EP3597791B1 - Method for improving the performance of nickel electrodes - Google Patents

Method for improving the performance of nickel electrodes Download PDF

Info

Publication number
EP3597791B1
EP3597791B1 EP18184694.0A EP18184694A EP3597791B1 EP 3597791 B1 EP3597791 B1 EP 3597791B1 EP 18184694 A EP18184694 A EP 18184694A EP 3597791 B1 EP3597791 B1 EP 3597791B1
Authority
EP
European Patent Office
Prior art keywords
platinum
cathode
electrolysis
current density
catholyte
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP18184694.0A
Other languages
German (de)
French (fr)
Other versions
EP3597791A1 (en
Inventor
Vinh Trieu
Andreas Bulan
Richard Malchow
Peter Schulz
Mohamed Saysay
Tobias Mohn
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Covestro Deutschland AG
Original Assignee
Covestro Deutschland AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to HUE18184694A priority Critical patent/HUE057761T2/en
Application filed by Covestro Deutschland AG filed Critical Covestro Deutschland AG
Priority to EP18184694.0A priority patent/EP3597791B1/en
Priority to PT181846940T priority patent/PT3597791T/en
Priority to JP2021502744A priority patent/JP2021530619A/en
Priority to EP19741999.7A priority patent/EP3824118A1/en
Priority to US17/261,864 priority patent/US20210292922A1/en
Priority to PCT/EP2019/068789 priority patent/WO2020016122A1/en
Priority to CN201980048650.4A priority patent/CN112513334B/en
Priority to KR1020217004643A priority patent/KR20210032469A/en
Publication of EP3597791A1 publication Critical patent/EP3597791A1/en
Application granted granted Critical
Publication of EP3597791B1 publication Critical patent/EP3597791B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/34Simultaneous production of alkali metal hydroxides and chlorine, oxyacids or salts of chlorine, e.g. by chlor-alkali electrolysis
    • C25B1/46Simultaneous production of alkali metal hydroxides and chlorine, oxyacids or salts of chlorine, e.g. by chlor-alkali electrolysis in diaphragm cells
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • C25B11/051Electrodes formed of electrocatalysts on a substrate or carrier
    • C25B11/052Electrodes comprising one or more electrocatalytic coatings on a substrate
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • C25B11/051Electrodes formed of electrocatalysts on a substrate or carrier
    • C25B11/055Electrodes formed of electrocatalysts on a substrate or carrier characterised by the substrate or carrier material
    • C25B11/057Electrodes formed of electrocatalysts on a substrate or carrier characterised by the substrate or carrier material consisting of a single element or compound
    • C25B11/061Metal or alloy
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • C25B11/051Electrodes formed of electrocatalysts on a substrate or carrier
    • C25B11/073Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material
    • C25B11/091Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material consisting of at least one catalytic element and at least one catalytic compound; consisting of two or more catalytic elements or catalytic compounds
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • C25B11/051Electrodes formed of electrocatalysts on a substrate or carrier
    • C25B11/073Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material
    • C25B11/091Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material consisting of at least one catalytic element and at least one catalytic compound; consisting of two or more catalytic elements or catalytic compounds
    • C25B11/093Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material consisting of at least one catalytic element and at least one catalytic compound; consisting of two or more catalytic elements or catalytic compounds at least one noble metal or noble metal oxide and at least one non-noble metal oxide
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B15/00Operating or servicing cells

Definitions

  • the invention relates to a method for improving the performance of nickel electrodes, in particular precious metal-coated nickel electrodes for use in sodium chloride electrolysis.
  • the invention is based on the known use of nickel electrodes as hydrogen-generating electrodes in alkali chloride electrolysis and the improvement process known per se by coating nickel electrodes with noble metals or noble metal oxides.
  • Cathodes for sodium chloride electrolysis, at which hydrogen is generated in an alkaline solution usually consist of iron or nickel. If nickel electrodes are used, they can consist entirely of nickel, or only nickel surfaces are used in which substrates made of other metals are superficially nickel-plated.
  • nickel electrodes can be coated with a metal from subgroup VIII, especially the platinum metals (including Pt, Ru, Rh, Os, Ir, Pd) of the periodic table of the elements or an oxide of such a metal or mixtures thereof.
  • platinum metals including Pt, Ru, Rh, Os, Ir, Pd
  • the electrode produced in this way can, for. B. be used in sodium chloride electrolysis as a cathode to generate hydrogen.
  • Many coating variants are known here, because the coating of metal oxides can be modified in various ways so that different compositions arise on the surface of the nickel electrode. According to the US-A-5 035 789 is z. B. used a ruthenium oxide-based coating on nickel substrates as the cathode.
  • the quality of the electrode decreases over time, in such a way that the cell voltage increases during sodium chloride electrolysis, so that a new coating of the electrode may be necessary. This is technically complex because the electrolysers have to be switched off and the electrodes have to be removed from the electrolysis cells.
  • iron compounds or finely divided iron are added to the catholyte in order to lower the cell voltage during sodium chloride electrolysis.
  • the coating of the cathodes with iron can have a disruptive effect on the electrolysis and increase the cell voltage.
  • EP 1 487 747 A1 a 0.1 to 10% by weight platinum-containing compound is added to the sodium chloride electrolysis.
  • the solution of the platinum-containing compound is added to the water which forms the catholyte, 0.1 to 2 liters of the aqueous solution of the platinum-compound-containing solution being added per liter of water.
  • the EP 1 487 747 A1 apart from the general reference to the use of the platinum compound during the electrolysis, does not disclose any information about the conditions used in the process - electrodes, electrode areas, current density, etc., which are necessary for a technical adjustment.
  • a soluble compound of a metal of the platinum group is added to the sodium hydroxide solution during the operation of the sodium chloride electrolysis in the catholyte.
  • a sodium chloride electrolysis cell is operated with 32% strength by weight sodium hydroxide solution, a salt concentration of 200 g / l sodium chloride at 90 ° C. and a current density of 2.35 kA / m 2 .
  • the cathode is electrolessly nickel-plated for pretreatment and then nickel-plated in a nickel bath.
  • platinum chlorate was metered into the catholyte as an active compound, which led to a decrease in the cell voltage by 100 mV.
  • US-A-4 105 516 During the electrolysis of alkali metal chlorides, metal compounds are added to the catholytes, which lower the hydrogen overvoltage and thus reduce the cell voltage.
  • the one in the US-A-4 105 516 The examples listed in turn describe the dosage and effects that result from the addition of an iron compound that is added to the catholyte of a sodium chloride diaphragm laboratory cell.
  • the cell has an anode made of expanded titanium metal coated with ruthenium and titanium oxide.
  • the cathode consists of iron in the form of expanded metal.
  • the examples show the use of cobalt or iron solution on the iron cathode.
  • the disadvantages of iron compounds in the treatment of coated nickel electrodes have already been pointed out above.
  • metal ions which have a low hydrogen overvoltage can be added to catholytes of a membrane electrolysis cell of sodium chloride electrolysis in order to coat the cathode.
  • the addition takes place during the electrolysis.
  • platinum oxide to improve an iron or copper cathode is given as an example.
  • the cathode coatings usually consist of platinum metals, platinum metal oxides or their mixtures, e.g. a ruthenium - ruthenium oxide mixture.
  • the usable platinum metals include ruthenium, iridium, platinum, palladium and rhodium.
  • the cathode coating is not long-term stable, especially not under conditions in which no electrolysis takes place or when electrolysis is interrupted, in which, for example, reverse electrical currents can occur. This means that the noble metal coating is damaged to a greater or lesser extent over the operating time of the electrolyzer.
  • impurities which, for example, get from the brine by diffusion into the lye, for example iron ions, can be deposited on the cathode or specifically on the active centers of the precious metal-containing coating and thereby deactivate it.
  • the platinum compound is metered into the catholyte in particular in the inlet to the cathode chamber
  • EP 590 260 A1 describes a process for the catalytic activation of a cathode for alkaline water electrolysis with a platinum metal, in which a water-soluble platinum metal salt is added to the electrolyte in the electrolyzer and the platinum metal ions of the salt are galvanically deposited on the cathode when the electrolyzer is in operation.
  • the current density should be set to 100 A / m 2 or more.
  • the deposition time here is preferably 1 to 3 days.
  • the metering rate of the platinum-containing solution based on the platinum content per m 2 of cathode area is between 0.001 g Pt / (h ⁇ m 2 ) and 1 g Pt / (h ⁇ m 2 ).
  • the object of the invention is to develop a special method for improving nickel electrodes that are coated with platinum metals, platinum metal oxides or mixtures thereof, or for nickel electrodes without a coating for use as cathodes in the electrolysis of sodium chloride, that can be used while the electrolysis is running , avoids a prolonged interruption of the electrode operation to restore the cathode activity and produces an improvement in the activity of the nickel electrodes, which is not immediately lost in the event of a standstill.
  • the method should not impair the functioning of the operating system for the electrolysis.
  • the invention relates to a process for improving the performance of nickel electrodes that are uncoated or that have a coating based on platinum metals, platinum metal oxides or a mixture of platinum metals and platinum metal oxides, and are used in sodium chloride electrolysis by the membrane process as electrodes that generate hydrogen, in which in the electrolysis of sodium chloride a water-soluble or sodium hydroxide-soluble platinum compound, in particular hexachloroplatinic acid or particularly preferably a sodium platinum, particularly preferably sodium hexachloroplatinate (Na 2 PtCl 6 ) and / or sodium hexahydroxyplatinate (Na 2 Pt (OH) 6 ) is added to the catholyte , characterized in that the addition in the electroysis operation at a current density of 0.2 A / m 2 to 50 A / m 2 , at a temperature of the catholyte in the range of 40 ° C to 95 ° C, with an amount of platinum per m 2 of electrode area from
  • the amount of platinum in the context of the invention means the content of platinum metal in the added platinum compound.
  • Electrode area here means in particular the entire active electrode area wetted by the catholyte.
  • the electrode area preferably relates to the geometric dimensions of the active electrode area wetted by the catholyte.
  • either the sodium hexachloroplatinate can be dosed to the catholyte as an aqueous solution or in an alkaline solution, or the hexachloroplatinic acid is dosed directly into the catholyte, in particular the sodium hydroxide solution, in which case a reaction with the alkali to form sodium chloroplatinate takes place.
  • the addition of the platinum compound is carried out according to the invention with ongoing electrolysis under greatly reduced load, ie the current density for the platinum metering is at most 95 A / m 2 set.
  • the temperature of the catholyte is 60 to 90 ° C., preferably 75 to 90 ° C., when the platinum compound is added.
  • the electrode coating is in the form of platinum metals and / or platinum metal oxides on the coated nickel electrodes, the platinum metals / platinum metal oxides being based on one or more metals of the series: ruthenium, iridium, palladium, platinum, rhodium and osmium, in particular preferably on those of the series: ruthenium, iridium and platinum.
  • Another preferred embodiment of the new method consists in the fact that, in addition to the above-mentioned soluble platinum compound, other further water-soluble compounds of the noble metals of the 8th subgroup of the periodic table of the elements, in particular compounds of palladium, iridium, rhodium, osmium or ruthenium, preferably palladium or Ruthenium are added to the catholyte. These are used in particular in the form of water-soluble salts or complex acids.
  • the noble metal content of the other water-soluble compounds of the noble metals of subgroup 8, based on the platinum metal of the soluble platinum compound is 1 to 50% by weight.
  • a preferred variant of the new method is characterized in that the proportion of platinum in the platinum compound in the catholyte after the addition is 0.01 to 310 mg / L, preferably 0.02 to 250 mg / L, particularly preferably 0.03 to 160 mg / L.
  • the volume flow of the catholyte during the metering in is from 0.1 to 10 L / min, preferably from 0.2 to 5 L / min.
  • the concentration of platinum metal in the catholyte emerging from the electrolysis cell is monitored continuously or discontinuously.
  • the sodium chloride electrolysis by the membrane process is typically carried out as follows, by way of example.
  • a solution containing sodium chloride is fed to an anode chamber with an anode, and a sodium hydroxide solution is fed to a cathode chamber with a cathode.
  • the two chambers are separated by an ion exchange membrane.
  • Several of these anode and cathode chambers are combined to form an electrolyzer.
  • a less concentrated sodium chloride-containing solution leaves the anode chamber than was added.
  • a more highly concentrated sodium hydroxide solution leaves the cathode chamber than was supplied.
  • the production current density is, for example, 4 kA / m 2 .
  • the geometrically projected cathode area is 2.7m2, which corresponds to the membrane area.
  • the cathode consists of an expanded nickel metal, which is provided with a special coating (also called coating here) (manufacturer e.g. Industrie De Nora) in order to reduce the hydrogen overvoltage.
  • Production current density is understood here to mean, in particular, a current density of at least 1 kA / m 2.
  • the production scale here is in particular the conversion of at least 5 kg / h sodium chloride to chlorine and caustic soda per electrolysis cell.
  • the maximum voltage value is in particular the maximum electrolysis voltage across the individual cell, which is to be regarded as tolerable in terms of the energy efficiency of the electrolysis process.
  • This threshold value is typically around 80 mV above the best mean voltage value after the cell has been put into operation.
  • the mean value of the measured voltages is used as a comparison value for the sake of simplicity.
  • the concentration of the sodium chloride-containing solution is at least 150 g / L.
  • the NaOH content in the sodium hydroxide solution is at least 25 percent by weight.
  • Sodium chloride-containing solution and sodium hydroxide solution are preferably heated to at least 60 ° C. before introduction.
  • the sodium chloride-containing solution is brought to a pH value below 6.
  • test examples were carried out on technical electrolysers each with 144 elements (single electrolysis cells), the nickel cathodes of which were provided with a coating based on a mixture of ruthenium / ruthenium oxide from Denora.
  • the average voltage for each electrolyser was calculated from the mean value of the 144 elements. To compare the voltages or voltage changes of the electrolysis, the voltage values at a current density in electrolysis operation of 4.5 kA / m 2 were used.
  • the measured voltage was converted to the voltage corresponding to the current density of 4.5 kA / m 2.
  • the conversion was carried out using a linear regression of the current-voltage data in the range from 3 to 5 kA / m 2 . In this current range, the current-voltage characteristic of an electrolyzer is linear.
  • a technical electrolyser was operated at an average voltage of 3.27 V and a current density of 4.5 kA / m 2 .
  • the following procedure was carried out: Within 30 minutes, the current density was reduced from 4.5 kA / m 2 to a current density of 11.8 A / m 2 and kept constant at this value. After 10 min, 8 L of a solution of hexachloroplatinate solution (25 g Pt / L) were metered into the sodium hydroxide solution (32%) at 0.8 L / min over the course of 10 min. The proportion of platinum of the platinum compound in the sodium hydroxide solution rose to up to 16 mg / L. The current density remained at the constant value of 11.8 A / m 2 and was held at this value for a further 30 minutes after the addition. Overall, the time during which the current density was kept at 11.8 A / m 2 since the start of the addition was 40 minutes, after which the current density was increased again to 4.5 kA / m 2 within 45 minutes.
  • the temperature of the caustic soda over the entire procedure varied in the range from 76 to 90 ° C.
  • the volume flow of sodium hydroxide solution during the metering time was 3.6 L / min per element.
  • the mean voltage at 4.5 kA / m 2 fell after the addition from the initial value of 3.27 V to 3.10 V. This corresponds to a voltage decrease of 170 mV.
  • the mean voltage at 4.1 kA / m 2 was 3.07 V. Converted to a current density of 4.5 kA / m 2, this corresponds to a mean voltage of 3.13 V. The voltage drop is still 140 mV .
  • the mean voltage at 4.5 kA / m 2 was 3.16 V.
  • the voltage drop is still 110 mV.
  • the mean voltage at 4.5 kA / m 2 was 3.17 V.
  • the voltage drop is still 100 mV.
  • Comparative example A technical electrolyser was operated at an average voltage of 3.15 V and a current density of 4.2 kA / m 2 . Converted to a current density of 4.5 kA / m 2, this results in a voltage of 3.19 V.
  • a technical electrolyser was operated at an average voltage of 3.17 V and a current density of 4.3 kA / m 2 . Converted to a current density of 4.5 kA / m 2, this results in a voltage of 3.2 V.
  • the current density was reduced from 4.3 kA / m 2 to a current density of 11.8 A / m 2 and kept constant at this value.
  • 8 L of a solution of hexachloroplatinate solution (6.25 g Pt / L) were dosed into the sodium hydroxide solution at 0.8 L / h over the course of 10 minutes.
  • the current density remained at the constant value of 11.8 A / m 2 and was held at this value for a further 30 minutes after the addition.
  • the time during which the current density was kept at 11.8 A / m 2 was 40 minutes since the start of the addition, after which the current density was increased to 3.8 kA / m 2 within 45 minutes.
  • the temperature of the caustic soda over the entire procedure varied in the range from 76 to 90 ° C.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)
  • Electrodes For Compound Or Non-Metal Manufacture (AREA)

