EP3562974B1 - Tin plating bath and a method for depositing tin or tin alloy onto a surface of a substrate - Google Patents

Tin plating bath and a method for depositing tin or tin alloy onto a surface of a substrate Download PDF

Info

Publication number
EP3562974B1
EP3562974B1 EP17817752.3A EP17817752A EP3562974B1 EP 3562974 B1 EP3562974 B1 EP 3562974B1 EP 17817752 A EP17817752 A EP 17817752A EP 3562974 B1 EP3562974 B1 EP 3562974B1
Authority
EP
European Patent Office
Prior art keywords
tin
group
plating bath
ions
tin plating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP17817752.3A
Other languages
German (de)
English (en)
French (fr)
Other versions
EP3562974A1 (en
Inventor
Kadir TUNA
Arnd Kilian
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Atotech Deutschland GmbH and Co KG
Original Assignee
Atotech Deutschland GmbH and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Atotech Deutschland GmbH and Co KG filed Critical Atotech Deutschland GmbH and Co KG
Publication of EP3562974A1 publication Critical patent/EP3562974A1/en
Application granted granted Critical
Publication of EP3562974B1 publication Critical patent/EP3562974B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • C25D3/30Electroplating: Baths therefor from solutions of tin
    • C25D3/32Electroplating: Baths therefor from solutions of tin characterised by the organic bath constituents used
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/52Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating using reducing agents for coating with metallic material not provided for in a single one of groups C23C18/32 - C23C18/50
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/1601Process or apparatus
    • C23C18/1633Process of electroless plating
    • C23C18/1655Process features
    • C23C18/1658Process features with two steps starting with metal deposition followed by addition of reducing agent
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/48Coating with alloys
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/1601Process or apparatus
    • C23C18/1633Process of electroless plating
    • C23C18/1655Process features
    • C23C18/166Process features with two steps starting with addition of reducing agent followed by metal deposition
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/18Pretreatment of the material to be coated
    • C23C18/1851Pretreatment of the material to be coated of surfaces of non-metallic or semiconducting in organic material
    • C23C18/1855Pretreatment of the material to be coated of surfaces of non-metallic or semiconducting in organic material by mechanical pretreatment, e.g. grinding, sanding
    • C23C18/1858Pretreatment of the material to be coated of surfaces of non-metallic or semiconducting in organic material by mechanical pretreatment, e.g. grinding, sanding by formation of electrostatic charges, e.g. tribofriction

Definitions

  • the inventive tin plating bath has a loss of plating rate over time which is minimized compared to a conventional tin plating bath known in the art.
  • the inventive tin plating bath allows for a constant plating rate, at least for a certain period of time.
  • each R 1 in the compounds according to formula (I) is independently selected from hydrogen and alkanoyl group.
  • each R 2 in the compounds according to formula (I) is independently selected from hydrogen and carboxyl group.
  • R 3 in formula (Ia) in the compounds according to formula (I) is independently selected from hydrogen and carboxyl group.
  • each R 4 in formula (Ia) in the compounds according to formula (I) is independently selected from hydrogen and alkanoyl group.
  • n in the compounds according to formula (I) is 2.
  • m in the compounds according to formula (I) is 2.
  • the molar ratio of all complexing agents selected from the group consisting of pyrophosphate ions, linear polyphosphate ions and cyclic polyphosphate ions to the tin ions ranges from 2/1 to 25/1, even more preferably from 2.5 to 20/1, still even more preferably 5/1 to 15/1, most preferably from 7.5/1 to 12.5/1.
  • the inventive tin plating bath is free of organophosphorus compounds such as nitrilot-ris(methylene phophonate) (NTMP), particularly of organophosphorus compounds wherein the phosphorus atoms in said compounds are in the oxidation state +III.
  • organophosphorus compounds such as nitrilot-ris(methylene phophonate) (NTMP), particularly of organophosphorus compounds wherein the phosphorus atoms in said compounds are in the oxidation state +III.
  • NTMP nitrilot-ris(methylene phophonate)
  • Activation steps usually require the deposition of a noble metal catalyst, most often palladium, on the at least one surface of the at least one substrate to render said at least one surface more receptive for tin deposition.
  • a noble metal catalyst most often palladium
  • an activation step is preceded by a pre-dip step or succeeded by a post-dip step, both which are known in the art.
  • the inventive method optionally comprises one or more rinsing steps.
  • Rinsing can be accomplished by treatment of the at least one surface of the at least one substrate with at least one solvent, said at least one solvent optionally comprising one or more surfactants.
  • the at least one solvent is preferably selected from the group consisting of water, more preferably deionized water (DI water), alcohols such as ethanol and iso-propanol, glycols such as DEG and glycol ethers such as BDG and mixtures of the aforementioned.
  • DI water deionized water
  • alcohols such as ethanol and iso-propanol
  • glycols such as DEG
  • glycol ethers such as BDG and mixtures of the aforementioned.
  • the deposit thickness was measured at 10 positions of each substrate and is used to determine the layer thickness by XRF using the XRF instrument Fischerscope XDV-SDD (Helmut Fischer GmbH, Germany). By assuming a layered structure of the deposit, the layer thickness can be calculated from such XRF data. Alternatively, the thickness of deposits was determined from a frequency change in a quartz crystal with a quartz crystal microbalance (SRS QCM200, Stanford Research Systems, Inc.).

