EP3533110B1 - Dual polarisierter hornstrahler - Google Patents

Dual polarisierter hornstrahler Download PDF

Info

Publication number
EP3533110B1
EP3533110B1 EP17808068.5A EP17808068A EP3533110B1 EP 3533110 B1 EP3533110 B1 EP 3533110B1 EP 17808068 A EP17808068 A EP 17808068A EP 3533110 B1 EP3533110 B1 EP 3533110B1
Authority
EP
European Patent Office
Prior art keywords
horn
radiator
waveguide
waveguides
section
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP17808068.5A
Other languages
English (en)
French (fr)
Other versions
EP3533110A1 (de
Inventor
Dan Fleancu
Andreas Vollmer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Telefonaktiebolaget LM Ericsson AB
Original Assignee
Telefonaktiebolaget LM Ericsson AB
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Telefonaktiebolaget LM Ericsson AB filed Critical Telefonaktiebolaget LM Ericsson AB
Publication of EP3533110A1 publication Critical patent/EP3533110A1/de
Application granted granted Critical
Publication of EP3533110B1 publication Critical patent/EP3533110B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/06Arrays of individually energised antenna units similarly polarised and spaced apart
    • H01Q21/061Two dimensional planar arrays
    • H01Q21/064Two dimensional planar arrays using horn or slot aerials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/24Supports; Mounting means by structural association with other equipment or articles with receiving set
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q13/00Waveguide horns or mouths; Slot antennas; Leaky-waveguide antennas; Equivalent structures causing radiation along the transmission path of a guided wave
    • H01Q13/02Waveguide horns
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q13/00Waveguide horns or mouths; Slot antennas; Leaky-waveguide antennas; Equivalent structures causing radiation along the transmission path of a guided wave
    • H01Q13/02Waveguide horns
    • H01Q13/0208Corrugated horns
    • H01Q13/0225Corrugated horns of non-circular cross-section
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q13/00Waveguide horns or mouths; Slot antennas; Leaky-waveguide antennas; Equivalent structures causing radiation along the transmission path of a guided wave
    • H01Q13/02Waveguide horns
    • H01Q13/025Multimode horn antennas; Horns using higher mode of propagation
    • H01Q13/0258Orthomode horns
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/0006Particular feeding systems
    • H01Q21/0025Modular arrays
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/06Arrays of individually energised antenna units similarly polarised and spaced apart
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/24Combinations of antenna units polarised in different directions for transmitting or receiving circularly and elliptically polarised waves or waves linearly polarised in any direction
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q25/00Antennas or antenna systems providing at least two radiating patterns
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q25/00Antennas or antenna systems providing at least two radiating patterns
    • H01Q25/001Crossed polarisation dual antennas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/24Supports; Mounting means by structural association with other equipment or articles with receiving set
    • H01Q1/241Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM
    • H01Q1/246Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM specially adapted for base stations

Definitions

  • the present invention relates to a dual-polarized horn with a first and a second polarization, which are fed separately from one another via a first waveguide and a second waveguide.
  • the present invention relates to such a dual-polarized horn antenna for use as a mobile radio antenna, in particular for a mobile radio base station.
  • Horn radiators are also referred to as waveguide radiators and usually have a horn, ie a hollow body which is open on one side and is fed by a hollow line. Radiators based on waveguide technology usually have large dimensions and are therefore not suitable for a compact design. Therefore, horn radiators have hitherto been considered unsuitable for 3D beam steering and 3D beamforming applications, since a radiator spacing of less than 1 ⁇ , preferably less than 0.7 ⁇ , and in particular less than 0.5 ⁇ , is advantageous in the vertical and horizontal directions. Smaller individual emitter spacings improve the far-field group diagram in particular, since no secondary main lobes occur in the far-field group diagram with an individual emitter spacing of less than 0.5 ⁇ .
  • Dual polarizing horn radiators pose a particular challenge in terms of compactness and electrical performance, since one radiator is used for two polarizations, which are usually different.
  • compact dual-polarized horn antennas are fed through two separate orthogonal waveguides, or through a dual-polarized waveguide.
  • WO 2015134772 A1 shows a waveguide structure for a dual polarized antenna array with septum polarizers that combine first waveguides associated with a first polarization and second waveguides associated with a second polarization and convert the like-polarization fields transmitted through the first and second waveguides into oppositely circularly polarized ones Convert fields and feed hollow radiators.
  • two adjacent septum polarizers are each fed via a common waveguide, which has a cross section which, in projection onto the aperture plane, partially extends both in the area of the aperture of the one septum polarizer and in the area of the aperture of the horn radiator assigned to one septum polarizer.
  • More horns are off CN 102 938 497 A , U.S. 2010/123636 A1 , RU 2 292 098 and DE 40 09 288 A1 famous.
  • More horns are off DE 102010019081 A9 , KR 100801030 B1 , US2011267250A1 and DE 102010019081 A9 , the FR2523376A1 , the FR2599899A1 , the US7187342B2 , the WO 2007046055 A2 .
  • horn radiators are known from the AT 202658 T , the DE 3375867 D1 , the DE 3787681 D1 , the AU688212B2 , the US4716415A , the CN 101083359B , the CN 201060943 Y , the US7564421B1 , the CN 203326116 U , the WO 2014208993 A1 , the EP 2869400 A1 , the WO 2008147132 A1 , the WO 2009008601 A1 , the KR 20090038803 A , the WO 2009093779 A1 , the KR 101090188 B1 and the US8988294B2 famous.
  • the U.S. 5,818,396 shows a horn radiator fed by a coaxial structure.
  • the waveguides guide linearly polarized light.
  • the U.S. 2009/213022 A1 shows a horn radiator with a dielectric material inside the radiator and the U.S. 2010/078203 A1 discloses a low refractive index metamaterial.
  • the present invention comprises a dual-polarized horn, with a first and a second polarization, which are fed separately from one another via a first waveguide and a second waveguide of the horn, the first and the second polarization being orthogonal to one another, for which the two waveguides have orthogonal polarizations in the region where they open into the horn.
  • the first waveguide runs in the direction of emission to its mouth in the horn radiator and has a cross section which, in projection onto the aperture plane, extends partially inside and partially outside the aperture opening of the horn radiator, the mouth of the first Waveguide into the horn has along its long side an extension both parallel to the aperture plane and perpendicular to the aperture plane, with an outer short side of the mouth being arranged higher than the opposite inner short side of the mouth.
  • the waveguides By routing the waveguide in the direction of radiation, the waveguides can be guided to the horn radiator in a confined space.
  • the horn radiator By running partly inside and partly outside the aperture opening Cross-section, the horn radiator can be made very compact, since its minimum size is no longer limited by the cross-sections of the waveguide.
  • the waveguide runs with its cross-section in projection onto the aperture plane partially under the aperture opening of an adjacent horn.
  • the space available in a radiator array is optimally used and adjacent radiators are arranged next to one another in a very compact manner.
  • the information on the extent of a cross section of the waveguide preferably relates to the cross section of the waveguide at the level of the lowest point of the mouth of the waveguide in the horn radiator with respect to a direction normal to the aperture plane.
  • the waveguide has a boundary wall on the end face, which extends from a position which, in projection onto the aperture plane, lies outside the aperture opening of the horn radiator, to an edge of the opening into the horn radiator.
  • the boundary wall is preferably the wall of a short side of the waveguide. This directs the electromagnetic field into the horn of the horn radiator.
  • the boundary wall preferably runs at an angle to the aperture plane.
  • the dual-polarized horn has a first and a second polarization, which are fed separately from one another via a first waveguide and a second waveguide.
  • the two waveguides run in the direction of emission to their mouths in the horn radiator, with at least one of the waveguides and in particular the first waveguide having a transformation section through which its polarization in the aperture plane is rotated relative to the other waveguide before it flows into the horn radiator. This in turn enables a very compact arrangement of the waveguides.
  • the two waveguides run next to one another and/or parallel to one another in the direction of emission to their openings into the horn antenna.
  • the two waveguides initially have the same polarization before the polarization of one waveguide is rotated by the transformation section in the aperture plane in relation to the other waveguide.
  • the transformation section has a twist, by which the polarization is rotated. Such twisting is also referred to as a twist.
  • the polarization of the second waveguide is not rotated, or the second waveguide has a transformation section in which a transformation takes place at a different angle and in particular in the opposite direction than in the first waveguide.
  • the second waveguide can therefore have no twist or a twist at a different angle than the first waveguide.
  • the two waveguides can initially have the same polarization, with only the polarization of the first waveguide being rotated by 90° in order to be orthogonal to the polarization of the second waveguide in the region of the opening into the horn.