Description

Die Erfindung betrifft ein Verfahren zur Verbesserung der Leistung von Nickelelektroden, insbesondere von edelmetallbeschichteten Nickelelektroden zur Verwendung in der Natriumchloridelektrolyse.The invention relates to a method for improving the performance of nickel electrodes, in particular precious metal-coated nickel electrodes for use in sodium chloride electrolysis.

Die Erfindung geht aus von der bekannten Verwendung von Nickelelektroden als Wasserstoff entwickelnde Elektroden in der Alkalichloridelektrolyse und den an sich bekannten Verbesserungsverfahren durch Beschichtung von Nickelelektroden mit Edelmetallen bzw. Edelmetalloxiden.The invention is based on the known use of nickel electrodes as hydrogen-generating electrodes in alkali chloride electrolysis and the improvement process known per se by coating nickel electrodes with noble metals or noble metal oxides.

Kathoden für die Natriumchloridelektrolyse, an denen Wasserstoff in alkalischer Lösung entwickelt wird, bestehen üblicherweise aus Eisen oder Nickel. Werden Nickelelektroden eingesetzt, so können diese vollständig aus Nickel bestehen, oder es gelangen nur Nickeloberflächen zum Einsatz, in denen Substrate aus anderen Metallen oberflächlich vernickelt werden.Cathodes for sodium chloride electrolysis, at which hydrogen is generated in an alkaline solution, usually consist of iron or nickel. If nickel electrodes are used, they can consist entirely of nickel, or only nickel surfaces are used in which substrates made of other metals are superficially nickel-plated.

Wie in der Offenlegungsschrift EP 298 055 A1 erwähnt, können Nickelelektroden mit einem Metall aus der VIII Nebengruppe, speziell der Platinmetalle (u.a. Pt, Ru, Rh, Os, Ir, Pd) des Periodensystems der Elemente oder einem Oxid eines solchen Metalls oder deren Mischungen beschichtet werden.As in the Offenlegungsschrift EP 298 055 A1 mentioned, nickel electrodes can be coated with a metal from subgroup VIII, especially the platinum metals (including Pt, Ru, Rh, Os, Ir, Pd) of the periodic table of the elements or an oxide of such a metal or mixtures thereof.

Die so hergestellte Elektrode kann z. B. in der Natriumchloridelektrolyse als Kathode zur Wasserstoffentwicklung eingesetzt werden. Hierbei sind viele Beschichtungsvarianten bekannt, denn die Beschichtung aus Metalloxiden kann dabei in verschiedener Weise modifiziert werden, so dass unterschiedliche Zusammensetzungen auf der Oberfläche der Nickelelektrode entstehen. Gemäß der US-A-5 035 789 wird z. B. eine auf Rutheniumoxid basierende Beschichtung auf Nickelsubstraten als Kathode eingesetzt.The electrode produced in this way can, for. B. be used in sodium chloride electrolysis as a cathode to generate hydrogen. Many coating variants are known here, because the coating of metal oxides can be modified in various ways so that different compositions arise on the surface of the nickel electrode. According to the US-A-5 035 789 is z. B. used a ruthenium oxide-based coating on nickel substrates as the cathode.

Im Betrieb der nickelbasierenden Elektroden beobachtet man eine mit der Zeit abnehmende Güte der Elektrode, in der Form, dass die Zellspannung bei der Natriumchloridelektrolyse steigt, so dass gegebenenfalls eine Neubeschichtung der Elektrode erforderlich wird. Das ist technisch aufwändig, da die Elektrolyseure abgeschaltet werden müssen und die Elektroden aus den Elektrolysezellen ausgebaut werden müssen.When the nickel-based electrodes are in operation, the quality of the electrode decreases over time, in such a way that the cell voltage increases during sodium chloride electrolysis, so that a new coating of the electrode may be necessary. This is technically complex because the electrolysers have to be switched off and the electrodes have to be removed from the electrolysis cells.

Eine Aufgabe der Erfindung ist es daher, eine einfachere Form der Leistungssteigerung bzw. der Leistungswiederherstellung zu finden, die keinen Ausbau der Elektrolysezellen erfordert.It is therefore an object of the invention to find a simpler form of increasing or restoring output that does not require the removal of the electrolytic cells.

