the storage stability is better at no more than 0.12 mass%, in terms of the Mo concentration.
  • the ashless friction adjusting agent may be, for example, an alkyl group or alkynyl group with a carbon number between 3 and 30, and, in particular, may be an ashless friction adjusting agent, such as an amine compound, a fatty acid ester, a fatty acid amide, a fatty acid, an aliphatic alcohol, an aliphatic ether, or the like, which has, in the molecule, at least one straight- chain alkyl group or straight-chain alkynyl group with a carbon number between 3 and 30.
  • an ashless friction adjusting agent such as an amine compound, a fatty acid ester, a fatty acid amide, a fatty acid, an aliphatic alcohol, an aliphatic ether, or the like, which has, in the molecule, at least one straight- chain alkyl group or straight-chain alkynyl group with a carbon number between 3 and 30.
  • alkyl groups or alkynyl groups may be replaced with alkoxy groups, or carbon atoms of the alkyl groups or alkynyl groups may be replaced by hetero atoms.
  • the inclusion proportion for the ashless friction adjusting agent it may, for example, satisfy 0.01 to 1.0 mass% (in reference to the total amount of the lubricating oil composition) . Note that the storage stability and seal compatibility will be improved if this is no greater than 1.0 mass% .
  • molybdenum dithiocarbamate is the most suitable from the perspective of optimally reducing friction.
  • the lubricating oil composition according to the present invention may include a corrosion inhibitor.
  • the corrosion inhibitor which may be, for example, a benzotriazole- based, tolyltriazole-based, thiadiazole-based, or imidazole-based compound, or the like.
  • inclusion proportion it may be, for example, between 0.01 and 0.1 mass% (in reference to the total amount of the lubricating oil composition) .
  • a phenol-based oxidation inhibitor and/or an amine- based oxidation inhibitor may be included as an ashless oxidation inhibitor in the lubricating oil composition according to the present invention.
  • That which is known may be used as the phenol-based oxidation inhibitor, which may be, for example, 4, 4'- methylene bis (2, 6-di-tert-butyl phenol), 4, 4'- bis (2, 6-di-tert-butyl phenol), or the like. That which is known may be used for the amine-based oxidation
  • inhibitor which may be, for example, alkyl diphenyl amine, alkyl naphthyl amine, phenyl-alpha-naphthyl amine, alkyl phenyl-alpha-naphthyl amine, or the like, which are aromatic amine compounds.
  • the inclusion proportion for the amine-based oxidation inhibitor it should be, for example, between 0.1 and 2.0 mass% (in reference to the total amount of the
  • lubricating oil composition a lubricating oil composition
  • inclusion proportion for the phenol-based oxidation inhibitor it should be, for example, between 0.1 and 2.0 mass% (in reference to the total amount of the lubricating oil composition) .
  • the lubricating oil composition according to the present invention may include a sulfur-including
  • sulfur-including additive indicates a sulfur compound other than the ZnDTP and MoDTC described above, and may be selected as a component that is further added after adding the MoDTC.
  • sulfur- including additive which may be, for example, hydrogen sulfide, a sulfur cross-linked metal phenate,
  • dihydrocarbyl polysulfide a dithiocarbamate other than MoDTC, or the like.
  • the sulfur-including additive it should be between 0.1 mass% and 2.0 mass%, in relation to the lubricating oil composition as a whole .
  • additives other than the above such as oxidation inhibitors, ashless dispersing agents, metal cleaning agents, friction adjusting agents, rust
  • inhibiting agents, anti-forming agents, or the like may also be added to the lubricating oil composition
  • an additive package wherein some or all of the additives to be mixed in are packaged, may be used (or may be used as well) .
  • the manufacturing may be through, for example, adding and mixing the various components described above through an arbitrary process.
  • the lubricating oil composition according to the present invention is provided with all of the following characteristics (A) through (E) :
  • HTHSV high temperature high shear viscosity
  • KV50°C/HTHSV150°C is 8.00 or less; and (E) NOACK evaporation amount (JPI-5S-41) is 15 mass% or less .
  • HTHSV 50°C/HTHSV 150°C be no greater that 6.50 and the KV 50°C/HTHSV 150°C be no greater than 8.00 enables an improvement in fuel economy and satisfaction of a NOACK evaporation (JPI-5S-41) of no greater than 15 mass%, even given conditions of (A) 150°C, 106s-l high-temperature/high-shear viscosity (HTHSV (ASTM D4683 or ASTM D5481)) no less than 1.0 mPa ⁇ s and a 100°C kinematic viscosity (KV) no less than 3.0 mm 2 / s .
  • HTHSV 106s-l high-temperature/high-shear viscosity
  • KV 100°C kinematic viscosity
  • viscosity index improving agents and to increase the temperature of complete dissolution of the polymer.
  • the viscosity index improving agent is PMA
  • the lubricating oil composition according to the present invention can be used as a lubricating oil composition for an ordinary internal combustion engine, but is particularly well-suited as a lubricating oil composition for a PHV internal combustion engine and/or for an internal combustion engine for an idling-stopping vehicle .
  • Lubricating oil compositions according to the invention and Reference Examples 1 through 5 were prepared through mixing the raw materials listed below so as to have the blending quantities (massl) shown in Table 1. Note that in the present invention, a composition wherein the 150°C HTHSV is no greater that 2.5 is classified corresponding to OW-20, and if less than this, is classified corresponding to OW-16.
  • Shell XHVI (registered trademark) 4 (GTL base oil) ;
  • a mixture of a highly refined mineral oil, a succinimide-based ashless dispersing agent, a calcium- based metal cleaning agent, ZnDTP, and an amine-based oxidation inhibitor is provided.
  • ⁇ Package B A mixture of a highly refined mineral oil, a succinimide-based ashless dispersing agent, a calcium- based metal cleaning agent, a magnesium-based metal cleaning agent, ZnDTP, and an amine-based oxidation inhibitor.
  • Viscosity index improving agent E Non-comb PMA
  • Viscosity index improving agent F OCP
  • Viscosity index improving agent D, G, and H Comb PMAs .
  • viscosity index improving agents D, G, and H are comb PMAs manufactured under different conditions, to have differences in numbers of repetitions, chain lengths of the long alkyl chains, and the like, to exhibit mutually differing polarities.
  • Sakuralube 525 MoDTC (molybdenum dithiocarbamate ) , manufactured by ADEKA Co.) .
  • Ant i-foaming Agent • A 3 mass% solution wherein polymethyl siloxane
  • concentrations of Ca, Mg, Mo, P, Zn, N, and S are shown in Table 2.
  • the measurement methods are based on JPI-5S-38 for B, Ca, Mg, Mo, P, and Zn, based on JIS K2609 for N, and based on JIS K2541-4 (the radiostimulation method) for S.
  • the high-temperature/high-shear viscosities (50°C and 150°C) were measured based on ASTM D5481, the kinematic viscosities (40°C, 50°C, and 100°C) were measured based on JIS K2283, and the NOACK evaporation was measured based on JPI-5S-41, and the reduction in fuel consumption was also evaluated.
  • the evaluation results are shown in Table 3.
  • the method for evaluating the fuel economy was as follows .
  • An engine was driven by an electric motor, and the force required to do so (the friction torque) was measured by a torque meter.
  • a four-cylinder in-line 2.0- L direct injection engine was used for the engine, with a test oil temperature of 50°C, and a rotational speed of 2,000 RPM (where the lubricating oil composition of Reference Example 1 was used as a reference oil) .