  • the cross section of the first waveguide decreases in the transformation section.
  • the second waveguide can have a transformation section in which its cross section is reduced.
  • the two waveguides have a cross section with a long side and a short side, in particular a rectangular cross section.
  • the waveguides have at least one narrowing of the cross section and/or at least one widening of the cross section.
  • cross sections of adjacent waveguides can be nested in one another.
  • a cross-sectional widening or an end section of the cross-section of a waveguide can engage in a cross-sectional narrowing of an adjacent waveguide.
  • the second waveguides can have a cross-sectional narrowing, into which a cross-sectional widening or an end section of the cross-section of a first waveguide engages.
  • a first waveguide can be arranged between two second waveguides with cross-section tapers, the cross-sectional widening or end sections of which engage in the cross-sectional tapers of the second waveguide on both sides.
  • the narrowing or widening of the cross section is preferably provided in each case in a middle region of the waveguide cross section, in particular in a middle region with respect to the H-field plane.
  • the waveguides can have the narrowing or widening of the cross section in the feed section and/or in the transformation section and/or in the mouth section.
  • the long sides of the two waveguides preferably initially run parallel to one another. Alternatively or additionally, after the transformation section and in particular after the twisting, the long sides of the waveguides are perpendicular to one another. In particular, the long sides of the two waveguides in one Feed section run parallel to each other and are perpendicular to each other in a mouth section.
  • the reduction in the cross section in the transformation section comprises at least a reduction in the short side and/or an increase in the ratio between the long and the short side.
  • the horn radiator according to the invention is preferably a mobile radio transmitter, in particular for a mobile radio base station.
  • Both waveguides are preferably routed to the horn radiator in the emission direction.
  • the two waveguides run next to one another and/or parallel to one another in the direction of emission to their openings into the horn antenna.
  • a course in the emission direction preferably means that the waveguide runs at an angle of less than 45°, preferably less than 30°, more preferably less than 10° to a normal on the aperture plane and/or to the main emission direction of the horn radiator.
  • the waveguide particularly preferably runs in a direction which is perpendicular to the aperture plane and/or runs parallel to the main emission direction.
  • the main emission direction is preferably perpendicular to the aperture plane of the horn radiator.
  • the cross sections of the two waveguides are preferably rotated by 90° relative to one another in the region of the mouth.
  • a section through the waveguide perpendicular to the course of the waveguide and/or a section in the aperture plane is preferably considered as a cross section.
  • the mouth of one of the waveguides and in particular of the first waveguide in the horn radiator has an extension along its long side both parallel to the aperture plane and perpendicular to the aperture plane.
  • one of the waveguides and in particular the first waveguide opens partially from the side and partially in the direction of emission into the horn radiator. This in turn enables optimal use of the available installation space.
  • the long side of the orifice can have a first edge area running in the aperture plane and a second edge area running perpendicularly to the aperture plane.
  • the long side of the opening of the waveguide is preferably arranged in a bottom region of the horn radiator that runs obliquely to the aperture plane and/or runs obliquely to the aperture plane.
  • the base of the horn can have a funnel-shaped area and the mouth can be arranged on one side of the funnel-shaped area.
  • an outer short side of the mouth is arranged higher than the opposite inner short side of the mouth.
  • the extent parallel to the aperture plane and the extent perpendicular to the aperture plane can have a ratio of between 1:1 and 1:8, preferably between 1:2 and 1:5.
  • the extent parallel to the aperture plane is between 0.05 ⁇ and 0.4 ⁇ , preferably between 0.1 ⁇ and 0.3 ⁇ .
  • the extension perpendicular to the aperture plane can be between 0.05 ⁇ and 1.5 ⁇ , preferably between 0.4 ⁇ and 1.0 ⁇ .
  • is the wavelength of a center frequency of a resonant frequency range of the horn radiator, in particular a lowest resonant frequency range.
  • one of the waveguides and in particular the second waveguide is guided in the emission direction to the horn radiator, with its cross section being located within the aperture opening in projection onto the aperture plane.
  • the mouth of one of the waveguides and in particular of the second waveguide in the horn radiator is arranged centrally with respect to the aperture opening.
  • the base of the horn radiator can have a funnel-shaped area and the opening of one of the waveguides and in particular of the second waveguide can be arranged at the tip of the funnel-shaped area.
  • the dual polarized horn radiator according to the invention can have material cutouts and/or material introductions in at least one horn region, and in particular can have webs and/or steps and/or dielectrics running in the vertical direction.
  • the horn radiator can in particular form a ridge waveguide radiator.
  • the ridge waveguide radiator can be designed without side walls or have side walls.
  • the webs preferably run in the vertical direction. More preferably, the distance between the inward facing edges of the webs increases in the height direction.
  • the uprights can have a funnel shape and/or an exponential shape on their inward-facing side in the height direction.
  • the horn radiator preferably has a resonant frequency range in a range between 10 GHz and 100 GHz, preferably between 25 GHz and 50 GHz, which is preferably the lowest resonant frequency range.
  • the maximum diameter of the aperture opening of the horn radiator is between 0.3 ⁇ and 1.4 ⁇ , preferably between 0.5 ⁇ and 1.1 ⁇ , more preferably between 0.6 ⁇ and 0.9 ⁇ .
  • the horn radiator has a height of between 0.5 ⁇ and 4 ⁇ , preferably between 1.5 ⁇ and 2.5 ⁇ .
  • is the wavelength of a center frequency of a resonant frequency range of the horn radiator, in particular a lowest resonant frequency range.
  • the horn of the horn radiator has a first horn area with side walls running essentially in the main direction of emission and a second horn area with side walls that widen in a funnel shape, with the height of the second horn area being preferably smaller than the height of the first horn area and/or being preferred the widening of the aperture opening in the second horn area is less than 50%, more preferably less than 20%.
  • the first and second horn areas can be continuous with one another.
  • the horn has a hexagonal or round aperture and/or base.
  • the present invention further comprises a radiator array comprising a plurality of dual-polarized radiator horns arranged side-by-side in a column or row, each of the horns being fed by a first and a second waveguide. It is provided that the waveguides in a column or row are each routed in the direction of emission to their openings in the horn antennas, with every second waveguide in the column or row having a transformation section through which its polarization is rotated in the aperture plane before it is in the Horn radiator opens.
  • one waveguide and in particular the first waveguide of a horn radiator runs in the emission direction to its mouth in the horn radiator and that its cross section in projection onto the aperture plane runs at least partially below the aperture opening of an adjacent horn radiator, with the first and the second polarization are orthogonal to each other, for which the two waveguides have orthogonal polarizations in the region of their mouth in the horn.
  • the radiator array is preferably a mobile radio antenna, in particular for a mobile radio base station.
  • the individual radiator spacing in the column and/or row is less than 1 ⁇ , preferably less than 0.85 ⁇ , more preferably less than 0.75 ⁇ , more preferably less than 0.5 ⁇ .
  • the horn radiators are arranged in a plurality of columns and/or rows arranged next to one another and the sum of the individual radiator spacing in the column or row and the individual radiator spacing perpendicular to the column or row is less than 2 ⁇ , preferably less than 1.7 ⁇ , more preferably less than 1.5 ⁇ .
  • is the wavelength of the center frequency of a resonant frequency range of the radiator array and in particular of the lowest resonant frequency range.
  • the radiator array preferably comprises a plurality of dual-polarized horn radiators arranged next to one another, as have been described in more detail above.
  • individual, several or all horns of the emitter array can have one or more of the features which were described above with regard to the horns according to the invention.
  • the horns are arranged in several columns arranged next to one another or several rows arranged next to one another, with the horns of adjacent columns or rows preferably being arranged offset relative to one another, with the horns preferably being arranged in a honeycomb pattern.
  • the radiator array has a feed network.
  • the first waveguide and the second waveguide of the horn radiators arranged in a column or row have a bend to the side at different height levels of the feed network.
  • the first waveguides of the horn radiators arranged in a column or row and/or the second waveguides of the horn radiators arranged in a column or row can each have a bend to the side in the same vertical plane.
  • the waveguides of horn radiators arranged in two adjacent rows or columns can have a bend to the side at different height levels.
  • the waveguides of the horn antennas are each fed individually.
  • first waveguides of the horns arranged in a column or row and/or the second waveguides of the horns arranged in a column or row are connected to a common feed through a distributor.
  • the present invention also includes group antennas consisting of a plurality of subarrays, which are designed as described above.
  • the present invention further includes a cellular base station having one or more horn radiators as described above and/or one or more radiator arrays as described above.
  • FIG. 1 1 shows an embodiment of two dual polarized horns 20 and 20' according to the first aspect of the present invention.