Gemäß der Lehre der Patentschrift US-A-4 555 317 werden Eisenverbindungen oder feinteiliges Eisen dem Katholyten zugegeben, um die Zellspannung bei der Natriumchloridelektrolyse zu erniedrigen. Im Falle von edelmetallbeschichteten Nickelelektroden kann die Belegung der Kathoden mit Eisen sich auf die Elektrolyse störend auswirken und die Zellspannung erhöhen.According to the teaching of the patent US-A-4,555,317 iron compounds or finely divided iron are added to the catholyte in order to lower the cell voltage during sodium chloride electrolysis. In the case of nickel electrodes coated with precious metal, the coating of the cathodes with iron can have a disruptive effect on the electrolysis and increase the cell voltage.

Gemäß der weiter bekannt gewordenen Offenlegungsschrift EP 1 487 747 A1 erfolgt die Zugabe einer 0,1 bis 10 Gew.-%igen platinhaltigen Verbindung zur Natriumchloridelektrolyse. Hierbei wird die Lösung der platinhaltigen Verbindung in das Wasser zugegeben, das den Katholyten bildet, wobei pro Liter Wasser 0,1 bis 2 Liter der wässrigen Lösung der Platinverbindung enthaltenden Lösung zugegeben wird. Die EP 1 487 747 A1 offenbart außer dem generellen Hinweis auf die Anwendung der Platinverbindung während der Elektrolyse keinerlei Information über die - zu einer technischen Nachstellung nötigen - in dem Verfahren verwendeten Bedingungen Elektroden, Elektrodenflächen, Stromdichte etc.According to the published patent application which has become known further EP 1 487 747 A1 a 0.1 to 10% by weight platinum-containing compound is added to the sodium chloride electrolysis. Here, the solution of the platinum-containing compound is added to the water which forms the catholyte, 0.1 to 2 liters of the aqueous solution of the platinum-compound-containing solution being added per liter of water. the EP 1 487 747 A1 apart from the general reference to the use of the platinum compound during the electrolysis, does not disclose any information about the conditions used in the process - electrodes, electrode areas, current density, etc., which are necessary for a technical adjustment.

Gemäß der Offenlegungsschrift JP 1011988 A wird zur Wiederherstellung der Aktivität einer deaktivierten Kathode auf Basis einer Raney Nickel-Struktur mit geringer Wasserstoffüberspannung eine lösliche Verbindung eines Metalls der Platingruppe der Natronlauge während des Betriebes der Natriumchloridelektrolyse in den Katholyt zugesetzt. Beispielsweise wird in einer Natriumchloridelektrolysezelle mit 32 Gew.-%iger Natronlauge, einer Salzkonzentration von 200 g/l Natriumchlorid bei 90 °C und einer Stromdichte von 2,35 kA/m2 betrieben. Die Kathode wird dabei zur Vorbehandlung stromlos vernickelt und anschließend in einem Nickelbad Nickel-platiert. Als aktive Verbindung wurde im Katholyt beispielsweise Platinchlorat zudosiert, was zu einer Erniedrigung der Zellspannung um 100 mV führte.According to the publication JP 1011988 A To restore the activity of a deactivated cathode based on a Raney nickel structure with a low hydrogen overvoltage, a soluble compound of a metal of the platinum group is added to the sodium hydroxide solution during the operation of the sodium chloride electrolysis in the catholyte. For example, a sodium chloride electrolysis cell is operated with 32% strength by weight sodium hydroxide solution, a salt concentration of 200 g / l sodium chloride at 90 ° C. and a current density of 2.35 kA / m 2 . The cathode is electrolessly nickel-plated for pretreatment and then nickel-plated in a nickel bath. For example, platinum chlorate was metered into the catholyte as an active compound, which led to a decrease in the cell voltage by 100 mV.

Gemäß der US-A-4 105 516 werden während der Elektrolyse von Alkalimetallchloriden Metallverbindungen in den Katholyten zugegeben, die die Wasserstoffüberspannung herabsetzen und somit die Zellspannung reduzieren sollen. Die in der US-A-4 105 516 aufgeführten Beispiele beschreiben wiederum die Dosierung und Effekte, die durch Zugabe einer Eisenverbindung entstehen, die dem Katholyt einer Natriumchloriddiaphragma-Laborzelle zugegeben wird. Die Zelle hat eine Anode, die aus Titanstreckmetall besteht, die mit Ruthenium- und Titanoxid beschichtet ist. Die Kathode besteht hierbei aus Eisen in Form von Streckmetall. Die Beispiele zeigen die Verwendung von Kobalt- oder Eisenlösung an der Eisenkathode. Auf die Nachteile von Eisenverbindungen bei der Behandlung von beschichteten Nickelelektroden wurde bereits oben hingewiesen.According to the US-A-4 105 516 During the electrolysis of alkali metal chlorides, metal compounds are added to the catholytes, which lower the hydrogen overvoltage and thus reduce the cell voltage. The one in the US-A-4 105 516 The examples listed in turn describe the dosage and effects that result from the addition of an iron compound that is added to the catholyte of a sodium chloride diaphragm laboratory cell. The cell has an anode made of expanded titanium metal coated with ruthenium and titanium oxide. The cathode consists of iron in the form of expanded metal. The examples show the use of cobalt or iron solution on the iron cathode. The disadvantages of iron compounds in the treatment of coated nickel electrodes have already been pointed out above.

Gemäß der weiter bekannten Patentschrift US-A-4 555 317 ist bekannt, dass die Natriumchlorid-elektrolyse mit einer nickelbeschichteten Kupferkathode gestartet werden kann. Hierbei wird eine aktive Beschichtung aus Nickel- und Kobaltdendriten aufgetragen, wobei zuvor noch eine poröse Platinschicht als Zwischenschicht zur Verankerung der Dendriten elektrolytisch abgeschieden wurde. Eine Initialdosierung unter Elektrolysebedingungen der Zelle wurde mit Hexachloroplatinsäure unter einer hohen Stromdichte von 3 kA/m2 in mehreren Schritten durchgeführt.According to the further known patent US-A-4,555,317 it is known that sodium chloride electrolysis can be started with a nickel-coated copper cathode. Here, an active coating of nickel and cobalt dendrites is applied, with a porous platinum layer previously deposited electrolytically as an intermediate layer for anchoring the dendrites became. An initial dosage under electrolysis conditions of the cell was carried out with hexachloroplatinic acid at a high current density of 3 kA / m 2 in several steps.

Gemäß der US-A-4 160 704 können Metallionen, die eine geringe Wasserstoffüberspannung haben, Katholyten einer Membranelektrolysezelle der Natriumchloridelektrolyse zugegeben werden, um die Kathode zu beschichten. Die Zugabe erfolgt hierbei während der Elektrolyse. Beispielhaft ist jedoch nur die Zugabe von Platinoxid zur Verbesserung einer Eisen- oder Kupferkathode angeführt.According to the US-A-4 160 704 For example, metal ions which have a low hydrogen overvoltage can be added to catholytes of a membrane electrolysis cell of sodium chloride electrolysis in order to coat the cathode. The addition takes place during the electrolysis. However, only the addition of platinum oxide to improve an iron or copper cathode is given as an example.

Üblicherweise bestehen die Kathoden-Beschichtungen bei der Natriumchlorid-Elektrolyse aus Platinmetallen, Platinmetalloxiden oder deren Mischungen z.B. einer Ruthenium - Rutheniumoxid Mischung. < Seite 3a >In sodium chloride electrolysis, the cathode coatings usually consist of platinum metals, platinum metal oxides or their mixtures, e.g. a ruthenium - ruthenium oxide mixture. <Page 3a>

Wie in der EP 129 374 beschrieben wird, zählen zu den nutzbaren Platinmetallen Ruthenium, Iridium, Platin, Palladium und Rhodium. Das Kathoden-Coating ist nicht langzeitstabil, besonders nicht unter Bedingungen bei denen keine Elektrolyse stattfindet bzw. bei Unterbrechungen der Elektrolyse, bei denen es z.B. zu elektrischen Umkehrströmen kommen kann. Somit findet eine mehr oder weniger starke Schädigung der Edelmetallbeschichtung über die Betriebszeit des Elektrolyseurs statt. Ebenfalls können Verunreinigungen, die z.B. aus der Sole durch Diffusion in die Lauge gelangen, z.B. Eisen-Ionen, sich auf der Kathode oder speziell auf den aktiven Zentren des edelmetallhaltigen Coatings abscheiden und hierdurch dieses deaktivieren. Die Folge ist, dass die Zellspannung im Elektrolysebetrieb wieder ansteigt, wodurch der Energieverbrauch zur Herstellung von Chlor, Wasserstoff und Natronlauge erhöht und die Wirtschaftlichkeit des Elektrolyse-Verfahrens deutlich verschlechtert wird. Ebenfalls können auch nur einzelne Elektrolyse-Zellelemente eines Elektrolyseurs eine Schädigung des Kathoden-Coatings aufweisen. Hierbei ist es technisch hoch aufwendig und daher nicht wirtschaftlich, zum Ersatz der beschädigten Zellelemente den gesamten Elektrolyseur abzustellen und die Zellelemente mit dem beschädigten Coating zu entfernen, da dies mit Produktionsausfällen und erheblichen Kosten verbunden ist.Like in the EP 129 374 The usable platinum metals include ruthenium, iridium, platinum, palladium and rhodium. The cathode coating is not long-term stable, especially not under conditions in which no electrolysis takes place or when electrolysis is interrupted, in which, for example, reverse electrical currents can occur. This means that the noble metal coating is damaged to a greater or lesser extent over the operating time of the electrolyzer. Likewise, impurities which, for example, get from the brine by diffusion into the lye, for example iron ions, can be deposited on the cathode or specifically on the active centers of the precious metal-containing coating and thereby deactivate it. The result is that the cell voltage increases again in the electrolysis operation, which increases the energy consumption for the production of chlorine, hydrogen and caustic soda and significantly worsens the economic efficiency of the electrolysis process. Likewise, only individual electrolysis cell elements of an electrolyzer can show damage to the cathode coating. It is technically highly complex and therefore not economical to switch off the entire electrolyser to replace the damaged cell elements and to remove the cell elements with the damaged coating, since this is associated with production losses and considerable costs.

