EP3597791B1 - Procédé d'amélioration de la performance des électrodes à base de nickel - Google Patents

Procédé d'amélioration de la performance des électrodes à base de nickel Download PDF

Info

Publication number
EP3597791B1
EP3597791B1 EP18184694.0A EP18184694A EP3597791B1 EP 3597791 B1 EP3597791 B1 EP 3597791B1 EP 18184694 A EP18184694 A EP 18184694A EP 3597791 B1 EP3597791 B1 EP 3597791B1
Authority
EP
European Patent Office
Prior art keywords
platinum
cathode
electrolysis
current density
catholyte
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP18184694.0A
Other languages
German (de)
English (en)
Other versions
EP3597791A1 (fr
Inventor
Vinh Trieu
Andreas Bulan
Richard Malchow
Peter Schulz
Mohamed Saysay
Tobias Mohn
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Covestro Deutschland AG
Original Assignee
Covestro Deutschland AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to PT181846940T priority Critical patent/PT3597791T/pt
Application filed by Covestro Deutschland AG filed Critical Covestro Deutschland AG
Priority to HUE18184694A priority patent/HUE057761T2/hu
Priority to EP18184694.0A priority patent/EP3597791B1/fr
Priority to EP19741999.7A priority patent/EP3824118A1/fr
Priority to JP2021502744A priority patent/JP2021530619A/ja
Priority to CN201980048650.4A priority patent/CN112513334B/zh
Priority to US17/261,864 priority patent/US20210292922A1/en
Priority to KR1020217004643A priority patent/KR20210032469A/ko
Priority to PCT/EP2019/068789 priority patent/WO2020016122A1/fr
Publication of EP3597791A1 publication Critical patent/EP3597791A1/fr
Application granted granted Critical
Publication of EP3597791B1 publication Critical patent/EP3597791B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/34Simultaneous production of alkali metal hydroxides and chlorine, oxyacids or salts of chlorine, e.g. by chlor-alkali electrolysis
    • C25B1/46Simultaneous production of alkali metal hydroxides and chlorine, oxyacids or salts of chlorine, e.g. by chlor-alkali electrolysis in diaphragm cells
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • C25B11/051Electrodes formed of electrocatalysts on a substrate or carrier
    • C25B11/052Electrodes comprising one or more electrocatalytic coatings on a substrate
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • C25B11/051Electrodes formed of electrocatalysts on a substrate or carrier
    • C25B11/055Electrodes formed of electrocatalysts on a substrate or carrier characterised by the substrate or carrier material
    • C25B11/057Electrodes formed of electrocatalysts on a substrate or carrier characterised by the substrate or carrier material consisting of a single element or compound
    • C25B11/061Metal or alloy
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • C25B11/051Electrodes formed of electrocatalysts on a substrate or carrier
    • C25B11/073Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material
    • C25B11/091Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material consisting of at least one catalytic element and at least one catalytic compound; consisting of two or more catalytic elements or catalytic compounds
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • C25B11/051Electrodes formed of electrocatalysts on a substrate or carrier
    • C25B11/073Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material
    • C25B11/091Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material consisting of at least one catalytic element and at least one catalytic compound; consisting of two or more catalytic elements or catalytic compounds
    • C25B11/093Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material consisting of at least one catalytic element and at least one catalytic compound; consisting of two or more catalytic elements or catalytic compounds at least one noble metal or noble metal oxide and at least one non-noble metal oxide
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B15/00Operating or servicing cells