  • the two radiators thus simultaneously form an exemplary embodiment of a radiator array according to the invention.
  • the two horn radiators 20 and 20' each have a horn, ie a hollow body which is open in the main direction of emission and via which electromagnetic waves are emitted or received.
  • the horn is fed by waveguides, which are 1 are shown only with their end.
  • the horn radiators 20 and 20' have two orthogonal polarizations which are fed by two separate waveguides 1 and 2 which via openings 23 and 24 into the horn of the respective horn radiator 20 and 20'.
  • the polarizations of the two waveguides or of the electromagnetic waves guided through the waveguides are each perpendicular to one another in the area where the waveguides open into the horn radiator.
  • the first waveguide 1 or 1' is guided to the hollow radiator from bottom to top, i.e. in the direction of emission, with its cross-section in the region of the opening into the horn radiator only partially coinciding with the aperture opening 22 of the hollow radiator 20 or 20', which it supplies with signals, and is partly outside the aperture opening.
  • the waveguides 1 or 1′ preferably run in the main emission direction and/or perpendicular to the aperture plane.
  • the first waveguide 1' which supplies the horn 20' with signals, is therefore partly below the aperture opening 22 of this horn 20', and partly below the aperture opening 22 of the adjacent horn 20.
  • the cross section of the waveguide thus overlaps 1' in a projection onto the aperture plane partially with the aperture opening of its own radiator and partially with the aperture opening of an adjacent radiator.
  • the horn radiators are fed partly from the side and partly from below via the first waveguide 1 or 1′.
  • that part of the cross section of the first waveguide that runs below the aperture opening of the respective emitter is lengthened into the emitter for this purpose.
  • the area of the cross section which runs outside the aperture opening and in particular in the area of the aperture opening of the adjacent radiator, on the other hand, is guided laterally into the horn radiator.
  • the first waveguide 1 has a boundary wall 27 which extends obliquely upwards from a position outside the aperture opening of the horn to the mouth 23 in the horn.
  • the boundary wall 27 is the wall of a short side of the first waveguide.
  • the boundary wall 27 forms a base area of the adjacent horn radiator.
  • the mouth 23 of the first waveguide 1 thus has both an extension 25 in a direction normal to the aperture plane and an extension 26 within the aperture plane.
  • the opening 23 has a kink for this purpose, i.e. the opening is delimited by a vertical edge 25 and a horizontal edge 26.
  • the orifice 23 can also have an edge running at an angle to the aperture plane.
  • the opening 24, with which the second waveguide opens into the horn, is located completely within the aperture opening and the bottom area of the respective horn.
  • the opening 24 is arranged centrally with respect to the aperture opening of the respective horn.
  • the horn radiators each have a superimposition region 30 in which the two polarizations are superimposed and which is formed by the base of the horn and a wall region of the horn extending to the upper end of the mouth 23 of the waveguide.
  • this is followed by a lower horn area 28, in which the horn extends essentially vertically upwards, ie in the main emission direction and/or perpendicular to the aperture plane, and an upper horn area 29, in which the horn widens outward.
  • horn radiators In 1 only two horn radiators according to the invention are shown as an example. Of course, however, more than two such radiators can also be arranged next to one another in a row or column. Furthermore, the horn radiators in the exemplary embodiment each have a 6-cornered basic shape, so that a honeycomb arrangement of several columns and rows next to one another is possible.
  • FIG. 2 shows the concept underlying a dual polarized horn radiator or a corresponding radiator array according to the second aspect of the present invention.
  • the two polarizations are fed via separate waveguides 1 and 2.
  • the waveguides are guided parallel to one another in a feed section 3, with which they are connected to a feed network, and have the same orientation of the polarization there.
  • the E-field is shown schematically as an arrow.
  • the polarizations for the first and the second waveguide have a different orientation.
  • the polarizations are perpendicular to one another.
  • a transformation section is provided between the feed section 3 and the mouth section 5, which is used for field and/or impedance transformation.
  • the first waveguide has a twist in the transformation section, as a result of which its polarization is rotated relative to the other waveguide.
  • the waveguides 1 and 2 are guided from the feed section 3 via the transformation section 4 to the mouth section 5 in parallel from bottom to top, ie in the emission direction and in particular perpendicular to the aperture plane, so that the twisting in the region of the transformation section of the waveguide 1 causes its polarization to rotate in the aperture plane or about an axis of rotation perpendicular to the aperture plane.
  • the second waveguide has no twisting in the transformation section 4, so that its polarization does not rotate.
  • This arrangement has the advantage that the space available in the area of the feed section 3, which is connected to a matching network and/or a distribution network, can be optimally used.
  • the first and second waveguides can be aligned identically in this area and/or have an identical cross section, and thus optimally utilize the available space.
  • the waveguides are thus only aligned orthogonally to one another in the region of the mouth section 5 and therefore only require corresponding space there.
  • the area of the waveguide cross-section in the transformation section decreases in the direction of the horn radiator. This is preferably the case both for the first and for the second waveguide.
  • the area of the waveguide cross section in the direction of the antenna is therefore smaller than the area of the waveguide cross section in the direction of the distribution network.
  • the waveguides therefore have a higher wave impedance and a higher lower limit frequency (cut-off frequency) in the direction of the antenna than in the direction of the distribution network.
  • the transformation section with the waveguide cross-section change for field and impedance transformation has the advantage that orthogonally polarized radiator openings can be nested compactly on the antenna side, while a larger, broader bandwidth and lower-loss standard waveguide can be used on the side of the matching and/or distribution network.
  • the matching network and/or distribution network can thus be designed to be broadband.
  • the antenna side i.e. on the one hand the transformation section and the horn radiator, on the other hand, can be designed to be narrower and interchangeable.
  • different transformation sections and different horns would be used for two different frequency ranges in the larger frequency range of the matching and/or distribution network.
  • a first type of horn could be used for the frequency range between 27 GHz and 29 GHz and a second type of horn could be used for the frequency range between 37 GHz and 39 GHz.
  • the overall system can have a modular structure, and in particular the matching and/or distribution network can be used for different applications.
  • FIG. 3 1 now shows a possible exemplary embodiment for a transformation section 4 for the first waveguide.
  • a waveguide cross-section polarized in the x-direction which is connected to the feed section 3
  • a waveguide cross-section polarized in the z-direction which is connected to the mouth section 5 .
  • the cross-sectional area is reduced, in the exemplary embodiment, for example, from a waveguide cross-section of 7.11 mm ⁇ 3.55 mm and 572 ohms wave impedance to a waveguide cross-section of 6.11 mm ⁇ 2.4 mm and about 785 ohms wave impedance.
  • the shape of the transformation section can be arbitrary between its two ends.
  • three-dimensional curves can be partially or completely replaced by surfaces or steps, or the transformation section can be manufactured and assembled from two or more individual parts, depending on the manufacturing process.
  • the transformation section 4 consists of two transformation elements 8 and 11, which each rotate the field by 45°, and an interposed intermediate element 9 with a constant cross section.
  • the second waveguide does not have any twisting, but only experiences a cross-sectional reduction in the area of the transformation section. This serves to create sufficient space for the arrangement of the waveguides, which are orthogonal to one another in the mouth area.
  • This is again based on 4 1 illustrates, which represents the transformation sections 6 and 7 of first and second waveguides 1 and 2 arranged next to one another in a column.
  • the transformation sections 6 of the first waveguide 1 have a twist and a narrowing of the cross section
  • the transformation sections 7 of the second waveguide 2 merely have a narrowing of the cross section.
  • the narrowing of the cross section of the transformation sections 7 of the second waveguide creates the space that is required to allow the first waveguide 1 to be twisted.
  • waveguides with a longer and a shorter side are used.
  • the first and second waveguides are each arranged with their longer sides adjacent and parallel to one another. Due to the twisting of the first waveguides in the transformation section 4, however, the longer sides of the first and second waveguides are now perpendicular to one another in the mouth section 5.
  • the shorter side of the first waveguide While only space for the shorter side of the first waveguide is required in the feed section 3 between the long sides of two second waveguides, space is required in the mouth area 5 for the longer side of a first waveguide. In order to create this space, in particular, the shorter side of the second waveguide further shortened. Furthermore, the longer side of the first waveguide can also be shortened.
  • both the longer and the shorter side of the first and second waveguides are shortened, but the ratio between the longer and shorter side is increased, i.e. the shorter side is shortened more than the longer side in percentage terms.
  • the waveguide becomes narrower in bandwidth.
  • the cut-off frequency is not increased to the same extent.
  • the waveguides have a ratio between the longer side and the shorter side of more than 1.5:1 and less than 2.5:1 on the side of the feed and/or distribution network and in particular in the feed section.