Es ist noch ein weiteres Verfahren zur Verbesserung von edelmetallbeschichteten Nickelelektroden aus der DE 102007003554A1 bekannt geworden, bei dem während des Betriebs der Natriumchlorid-Elektrolyse bei Produktionsstromdichte im Bereich von mehreren kA/m2 in die Natronlauge, in der eine mit Rutheniumoxid beschichtete Kathode betrieben wird, eine Hexachloroplatinat- oder Natriumhexachloroplatinat-Lösung dosiert wird. Dabei soll eine Variation der Zellspannung in einem Spannungsbereich von 0 bis 5 Volt bzw. 0,5 - 500mV und einer Frequenz von 10-100 Hz mit einer Amplitude von 20-100mV erfolgen. Die Dosierung der Platinverbindung in den Katholyten erfolgt im Besonderen in den Zulauf zur Kathodenkammer bei In der Druckschrift EP 590 260 A1 wird ein Verfahren zur katalytischen Aktivierung einer Kathode für die alkalische Wasserelektrolyse mit einem Platinmetall beschrieben, in dem man dem Elektrolyten im Elektrolyseur ein wasserlösliches Platinmetallsalz zusetzt und die Platinmetallionen des Salzes bei Betrieb des Elektrolyseurs an der Kathode galvanisch abscheidet. Dabei soll die Stromdichte auf 100 A/m2 oder mehr eingestellt werden. Die Abscheidungsdauer beträgt hier vorzugsweise 1 bis 3 Tage.
einer Kathodenfläche von 2,7m2 bei einer Stromdichte von 1 bis 8 kA/m2. Die Dosiergeschwindigkeit der platin-haltigen Lösung bezogen auf den Platingehalt je m2 Kathodenfläche beträgt zwischen 0,001 g Pt / (hm2) und 1 g Pt/(hm2).
It is yet another method of improving precious metal coated nickel electrodes from US Pat DE 102007003554A1 has become known, in which a hexachloroplatinate or sodium hexachloroplatinate solution is metered into the sodium hydroxide solution in which a cathode coated with ruthenium oxide is operated during operation of the sodium chloride electrolysis at a production current density in the range of several kA / m 2. The cell voltage should vary in a voltage range of 0 to 5 volts or 0.5 - 500mV and a frequency of 10-100 Hz with an amplitude of 20-100mV. The platinum compound is metered into the catholyte in particular in the inlet to the cathode chamber In the pamphlet EP 590 260 A1 describes a process for the catalytic activation of a cathode for alkaline water electrolysis with a platinum metal, in which a water-soluble platinum metal salt is added to the electrolyte in the electrolyzer and the platinum metal ions of the salt are galvanically deposited on the cathode when the electrolyzer is in operation. The current density should be set to 100 A / m 2 or more. The deposition time here is preferably 1 to 3 days.
a cathode area of 2.7 m 2 at a current density of 1 to 8 kA / m 2 . The metering rate of the platinum-containing solution based on the platinum content per m 2 of cathode area is between 0.001 g Pt / (h m 2 ) and 1 g Pt / (h m 2 ).

Nachteil des in der DE 102007003554A1 offenbarten Beschichtungsverfahrens ist, dass bei einem Stillstand der Elektrolyse der positive Effekt, der zunächst durch die beschriebene Platindotierung erzielt wird, nicht aufrecht erhalten werden kann. Da Elektrolyseure aus diversen technischen Gründen ausfallen bzw. ausgestellt werden müssen, muss daher nach jedem Stillstand eine erneute Platin-Dosierung durchgeführt werden, wodurch eine zusätzliche Komplexität in den Betriebsablauf eingeführt wird, die für einen Produktionsbetrieb von Nachteil ist. Offenbar ist die mit diesem Verfahren erzielbare Beschichtung der Elektrode mit Platin bzw. Platinoxid nicht so beständig wie dies für das Produktionsverfahren wünschenswert wäre. Hinzu tritt, dass unter Umständen Platin aus der Platinlösung nicht vollständig an der Elektrodenoberfläche abgeschieden wird und damit rares und kostspieliges Edelmetall-Material verloren geht.Disadvantage of the DE 102007003554A1 disclosed coating process is that when the electrolysis comes to a standstill, the positive effect that is initially achieved by the platinum doping described cannot be maintained. Since electrolysers fail or have to be exhibited for various technical reasons, a new platinum metering has to be carried out after each standstill, which introduces additional complexity into the operational process, which is disadvantageous for a production facility. Obviously, the coating of the electrode with platinum or platinum oxide that can be achieved with this process is not as durable as would be desirable for the production process. In addition, platinum from the platinum solution may not be completely deposited on the electrode surface and thus rare and expensive precious metal material is lost.

Aufgabe der Erfindung ist es, ein spezielles Verfahren zur Verbesserung von Nickelelektroden, die mit Platinmetallen, Platinmetalloxiden oder deren Mischungen beschichtet sind, oder für Nickelelektroden ohne Beschichtung für die Verwendung als Kathoden bei der Elektrolyse von Natriumchlorid zu entwickeln, dass sich im laufenden Elektrolysebetrieb einsetzen lässt, eine längere Unterbrechung des Elektrodenbetriebs zur Wiederherstellung der Kathodenaktivität vermeidet und eine Verbesserung der Aktivität der Nickelelektroden erzeugt, die bei einem Stillstand nicht sofort verlorengeht. Insbesondere sollte das Verfahren nicht die Funktion der Betriebsanlage für die Elektrolyse beeinträchtigen.The object of the invention is to develop a special method for improving nickel electrodes that are coated with platinum metals, platinum metal oxides or mixtures thereof, or for nickel electrodes without a coating for use as cathodes in the electrolysis of sodium chloride, that can be used while the electrolysis is running , avoids a prolonged interruption of the electrode operation to restore the cathode activity and produces an improvement in the activity of the nickel electrodes, which is not immediately lost in the event of a standstill. In particular, the method should not impair the functioning of the operating system for the electrolysis.

Gegenstand der Erfindung ist ein Verfahren zur Verbesserung der Leistung von Nickelelektroden, die unbeschichtet sind oder die eine Beschichtung auf Basis von Platinmetallen, Platinmetalloxiden oder eine Mischung von Platinmetallen und Platinmetalloxiden aufweisen, und in der Natriumchloridelektrolyse nach dem Membranverfahren als Wasserstoff entwickelnde Elektroden eingesetzt werden, in dem bei der Elektrolyse von Natriumchlorid eine wasserlösliche oder in Natronlauge lösliche Platin-Verbindung, insbesondere Hexachloroplatinsäure oder insbesondere bevorzugt ein Natriumplatinat, besonders bevorzugt Natriumhexachloroplatinat (Na2PtCl6) und/oder Natriumhexahydroxyplatinat (Na2Pt(OH)6) dem Katholyt zudosiert wird, dadurch gekennzeichnet, dass die Zugabe im Elektroysebetrieb bei einer Stromdichte von 0,2 A/m2 bis 50 A/m2, bei einer Temperatur des Katholyten im Bereich von 40°C bis 95°C, mit einer Platinmenge je m2 Elektrodenfläche von 0,3 g/m2 bis 10 g/m2, bevorzugt von 0,35 g/m2 bis 8 g/m2, besonders bevorzugt von 0,4 g/m2 bis 5 g/m2 erfolgt, wobei die verminderte Stromdichte von Beginn der Dosierung an gerechnet für insgesamt 2 bis 200 min, aufrecht erhalten wird.The invention relates to a process for improving the performance of nickel electrodes that are uncoated or that have a coating based on platinum metals, platinum metal oxides or a mixture of platinum metals and platinum metal oxides, and are used in sodium chloride electrolysis by the membrane process as electrodes that generate hydrogen, in which in the electrolysis of sodium chloride a water-soluble or sodium hydroxide-soluble platinum compound, in particular hexachloroplatinic acid or particularly preferably a sodium platinum, particularly preferably sodium hexachloroplatinate (Na 2 PtCl 6 ) and / or sodium hexahydroxyplatinate (Na 2 Pt (OH) 6 ) is added to the catholyte , characterized in that the addition in the electroysis operation at a current density of 0.2 A / m 2 to 50 A / m 2 , at a temperature of the catholyte in the range of 40 ° C to 95 ° C, with an amount of platinum per m 2 of electrode area from 0.3 g / m 2 to 10 g / m 2 , preferably from 0.35 g / m 2 to 8 g / m 2 , particularly preferably from 0.4 g / m 2 to 5 g / m 2 , the reduced current density being maintained for a total of 2 to 200 minutes from the start of metering.

Mit Platinmenge im Sinne der Erfindung ist der Gehalt an Platinmetall in der zudosierten Platinverbindung gemeint.The amount of platinum in the context of the invention means the content of platinum metal in the added platinum compound.

Elektrodenfläche meint hier insbesondere die gesamte aktive vom Katholyt benetzte Elektrodenfläche. Zur Vereinfachung bezieht sich die Elektrodenfläche bevorzugt auf die geometrische Abmessung der aktiven vom Katholyt benetzten Elektrodenfläche.Electrode area here means in particular the entire active electrode area wetted by the catholyte. For the sake of simplification, the electrode area preferably relates to the geometric dimensions of the active electrode area wetted by the catholyte.

Wahlweise kann insbesondere entweder das Natriumhexachloroplatinat als wässrige Lösung oder in alkalischer Lösung dem Katholyt dosiert werden oder es wird die Hexachloroplatinsäure direkt in den Katholyt, insbesondere die Natronlauge, dosiert, wobei dann eine Reaktion mit der Lauge zum Natriumchloroplatinat erfolgt.In particular, either the sodium hexachloroplatinate can be dosed to the catholyte as an aqueous solution or in an alkaline solution, or the hexachloroplatinic acid is dosed directly into the catholyte, in particular the sodium hydroxide solution, in which case a reaction with the alkali to form sodium chloroplatinate takes place.

Zur Vermeidung der Ausfällung von Platinmetallpartikeln im Katholyt bei hoher Stromdichte wie in den aus dem Stand der Technik bekannten Verfahren erfolgt die Zugabe der Platin-Verbindung erfindungsgemäß bei laufender Elektrolyse unter stark verminderter Last, d.h. die Stromdichte wird für die Platindosierung auf höchstens 95 A/m2 eingestellt.To avoid the precipitation of platinum metal particles in the catholyte at a high current density, as in the processes known from the prior art, the addition of the platinum compound is carried out according to the invention with ongoing electrolysis under greatly reduced load, ie the current density for the platinum metering is at most 95 A / m 2 set.