Definitions

  • the invention relates to a method for improving the performance of nickel electrodes, in particular precious metal-coated nickel electrodes for use in sodium chloride electrolysis.
  • the invention is based on the known use of nickel electrodes as hydrogen-generating electrodes in alkali chloride electrolysis and the improvement process known per se by coating nickel electrodes with noble metals or noble metal oxides.
  • Cathodes for sodium chloride electrolysis, at which hydrogen is generated in an alkaline solution usually consist of iron or nickel. If nickel electrodes are used, they can consist entirely of nickel, or only nickel surfaces are used in which substrates made of other metals are superficially nickel-plated.
  • nickel electrodes can be coated with a metal from subgroup VIII, especially the platinum metals (including Pt, Ru, Rh, Os, Ir, Pd) of the periodic table of the elements or an oxide of such a metal or mixtures thereof.
  • platinum metals including Pt, Ru, Rh, Os, Ir, Pd
  • the electrode produced in this way can, for. B. be used in sodium chloride electrolysis as a cathode to generate hydrogen.
  • Many coating variants are known here, because the coating of metal oxides can be modified in various ways so that different compositions arise on the surface of the nickel electrode. According to the US-A-5 035 789 is z. B. used a ruthenium oxide-based coating on nickel substrates as the cathode.
  • the quality of the electrode decreases over time, in such a way that the cell voltage increases during sodium chloride electrolysis, so that a new coating of the electrode may be necessary. This is technically complex because the electrolysers have to be switched off and the electrodes have to be removed from the electrolysis cells.
  • iron compounds or finely divided iron are added to the catholyte in order to lower the cell voltage during sodium chloride electrolysis.
  • the coating of the cathodes with iron can have a disruptive effect on the electrolysis and increase the cell voltage.
  • EP 1 487 747 A1 a 0.1 to 10% by weight platinum-containing compound is added to the sodium chloride electrolysis.
  • the solution of the platinum-containing compound is added to the water which forms the catholyte, 0.1 to 2 liters of the aqueous solution of the platinum-compound-containing solution being added per liter of water.
  • the EP 1 487 747 A1 apart from the general reference to the use of the platinum compound during the electrolysis, does not disclose any information about the conditions used in the process - electrodes, electrode areas, current density, etc., which are necessary for a technical adjustment.
  • a soluble compound of a metal of the platinum group is added to the sodium hydroxide solution during the operation of the sodium chloride electrolysis in the catholyte.
  • a sodium chloride electrolysis cell is operated with 32% strength by weight sodium hydroxide solution, a salt concentration of 200 g / l sodium chloride at 90 ° C. and a current density of 2.35 kA / m 2 .
  • the cathode is electrolessly nickel-plated for pretreatment and then nickel-plated in a nickel bath.
  • platinum chlorate was metered into the catholyte as an active compound, which led to a decrease in the cell voltage by 100 mV.
  • US-A-4 105 516 During the electrolysis of alkali metal chlorides, metal compounds are added to the catholytes, which lower the hydrogen overvoltage and thus reduce the cell voltage.
  • the one in the US-A-4 105 516 The examples listed in turn describe the dosage and effects that result from the addition of an iron compound that is added to the catholyte of a sodium chloride diaphragm laboratory cell.
  • the cell has an anode made of expanded titanium metal coated with ruthenium and titanium oxide.
  • the cathode consists of iron in the form of expanded metal.
  • the examples show the use of cobalt or iron solution on the iron cathode.
  • the disadvantages of iron compounds in the treatment of coated nickel electrodes have already been pointed out above.
  • metal ions which have a low hydrogen overvoltage can be added to catholytes of a membrane electrolysis cell of sodium chloride electrolysis in order to coat the cathode.
  • the addition takes place during the electrolysis.
  • platinum oxide to improve an iron or copper cathode is given as an example.
  • the cathode coatings usually consist of platinum metals, platinum metal oxides or their mixtures, e.g. a ruthenium - ruthenium oxide mixture.
  • the usable platinum metals include ruthenium, iridium, platinum, palladium and rhodium.
  • the cathode coating is not long-term stable, especially not under conditions in which no electrolysis takes place or when electrolysis is interrupted, in which, for example, reverse electrical currents can occur. This means that the noble metal coating is damaged to a greater or lesser extent over the operating time of the electrolyzer.
  • impurities which, for example, get from the brine by diffusion into the lye, for example iron ions, can be deposited on the cathode or specifically on the active centers of the precious metal-containing coating and thereby deactivate it.
  • the platinum compound is metered into the catholyte in particular in the inlet to the cathode chamber