  • the ratio between the longer and the shorter side is preferably greater than in the feed section, in particular greater than 2.5:1 and more preferably greater than 3:1. This achieves a good compromise between compactness and electrical properties.
  • a waveguide with a rectangular cross section can be used according to the invention.
  • the TE10(H10) mode is excited.
  • waveguides with at least one narrowing of the cross section and/or at least one widening of the cross section in the E field plane and/or H field plane are also conceivable.
  • waveguide variants with at least one narrowing of the cross section in the H-field level can be used, so-called ridge waveguides.
  • the TE10 mode and/or a higher mode is preferably also excited.
  • the waveguides already have a different polarization in the region of the feed section 3 . Furthermore, in the variant on the left, both the polarization of the first waveguide 1 and of the second waveguide 2 are rotated in the transformation section.
  • the first and second waveguides in the feed section 3 each have oppositely aligned polarizations. These are each rotated by 45 degrees by corresponding transformation sections 4, so that they are orthogonal to one another in the mouth section.
  • waveguides with an essentially square waveguide cross section are used in the opening section 5 . These are used as single-polarized 45-degree waveguides, in which the polarization runs diagonally.
  • the waveguides 1 and 2 have different cross-sectional shapes, at least in the feed section 3 .
  • the polarizations of the waveguides 1 and 2 are still aligned in the same direction in the feed section 3 .
  • the first waveguide 1 has a partially widened rectangular waveguide cross-section in the feed section 3 and a partially narrowed rectangular waveguide cross-section in the H-plane in the mouth section 5 .
  • the first waveguide has a cross-sectional widening 72 in a middle area with respect to the H-plane and a cross-sectional narrowing 70 in a middle area with respect to the now rotated H-plane in the mouth section 5.
  • the second waveguide 2 has a partially narrowed rectangular waveguide cross-section in the H plane in the feed section 3 and in the mouth section 5 .
  • the second waveguide 2 has a cross-sectional taper 70 in each case in a middle region with respect to the H-plane.
  • waveguide 2 has the field characteristics of a double ridge waveguide.
  • the polarization of the first waveguide 1 is rotated by 90 degrees and its cross-sectional shape and field distribution are changed by the transformation section 4, so that orthogonal polarizations with a similar field distribution result in the opening area 5.
  • waveguide cross-sections with a significantly larger extension in the H-field plane than in the E-field plane are used.
  • the cross-sectional areas of the waveguides are interleaved both in the feed section 3 and in the mouth section 5, in that a cross-sectional widening 72 or an end section 71 of one waveguide engages in a cross-sectional narrowing 70 of the other waveguide.
  • the embodiment on the right in figure 5 shows a particularly compact variant.
  • the first waveguide 1 has a partially widened and a partially filled rectangular waveguide cross-section in the H-plane with a cross-sectional widening 72 in a central region with respect to the H-plane.
  • the polarization of the waveguide 1 is rotated by the transformation section 4 and its cross-sectional area is reduced.
  • the cross-sectional shape and field distribution are essentially retained.
  • the second waveguide 2 in turn has a partially narrowed rectangular waveguide cross-section in the H plane in the feed section 3 and in the mouth section 5 .
  • the second waveguide 2 has a cross-sectional tapering 70 in each case in a middle region with respect to the H-plane.
  • the ratio between the feed section 3 and the mouth section 5 increases between the width of the cross-section in the E-field plane in the wider end regions 71 and the cross-sectional taper 70.
  • waveguide 1 and waveguide 2 have orthogonal polarization and different field distributions and/or field distribution densities in the opening section 5, which can lead to better decoupling and a more compact design, depending on the configuration of the superimposition region 30.
  • the waveguides can have webs, material fillings, material cutouts, cross-section widening, cross-section constriction and many other measures for cost reduction and/or miniaturization and/or improvement of the electrical and mechanical properties.
  • Both aspects of the present invention are preferably implemented, i.e. the first polarization is guided to the radiator centrally between two radiator openings and rotated via a transformation section. Furthermore, a change in the cross section of the waveguide is preferably provided in the transformation section, as a result of which the wave impedance changes.
  • the polarization rotation is preferably implemented via a waveguide twisting, in particular via a waveguide twisting about an axis of rotation which is normal to the aperture plane.
  • the waveguide cross-section is reduced in a direction normal to the aperture plane within the twisted waveguide, which leads to a change in wave impedance and more compact dimensions leads.
  • the rotated radiator opening is preferably guided at least partially laterally into the radiator.
  • FIG. 12 now shows a corresponding exemplary embodiment, in which the horn radiators are fed according to the first aspect in the manner already described above with regard to FIG 1 was presented.
  • the waveguides are transformed as described above with regard to the exemplary embodiment in FIG Figures 2 to 4 was presented.
  • the first and second waveguides described above with regard to the second aspect are connected with their mouth section 5 to the openings 23 or 24, via which the horn radiators are fed according to the first aspect of the present invention.
  • the combination of the first and the second aspect has a very significant synergistic potential. This is because the combination of the first and second aspect makes it possible for the second waveguide 2 to open into the hollow radiator in the center with respect to the aperture opening 22 of the hollow radiator 20 or 20'. Nevertheless, the space available between the openings of the second waveguide is used optimally by the rotated opening areas of the first waveguide 1, since this opening area is not limited to the space available below the respective aperture opening, but extends under the respective aperture opening of the adjacent radiator.
  • the transformation region 31 can have a height H1 of 0.5 ⁇ -1.5 ⁇ , for example, the superimposition region 30 used to superimpose the polarizations within the horn has a height H2 of 0.5 ⁇ -1.5 ⁇ , and the actual horn 32 a height H3 between 0.5 ⁇ and 4 ⁇ .
  • the maximum diameter Da of the aperture opening 22, ie after the widening 29, can be 1.1 ⁇ 0.3 ⁇ , for example.
  • is in each case the wavelength of the center frequency of the lowest resonant frequency range of the radiator according to the invention.
  • FIG 7a an alternative configuration of the overlapping region of the two polarizations is shown on the right.
  • the opening 23 in this case has longer sides which run obliquely to the aperture plane and which connect the upper and lower narrow sides to one another.
  • the opening has triangular side walls 33 for this purpose, which extend along the longer sides.
  • wedge elements 34 are provided in the bottom area of the horn, which extend from the inside to the side walls. These preferably have the same shape as the boundary walls 27 for the mouth area of the adjacent first waveguide. As a result, the floor area has a funnel shape overall.
  • the opening 24 for the second waveguide is arranged in the center of the funnel and, in the exemplary embodiment, cuts into the ramps 34.
  • a possible dimension of the opening 23 for the first radiator is in Figure 7a indicated on the right.
  • the opening 23 can have an extent B1 in the direction of its shorter side of 0.2 ⁇ + ⁇ 0.2 ⁇ .
  • the extension in the vertical direction B3 can be 0.7 ⁇ +-0.7 ⁇ , the extension in the aperture plane B4 can be 0.2 ⁇ +-0.2 ⁇ .
  • Figure 7b are three more cuts parallel to the aperture plane for the in Figure 7a illustrated embodiment shown.
  • a section through the mouth region 5 is shown at the bottom right, ie just below the connection with the openings of the horn radiator.
  • the narrow side can have a width B1 of 0.2 ⁇ + ⁇ 0.2 ⁇
  • the longer side can have a width B2 of more than 0.5 ⁇ , for example 0.55 ⁇ .
  • the longer side should not be less than 0.5 ⁇ with regard to the cut-off frequency.
  • smaller dimensions and/or higher bandwidths are possible through the use of ridge waveguides and/or waveguides filled with dielectric.
  • one or more webs can be arranged centrally in the waveguides in order to increase the bandwidth and/or reduce the cut-off frequency.
  • the design of the superimposition area can also assume more complex forms.
  • the wedge segments 34 can have material recesses and/or a ramp shape, in particular a ramp shape with an exponential progression.
  • the radiator as in 8 shown, be designed as a ridge waveguide antenna.
  • a ridge waveguide antenna 20" with side walls is shown on the left, and a ridge waveguide antenna 20′′′ without side walls is shown on the right.
  • the horn of the ridge waveguide antenna 20" has the same configuration as shown above 1 and 6 was described in more detail.
  • the ridge waveguide antenna 20′′′ has only the overlay region 30 described above, while only the ridges extend into the region of the actual horn and the side walls are missing there.
  • the ridge waveguide antenna has ridges 75 which extend in the vertical direction.
  • the webs 75 extend from the transition area 30 into the actual horn 32 .
  • the webs are plate-shaped.