Eine weitere bevorzugte Ausführungsform der Platinzugabe besteht darin, dass bei Zugabe der Platinverbindung die Temperatur des Katholyts 60 bis 90 °C, bevorzugt 75 bis 90°C beträgt.Another preferred embodiment of the addition of platinum is that the temperature of the catholyte is 60 to 90 ° C., preferably 75 to 90 ° C., when the platinum compound is added.

In einer bevorzugten Ausführung der Erfindung liegt die Elektrodenbeschichtung in Form von Platinmetallen und/oder Platinmetalloxiden auf den beschichteten Nickelelektroden vor, wobei die Platinmetalle/Platinmetalloxide auf einem oder mehreren Metallen der Reihe: Ruthenium, Iridium, Palladium, Platin, Rhodium und Osmium basieren, besonders bevorzugt auf solchen der Reihe: Ruthenium, Iridium und Platin.In a preferred embodiment of the invention, the electrode coating is in the form of platinum metals and / or platinum metal oxides on the coated nickel electrodes, the platinum metals / platinum metal oxides being based on one or more metals of the series: ruthenium, iridium, palladium, platinum, rhodium and osmium, in particular preferably on those of the series: ruthenium, iridium and platinum.

Eine weitere bevorzugte Ausführungsform des neuen Verfahrens besteht darin, dass außer der oben genannten löslichen Platinverbindung zusätzlich andere weitere wasserlösliche Verbindungen der Edelmetalle der 8. Nebengruppe des Periodensystems der Elemente, insbesondere Verbindungen des Palladiums, Iridiums, Rhodiums, Osmiums oder des Rutheniums, bevorzugt Palladium oder Ruthenium dem Katholyt zugegeben werden. Diese finden insbesondere in Form von wasserlöslichen Salzen oder komplexen Säuren Verwendung.Another preferred embodiment of the new method consists in the fact that, in addition to the above-mentioned soluble platinum compound, other further water-soluble compounds of the noble metals of the 8th subgroup of the periodic table of the elements, in particular compounds of palladium, iridium, rhodium, osmium or ruthenium, preferably palladium or Ruthenium are added to the catholyte. These are used in particular in the form of water-soluble salts or complex acids.

In einem bevorzugten neuen Verfahren beträgt der Edelmetallanteil der weiteren in Wasser löslichen Verbindungen der Edelmetalle der 8. Nebengruppe bezogen auf das Platinmetall der löslichen Platin-Verbindung 1 bis 50 Gew.-%.In a preferred new process, the noble metal content of the other water-soluble compounds of the noble metals of subgroup 8, based on the platinum metal of the soluble platinum compound, is 1 to 50% by weight.

Eine bevorzugte Variante des neuen Verfahrens ist dadurch gekennzeichnet, dass der Anteil an Platin in der Platinverbindung im Katholyt nach der Zudosierung 0,01 bis 310 mg/L, bevorzugt 0,02 bis 250 mg/L, besonders bevorzugt von 0,03 bis 160 mg/L beträgt.A preferred variant of the new method is characterized in that the proportion of platinum in the platinum compound in the catholyte after the addition is 0.01 to 310 mg / L, preferably 0.02 to 250 mg / L, particularly preferably 0.03 to 160 mg / L.

In einer bevorzugten Variante des neuen Verfahrens beträgt der Volumenstrom des Katholyten während der Zudosierung von 0,1 bis 10 L/min, bevorzugt von 0,2 bis 5 L/min.In a preferred variant of the new process, the volume flow of the catholyte during the metering in is from 0.1 to 10 L / min, preferably from 0.2 to 5 L / min.

Zur Vermeidung von unnötigen Verlusten an Platinmetall wird in einer besonders bevorzugten Ausführung des neuen Verfahrens die Konzentration an Platinmetall im aus der Elektrolysezelle austretenden Katholyt kontinuierlich oder diskontinuierlich überwacht.To avoid unnecessary losses of platinum metal, in a particularly preferred embodiment of the new method, the concentration of platinum metal in the catholyte emerging from the electrolysis cell is monitored continuously or discontinuously.

Die Natriumchloridelektrolyse nach dem Membranverfahren wird typischerweise beispielhaft wie folgt ausgeführt. Eine Natriumchlorid-haltige Lösung wird einer Anodenkammer mit einer Anode, eine Natronlauge wird einer Kathodenkammer mit einer Kathode zugeführt. Die beiden Kammern werden durch eine Ionenaustauschermembran getrennt. Mehrere dieser Anoden- und Kathodenkammern werden zu einem Elektrolyseur zusammengefügt. Die Anodenkammer verlässt neben dem gebildeten Chlor eine geringer konzentrierte Natriumchlorid-haltige Lösung als dieser zugeführt wurde. Die Kathodenkammer verlässt neben Wasserstoff eine höher konzentrierte Natronlauge als dieser zugeführt wurde. Die Produktionsstromdichte beträgt beispielsweise 4 kA/m2. Die geometrisch projizierte Kathodenfläche beträgt 2,7m2, dies entspricht der Membranfläche. Die Kathode besteht dabei aus einem Nickel-Streckmetall, das mit einer speziellen Beschichtung (hier auch verschiedentlich Coating genannt) versehen ist (Hersteller z.B. Industrie De Nora), um die Wasserstoffüberspannung zu senken.The sodium chloride electrolysis by the membrane process is typically carried out as follows, by way of example. A solution containing sodium chloride is fed to an anode chamber with an anode, and a sodium hydroxide solution is fed to a cathode chamber with a cathode. The two chambers are separated by an ion exchange membrane. Several of these anode and cathode chambers are combined to form an electrolyzer. In addition to the chlorine formed, a less concentrated sodium chloride-containing solution leaves the anode chamber than was added. In addition to hydrogen, a more highly concentrated sodium hydroxide solution leaves the cathode chamber than was supplied. The production current density is, for example, 4 kA / m 2 . The geometrically projected cathode area is 2.7m2, which corresponds to the membrane area. The cathode consists of an expanded nickel metal, which is provided with a special coating (also called coating here) (manufacturer e.g. Industrie De Nora) in order to reduce the hydrogen overvoltage.

Weiterer Gegenstand der Erfindung ist ein Verfahren zur Herstellung von Chlor, Natronlauge und Wasserstoff nach dem Prinzip der Membranelektrolyse im Produktionsmaßstab unter Verwendung von Nickelelektroden oder beschichteten Nickelelektroden als Kathode mit den Schritten:

  • Zuführung einer Natriumchlorid-haltigen wässrigen Lösung zu einer Anodenkammer mit einer Anode und Zuführung von Natronlauge zu einer Kathodenkammer mit einer Kathode, wobei Anoden- und Kathodenkammer über eine Ionenaustauschermembran voneinander getrennt vorliegen;
  • Einstellen einer Produktionsstromdichte von mindestens 1 kA/m2 bezogen auf die Elektrodenfläche;
  • Ableitung der Natriumchlorid-haltigen Lösung aus der Anodenkammer zusammen mit dem an der Anode gebildeten Chlorgas und Abtrennung des Chlors von der flüssigen Phase;
  • Zufuhr des abgetrennten Chlors zu einer geeigneten Aufbereitung insbesondere mindestens umfassend die Trocknung, Aufreinigung und gegebenenfalls Kompression des Chlorgases;
  • Zufuhr der aus dem Anodenraum abgeführten Natriumchlorid-haltigen Lösung zu einer Aufkonzentrierung und Reinigung, wobei die Aufkonzentrierung und Reinigung insbesondere mindestens die folgenden Schritte umfasst: Zerstörung von Chlorat-Nebenprodukten, Entchlorung, Konzentrationserhöhung durch Zugabe von Natriumchlorid, Reinigung durch Fällungsreagenzien, Filtration und Ionenaustausch zur Entfernung unerwünschter Kationen,
  • anschließend Wiedereinleitung der Natriumchlorid-haltigen Lösung in die Anodenkammer;
  • Ableitung der Natronlauge aus der Kathodenkammer zusammen mit dem an der Kathode gebildeten Wasserstoff und Abtrennung des Wasserstoffs von der flüssigen Phase;
  • gegebenenfalls Zufuhr des abgetrennten Wasserstoffs zu einer geeigneten Aufbereitung und Reinigung;
  • Zufuhr der aus dem Kathodenraum abgeführten Natronlauge zu einem Sammelbehälter und ggf. zu einer weiteren geeigneten Aufbereitung und Reinigung;
  • Verdünnung einer Teilmenge der aus dem Kathodenraum abgeführten Natronlauge mit Wasser und Wiedereinleitung in den Kathodenraum;
das dadurch gekennzeichnet, dass zur Erniedrigung der Elektrolysespannung bei Erreichung eines vorgegebenen mittleren Höchstspannungswertes im Elektrolysebetrieb die Stromdichte auf einen Wert von unter 100 A/m2 aber mindestens 0,2 A/m2 herabgesetzt wird, dann das Verfahren nach einem der Ansprüche 1 bis 8 durchgeführt wird und anschließend die Stromdichte auf die Produktionsstromdichte wieder angehoben und die Produktion fortgesetzt wird.The invention also relates to a process for the production of chlorine, sodium hydroxide solution and hydrogen according to the principle of membrane electrolysis on a production scale using nickel electrodes or coated nickel electrodes as the cathode with the following steps:
  • Feeding an aqueous solution containing sodium chloride to an anode chamber with an anode and feeding sodium hydroxide solution to a cathode chamber with a cathode, the anode and cathode chambers being separated from one another by an ion exchange membrane;
  • Setting a production current density of at least 1 kA / m 2 based on the electrode area;
  • Discharge of the sodium chloride-containing solution from the anode chamber together with the chlorine gas formed at the anode and separation of the chlorine from the liquid phase;
  • Supply of the separated chlorine to a suitable treatment, in particular at least including the drying, purification and, if necessary, compression of the chlorine gas;
  • The sodium chloride-containing solution discharged from the anode compartment is fed to a concentration and purification, the concentration and purification in particular includes at least the following steps: destruction of chlorate by-products, dechlorination, increase in concentration by adding sodium chloride, purification using precipitation reagents, filtration and ion exchange to remove undesired cations,
  • then reintroduction of the sodium chloride-containing solution into the anode chamber;
  • Discharge of the caustic soda from the cathode chamber together with the hydrogen formed at the cathode and separation of the hydrogen from the liquid phase;
  • if necessary, supply of the separated hydrogen to a suitable treatment and purification facility;
  • The sodium hydroxide solution discharged from the cathode compartment is fed to a collecting container and, if necessary, to further suitable processing and cleaning;
  • Dilution of a portion of the sodium hydroxide solution discharged from the cathode compartment with water and reintroduction into the cathode compartment;
which is characterized in that to lower the electrolysis voltage when a predetermined average maximum voltage value is reached in electrolysis operation, the current density is reduced to a value of below 100 A / m 2 but at least 0.2 A / m 2 , then the method according to one of claims 1 to 8 is carried out and then the current density is increased again to the production current density and production is continued.