  • EP 590 260 A1 describes a process for the catalytic activation of a cathode for alkaline water electrolysis with a platinum metal, in which a water-soluble platinum metal salt is added to the electrolyte in the electrolyzer and the platinum metal ions of the salt are galvanically deposited on the cathode when the electrolyzer is in operation.
  • the current density should be set to 100 A / m 2 or more.
  • the deposition time here is preferably 1 to 3 days.
  • the metering rate of the platinum-containing solution based on the platinum content per m 2 of cathode area is between 0.001 g Pt / (h ⁇ m 2 ) and 1 g Pt / (h ⁇ m 2 ).
  • the object of the invention is to develop a special method for improving nickel electrodes that are coated with platinum metals, platinum metal oxides or mixtures thereof, or for nickel electrodes without a coating for use as cathodes in the electrolysis of sodium chloride, that can be used while the electrolysis is running , avoids a prolonged interruption of the electrode operation to restore the cathode activity and produces an improvement in the activity of the nickel electrodes, which is not immediately lost in the event of a standstill.
  • the method should not impair the functioning of the operating system for the electrolysis.
  • the invention relates to a process for improving the performance of nickel electrodes that are uncoated or that have a coating based on platinum metals, platinum metal oxides or a mixture of platinum metals and platinum metal oxides, and are used in sodium chloride electrolysis by the membrane process as electrodes that generate hydrogen, in which in the electrolysis of sodium chloride a water-soluble or sodium hydroxide-soluble platinum compound, in particular hexachloroplatinic acid or particularly preferably a sodium platinum, particularly preferably sodium hexachloroplatinate (Na 2 PtCl 6 ) and / or sodium hexahydroxyplatinate (Na 2 Pt (OH) 6 ) is added to the catholyte , characterized in that the addition in the electroysis operation at a current density of 0.2 A / m 2 to 50 A / m 2 , at a temperature of the catholyte in the range of 40 ° C to 95 ° C, with an amount of platinum per m 2 of electrode area from
  • the amount of platinum in the context of the invention means the content of platinum metal in the added platinum compound.
  • Electrode area here means in particular the entire active electrode area wetted by the catholyte.
  • the electrode area preferably relates to the geometric dimensions of the active electrode area wetted by the catholyte.
  • either the sodium hexachloroplatinate can be dosed to the catholyte as an aqueous solution or in an alkaline solution, or the hexachloroplatinic acid is dosed directly into the catholyte, in particular the sodium hydroxide solution, in which case a reaction with the alkali to form sodium chloroplatinate takes place.
  • the addition of the platinum compound is carried out according to the invention with ongoing electrolysis under greatly reduced load, ie the current density for the platinum metering is at most 95 A / m 2 set.
  • the temperature of the catholyte is 60 to 90 ° C., preferably 75 to 90 ° C., when the platinum compound is added.
  • the electrode coating is in the form of platinum metals and / or platinum metal oxides on the coated nickel electrodes, the platinum metals / platinum metal oxides being based on one or more metals of the series: ruthenium, iridium, palladium, platinum, rhodium and osmium, in particular preferably on those of the series: ruthenium, iridium and platinum.
  • Another preferred embodiment of the new method consists in the fact that, in addition to the above-mentioned soluble platinum compound, other further water-soluble compounds of the noble metals of the 8th subgroup of the periodic table of the elements, in particular compounds of palladium, iridium, rhodium, osmium or ruthenium, preferably palladium or Ruthenium are added to the catholyte. These are used in particular in the form of water-soluble salts or complex acids.
  • the noble metal content of the other water-soluble compounds of the noble metals of subgroup 8, based on the platinum metal of the soluble platinum compound is 1 to 50% by weight.
  • a preferred variant of the new method is characterized in that the proportion of platinum in the platinum compound in the catholyte after the addition is 0.01 to 310 mg / L, preferably 0.02 to 250 mg / L, particularly preferably 0.03 to 160 mg / L.
  • the volume flow of the catholyte during the metering in is from 0.1 to 10 L / min, preferably from 0.2 to 5 L / min.
  • the concentration of platinum metal in the catholyte emerging from the electrolysis cell is monitored continuously or discontinuously.
  • the sodium chloride electrolysis by the membrane process is typically carried out as follows, by way of example.
  • a solution containing sodium chloride is fed to an anode chamber with an anode, and a sodium hydroxide solution is fed to a cathode chamber with a cathode.
  • the two chambers are separated by an ion exchange membrane.
  • Several of these anode and cathode chambers are combined to form an electrolyzer.
  • a less concentrated sodium chloride-containing solution leaves the anode chamber than was added.