  • the plate plane of the webs 75 runs radially to the central axis of the radiator and/or is perpendicular to the side wall along which it extends.
  • the inner edges of the webs have a distance that increases towards the radiator opening.
  • the webs 75 extend along the inner walls of the horn. In the exemplary embodiment on the left, they extend over the areas 28 and 29 to the radiator opening.
  • FIG. 9 10 now shows an exemplary embodiment of the radiator array, which comprises four columns, each with eight individual radiators 20.
  • the individual radiators are each designed as shown in 6 and 7, respectively.
  • the corresponding design of the overlapping area in the floor area of the horn radiator is in 9 shown again in detail on the left.
  • the array antenna shown can be, for example, an antenna with a center frequency of 28 GHz and a bandwidth of 2 GHz.
  • the column spacing i.e. the individual radiator spacing in the z-direction
  • the line spacing i.e. the individual radiator spacing in the x-direction
  • the line spacing is 9.0 mm in the exemplary embodiment, i.e. 0.84 ⁇ at 28 GHz.
  • first and second waveguides each have the same orientation and cross section, and are lined up along the columns, respectively. Furthermore, the reduced cross-section 5, rotated in the case of the first waveguides, can be seen in the mouth area, seen through the transformation section.
  • Sections parallel to the aperture plane for different heights are shown again, a section through the feed section 3 being shown at the top left, a section through the transformation section 4 in the center left, and a section through the mouth section 5 being shown at the bottom left. Sections through the overlapping area, in which the opening 23 extends, are then shown at the top and in the middle on the right, and a section through the horn above the overlapping area at the bottom right.
  • the E-field is shown for the two polarizations, at the top for port 24, ie a port fed by a second waveguide, and at the bottom for port 23, ie a port fed by a first waveguide.
  • the horn radiators have a very good orthogonality of the two polarizations and a very even field distribution.
  • 16a and 17a each show the fitting in the Smith chart, Figure 16b and 17b the isolation of the ports from each other.
  • a VSWR of 2.0 ie an adjustment of more than 9.54 dB
  • Figure 17a a VSWR of 1.5, ie an adjustment of more than 13.98 dB.
  • the potential is actually much higher. In both cases, the decoupling is greater than 25 dB.
  • In 18 shows the far field at 28 GHz and 32 GHz for ports P23 and P24.
  • the far field is shown in the horizontal and vertical planes, with the phi component representing the co-polarization and the theta component representing the cross-polarization. These diagrams also show the excellent symmetry of the far field and the low cross-polarization.
  • the individual emitters of adjacent columns are offset from one another.
  • the radiators of a first column are arranged centrally between the radiators of the adjacent second column.
  • the present invention also permits other basic forms of the radiator and/or a non-honeycomb arrangement.
  • 19 shows two exemplary embodiments of radiator arrays according to the invention.
  • An exemplary embodiment is shown on the left, which essentially corresponds to the exemplary embodiment already discussed above in 9 corresponds and has a honeycomb structure with hexagonal individual radiators.
  • the individual emitters here, however, have an individual emitter spacing in the horizontal direction Dh of 0.75 ⁇ and an individual emitter spacing Dv in the vertical direction of 0.75 ⁇ , ie the individual emitters are slightly smaller than those in the exemplary embodiment in FIG 9 .
  • the radiators have an individual radiator spacing in the horizontal direction Dh of 1 ⁇ and an individual radiator spacing in the vertical direction Dv of 0.5 ⁇ .
  • spacer surfaces are arranged between the radiators within the column, by means of which the distance between the radiators within the radiator is increased and into which the radiators of the adjacent columns reach laterally.
  • the columns can be arranged with a smaller column spacing.
  • a hexagonal basic shape is again used, but an octagonal basic shape would also be conceivable here.
  • the individual radiators instead of a basic hexagonal shape for the individual radiators, another configuration is also conceivable.
  • the individual radiators have a circular basic shape, which is arranged partially overlapping.
  • FIG. 20 right shows a radiator array with an approximately circular group aperture.
  • An approximately circular arrangement of the individual radiators can, for example, lead to lower side lobes if the individual radiators with different amplitudes and phases are interconnected in the antenna diagram.
  • the individual emitters of an emitter array according to the invention can be fed and/or adjusted individually, or partially interconnected in subgroups via a distribution and adjustment network.
  • FIG. 21 shows an exemplary embodiment of a feed network for individual feeds on the left and for group feeds on the right.
  • the distribution and matching networks shown can be connected to the feed sections of the first and second waveguides of the horn radiator according to the invention.
  • first waveguide 1 and the second waveguide 2 of a column are brought out to the side in different planes.
  • waveguides that supply different columns are also arranged in different planes.
  • distributors 55, 56, 59 and 60 are provided, through which the first radiator 1 (distributor 55 or 59) and the second waveguide (distributor 56 or 60) of a column are interconnected. Via a further bend and filter 57, 58, 61 and 62, the distributors are then connected to a feed arranged on a PCB.
  • the radiators according to the present invention are particularly suitable in a frequency range between 10 GHz and 100 GHz or for 5G applications, in particular applications with beam steering and/or beam forming.

Description

  • Die vorliegende Erfindung betrifft einen dual polarisierten Hornstrahler, mit einer ersten und einer zweiten Polarisation, welche getrennt voneinander über einen ersten Hohlleiter und einen zweiten Hohlleiter gespeist werden. Insbesondere betrifft die vorliegende Erfindung einen solchen dual polarisierten Hornstrahler zum Einsatz als eine Mobilfunkantenne, insbesondere für eine Mobilfunkbasisstation.
  • Hornstrahler werden auch als Hohlleiterstrahler bezeichnet und weisen üblicherweise ein Horn, d. h. einen zu einer Seite hin offenen Hohlkörper auf, welcher durch eine Hohlleitung gespeist wird. Auf Hohlleitertechnik basierende Strahler haben üblicherweise große Abmessungen und eigenen sich daher nicht für eine kompakte Bauweise. Daher galten Hornstrahler bisher für 3D-Beamsteering- und 3D-Beamforming-Anwendungen als wenig geeignet, da hierfür in vertikale und horizontale Richtung einen Strahlerabstand von kleiner 1λ, bevorzugt kleiner 0,7λ, und insbesondere kleiner 0,5λ von Vorteil ist. Kleinere Einzelstrahlerabstände verbessern insbesondere das Fernfeld-Gruppendiagramm, da bei einem Einzelstrahlerabstand von kleiner 0,5λ keine sekundären Hauptkeulen im Fernfeld-Gruppendiagramm auftreten. Bein einem Einzelstrahlerabstand von größer 0,5λ können dagegen je nach Einzelstrahlerdiagramm beim Beamforming und/oder Beamsteering sekundäre Hauptkeulen oder hohe Nebenkeulen auftreten, welche mit zunehmendem Einzelstrahlerabstand zunehmen. Je größer jedoch die sekundären Hauptkeulen und die Nebenkeulen sind, desto schwieriger wird es, die Hauptkeulen in eine Richtung zu schwenken und damit die Antenne für Beanforming- oder Beamsteering-Anwendungen zu nutzen.
  • Eine besondere Herausforderung bezüglich der Kompaktheit und elektrischen Performance stellen dabei dual polarisierende Hornstrahler dar, da hierbei ein Strahler für zwei in der Regel unterschiedliche Polarisationen verwendet wird. Üblicherweise werden kompakte dual polarisierte Hornstrahler dabei durch zwei separate orthogonale Wellenleiter gespeist, oder durch einen dual polarisierten Hohlleiter.
  • Der Einsatz zweier separater orthogonaler Wellenleiter ist beispielsweise aus der WO 9837595 A1 bekannt. Der Einsatz eines einzigen dual polarisierten Hohlleiters ist aus der US 20130120086 A1 bekannt.
  • WO 2015134772 A1 zeigt eine Wellenleiterstruktur für ein dual polarisiertes Antennenarray mit Septumpolarisatoren, die erste Wellenleiter, die einer ersten Polarisation zugeordnet sind, und zweite Wellenleiter, die einer zweiten Polarisation zugeordnet sind, zusammenführen und die durch die ersten und zweiten Wellenleiter übermittelten Felder gleicher Polarisation in entgegengesetzt zirkulär polarisierte Felder umwandeln und Hohlstrahlern zuführen. Dabei werden jeweils zwei benachbarte Septumspolarisatoren jeweils über einen gemeinsamen Hohlleiter gespeist, welcher einen Querschnitt aufweist, der sich in Projektion auf die Aperturebene teilweise sowohl im Bereich der Apertur des dem einen als auch Im Bereich der Apertur des dem anderen Septumspolarisator zugeordneten Hornstrahlers erstreckt.