Unter Produktionsstromdichte wird hier insbesondere eine Stromdichte von mindestens 1 kA/m2 verstanden.Production current density is understood here to mean, in particular, a current density of at least 1 kA / m 2.

Produktionsmaßstab ist hier insbesondere die Umsetzung von mindestens 5 kg/h Natriumchlorid zu Chlor und Natronlauge pro Elektrolysezelle.The production scale here is in particular the conversion of at least 5 kg / h sodium chloride to chlorine and caustic soda per electrolysis cell.

Der Höchstspannungswert ist im Falle einzelner Zellen insbesondere die maximale Elektrolysespannung über der Einzelzelle, die im Sinne von Energieeffizienz des Elektrolyseprozesses als tolerierbar anzusehen ist. Typischerweise liegt dieser Schwellwert bei etwa 80mV über dem besten mittleren Spannungswert nach Inbetriebnahme der Zelle.In the case of individual cells, the maximum voltage value is in particular the maximum electrolysis voltage across the individual cell, which is to be regarded as tolerable in terms of the energy efficiency of the electrolysis process. This threshold value is typically around 80 mV above the best mean voltage value after the cell has been put into operation.

Im Falle von Elektrolyseuren mit einer Vielzahl von einzelnen Zellen wird der Einfachheit halber der Mittelwert der gemessenen Spannungen als Vergleichswert verwendet.In the case of electrolysers with a large number of individual cells, the mean value of the measured voltages is used as a comparison value for the sake of simplicity.

In einer bevorzugten Ausführung des neuen Elektrolyseverfahrens beträgt die Konzentration der Natriumchlorid-haltigen Lösung mindestens 150 g/L.In a preferred embodiment of the new electrolysis process, the concentration of the sodium chloride-containing solution is at least 150 g / L.

In einer weiteren bevorzugten Ausführung des neuen Elektrolyseverfahrens beträgt der Gehalt an NaOH in der Natronlauge mindestens 25 Gewichtsprozent.In a further preferred embodiment of the new electrolysis process, the NaOH content in the sodium hydroxide solution is at least 25 percent by weight.

Bevorzugt werden Natriumchlorid-haltige Lösung und Natronlauge vor der Einleitung auf mindestens 60°C aufgeheizt.Sodium chloride-containing solution and sodium hydroxide solution are preferably heated to at least 60 ° C. before introduction.

Die Natriumchlorid-haltige Lösung wird in einer weiteren bevorzugten Ausführung des neuen Elektrolyseverfahrens auf einen pH Wert unter 6 gebracht.In a further preferred embodiment of the new electrolysis process, the sodium chloride-containing solution is brought to a pH value below 6.

BeispieleExamples

Die nachstehenden Versuchsbeispiele wurden an technischen Elektrolyseuren mit je 144 Elementen (Elektrolyse-Einzelzellen), deren Nickel-Kathoden mit einer Beschichtung basierend auf einer Mischung aus Ruthenium- / Rutheniumoxid der Fa. Denora versehen waren, durchgeführt.The following test examples were carried out on technical electrolysers each with 144 elements (single electrolysis cells), the nickel cathodes of which were provided with a coating based on a mixture of ruthenium / ruthenium oxide from Denora.

Aus dem Mittelwert der 144 Elemente wurde für jeden Elektrolyseur die durchschnittliche Spannung berechnet. Zum Vergleich der Spannungen bzw. Spannungsänderungen der Elektrolyse wurden die Spannungswerte bei einer Stromdichte im Elektrolysebetrieb von 4,5 kA/m2 herangezogen.The average voltage for each electrolyser was calculated from the mean value of the 144 elements. To compare the voltages or voltage changes of the electrolysis, the voltage values at a current density in electrolysis operation of 4.5 kA / m 2 were used.

Für den Fall, dass keine Spannungswerte bei dieser Stromdichte verfügbar waren, weil der Elektrolyseur zu dem jeweils abgerufenen Zeitpunkt bei dieser Stromdichte nicht betrieben wurde, erfolgte eine Umrechnung der gemessenen Spannung auf die der Stromdichte von 4,5 kA/m2 entsprechende Spannung. Die Umrechnung erfolgte anhand einer linearen Regression der Strom-Spannungsdaten im Bereich von 3 bis 5 kA/m2. In diesem Strombereich ist die Strom-Spannungscharakteristik eines Elektrolyseurs linear.In the event that no voltage values were available at this current density because the electrolyser was not operated at this current density at the time called up, the measured voltage was converted to the voltage corresponding to the current density of 4.5 kA / m 2. The conversion was carried out using a linear regression of the current-voltage data in the range from 3 to 5 kA / m 2 . In this current range, the current-voltage characteristic of an electrolyzer is linear.

Beispiel 1example 1

Ein technischer Elektrolyseur wurde bei einer mittleren Spannung von 3,27 V und einer Stromdichte von 4,5 kA/m2 betrieben.A technical electrolyser was operated at an average voltage of 3.27 V and a current density of 4.5 kA / m 2 .

Es wurde folgende Prozedur durchgeführt:
Innerhalb von 30 min wurde die Stromdichte ausgehend von 4,5 kA/m2 auf eine Stromdichte von 11,8 A/m2 heruntergefahren und bei diesem Wert konstant gehalten. Nach 10 min wurden 8 L einer Lösung von Hexachloroplatinatlösung (25 g Pt/L) innerhalb von 10 min mit 0,8 L/min in die Natronlauge (32%) zudosiert. Dr Anteile an Platin der Platinverbindung in der Natronlauge stieg hierbei auf bis zu 16 mg/L. Die Stromdichte blieb hierbei auf dem konstanten Wert von 11,8 A/m2 und wurde nach erfolgter Zugabe noch für weitere 30 min bei diesem Wert gehalten. Insgesamt betrug die Zeit, bei der die Stromdichte bei 11,8 A/m2 gehalten wurde, seit Beginn der Zugabe 40 min. Danach wurde die Stromdichte innerhalb von 45 min wieder auf 4,5 kA/m2 hochgefahren.
The following procedure was carried out:
Within 30 minutes, the current density was reduced from 4.5 kA / m 2 to a current density of 11.8 A / m 2 and kept constant at this value. After 10 min, 8 L of a solution of hexachloroplatinate solution (25 g Pt / L) were metered into the sodium hydroxide solution (32%) at 0.8 L / min over the course of 10 min. The proportion of platinum of the platinum compound in the sodium hydroxide solution rose to up to 16 mg / L. The current density remained at the constant value of 11.8 A / m 2 and was held at this value for a further 30 minutes after the addition. Overall, the time during which the current density was kept at 11.8 A / m 2 since the start of the addition was 40 minutes, after which the current density was increased again to 4.5 kA / m 2 within 45 minutes.

Die Temperatur der Natronlauge über die gesamte Prozedur variierte im Bereich von 76 bis 90 °C.The temperature of the caustic soda over the entire procedure varied in the range from 76 to 90 ° C.

Der Volumenstrom an Natronlauge während der Dosierzeit betrug pro Element 3,6 L/min.The volume flow of sodium hydroxide solution during the metering time was 3.6 L / min per element.

Es gelangten somit 200 g Platin auf die Oberfläche von 144 Kathoden (Oberfläche einer Kathode: 2,7 m2). Dies entspricht einer Platinmenge von 0,51 g/m2.Thus, 200 g of platinum got onto the surface of 144 cathodes (surface of a cathode: 2.7 m 2 ). This corresponds to an amount of platinum of 0.51 g / m 2 .

Die mittlere Spannung bei 4,5 kA/m2 fiel nach der Zugabe vom Ausgangswert 3,27 V auf 3,10 V. Dies entspricht einer Spannungserniedrigung um 170 mV.The mean voltage at 4.5 kA / m 2 fell after the addition from the initial value of 3.27 V to 3.10 V. This corresponds to a voltage decrease of 170 mV.

Nach weiteren 126 Betriebstagen betrug die mittlere Spannung bei 4,1 kA/m2 3,07 V. Umgerechnet auf eine Stromdichte von 4,5 kA/m2 entspricht das einer mittleren Spannung von 3,13 V. Die Spannungserniedrigung beträgt noch 140 mV.After a further 126 days of operation, the mean voltage at 4.1 kA / m 2 was 3.07 V. Converted to a current density of 4.5 kA / m 2, this corresponds to a mean voltage of 3.13 V. The voltage drop is still 140 mV .

Nach einem Stillstand und insgesamt 129 Betriebstagen nach der Dosierung betrug die mittlere Spannung bei 4,5 kA/m2 3,16 V. Die Spannungserniedrigung beträgt noch 110 mV.After a standstill and a total of 129 operating days after the metering, the mean voltage at 4.5 kA / m 2 was 3.16 V. The voltage drop is still 110 mV.

Nach einem weiteren Stillstand und insgesamt 133 Betriebstagen nach der Dosierung betrug die mittlere Spannung bei 4,5 kA/m2 3,17 V. Die Spannungserniedrigung beträgt noch 100 mV.After a further standstill and a total of 133 operating days after the metering, the mean voltage at 4.5 kA / m 2 was 3.17 V. The voltage drop is still 100 mV.

Beispiel 2Example 2

Vergleichsbeispiel:
Ein technischer Elektrolyseur wurde bei einer mittleren Spannung von 3,15 V und einer Stromdichte von 4,2 kA/m2 betrieben. Auf eine Stromdichte von 4,5 kA/m2 umgerechnet ergibt es eine Spannung von 3,19 V.
Comparative example:
A technical electrolyser was operated at an average voltage of 3.15 V and a current density of 4.2 kA / m 2 . Converted to a current density of 4.5 kA / m 2, this results in a voltage of 3.19 V.

Es wurde folgende Prozedur durchgeführt:
Im laufenden Betrieb wurden 6 L einer Lösung von Hexachloroplatinatlösung (7,1 g Pt/L) mit 1 L/h innerhalb von 6 h in die Natronlauge (32%, 90°C) zudosiert. Die Stromdichte variierte hierbei im Bereich von 4,3 bis 4,7 kA/m2.
The following procedure was carried out:
During operation, 6 L of a solution of hexachloroplatinate solution (7.1 g Pt / L) were metered into the sodium hydroxide solution (32%, 90 ° C.) at 1 L / h over the course of 6 h. The current density varied in the range from 4.3 to 4.7 kA / m 2 .