  • a more highly concentrated sodium hydroxide solution leaves the cathode chamber than was supplied.
  • the production current density is, for example, 4 kA / m 2 .
  • the geometrically projected cathode area is 2.7m2, which corresponds to the membrane area.
  • the cathode consists of an expanded nickel metal, which is provided with a special coating (also called coating here) (manufacturer e.g. Industrie De Nora) in order to reduce the hydrogen overvoltage.
  • Production current density is understood here to mean, in particular, a current density of at least 1 kA / m 2.
  • the production scale here is in particular the conversion of at least 5 kg / h sodium chloride to chlorine and caustic soda per electrolysis cell.
  • the maximum voltage value is in particular the maximum electrolysis voltage across the individual cell, which is to be regarded as tolerable in terms of the energy efficiency of the electrolysis process.
  • This threshold value is typically around 80 mV above the best mean voltage value after the cell has been put into operation.
  • the mean value of the measured voltages is used as a comparison value for the sake of simplicity.
  • the concentration of the sodium chloride-containing solution is at least 150 g / L.
  • the NaOH content in the sodium hydroxide solution is at least 25 percent by weight.
  • Sodium chloride-containing solution and sodium hydroxide solution are preferably heated to at least 60 ° C. before introduction.
  • the sodium chloride-containing solution is brought to a pH value below 6.
  • test examples were carried out on technical electrolysers each with 144 elements (single electrolysis cells), the nickel cathodes of which were provided with a coating based on a mixture of ruthenium / ruthenium oxide from Denora.
  • the average voltage for each electrolyser was calculated from the mean value of the 144 elements. To compare the voltages or voltage changes of the electrolysis, the voltage values at a current density in electrolysis operation of 4.5 kA / m 2 were used.
  • the measured voltage was converted to the voltage corresponding to the current density of 4.5 kA / m 2.
  • the conversion was carried out using a linear regression of the current-voltage data in the range from 3 to 5 kA / m 2 . In this current range, the current-voltage characteristic of an electrolyzer is linear.
  • a technical electrolyser was operated at an average voltage of 3.27 V and a current density of 4.5 kA / m 2 .
  • the following procedure was carried out: Within 30 minutes, the current density was reduced from 4.5 kA / m 2 to a current density of 11.8 A / m 2 and kept constant at this value. After 10 min, 8 L of a solution of hexachloroplatinate solution (25 g Pt / L) were metered into the sodium hydroxide solution (32%) at 0.8 L / min over the course of 10 min. The proportion of platinum of the platinum compound in the sodium hydroxide solution rose to up to 16 mg / L. The current density remained at the constant value of 11.8 A / m 2 and was held at this value for a further 30 minutes after the addition. Overall, the time during which the current density was kept at 11.8 A / m 2 since the start of the addition was 40 minutes, after which the current density was increased again to 4.5 kA / m 2 within 45 minutes.
  • the temperature of the caustic soda over the entire procedure varied in the range from 76 to 90 ° C.
  • the volume flow of sodium hydroxide solution during the metering time was 3.6 L / min per element.
  • the mean voltage at 4.5 kA / m 2 fell after the addition from the initial value of 3.27 V to 3.10 V. This corresponds to a voltage decrease of 170 mV.
  • the mean voltage at 4.1 kA / m 2 was 3.07 V. Converted to a current density of 4.5 kA / m 2, this corresponds to a mean voltage of 3.13 V. The voltage drop is still 140 mV .
  • the mean voltage at 4.5 kA / m 2 was 3.16 V.
  • the voltage drop is still 110 mV.
  • the mean voltage at 4.5 kA / m 2 was 3.17 V.
  • the voltage drop is still 100 mV.
  • Comparative example A technical electrolyser was operated at an average voltage of 3.15 V and a current density of 4.2 kA / m 2 . Converted to a current density of 4.5 kA / m 2, this results in a voltage of 3.19 V.
  • a technical electrolyser was operated at an average voltage of 3.17 V and a current density of 4.3 kA / m 2 . Converted to a current density of 4.5 kA / m 2, this results in a voltage of 3.2 V.
  • the current density was reduced from 4.3 kA / m 2 to a current density of 11.8 A / m 2 and kept constant at this value.
  • 8 L of a solution of hexachloroplatinate solution (6.25 g Pt / L) were dosed into the sodium hydroxide solution at 0.8 L / h over the course of 10 minutes.
  • the current density remained at the constant value of 11.8 A / m 2 and was held at this value for a further 30 minutes after the addition.
  • the time during which the current density was kept at 11.8 A / m 2 was 40 minutes since the start of the addition, after which the current density was increased to 3.8 kA / m 2 within 45 minutes.
  • the temperature of the caustic soda over the entire procedure varied in the range from 76 to 90 ° C.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)
  • Electrodes For Compound Or Non-Metal Manufacture (AREA)