  • Weitere Hornstrahler sind aus CN 102 938 497 A , US 2010/123636 A1 , RU 2 292 098 und DE 40 09 288 A1 bekannt.
  • Weitere Hornstrahler sind aus DE 102010019081 A9 , KR 100801030 B1 , US 2011267250 A1 und DE 102010019081 A9 , der FR 2523376 A1 , der FR 2599899 A1 , der US 7187342 B2 , der WO 2007046055 A2 . Weitere Hornstrahler sind bekannt aus der AT 202658 T , der DE 3375867 D1 , der DE 3787681 D1 , der AU 688212 B2 , der US 4716415 A , der CN 101083359 B , der CN 201060943 Y , der US 7564421 B1 , der CN 203326116 U , der WO 2014208993 A1 , der EP 2869400 A1 , der WO 2008147132 A1 , der WO 2009008601 A1 , der KR 20090038803 A , der WO 2009093779 A1 , der KR 101090188 B1 und der US 8988294 B2 bekannt.
  • Die US 5 818 396 zeigt einen Hornstrahler, der durch eine koaxiale Struktur gespeist wird. Die Wellenleiter führen linear polarisiertes Licht. Die US 2009/213022 A1 zeigt einen Hornstrahler mit einem dielektrischen Material innerhalb des Strahlers und die US 2010/078203 A1 offenbart ein Metamaterial mit einem niedrigen Brechungsindex.
  • Aufgabe der vorliegenden Erfindung ist es daher, einen kompakten dual polarisierten Hornstrahler mit guter elektrischer Performance zur Verfügung zu stellen. Erfindungsgemäß wird diese Aufgabe durch die dual polarisierten Hohlstrahler gemäß Ansprüchen 1 und 3 bzw. ein Strahlerarray gemäß Anspruch 9 gelöst. Bevorzugte Ausgestaltungen der vorliegenden Erfindung sind Gegenstand der Unteransprüche.
  • Die vorliegende Erfindung umfasst in einem ersten Aspekt einen dual polarisierten Hornstrahler, mit einer ersten und mit einer zweiten Polarisation, welche getrennt voneinander über einen ersten Hohlleiter und einen zweiten Hohlleiter des Hornstrahlers gespeist werden, wobei die erste und die zweite Polarisation orthogonal aufeinander stehen, wofür die beiden Hohlleiter im Bereich ihrer Mündung in den Hornstrahler orthogonale Polarisationen aufweisen. Erfindungsgemäß ist gemäß dem ersten Aspekt vorgesehen, dass der erste Hohlleiter in Abstrahlrichtung zu seiner Mündung in den Hornstrahler verläuft und dabei einen Querschnitt aufweist, welcher sich in Projektion auf die Aperturebene teilweise innerhalb und teilweise außerhalb der Aperturöffnung des Hornstrahlers erstreckt, wobei die Mündung des ersten Hohlleiters in den Hornstrahler entlang ihrer langen Seite eine Erstreckung sowohl parallel zu der Aperturebene als auch senkrecht zur Aperturebene aufweist, wobei eine äußere kurze Seite der Mündung höher angeordnet ist als die gegenüberliegende innere kurze Seite der Mündung.
  • Durch die Führung des Hohlleiters in Abstrahlrichtung können die Hohlleiter auf engem Raum zum Hornstrahler geführt werden. Durch den sich teilweise innerhalb und teilweise außerhalb der Aperturöffnung verlaufenden Querschnitt kann der Hornstrahler sehr kompakt ausgeführt werden, da seine minimale Größe nicht mehr durch die Querschnitte der Hohlleiter beschränkt ist.
  • In einer möglichen Ausführungsform verläuft der Hohlleiter mit seinem Querschnitt in Projektion auf die Aperturebene teilweise unter der Aperturöffnung eines benachbarten Hornstrahlers. Hierdurch wird der in einem Strahlerarray zur Verfügung stehende Platz optimal genutzt und benachbarte Strahler sehr kompakt nebeneinander angeordnet werden.
  • Bevorzugt beziehen sich die Angaben zur Erstreckung eines Querschnitt des Hohlleiters dabei auf den Querschnitt des Hohlleiters auf Höhe des bezüglich einer Richtung normal zur Aperturebene untersten Punktes der Mündung des Hohlleiters in den Hornstrahler.
  • In einer möglichen Ausführungsform weist der Hohlleiter eine stirnseitige Begrenzungswand auf, welche sich von einer Position, welche in Projektion auf die Aperturebene außerhalb der Aperturöffnung des Hornstrahlers liegt, zu einer Kante der Mündung in den Hornstrahler erstreckt. Bevorzugt handelt es sich bei der Begrenzungswand um die Wand einer kurzen Seite des Hohlleiters. Hierdurch wird das elektromagnetische Feld in das Horn des Hornstrahlers geführt. Bevorzugt verläuft die Begrenzungswand schräg zur Aperturebene.
  • In einer weiteren Ausführungsform hat der dual polarisierte Hornstrahler eine erste und eine zweite Polarisation, welche getrennt voneinander über einen ersten Hohlleiter und einen zweiten Hohlleiter gespeist werden. Gemäß dieser Ausführungsform ist vorgesehen, dass die beiden Hohlleiter in Abstrahlrichtung zu ihren Mündungen in den Hornstrahler verlaufen, wobei mindestens einer der Hohlleiter und insbesondere der erste Hohlleiter einen Transformationsabschnitt aufweist, durch welchen seine Polarisation in der Aperturebene gegenüber dem anderen Hohlleiter gedreht wird, bevor er in den Hornstrahler mündet. Dies ermöglicht wiederum eine sehr kompakte Anordnung der Hohlleiter.
  • In einer möglichen Ausführungsform verlaufen die beiden Hohlleiter nebeneinander und/oder parallel zueinander in Abstrahlrichtung zu ihren Mündungen in den Hornstahler.
  • In einer möglichen Ausführungsform weisen die beiden Hohlleiter zunächst die gleiche Polarisation auf, bevor die Polarisation des einen Hohlleiters durch den Transformationsabschnitt in der Aperturebene gegenüber dem anderen Hohlleiter gedreht wird.
  • Weiterhin kann vorgesehen sein, dass der Transformationsabschnitt eine Verdrillung aufweist, durch welche die Polarisation gedreht wird. Eine solche Verdrillung wird auch als Twist bezeichnet.
  • In einer möglichen Ausführungsform wird die Polarisation des zweiten Hohlleiters nicht gedreht, oder der zweite Hohlleiter weist einen Transformationsabschnitt auf, in welchem eine um einen anderen Winkel und insbesondere in die umgekehrte Richtung auf als bei dem ersten Hohlleiter erfolgt. Insbesondere kann der zweite Hohlleiter daher keine Verdrillung oder eine Verdrillung mit einem anderen Winkel als der erste Hohlleiter aufweisen.
  • Insbesondere können die beiden Hohlleiter zunächst die gleiche Polarisation aufweisen, wobei nur die Polarisation des ersten Hohlleiters um 90° gedreht wird, um im Bereich der Mündung in den Hornstrahler orthogonal zu der Polarisation des zweiten Hohlleiters zu stehen.
  • In einer bevorzugten Ausführungsform verkleinert sich der Querschnitt des ersten Hohlleiters in dem Transformationsabschnitt. Alternativ oder zusätzlich kann der zweite Hohlleiter einen Transformationsabschnitt aufweisen, in welchem sich sein Querschnitt verkleinert.
  • In einer möglichen Ausführungsform weisen die beiden Hohlleiter einen Querschnitt mit einer langen und einer kurzen Seite auf, insbesondere einen rechteckigen Querschnitt.
  • In einer weiteren möglichen Ausführungsform besitzen die Hohlleiter mindestens eine Querschnittsverengung und/oder mindestens eine Querschnittsverbreiterung.
  • Weiterhin können die Querschnitte benachbarter Hohlleiter ineinander verschachtelt sein. Beispielsweise kann eine Querschnittsverbreiterung oder ein Endabschnitt des Querschnitts eines Hohlleiters in eine Querschnittsverjüngung eines benachbarten Hohlleiters eingreifen.
  • Insbesondere können die zweiten Hohlleiter eine Querschnittsverjüngung aufweisen, in welche eine Querschnittsverbreiterung oder ein Endabschnitt des Querschnitts eines ersten Hohlleiters eingreift. Besonders bevorzugt kann zwischen zwei zweiten Hohlleitern mit Querschnittsverjüngungen ein erster Hohlleiter angeordnet sein, dessen Querschnittsverbreiterung oder Endabschnitte auf beiden Seiten in die Querschnittsverjüngungen der zweiten Hohlleiter eingreifen.