Landscapes

  • Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Lubricants (AREA)
EP18725757.1A 2017-04-25 2018-04-18 Lubricating oil composition for internal combustion engine Withdrawn EP3615642A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017086314A JP6936041B2 (ja) 2017-04-25 2017-04-25 内燃機関用潤滑油組成物
PCT/EP2018/059952 WO2018197309A1 (en) 2017-04-25 2018-04-18 Lubricating oil composition for internal combustion engine

Publications (1)

Publication Number Publication Date
EP3615642A1 true EP3615642A1 (en) 2020-03-04

Family

ID=62200408

Family Applications (1)

Application Number Title Priority Date Filing Date
EP18725757.1A Withdrawn EP3615642A1 (en) 2017-04-25 2018-04-18 Lubricating oil composition for internal combustion engine

Country Status (7)

Country Link
US (1) US20200190422A1 (ru)
EP (1) EP3615642A1 (ru)
JP (1) JP6936041B2 (ru)
CN (1) CN110546246A (ru)
BR (1) BR112019022149A2 (ru)
RU (1) RU2019137575A (ru)
WO (1) WO2018197309A1 (ru)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020105347A (ja) * 2018-12-27 2020-07-09 Emgルブリカンツ合同会社 潤滑油組成物
CN112342071A (zh) * 2020-10-26 2021-02-09 中国石油化工股份有限公司 一种高hths性能的基础油组合物及其制备方法