Claims (9)

  1. Procédé d'amélioration des performances d'électrodes en nickel non revêtues ou d'électrodes en nickel qui présentent un revêtement à base de métaux du groupe du platine, d'oxydes de métaux du groupe du platine ou d'un mélange de métaux du groupe du platine et d'oxydes de métaux du groupe du platine, et qui sont utilisées pour l'électrolyse du chlorure de sodium par le procédé membrane, en tant qu'électrodes dégageant de l'hydrogène, procédé dans lequel, lors de l'électrolyse de chlorure de sodium, on ajoute au catholyte un composé du platine soluble dans l'eau ou soluble dans la lessive de soude, en particulier l'acide hexachloroplatinique, ou un platinate de sodium, d'une manière particulièrement préférée Na2PtCl6 et/ou Na2Pt(OH)6, caractérisé en ce que l'addition a lieu, en mode électrolyse, avec une densité de courant réduite de 0,2 A/m2 à 50 A/m2 à une température du catholyte dans la plage de 40 °C à 95 °C, la quantité de platine par m2 d'aire d'électrode étant de 0,3 g/m2 à 10 g/m2, de préférence de 0,35 g/m2 à 8 g/m2, d'une manière particulièrement préférée de 0,4 g/m2 à 5 g/m2, la densité de courant réduite étant maintenue, calculée à partir du début de l'addition, pendant en tout 2 à 200 minutes.
  2. Procédé selon la revendication 1, caractérisé en ce qu'on ajoute au composé du platine d'autres composés supplémentaires solubles dans l'eau des métaux nobles du 8ème sous-groupe du tableau périodique des éléments, en particulier des composés du groupe du platine, d'une manière particulièrement préférée du palladium, de l'iridium, du rhodium, de l'osmium ou du ruthénium, de préférence du palladium ou du ruthénium.
  3. Procédé selon la revendication 2, caractérisé en ce que la proportion du métal noble des composés supplémentaires solubles dans l'eau des métaux nobles du 8ème sous-groupe, par rapport au métal du groupe du platine du composé soluble du platine, est de 1 à 50 % en poids.
  4. Procédé selon au moins l'une des revendications 1 à 3, caractérisé en ce que la température du catholyte, à laquelle a lieu l'addition du composé du platine, est dans la plage de 60 à 90 °C, de préférence de 75 à 90 °C.
  5. Procédé selon au moins l'une des revendications 1 à 4, caractérisé en ce que la proportion du platine du composé du platine dans le catholyte après l'addition est de 0,01 à 310 mg/L, de préférence de 0,02 à 250 mg/L, d'une manière particulièrement préférée de 0,03 à 160 mg/L.
  6. Procédé selon au moins l'une des revendications 1 à 5, caractérisé en ce que le catholyte est guidé vers la surface de l'électrode selon un certain débit volumique, et ledit débit volumique du catholyte, pendant le temps de contact de la surface de l'électrode avec le catholyte contenant le composé du platine, est de 0,1 à 10 L/min, de préférence de 0,2 à 5 L/min.
  7. Procédé selon la revendication 6, caractérisé en ce que la concentration du métal du groupe du platine dans le catholyte sortant de la cellule d'électrolyte est surveillée en continu ou d'une manière discontinue.
  8. Procédé selon au moins l'une des revendications 1 à 7, caractérisé en ce que le procédé est mis en œuvre sur des électrodes en nickel revêtues, le revêtement étant réalisé avec un métal du groupe du platine/un oxyde d'un métal du groupe du platine, qui est à base d'un ou plusieurs métaux de la série ruthénium, iridium, palladium, platine, rhodium et osmium, de préférence à base de la série ruthénium, iridium et platine.
  9. Procédé de fabrication de chlore, d'une lessive de soude et d'hydrogène par le principe de l'électrolyse sur membrane à l'échelle industrielle par utilisation, en tant que cathode, d'électrodes en nickel ou d'électrodes en nickel revêtues, comportant les étapes suivantes :
    - amenée d'une solution aqueuse contenant du chlorure de sodium à une chambre anodique comportant une anode, et amenée de lessive de soude à une chambre cathodique comportant une cathode, la chambre anodique et la chambre cathodique étant séparées l'une de l'autre par une membrane échangeuse d'ions ;
    - ajustement de la densité de courant de production à au moins 1 kA/m2 d'aire d'électrode ;
    - dérivation de la solution contenant du chlorure de sodium à partir de la chambre anodique en même temps que le chlore gazeux formé à l'anode, et séparation du chlore d'avec la phase liquide ;
    - amenée du chlore séparé à une unité de traitement appropriée, comprenant en particulier au moins le séchage, la purification et éventuellement la compression du chlore gazeux ;
    - amenée de la solution contenant du chlorure de sodium sortant de la chambre anodique à une unité de concentration et de purification, comportant en particulier au moins les étapes suivantes : destruction des sous-produits chlorates, déchloration, augmentation de la concentration par addition de chlorure de sodium, purification avec des réactifs de précipitation, filtration et échange d'ions pour éliminer les cations indésirables, - puis renvoi de la solution contenant du chlorure de sodium dans la chambre anodique ;
    - dérivation de la lessive de soude à partir de la chambre cathodique en même temps que l'hydrogène formé à la cathode et séparation de l'hydrogène d'avec la phase liquide ;
    - éventuellement amenée de l'hydrogène séparé à une unité de traitement et de purification appropriée ;
    - amenée de la lessive de soude sortant de l'espace cathodique à un réservoir et éventuellement à une autre unité appropriée de traitement et de purification ;
    - dilution d'une quantité partielle de la lessive de soude sortant de l'espace cathodique avec de l'eau, et renvoi dans l'espace cathodique,
    caractérisé en ce que, pour abaisser la tension d'électrolyse lorsqu'est atteinte en mode électrolyse une valeur moyenne prédéfinie de la tension maximale, on abaisse la densité de courant à une valeur inférieure à 100 A/m2 et d'au moins 0,2 A/m2, on met en œuvre le procédé selon l'une des revendications 1 à 8, puis on augmente de nouveau la densité de courant à la densité de courant de production, et on poursuit la production.
EP18184694.0A 2018-07-20 2018-07-20 Procédé d'amélioration de la performance des électrodes à base de nickel Active EP3597791B1 (fr)