  • Die Querschnittsverjüngung oder Querschnittsverbreiterung ist bevorzugt jeweils in einem mittleren Bereich des Hohlleiterquerschnitts vorgesehen, insbesondere in einem bezüglich der H-Feld-Ebene mittleren Bereich.
  • Die Hohlleiter können die Querschnittsverjüngung oder Querschnittsverbreiterung im Speiseabschnitt und/oder im Transformationsabschnitt und/oder im Mündungsabschnitt aufweisen.
  • Bevorzugt verlaufen die langen Seiten der beiden Hohlleiter zunächst parallel zueinander. Alternativ oder zusätzlich stehen nach dem Transformationsabschnitt und insbesondere nach der Verdrillung die langen Seiten der Hohlleiter senkrecht zueinander. Insbesondere können die langen Seiten der beiden Hohlleiter in einem Speiseabschnitt parallel zueinander verlaufen und in einem Mündungsabschnitt senkrecht zueinander stehen.
  • In einer möglichen Ausführungsform umfasst die Verkleinerung des Querschnitts im Transformationsabschnitts zumindest eine Verkleinerung der kurzen Seite und/oder eine Vergrößerung des Verhältnisses zwischen der langen und der kurzen Seite.
  • Bevorzugte Ausgestaltungen der vorliegenden Erfindung, welche sowohl bei einem Hornstrahler gemäß dem ersten, als auch dem zweiten Aspekt zum Einsatz kommen können, werden im folgenden beschrieben:
    Bevorzugt handelt es sich bei dem erfindungsgemäßen Hornstrahler um einen Mobilfunkstrahler, insbesondere für eine Mobilfunkbasisstation.
  • Bevorzugt sind beide Hohlleiter in Abstrahlrichtung zu dem Hornstrahler geführt. In einer möglichen Ausführungsform verlaufen die beiden Hohlleiter nebeneinander und/oder parallel zueinander in Abstrahlrichtung zu ihren Mündungen in den Hornstahler.
  • Im Rahmen der vorliegenden Erfindung bedeutet ein Verlauf in Abstrahlrichtung bevorzugt, dass der Hohlleiter mit einem Winkel kleiner 45°, bevorzugt kleiner 30°, weiter bevorzugt kleiner 10° zu einer Normalen auf der Aperturebene und/oder zur Hauptabstrahlrichtung des Hornstrahlers verläuft. Besonders bevorzugt verläuft der Hohlleiter dabei in einer Richtung, welche senkrecht auf der Aperturebene steht, und/oder parallel zur Hauptabstrahlrichtung verläuft. Bevorzugt steht im Rahmen der vorliegenden Erfindung die Hauptabstrahlrichtung senkrecht auf der Aperturebene des Hornstrahlers.
  • Bevorzugt sind die Querschnitte der beiden Hohlleiter im Bereich der Mündung um 90° gegeneinander gedreht.
  • Als Querschnitt wird im Rahmen der vorliegenden Erfindung bevorzugt ein Schnitt durch den Hohlleiter senkrecht zum Verlauf des Hohlleiters und/oder ein Schnitt in der Aperturebene betrachtet.
  • Erfindungsgemäß weist die Mündung eines der Hohlleiter und insbesondere des ersten Hohlleiters in den Hornstrahler entlang ihrer langen Seite eine Erstreckung sowohl parallel zu der Aperturebene als auch senkrecht zur Aperturebene auf. Hierdurch mündet einer der Hohlleiter und insbesondere der erste Hohlleiter teilweise von der Seite und teilweise in Abstrahlrichtung in den Hornstrahler. Dies ermöglicht wiederum eine optimale Nutzung des zur Verfügung stehenden Bauraums.
  • Die lange Seite der Mündung kann dabei einen ersten, in der Aperturebene verlaufenden Kantenbereich, und einen zweiten, senkrecht zur Aperturebene verlaufenden Kantenbereich aufweisen.
  • Bevorzugt ist die lange Seite der Mündung des Hohlleiters jedoch in einem schräg zur Aperturebene verlaufenden Bodenbereich des Hornstrahlers angeordnet und/oder verläuft schräg zur Aperturebene. Insbesondere kann der Boden des Hornstrahlers einen trichterförmigen Bereich aufweisen und die Mündung auf einer Seite des trichterförmigen Bereiches angeordnet sein.
  • Erfindungsgemäß ist dabei eine äußere kurze Seite der Mündung höher angeordnet als die gegenüberliegende innere kurze Seite der Mündung.
  • Alternativ oder zusätzlich kann die Erstreckung parallel zu der Aperturebene und die Erstreckung senkrecht zur Aperturebene ein Verhältnis zwischen 1:1 und 1:8 aufweisen, bevorzugt zwischen 1:2 und 1:5.
  • In einer möglichen Ausführungsform beträgt die Erstreckung parallel zu der Aperturebene zwischen 0,05 λ und 0,4 A, bevorzugt zwischen 0,1 λ und 0,3 λ. Alternativ oder zusätzlich kann die Erstreckung senkrecht zu der Aperturebene zwischen 0,05 λ und 1,5 A, bevorzugt zwischen 0,4 λ und 1,0 λ betragen.
  • In beiden Fällen handelt es sich bei λ um die Wellenlänge einer Mittenfrequenz eines Resonanzfrequenzbereichs des Hornstrahlers, insbesondere eines untersten Resonanzfrequenzbereichs.
  • In einer möglichen Ausführungsform ist einer der Hohlleiter und insbesondere der zweite Hohlleiter in Abstrahlrichtung zu dem Hornstrahler geführt, wobei sich sein Querschnitt in Projektion auf die Aperturebene innerhalb der Aperturöffnung befindet.
  • Alternativ oder zusätzlich ist die Mündung eines der Hohlleiter und insbesondere des zweiten Hohlleiters in den Hornstrahler bezüglich der Aperturöffnung mittig angeordnet.
  • Alternativ oder zusätzlich kann der Boden des Hornstrahlers einen trichterförmigen Bereich aufweisen und die Mündung eines der Hohlleiter und insbesondere des zweiten Hohlleiters an der Spitze des trichterförmigen Bereiches angeordnet sein.
  • Der erfindungsgemäße dual polarisierte Hornstrahler kann in mindestens einem Hornbereich Materialaussparungen und/oder Materialeinbringungen besitzten, und insbesondere in Höhenrichtung verlaufende Stege und/oder Stufen und/oder Dielektrika aufweisen.
  • Der Hornstrahler kann insbesondere einen Steghohlleiterstrahler bilden. Der Stegholleiterstrahler kann ohne Seitenwände ausgeführt sein, oder Seitenwände aufweisen.
  • Bevorzugt verlaufen die Stege in Höhenrichtung. Weiter bevorzugt vergrößert sich der Abstand zwischen den nach innen gewandten Kanten der Stege in Höhenrichtung. Insbesondere können die Stehe auf ihrer nach innen gewandten Seite in Höhenrichtung eine Trichterform und/oder eine Exponentialform aufweisen.
  • Bevorzugt weist der Hornstrahler einen Resonanzfrequenzbereich in einem Bereich zwischen 10 GHz und 100 GHz auf, bevorzugt zwischen 25 GHz und 50 GHz, wobei es sich bevorzugt um den untersten Resonanzfrequenzbereich handelt.
  • In einer möglichen Ausführungsform beträgt der maximale Durchmesser der Aperturöffnung des Hornstrahlers zwischen 0,3 λ und 1,4 λ, bevorzugt zwischen 0,5 λ und 1,1 A, weiter bevorzugt zwischen 0,6 λ und 0,9 λ.
  • In einer möglichen Ausführungsform weist der Hornstrahler eine Höhe zwischen 0,5 λ und 4 λ auf, bevorzugt zwischen 1,5 λ und 2,5 λ.
  • In beiden Fällen handelt es sich bei λ um die Wellenlänge einer Mittenfrequenz eines Resonanzfrequenzbereichs des Hornstrahlers, insbesondere eines untersten Resonanzfrequenzbereichs.
  • Das Horn des Hornstrahlers weist in einer möglichen Ausführungsform einen ersten Hornbereich mit im wesentlichen in Hauptabstrahlrichtung verlaufenden Seitenwänden und einen zweiten Hornbereich mit sich trichterförmig aufweitenden Seitenwänden auf, wobei bevorzugt die Höhe des zweiten Hornbereiches kleiner als die Höhe des ersten Hornbereiches ist und/oder wobei bevorzugt die Aufweitung der Aperturöffnung im zweiten Hornbereich kleiner als 50 %, weiter bevorzugt kleiner als 20 % ist. Weiterhin können der erste und der zweite Hornbereich kontinuierlich ineinander übergehen.