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Electrochemistry (AREA)
  • Chemically Coating (AREA)
  • Electroplating And Plating Baths Therefor (AREA)
  • Electroplating Methods And Accessories (AREA)
EP17817752.3A 2016-12-28 2017-12-20 Tin plating bath and a method for depositing tin or tin alloy onto a surface of a substrate Active EP3562974B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP16207103 2016-12-28
PCT/EP2017/083726 WO2018122058A1 (en) 2016-12-28 2017-12-20 Tin plating bath and a method for depositing tin or tin alloy onto a surface of a substrate

Publications (2)

Publication Number Publication Date
EP3562974A1 EP3562974A1 (en) 2019-11-06
EP3562974B1 true EP3562974B1 (en) 2020-10-07

Family

ID=57708445

Family Applications (1)

Application Number Title Priority Date Filing Date
EP17817752.3A Active EP3562974B1 (en) 2016-12-28 2017-12-20 Tin plating bath and a method for depositing tin or tin alloy onto a surface of a substrate

Country Status (8)

Country Link
US (1) US11274375B2 (zh)
EP (1) EP3562974B1 (zh)
JP (1) JP6980017B2 (zh)
KR (1) KR102639867B1 (zh)
CN (1) CN110139948B (zh)
PH (1) PH12019501495A1 (zh)
TW (1) TWI728217B (zh)
WO (1) WO2018122058A1 (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102639867B1 (ko) * 2016-12-28 2024-02-22 아토테크 도이칠란트 게엠베하 운트 콤파니 카게 주석 도금조 및 기판 표면에 주석 또는 주석 합금을 침착시키는 방법
EP3770298A1 (en) 2019-07-24 2021-01-27 ATOTECH Deutschland GmbH Tin plating bath and a method for depositing tin or tin alloy onto a surface of a substrate
TW202106928A (zh) 2019-05-28 2021-02-16 德商德國艾托特克公司 錫電鍍浴及於基板表面上沉積錫或錫合金之方法
KR102259857B1 (ko) 2021-02-04 2021-06-03 대한민국 (관리부서 : 환경부 국립환경과학원장) 위해성평가를 위한 타이어 입자 제조장치 및 제조방법
US20220396881A1 (en) * 2021-06-10 2022-12-15 C. Uyemura & Co., Ltd. Method for fabricating electronic component
CN114216949B (zh) * 2021-11-18 2023-08-08 佛山科学技术学院 一种丝网印刷电极、及其制作方法和检测方法
JP7169020B1 (ja) * 2021-12-27 2022-11-10 石原ケミカル株式会社 還元型無電解インジウムメッキ浴