Priority Applications (9)

Application Number Priority Date Filing Date Title
HUE18184694A HUE057761T2 (hu) 2018-07-20 2018-07-20 Eljárás nikkel elektródok teljesítményének javítására
EP18184694.0A EP3597791B1 (fr) 2018-07-20 2018-07-20 Procédé d'amélioration de la performance des électrodes à base de nickel
PT181846940T PT3597791T (pt) 2018-07-20 2018-07-20 Processo para melhoria do desempenho de elétrodos de níquel
JP2021502744A JP2021530619A (ja) 2018-07-20 2019-07-12 ニッケル電極の性能を改善する方法
EP19741999.7A EP3824118A1 (fr) 2018-07-20 2019-07-12 Procédé pour améliorer les performances d'électrodes de nickel
CN201980048650.4A CN112513334B (zh) 2018-07-20 2019-07-12 改进镍电极性能的方法
US17/261,864 US20210292922A1 (en) 2018-07-20 2019-07-12 Method for improving the performance of nickel electrodes
KR1020217004643A KR20210032469A (ko) 2018-07-20 2019-07-12 니켈 전극의 성능을 개선시키는 방법
PCT/EP2019/068789 WO2020016122A1 (fr) 2018-07-20 2019-07-12 Procédé pour améliorer les performances d'électrodes de nickel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP18184694.0A EP3597791B1 (fr) 2018-07-20 2018-07-20 Procédé d'amélioration de la performance des électrodes à base de nickel

Publications (2)

Publication Number Publication Date
EP3597791A1 EP3597791A1 (fr) 2020-01-22
EP3597791B1 true EP3597791B1 (fr) 2021-11-17

Family

ID=63014388

Family Applications (2)

Application Number Title Priority Date Filing Date
EP18184694.0A Active EP3597791B1 (fr) 2018-07-20 2018-07-20 Procédé d'amélioration de la performance des électrodes à base de nickel
EP19741999.7A Withdrawn EP3824118A1 (fr) 2018-07-20 2019-07-12 Procédé pour améliorer les performances d'électrodes de nickel

Family Applications After (1)