Es gelangten somit 43 g Platin auf die Oberfläche von 144 Kathoden (Oberfläche einer Kathode: 2,7 m2). Dies entspricht einer Platinmenge von 0,11 g/m2.This resulted in 43 g of platinum on the surface of 144 cathodes (surface of a cathode: 2.7 m 2 ). This corresponds to an amount of platinum of 0.11 g / m 2 .

Nach vollständiger Zugabe der Hexachloroplatinat-Lösung wurde bei einer Stromdichte von 4,7 kA/m2 eine mittlere Spannung von 3,17 V erhalten. Die Umrechnung auf eine Stromdichte von 4,5 kA/m2 ergibt eine mittlere Spannung von 3,14 V. Dies entspricht einer Spannungserniedrigung um 50 mV.After all of the hexachloroplatinate solution had been added, an average voltage of 3.17 V was obtained at a current density of 4.7 kA / m 2. The conversion to a current density of 4.5 kA / m 2 results in an average voltage of 3.14 V. This corresponds to a voltage reduction of 50 mV.

Nach 5 Betriebstagen wurde bei 4,5 kA/m2 eine mittlere Spannung von 3,16 V gemessen. Die Spannungserniedrigung beträgt damit nur noch 20 mV.After 5 days of operation, an average voltage of 3.16 V was measured at 4.5 kA / m 2. The voltage drop is therefore only 20 mV.

Nach insgesamt 8 Betriebstagen nach der Dosierung erfolgte eine Abschaltung des Elektrolyseurs. Nach der Abschaltung wurde bei 4,4 kA/m2 eine mittlere Spannung von 3,17 V gemessen. Umgerechnet auf 4,5 kA/m2 ergibt das eine mittlere Spannung von 3,18 V. Damit ist die ursprünglich erzielte Spannungserniedrigung fast vollständig aufgehoben.After a total of 8 operating days after the dosing, the electrolyzer was switched off. After the shutdown, an average voltage of 3.17 V was measured at 4.4 kA / m 2. Converted to 4.5 kA / m 2, this results in an average voltage of 3.18 V. This almost completely eliminates the voltage reduction originally achieved.

Beispiel 3Example 3 Weiteres VergleichsbeispielAnother comparative example

Ein technischer Elektrolyseur wurde bei einer mittleren Spannung von 3,17 V und einer Stromdichte von 4,3 kA/m2 betrieben. Auf eine Stromdichte von 4,5 kA/m2 umgerechnet ergibt es eine Spannung von 3,2 V.A technical electrolyser was operated at an average voltage of 3.17 V and a current density of 4.3 kA / m 2 . Converted to a current density of 4.5 kA / m 2, this results in a voltage of 3.2 V.

Es wurde folgende Prozedur durchgeführt:
Innerhalb von 30 min wurde die Stromdichte ausgehend von 4,3 kA/m2 auf eine Stromdichte von 11,8 A/m2 heruntergefahren und bei diesem Wert konstant gehalten. Nach 10 min wurden 8 L einer Lösung von Hexachloroplatinatlösung (6,25 g Pt/L) innerhalb von 10 min mit 0,8 L/h in die Natronlauge dosiert. Die Stromdichte blieb hierbei auf dem konstanten Wert von 11,8 A/m2 und wurde nach erfolgter Zugabe noch für weitere 30 min bei diesem Wert gehalten. Insgesamt betrug die Zeit, bei der die Stromdichte bei 11,8 A/m2 gehalten wurde, seit Beginn der Zugabe 40 min. Danach wurde die Stromdichte innerhalb von 45 min auf 3,8 kA/m2 hochgefahren.
The following procedure was carried out:
Within 30 minutes, the current density was reduced from 4.3 kA / m 2 to a current density of 11.8 A / m 2 and kept constant at this value. After 10 minutes, 8 L of a solution of hexachloroplatinate solution (6.25 g Pt / L) were dosed into the sodium hydroxide solution at 0.8 L / h over the course of 10 minutes. The current density remained at the constant value of 11.8 A / m 2 and was held at this value for a further 30 minutes after the addition. Overall, the time during which the current density was kept at 11.8 A / m 2 was 40 minutes since the start of the addition, after which the current density was increased to 3.8 kA / m 2 within 45 minutes.

Die Temperatur der Natronlauge über die gesamte Prozedur variierte im Bereich von 76 bis 90 °C.The temperature of the caustic soda over the entire procedure varied in the range from 76 to 90 ° C.

Es gelangten somit 50 g Platin auf die Oberfläche von 144 Kathoden (Oberfläche einer Kathode: 2,7 m2). Dies entspricht einer Platinmenge von 0,13 g/m2.50 g of platinum thus got onto the surface of 144 cathodes (surface of a cathode: 2.7 m 2 ). This corresponds to an amount of platinum of 0.13 g / m 2 .

Nach der Zugabe wurde bei einer Stromdichte von 3,8 kA/m2 eine mittlere Spannung von 3,0 V ermittelt. Umgerechnet auf eine Stromdichte von 4,5 kA/m2 ergibt das eine mittlere Spannung von 3,1 V. Die Spannungserniedrigung beträgt demnach 100 mV.After the addition, an average voltage of 3.0 V was determined at a current density of 3.8 kA / m 2. Converted to a current density of 4.5 kA / m 2, this results in an average voltage of 3.1 V. The voltage decrease is accordingly 100 mV.

Nach insgesamt 8 Betriebstagen nach der Zudosierung und einer Abschaltung wurde bei einer Stromdichte von 4,5 kA/m2 eine mittlere Spannung von 3,19 V gemessen. Die Spannungserniedrigung beträgt demnach nur noch 10 mV und ist somit fast vollständig aufgehoben.After a total of 8 operating days after the metering and a shutdown, an average voltage of 3.19 V was measured at a current density of 4.5 kA / m 2. The voltage drop is therefore only 10 mV and is therefore almost completely eliminated.

Claims (9)

  1. Method for improving the performance of nickel electrodes which are uncoated or have a coating based on platinum metals, platinum metal oxides or a mixture of platinum metals and platinum metal oxides and are used as hydrogen-evolving electrodes in sodium chloride electrolysis by the membrane process, where a platinum compound which is water-soluble or soluble in sodium hydroxide solution, in particular hexachloroplatinic acid or a sodium platinate, particularly preferably Na2PtCl6 and/or Na2Pt(OH)6 is metered into the catholyte during the electrolysis of sodium chloride, characterized in that the metered addition is carried out during electrolysis operation at a reduced current density of from 0.2 A/m2 to 50 A/m2, at a temperature of the catholyte in the range from 40°C to 95°C, using an amount of platinum per m2 of electrode area of from 0.3 g/m2 to 10 g/m2, preferably from 0.35 g/m2 to 8 g/m2, particularly preferably from 0.4 g/m2 to 5 g/m2, with the decreased current density being maintained from the commencement of the metered addition for a total of from 2 to 200 minutes.
  2. Method according to Claim 1, characterized in that to the platinum compound are added further other water-soluble compounds of the noble metals of transition group 8 of the Periodic Table of the Elements, in particular compounds of the platinum group, particularly preferably of palladium, iridium, rhodium, osmium or ruthenium, preferably palladium or ruthenium.
  3. Method according to Claim 2, characterized in that the proportion of noble metal of the further water-soluble compounds of the noble metals of transition group 8 is from 1 to 50% by weight, based on the platinum metal of the soluble platinum compound.
  4. Method according to at least one of Claims 1 to 3, characterized in that the temperature of the catholyte at which the metered addition of the platinum compound is carried out is in the range from 60 to 90°C, preferably from 75 to 90°C.
  5. Method according to at least one of Claims 1 to 4, characterized in that the proportion of platinum of the platinum compound in the catholyte after the metered addition is from 0.01 to 310 mg/l, preferably from 0.02 to 250 mg/l, particularly preferably from 0.03 to 160 mg/l.
  6. Method according to at least one of Claims 1 to 5, characterized in that the catholyte is passed as a volume flow over the electrode surface and said volume flow of the catholyte during the contact time of the electrode surface with the catholyte containing the platinum compound is from 0.1 to 10 1/min, preferably from 0.2 to 5 1/min.
  7. Method according to Claim 6, characterized in that the concentration of platinum metal in the catholyte exiting from the electrolysis cell is continuously or discontinuously monitored.
  8. Method according to at least one of Claims 1 to 7, characterized in that the method is carried out on coated nickel electrodes, with the coating comprising platinum metal/platinum metal oxide based on one or more metals from the group consisting of: ruthenium, iridium, palladium, platinum, rhodium and osmium, preferably from the group consisting of: ruthenium, iridium and platinum.
  9. Process for producing chlorine, sodium hydroxide solution and hydrogen according to the principle of membrane electrolysis on a production scale using nickel electrodes or coated nickel electrodes as cathode, comprising the steps of:
    - introduction of an aqueous solution containing sodium chloride into an anode chamber having an anode and introduction of sodium hydroxide solution into a cathode chamber having a cathode, where anode chamber and cathode chamber are separated from one another by an ion-exchange membrane;
    - setting of a production current density of at least 1 kA/m2 based on the electrode area;
    - discharge of the sodium chloride-containing solution from the anode chamber together with the chlorine gas formed at the anode and separation of the chlorine from the liquid phase;
    - feeding of the chlorine which has been separated off to a suitable treatment, in particular comprising at least drying, purification and optionally compression of the chlorine gas;
    - feeding of the sodium chloride-containing solution discharged from the anode space to concentration and purification, in particular comprising at least the steps of: destruction of chlorate by-products, dechlorination, increasing of the concentration by addition of sodium chloride, purification by means of precipitation reagents, filtration and ion exchange to remove undesirable cations,
    - subsequent reintroduction of the sodium chloride-containing solution into the anode chamber;
    - discharge of the sodium hydroxide solution from the cathode chamber together with the hydrogen formed at the cathode and separation of the hydrogen from the liquid phase;
    - optionally feeding of the hydrogen which has been separated off to a suitable treatment and purification;
    - feeding of the sodium hydroxide solution discharged from the cathode space to a collection vessel and optionally to a further suitable treatment and purification;
    - dilution of a partial amount of the sodium hydroxide solution discharged from the cathode space with water and reintroduction into the cathode space;
    characterized in that the current density is reduced to a value of less than 100 A/m2 but at least 0.2 A/m2 in order to lower the electrolysis voltage on attainment of a prescribed average maximum voltage value during electrolysis operation, the method according to any of Claims 1 to 8 is carried out and the current density is subsequently increased again to the production current density and production is continued.
EP18184694.0A 2018-07-20 2018-07-20 Method for improving the performance of nickel electrodes Active EP3597791B1 (en)