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998026030A1 (en) 1996-12-13 1998-06-18 Exxon Research And Engineering Company Lubricating oil compositions containing organic molybdenum complexes
US20060196807A1 (en) * 2005-03-03 2006-09-07 Chevron U.S.A. Inc. Polyalphaolefin & Fischer-Tropsch derived lubricant base oil lubricant blends
US7683013B2 (en) * 2005-06-07 2010-03-23 Exxonmobil Research And Engineering Company Base stock lubricant blends for enhanced micropitting protection
JP5390737B2 (ja) * 2005-07-08 2014-01-15 出光興産株式会社 潤滑油組成物
JP5421514B2 (ja) * 2006-03-15 2014-02-19 Jx日鉱日石エネルギー株式会社 潤滑油基油
KR101492289B1 (ko) * 2007-07-09 2015-02-12 에보니크 오일 아디티페스 게엠베하 연료 소비를 감소시키기 위한 콤 중합체의 용도
JP2010090250A (ja) * 2008-10-07 2010-04-22 Nippon Oil Corp 潤滑油組成物及びその製造方法
JP2010280818A (ja) * 2009-06-04 2010-12-16 Jx Nippon Oil & Energy Corp 潤滑油組成物及びその製造方法
JP5756337B2 (ja) * 2011-05-06 2015-07-29 Jx日鉱日石エネルギー株式会社 潤滑油組成物
JP5756336B2 (ja) * 2011-05-06 2015-07-29 Jx日鉱日石エネルギー株式会社 潤滑油組成物
JP5902005B2 (ja) * 2012-03-08 2016-04-13 シェブロンジャパン株式会社 自動車エンジン潤滑用潤滑油組成物
CN104471042A (zh) * 2012-06-21 2015-03-25 国际壳牌研究有限公司 润滑组合物
JP5647313B2 (ja) * 2013-09-17 2014-12-24 Jx日鉱日石エネルギー株式会社 潤滑油組成物及びその製造方法
WO2015097152A1 (en) * 2013-12-24 2015-07-02 Shell Internationale Research Maatschappij B.V. Lubricating composition
US10443013B2 (en) * 2014-09-17 2019-10-15 Nippon Shokubai Co., Ltd. Viscosity index improver, method for producing the same and lubricating oil composition
JP2016169368A (ja) * 2015-03-12 2016-09-23 三洋化成工業株式会社 潤滑油組成物
JP6502149B2 (ja) * 2015-04-06 2019-04-17 Emgルブリカンツ合同会社 潤滑油組成物
JP2015180761A (ja) * 2015-07-24 2015-10-15 Jx日鉱日石エネルギー株式会社 潤滑油組成物及びその製造方法
CN109642180B (zh) * 2016-08-31 2021-11-30 赢创运营有限公司 用于改进发动机油配制剂的Noack蒸发损失的梳形聚合物
JP2017008334A (ja) * 2016-10-19 2017-01-12 Jxエネルギー株式会社 潤滑油組成物及びその製造方法

Also Published As

Publication number Publication date
RU2019137575A (ru) 2021-05-25
BR112019022149A2 (pt) 2020-05-12
CN110546246A (zh) 2019-12-06
US20200190422A1 (en) 2020-06-18
RU2019137575A3 (ru) 2021-08-13
WO2018197309A1 (en) 2018-11-01
JP2018184518A (ja) 2018-11-22
JP6936041B2 (ja) 2021-09-15

Similar Documents

Publication Publication Date Title
CN102618355B (zh) 用于润滑机动车发动机的润滑油组合物
US9637702B2 (en) Lubricant composition for marine engine
CN100500817C (zh) 润滑油组合物
JP5638256B2 (ja) 潤滑油組成物
CN110462013B (zh) 两轮车用润滑油组合物以及该润滑油组合物的制造方法
WO2007114260A1 (ja) 内燃機関用潤滑油組成物
KR20170063575A (ko) 윤활유 조성물
CA2808765A1 (en) Lubricating oil composition for automobile engine lubrication
KR20150037750A (ko) 폴리(메타)아크릴레이트계 점도 지수 향상제, 및 당해 점도 지수 향상제를 함유하는 윤활유 첨가제 및 윤활유 조성물
CN102803446A (zh) 润滑组合物
WO2014156306A1 (ja) 省燃費エンジン油組成物
CN103517973A (zh) 润滑油组合物
CN105121613A (zh) 润滑油组合物
CN101300330A (zh) 润滑油组合物
CN1969030B (zh) 润滑油组合物
JP5528693B2 (ja) エンジン油組成物
WO2018197309A1 (en) Lubricating oil composition for internal combustion engine
JP6223231B2 (ja) エンジン油組成物
BR112017001939B1 (pt) Formulação base de óleo lubrificante automotivo, método para aumentar o índice de viscosidade de um óleo base de hidrocarbono e método para lubrificar um dispositivo mecânico automotivo
EP4208526B1 (en) Engine oil composition
JP5301304B2 (ja) 無段変速機用潤滑油組成物
JP5033610B2 (ja) 農業機械用潤滑油組成物
US20240199975A1 (en) Lubricating oil composition
JP2012500315A (ja) 潤滑組成物
EP2228424A1 (en) High performance engine lubricants formulated with Group II basestocks

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20191024

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20200825

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

18W Application withdrawn

Effective date: 20210224