Application Number Title Priority Date Filing Date
EP19741999.7A Withdrawn EP3824118A1 (fr) 2018-07-20 2019-07-12 Procédé pour améliorer les performances d'électrodes de nickel

Country Status (8)

Country Link
US (1) US20210292922A1 (fr)
EP (2) EP3597791B1 (fr)
JP (1) JP2021530619A (fr)
KR (1) KR20210032469A (fr)
CN (1) CN112513334B (fr)
HU (1) HUE057761T2 (fr)
PT (1) PT3597791T (fr)
WO (1) WO2020016122A1 (fr)

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB569444A (en) * 1942-11-05 1945-05-24 Mond Nickel Co Ltd Improvements relating to the electrolytic purification of nickel
NL127936C (fr) * 1964-03-04
US3864226A (en) * 1972-10-19 1975-02-04 Du Pont Process for electrolyzing aqueous sodium or potassium ion solutions
GB1582130A (en) * 1976-07-13 1980-12-31 Matthey Rustenburg Refines Electrolytic treatment of effluents
US4160704A (en) 1977-04-29 1979-07-10 Olin Corporation In situ reduction of electrode overvoltage
US4105516A (en) 1977-07-11 1978-08-08 Ppg Industries, Inc. Method of electrolysis
US4242185A (en) * 1979-09-04 1980-12-30 Ionics Inc. Process and apparatus for controlling impurities and pollution from membrane chlor-alkali cells
FR2538005B1 (fr) 1982-12-17 1987-06-12 Solvay Cathode pour la production electrolytique d'hydrogene et son utilisation
GB8316778D0 (en) 1983-06-21 1983-07-27 Ici Plc Cathode
CN1012970B (zh) 1987-06-29 1991-06-26 耐用电极株式会社 用于电解的阴极及其制备方法
JPS6411988A (en) * 1987-07-06 1989-01-17 Kanegafuchi Chemical Ind Method for recovering activity of deteriorated cathode having low hydrogen overvoltage
US5035789A (en) 1990-05-29 1991-07-30 The Dow Chemical Company Electrocatalytic cathodes and methods of preparation
DE4232958C1 (fr) * 1992-10-01 1993-09-16 Deutsche Aerospace Ag, 80804 Muenchen, De
JP3670763B2 (ja) 1996-06-24 2005-07-13 三洋電機株式会社 不揮発性半導体メモリ
DE10211169A1 (de) * 2002-03-14 2003-10-02 Kurt Sielaff Anlage zur Herstellung einer wässrigen langzeitstabilen Chlordioxidlösung und ihrer dosierten Injektion in ein durch eine Leitung fließendes Medium
KR100363011B1 (en) 2002-03-28 2002-11-30 Hanwha Chemical Corp Electrolyte composition for electrolysis of brine and electrolysis method of brine using the same
JP4339337B2 (ja) * 2005-09-16 2009-10-07 株式会社カネカ 電気分解用陰極の活性化方法および電気分解方法
DE102007003554A1 (de) * 2007-01-24 2008-07-31 Bayer Materialscience Ag Verfahren zur Leistungsverbesserung von Nickelelektroden
KR101257921B1 (ko) * 2011-06-29 2013-04-24 고희찬 전해조용 수소 발생용 전극 및 이의 제조방법
JP6397396B2 (ja) * 2015-12-28 2018-09-26 デノラ・ペルメレック株式会社 アルカリ水電解方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
CN112513334B (zh) 2023-12-22
PT3597791T (pt) 2022-01-27
EP3597791A1 (fr) 2020-01-22
HUE057761T2 (hu) 2022-06-28
KR20210032469A (ko) 2021-03-24
CN112513334A (zh) 2021-03-16
WO2020016122A1 (fr) 2020-01-23
US20210292922A1 (en) 2021-09-23
JP2021530619A (ja) 2021-11-11
EP3824118A1 (fr) 2021-05-26