Priority Applications (9)

Application Number Priority Date Filing Date Title
EP18184694.0A EP3597791B1 (en) 2018-07-20 2018-07-20 Method for improving the performance of nickel electrodes
PT181846940T PT3597791T (en) 2018-07-20 2018-07-20 Method for improving the performance of nickel electrodes
HUE18184694A HUE057761T2 (en) 2018-07-20 2018-07-20 Method for improving the performance of nickel electrodes
EP19741999.7A EP3824118A1 (en) 2018-07-20 2019-07-12 Method for improving the performance of nickel electrodes
JP2021502744A JP2021530619A (en) 2018-07-20 2019-07-12 How to improve the performance of nickel electrodes
US17/261,864 US20210292922A1 (en) 2018-07-20 2019-07-12 Method for improving the performance of nickel electrodes
PCT/EP2019/068789 WO2020016122A1 (en) 2018-07-20 2019-07-12 Method for improving the performance of nickel electrodes
CN201980048650.4A CN112513334B (en) 2018-07-20 2019-07-12 Method for improving nickel electrode performance
KR1020217004643A KR20210032469A (en) 2018-07-20 2019-07-12 How to improve the performance of nickel electrodes

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP18184694.0A EP3597791B1 (en) 2018-07-20 2018-07-20 Method for improving the performance of nickel electrodes

Publications (2)

Publication Number Publication Date
EP3597791A1 EP3597791A1 (en) 2020-01-22
EP3597791B1 true EP3597791B1 (en) 2021-11-17

Family

ID=63014388

Family Applications (2)

Application Number Title Priority Date Filing Date
EP18184694.0A Active EP3597791B1 (en) 2018-07-20 2018-07-20 Method for improving the performance of nickel electrodes
EP19741999.7A Withdrawn EP3824118A1 (en) 2018-07-20 2019-07-12 Method for improving the performance of nickel electrodes

Family Applications After (1)

Application Number Title Priority Date Filing Date
EP19741999.7A Withdrawn EP3824118A1 (en) 2018-07-20 2019-07-12 Method for improving the performance of nickel electrodes

Country Status (8)

Country Link
US (1) US20210292922A1 (en)
EP (2) EP3597791B1 (en)
JP (1) JP2021530619A (en)
KR (1) KR20210032469A (en)
CN (1) CN112513334B (en)
HU (1) HUE057761T2 (en)
PT (1) PT3597791T (en)
WO (1) WO2020016122A1 (en)

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB569444A (en) * 1942-11-05 1945-05-24 Mond Nickel Co Ltd Improvements relating to the electrolytic purification of nickel
NL127936C (en) * 1964-03-04
US3864226A (en) * 1972-10-19 1975-02-04 Du Pont Process for electrolyzing aqueous sodium or potassium ion solutions
GB1582130A (en) * 1976-07-13 1980-12-31 Matthey Rustenburg Refines Electrolytic treatment of effluents
US4160704A (en) 1977-04-29 1979-07-10 Olin Corporation In situ reduction of electrode overvoltage
US4105516A (en) 1977-07-11 1978-08-08 Ppg Industries, Inc. Method of electrolysis
US4242185A (en) * 1979-09-04 1980-12-30 Ionics Inc. Process and apparatus for controlling impurities and pollution from membrane chlor-alkali cells
FR2538005B1 (en) 1982-12-17 1987-06-12 Solvay CATHODE FOR THE ELECTROLYTIC PRODUCTION OF HYDROGEN AND ITS USE
GB8316778D0 (en) 1983-06-21 1983-07-27 Ici Plc Cathode
CN1012970B (en) 1987-06-29 1991-06-26 耐用电极株式会社 Cathode for electrolysis and process for producing same
JPS6411988A (en) * 1987-07-06 1989-01-17 Kanegafuchi Chemical Ind Method for recovering activity of deteriorated cathode having low hydrogen overvoltage
US5035789A (en) 1990-05-29 1991-07-30 The Dow Chemical Company Electrocatalytic cathodes and methods of preparation
DE4232958C1 (en) * 1992-10-01 1993-09-16 Deutsche Aerospace Ag, 80804 Muenchen, De
JP3670763B2 (en) 1996-06-24 2005-07-13 三洋電機株式会社 Nonvolatile semiconductor memory
DE10211169A1 (en) * 2002-03-14 2003-10-02 Kurt Sielaff Plant for the production of an aqueous long-term stable chlorine dioxide solution and its metered injection into a medium flowing through a line
KR100363011B1 (en) 2002-03-28 2002-11-30 Hanwha Chemical Corp Electrolyte composition for electrolysis of brine and electrolysis method of brine using the same
JP4339337B2 (en) * 2005-09-16 2009-10-07 株式会社カネカ Method for activating cathode for electrolysis and electrolysis method
DE102007003554A1 (en) * 2007-01-24 2008-07-31 Bayer Materialscience Ag Method for improving the performance of nickel electrodes used in sodium chloride electrolysis comprises adding a platinum compound soluble in water or in alkali during the electrolysis
KR101257921B1 (en) * 2011-06-29 2013-04-24 고희찬 Electrolytic hydrogen-generating electrode and method for producing the same
JP6397396B2 (en) * 2015-12-28 2018-09-26 デノラ・ペルメレック株式会社 Alkaline water electrolysis method

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
HUE057761T2 (en) 2022-06-28
KR20210032469A (en) 2021-03-24
PT3597791T (en) 2022-01-27
CN112513334B (en) 2023-12-22
JP2021530619A (en) 2021-11-11
EP3597791A1 (en) 2020-01-22
US20210292922A1 (en) 2021-09-23
EP3824118A1 (en) 2021-05-26
WO2020016122A1 (en) 2020-01-23
CN112513334A (en) 2021-03-16

Similar Documents

Publication Publication Date Title
EP1953270B1 (en) Method for improving the performance of nickel electrodes
EP0141142B1 (en) Gas diffusion electrode with a hydrophylic coating layer, and method for its production
DE2844499C2 (en) Process for producing a halogen
DE69115213T2 (en) Electrode.
EP2260124B1 (en) Electrolysis cell for hydrogen chloride electrolysis
DE60004208T2 (en) RHODIUM ELECTRIC CATALYST AND ITS MANUFACTURING METHOD
DE2251660A1 (en) METHOD AND APPARATUS FOR PRODUCING HIGHLY PURE ALKALIMETAL HYDROXIDE IN AN ELECTROLYTIC CELL
WO2010078952A2 (en) Structured gas diffusion electrode for electrolysis cells
DE2331949A1 (en) DIMENSIONALLY STABLE ELECTRODE AND METHOD OF MANUFACTURING IT
EP1463847B1 (en) Electrode for conducting electrolysis in acid media
DE3782464T2 (en) CATHODE FOR ELECTROLYSIS CELLS TIED TO AN ION EXCHANGE MEMBRANE AND CORRESPONDING ELECTROLYSIS PROCESS.
DE2419021B2 (en) electrode
EP2732073A2 (en) Undivided electrolytic cell and use of the same
DD298437A5 (en) FORMSTABLE ANODES AND METHOD FOR THE PRODUCTION OF ALKALIDICHROMATES AND CHROMICALS UNDER THEIR USE
EP1283281A2 (en) Process for the electrochemical production of chlorine from aqueous chlorhydric acid solutions
EP2326750A1 (en) Electrode material, electrode, and method for hydrogen chloride electrolysis
EP3597791B1 (en) Method for improving the performance of nickel electrodes
EP0683247B1 (en) Process for manufacturing stable graphite cathodes for the electrolysis of chlorhydric acid
EP0234256B1 (en) Process for carrying out hcl membrane electrolysis
EP2439314A2 (en) Method for producing oxygen-consuming electrodes which are stable during transport and storage
EP2824218A1 (en) Method for producing oxygen-consuming electrodes which are stable during transport and storage
DE10152275A1 (en) Process for the electrolysis of aqueous solutions of hydrogen chloride
EP3440241A1 (en) Difunctional electrode and electrolysis device for chlor-alkali electrolysis
DE2745542A1 (en) METHOD OF ELECTROLYSIS OF SALT SOLUTIONS BY MERCURY CATHODES
DE10048004A1 (en) Improving yields in electrolysis of aqueous hydrochloric acid solutions by using membrane electrode unit with electrocatalytic anode layer containing a carbon black-supported noble metal, titanium or zirconium catalyst

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20191031

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

17Q First examination report despatched

Effective date: 20200811

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

RIC1 Information provided on ipc code assigned before grant

Ipc: C25B 1/46 20060101AFI20210512BHEP

Ipc: C25B 11/052 20210101ALI20210512BHEP

Ipc: C25B 11/061 20210101ALI20210512BHEP

Ipc: C25B 11/091 20210101ALI20210512BHEP

Ipc: C25B 15/00 20060101ALI20210512BHEP

INTG Intention to grant announced

Effective date: 20210610

RIN1 Information on inventor provided before grant (corrected)

Inventor name: TRIEU, VINH

Inventor name: BULAN, ANDREAS

Inventor name: MALCHOW, RICHARD

Inventor name: SCHULZ, PETER

Inventor name: SAYSAY, MOHAMED

Inventor name: MOHN, TOBIAS

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502018007866

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1448122

Country of ref document: AT

Kind code of ref document: T

Effective date: 20211215

REG Reference to a national code

Ref country code: PT

Ref legal event code: SC4A

Ref document number: 3597791

Country of ref document: PT

Date of ref document: 20220127

Kind code of ref document: T

Free format text: AVAILABILITY OF NATIONAL TRANSLATION

Effective date: 20220121

REG Reference to a national code

Ref country code: NL

Ref legal event code: FP

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211117

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211117

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211117

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220217

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220317

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211117

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211117

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220217

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211117

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211117

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220218

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211117

REG Reference to a national code

Ref country code: HU

Ref legal event code: AG4A

Ref document number: E057761

Country of ref document: HU

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211117

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211117

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211117

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211117

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211117

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211117

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502018007866

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20220818

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211117

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211117

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211117

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20220720

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220720

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220731

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220731

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211117

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220720

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220720

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: HU

Payment date: 20230711

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211117

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211117

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211117

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20240627

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: PT

Payment date: 20240627

Year of fee payment: 7

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1448122

Country of ref document: AT

Kind code of ref document: T

Effective date: 20230720

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211117

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240618

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20240703

Year of fee payment: 7