Family Cites Families (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3917846A (en) * 1970-05-05 1975-11-04 William H Roher Inc Phenylacetic acids in reducing pain, fever and inflammation
US3917486A (en) 1973-07-24 1975-11-04 Kollmorgen Photocircuits Immersion tin bath composition and process for using same
DE3322156C2 (de) * 1983-06-21 1985-10-24 Blasberg-Oberflächentechnik GmbH, 5650 Solingen Saures chemisches Verzinnungsbad
US6508927B2 (en) 1998-11-05 2003-01-21 C. Uyemura & Co., Ltd. Tin-copper alloy electroplating bath
JP3455709B2 (ja) 1999-04-06 2003-10-14 株式会社大和化成研究所 めっき方法とそれに用いるめっき液前駆体
DE10158227A1 (de) 2001-11-15 2003-06-05 Siemens Ag Elektrolysebad zum galvanischen Abscheiden von Silber-Zinn-Legierungen
JP2003293185A (ja) * 2002-04-02 2003-10-15 C Uyemura & Co Ltd 錫電気めっき浴及びこれを用いためっき方法
EP1553211B1 (en) * 2002-07-25 2014-04-02 Shinryo Corporation Tin-silver-copper plating solution, plating film containing the same, and method for forming the plating film
CN1742118A (zh) * 2003-01-24 2006-03-01 石原药品株式会社 含锡镀浴
CN1804142A (zh) 2005-12-08 2006-07-19 天津大学 电镀锡及锡镍合金用添加剂
WO2008081637A1 (ja) 2006-12-27 2008-07-10 Japan Pure Chemical Co., Ltd. 還元型無電解スズめっき液及びそれを用いて得られたスズ皮膜
JP4632186B2 (ja) * 2007-08-01 2011-02-16 太陽化学工業株式会社 電子部品用錫電解めっき液、電子部品の錫電解めっき方法及び錫電解めっき電子部品
EP2034049A1 (en) * 2007-09-05 2009-03-11 Nederlandse Organisatie voor toegepast- natuurwetenschappelijk onderzoek TNO An electroless process for depositing a metal on a non-catalytic substrate
CN100547111C (zh) * 2008-01-25 2009-10-07 太原师范学院 一种化学镀锡溶液
JP5396583B2 (ja) * 2008-02-07 2014-01-22 石原ケミカル株式会社 電気スズ又はスズ合金メッキ浴、当該メッキ皮膜を形成した電子部品
KR101579334B1 (ko) * 2008-06-26 2015-12-21 니혼 고쥰도가가쿠 가부시키가이샤 환원형 무전해 주석 도금액 및 그것을 사용한 주석 피막
DE102008032398A1 (de) * 2008-07-10 2010-01-14 Umicore Galvanotechnik Gmbh Verbesserter Kupfer-Zinn-Elektrolyt und Verfahren zur Abscheidung von Bronzeschichten
EP2481835B1 (en) * 2011-01-28 2013-09-11 Atotech Deutschland GmbH Autocatalytic plating bath composition for deposition of tin and tin alloys
CN103173803A (zh) * 2011-12-21 2013-06-26 谢柳芳 一种电镀锡无铅添加剂
CN103173807A (zh) 2011-12-21 2013-06-26 黄佩英 一种电镀锡溶液添加剂
US8888984B2 (en) 2012-02-09 2014-11-18 Rohm And Haas Electronic Materials Llc Plating bath and method
EP2671968B1 (en) 2012-06-05 2014-11-26 ATOTECH Deutschland GmbH Method and regeneration apparatus for regenerating a plating composition
JP2014065943A (ja) * 2012-09-26 2014-04-17 Meltex Inc 還元型無電解スズめっき浴
JP6133056B2 (ja) * 2012-12-27 2017-05-24 ローム・アンド・ハース電子材料株式会社 スズまたはスズ合金めっき液
JP6088295B2 (ja) * 2013-03-07 2017-03-01 ローム・アンド・ハース電子材料株式会社 スズ合金めっき液
DE102013226297B3 (de) 2013-12-17 2015-03-26 Umicore Galvanotechnik Gmbh Wässriger, cyanidfreier Elektrolyt für die Abscheidung von Kupfer-Zinn- und Kupfer-Zinn-Zink-Legierungen aus einem Elektrolyten und Verfahren zur elektrolytischen Abscheidung dieser Legierungen
CN104746052A (zh) 2013-12-25 2015-07-01 比亚迪股份有限公司 一种化学镀锡液及其制备方法和一种化学镀锡方法
KR102639867B1 (ko) * 2016-12-28 2024-02-22 아토테크 도이칠란트 게엠베하 운트 콤파니 카게 주석 도금조 및 기판 표면에 주석 또는 주석 합금을 침착시키는 방법