Similar Documents

Publication Publication Date Title
EP1953270B1 (fr) Procédé destiné à l'amélioration de la performance d'électrodes au nickel
EP0141142B1 (fr) Electrode à diffusion gazeuse à couche de revêtement hydrophile et procédé de fabrication
DE2844499C2 (de) Verfahren zum Herstellen eines Halogens
DE69115213T2 (de) Elektrode.
EP2260124B1 (fr) Cellule d'électrolyse pour l'électrolyse de chlorure d'hydrogène
DE60004208T2 (de) Rhodium-elektrokatalysator und dessen herstellungsverfahren
DE2251660A1 (de) Verfahren und vorrichtung zur herstellung von hochreinem alkalimetallhydroxid in einer elektrolytischen zelle
WO2010078952A2 (fr) Électrode de diffusion de gaz structurée pour cellules électrolytiques
DE2331949A1 (de) Dimensionsstabile elektrode und verfahren zu deren herstellung
EP1463847B1 (fr) Electrode pour electrolyse dans des milieux acides
DE3782464T2 (de) An eine ionenaustauschermembran gebundene kathode fuer elektrolysezellen und entsprechendes elektrolyseverfahren.
DE2419021B2 (de) Elektrode
WO2013007816A2 (fr) Cellule électrolytique non divisée et son utilisation
DE1618405A1 (de) Verfahren zur elektrochemischen Herstellung von Olefinoxyden
DD298437A5 (de) Formstabile anoden und verfahren zur herstellung von alkalidichromaten und chromsaeure unter deren verwendung
EP1283281A2 (fr) Procédé de production électrochimique de chlore à partir de solutions aqueuses d'acide chlorhydrique
EP2326750A1 (fr) Matériau d'électrode, électrode et procédé de production électrolytique de chlorure d'hydrogène
EP3597791B1 (fr) Procédé d'amélioration de la performance des électrodes à base de nickel
EP0683247B1 (fr) Procédé de fabrication de cathodes en graphite stables pour l'électrolyse d'acide chlorhydrique
EP0234256B1 (fr) Procédé pour l'électrolyse avec membrane de l'acide chlorhydrique
EP2439314A2 (fr) Procédé de fabrication d'électrodes d'alimentation en oxygène stables en transport et en stockage
EP2824218A1 (fr) Procédé de fabrication d'électrodes d'alimentation en oxygène stables en transport et en stockage
EP3440241A1 (fr) Électrode bifonctionnelle et dispositif d'électrolyse pour l'électrolyse de chlore-alcali
DE2745542A1 (de) Verfahren zur elektrolyse von salzloesungen durch quecksilberkathoden
DE10048004A1 (de) Verfahren zur Elektrolyse wässriger Salzsäurelösungen

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20191031

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

17Q First examination report despatched

Effective date: 20200811

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

RIC1 Information provided on ipc code assigned before grant

Ipc: C25B 1/46 20060101AFI20210512BHEP

Ipc: C25B 11/052 20210101ALI20210512BHEP

Ipc: C25B 11/061 20210101ALI20210512BHEP

Ipc: C25B 11/091 20210101ALI20210512BHEP

Ipc: C25B 15/00 20060101ALI20210512BHEP

INTG Intention to grant announced

Effective date: 20210610

RIN1 Information on inventor provided before grant (corrected)

Inventor name: TRIEU, VINH

Inventor name: BULAN, ANDREAS

Inventor name: MALCHOW, RICHARD

Inventor name: SCHULZ, PETER

Inventor name: SAYSAY, MOHAMED

Inventor name: MOHN, TOBIAS

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502018007866

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1448122

Country of ref document: AT

Kind code of ref document: T

Effective date: 20211215

REG Reference to a national code

Ref country code: PT

Ref legal event code: SC4A

Ref document number: 3597791

Country of ref document: PT

Date of ref document: 20220127

Kind code of ref document: T

Free format text: AVAILABILITY OF NATIONAL TRANSLATION

Effective date: 20220121

REG Reference to a national code

Ref country code: NL

Ref legal event code: FP

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211117

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211117

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211117

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220217

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220317

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211117

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211117

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220217

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211117

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211117

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220218

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211117

REG Reference to a national code

Ref country code: HU

Ref legal event code: AG4A

Ref document number: E057761

Country of ref document: HU

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211117

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211117

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211117

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211117

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211117

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211117

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502018007866

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20220818

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211117

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211117

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211117

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20220720

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220720

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220731

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220731

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211117

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220720

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220720

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: HU

Payment date: 20230711

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211117

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211117

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211117

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20240627

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: PT

Payment date: 20240627

Year of fee payment: 7

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1448122

Country of ref document: AT

Kind code of ref document: T

Effective date: 20230720

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211117

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240618

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20240703

Year of fee payment: 7