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
CN110139948B (zh) 2022-09-30
JP2020503457A (ja) 2020-01-30
TW201831724A (zh) 2018-09-01
CN110139948A (zh) 2019-08-16
TWI728217B (zh) 2021-05-21
US20190345623A1 (en) 2019-11-14
KR102639867B1 (ko) 2024-02-22
EP3562974A1 (en) 2019-11-06
JP6980017B2 (ja) 2021-12-15
PH12019501495A1 (en) 2020-06-15
KR20190097087A (ko) 2019-08-20
US11274375B2 (en) 2022-03-15
WO2018122058A1 (en) 2018-07-05

Similar Documents

Publication Publication Date Title
EP3562974B1 (en) Tin plating bath and a method for depositing tin or tin alloy onto a surface of a substrate
EP2855732B1 (en) Plating bath for electroless deposition of nickel layers
JP4091518B2 (ja) 金属の無電解析出法
KR101660520B1 (ko) 구리 및 니켈의 연속 무전해 도금방법 및 이를 이용하여 제조된 도금층
JP6144258B2 (ja) ノーシアン金めっき浴、及び、ノーシアン金めっき浴の製造方法
KR20150136066A (ko) 무전해 구리 도금 용액
US8801844B2 (en) Autocatalytic plating bath composition for deposition of tin and tin alloys
TW201615628A (zh) 用於電沉積含金之層之組合物及方法
TWI709663B (zh) 用於金之無電電鍍之鍍浴組合物、沉積金層之方法及乙二胺衍生物之用途
KR101821852B1 (ko) 코발트 합금의 무전해 석출을 위한 알칼리성 도금조
US20220220617A1 (en) Tin plating bath and a method for depositing tin or tin alloy onto a surface of a substrate
JPH0774475B2 (ja) 銀めっきの前処理液
Balaramesh et al. Bath parameters affecting electroless copper deposition-A review
JP2002146585A (ja) 電解めっき液
EP3770298A1 (en) Tin plating bath and a method for depositing tin or tin alloy onto a surface of a substrate
JP7316250B2 (ja) 無電解金めっき浴および無電解金めっき方法
WO2023105072A1 (en) Use of an aqueous alkaline composition for the electroless deposition of a metal or metal alloy on a metal surface of a substrate
JP2001348671A (ja) 無電解金めっき液及び無電解金めっき方法

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20190701

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20200520

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1321238

Country of ref document: AT

Kind code of ref document: T

Effective date: 20201015

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602017025186

Country of ref document: DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: FP

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201007

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210208

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201007

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210108

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210107

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201007

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210207

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201007

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201007

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210107

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201007

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201007

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602017025186

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201007

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201007

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201007

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201007

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201007

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201007

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201007

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201007

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20201231

26N No opposition filed

Effective date: 20210708

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201220

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201007

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201231

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201220

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201231

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201007

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201231

REG Reference to a national code

Ref country code: AT

Ref legal event code: UEP

Ref document number: 1321238

Country of ref document: AT

Kind code of ref document: T

Effective date: 20201007

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210207

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201007

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201007

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201007

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201007

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201231

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20211220

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211220

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20231220

Year of fee payment: 7

Ref country code: IT

Payment date: 20231228

Year of fee payment: 7

Ref country code: DE

Payment date: 20231214

Year of fee payment: 7

Ref country code: AT

Payment date: 20231221

Year of fee payment: 7