  • Je nach Fertigungsverfahren oder elektromechanischer Anforderung können in jedem Bereich komplizierte Formen durch einfachere Formen ersetzt werden. Zum Beispiel können im Transformationsbereich und Überlagerungsbereich und im Hornbereich vorkommende dreidimensionale Rundungen durch Flächen angenähert werden und vorkommende schräge Begrenzungswände oder Rampen können durch Treppenstufen angenähert werden.
  • In einer möglichen Ausführungsform weist der Hornstrahler eine sechseckige oder runde Aperturöffnung und/oder Grundfläche auf.
  • Die vorliegende Erfindung umfasst weiterhin ein Strahlerarray aus einer Mehrzahl von in einer Spalte oder Reihe nebeneinander angeordneten dual-polarisierten Hornstrahlern, wobei jeder der Hornstrahler durch einem ersten und einem zweiten Hohlleiter gespeist wird. Dabei ist vorgesehen, dass die Hohlleiter einer Spalte oder Reihe jeweils in Abstrahlrichtung zu ihren Mündungen in den Hornstahlern geführt sind, wobei jeder zweite Hohlleiter in der Spalte oder Reihe einen Transformationsabschnitt aufweist, durch welchen seine Polarisation in der Aperturebene gedreht wird, bevor er in den Hornstrahler mündet. Zudem ist vorgesehen, dass jeweils ein Hohlleiter und insbesondere der erste Hohlleiter eines Hornstrahlers in Abstrahlrichtung zu seiner Mündung in den Hornstrahler verläuft und dabei mit seinem Querschnitt in Projektion auf die Aperturebene zumindest zum Teil unterhalb der Aperturöffnung eines benachbarten Hornstrahlers verläuft, wobei die erste und die zweite Polarisation orthogonal aufeinander stehen, wofür die beiden Hohlleiter im Bereich ihrer Mündung in den Hornstrahler orthogonale Polarisationen aufweisen.
  • Bei dem Strahlerarray handelt es sich bevorzugt um eine Mobilfunkantenne, insbesondere für eine Mobilfunkbasisstation.
  • In einer bevorzugten Ausführungsform beträgt der Einzelstrahlerabstand in der Spalte und/oder Reihe weniger als 1 A, bevorzugt weniger als 0,85 A, weiter bevorzugt weniger als 0,75 A, weiter bevorzugt weniger als 0,5 λ.
  • In einer möglichen Ausführungsform sind die Hornstrahler in mehreren nebeneinander angeordneten Spalten und/oder Reihen angeordnet und die Summe aus dem Einzelstrahlerabstand in der Spalte oder Reihe und dem Einzelstrahlerabstand senkrecht zur Spalte oder Reihe beträgt weniger als 2 A, bevorzugt weniger als 1,7 A, weiter bevorzugt weniger als 1,5 λ.
  • In beiden Fällen handelt es sich bei λ um die Wellenlänge der Mittenfrequenz eines Resonanzfrequenzbereichs des Strahlerarrays und insbesondere des untersten Resonanzfrequenzbereichs.
  • Bevorzugt umfasst das Strahlerarray eine Mehrzahl von nebeneinander angeordneten dual-polarisierten Hornstrahlern, wie sie oben näher dargestellt wurden. Alternativ oder zusätzlich können einzelne, mehrere oder alle Hornstrahler des Strahlerarrays eine oder mehrere der Merkmale aufweisen, welche oben in Hinblick auf die erfindungsgemäßen Hornstrahler beschrieben wurden.
  • In einer möglichen Ausführungsform des Strahlerarrays sind die Hornstrahler in mehreren nebeneinander angeordneten Spalten oder mehreren nebeneinander angeordneten Reihen angeordnet, wobei bevorzugt die Hornstrahler benachbarter Spalten oder Reihen gegeneinander versetzt angeordnet sind, wobei bevorzugt die Hornstrahler wabenförmig angeordnet sind.
  • In einer möglichen Ausführungsform weist das Strahlerarray ein Speisenetzwerk auf.
  • Bevorzugt weisen die ersten Hohlleiter und die zweiten Hohlleiter der in einer Spalte oder Reihe angeordneten Hornstrahler in unterschiedlichen Höhenebenen des Speisenetzwerks einen Bend zur Seite hin auf.
  • Dabei können jeweils die ersten Hohlleiter der in einer Spalte oder Reihe angeordneten Hornstrahler und/oder die zweiten Hohlleiter der in einer Spalte oder Reihe angeordneten Hornstrahler in der gleichen Höhenebene einen Bend zur Seite hin aufweisen.
  • Alternativ oder zusätzlich können die Hohlleiter von in zwei benachbarten Reihen oder Spalten angeordneten Hornstrahlern in unterschiedlichen Höhenebenen einen Bend zur Seite hin aufweisen.
  • In einer möglichen Ausführungsform werden die Hohlleiter der Hornstahler jeweils einzeln gespeist.
  • In einer alternativen Ausführungsform stehen die ersten Hohlleiter der in einer Spalte oder Reihe angeordneten Hornstrahler und/oder die zweiten Hohlleiter der in einer Spalte oder Reihe angeordneten Hornstrahler durch einen Verteiler mit einer gemeinsamen Speisung in Verbindung.
  • Die vorliegende Erfindung umfasst weiterhin Gruppenantennen bestehend aus mehreren Subarrays, welche so ausgestaltet sind, wie dies oben beschrieben wurde.
  • Die vorliegende Erfindung umfasst weiterhin eine Mobilfunk-Basisstation mit einem oder mehreren Hornstrahlern, wie sie oben beschrieben wurden, und/oder einem oder mehreren Strahlerarrays, wie sie oben beschrieben wurden.
  • Die vorliegende Erfindung wird nun anhand von Ausführungsbeispielen und Zeichnungen näher beschrieben.
  • Dabei zeigen:
  • Fig. 1:
    Ein Ausführungsbeispiel eines Hornstrahlers und eines Strahlerarrays gemäß dem ersten Aspekt der vorliegenden Erfindung,
    Fig. 2:
    eine Prinzipdarstellung der Hohlleiter eines Hornstrahlers bzw. Strahlerarrays gemäß dem zweiten Aspekt,
    Fig. 3:
    ein Ausführungsbeispiel eines Transformationsabschnittes für ein Hornstrahler gemäß dem zweiten Aspekt mit zwei Diagrammen, welche den Verlauf des E-Feldes am Anfang und am Ende des Transformationsabschnittes zeigen,
    Fig. 4:
    ein konkretes Ausführungsbeispiel der Hohlleiter eines Hornstrahlers oder Strahlerarrays gemäß dem zweiten Aspekt in einer perspektivischen Darstellung und in einer Schnittansicht,
    Fig. 5:
    Prinzipdarstellungen von drei Varianten von Hohlleitern für einen Hornstrahler gemäß dem zweiten Aspekt,
    Fig. 6:
    ein Ausführungsbeispiel eines Hornstrahlers und eines Strahlerarrays, bei welchem der erste und der zweite Aspekt der vorliegenden Erfindung in Kombination verwirklicht sind,
    Fig. 7a:
    eine Variante des Überlagerungsbereiches der beiden Polarisationen bei einem Hornstrahler gemäß dem ersten und/zweiten Aspekt der vorliegenden Erfindung,
    Fig. 7b:
    mehrere Schnittansichten in unterschiedlichen Höhen für das in Fig. 7 dargestellte Ausführungsbeispiel,
    Fig. 8
    zwei weitere Ausführungsbeispiel eines erfindungsgemäßen Hornstrahlers, welcher als Steghohlraumstrahler mit bzw. ohne Seitenwände ausgeführt ist,
    Fig. 9:
    ein Ausführungsbeispiel eines erfindungsgemäßen Strahlerarrays mit einer Detailansicht eines der eingesetzten Hornstrahler in einer Perspektive von oben,
    Fig. 10:
    drei Diagramme des E-Feldes in unterschiedlichen Höhen des erfin-dungsgemäßen Hornstrahlers bei Anregung der ersten Polarisation bei Phase 0°,
    Fig. 11:
    drei Diagramme des E-Feldes in unterschiedlichen Höhenebenen eines erfindungsgemäßen Hornstrahlers bei Anregung der ersten Polarisation bei Phase 90°,
    Fig. 12:
    oben eine Draufsicht auf das in Fig. 9 dargestellte Ausführungsbeispiel eines erfindungsgemäßen Strahlerarrays und unten eine Ansicht des Ausführungsbeispiels von der Seite des Verteilnetzwerkes gesehen, d.h. von unten,
    Fig. 13:
    6 Schnitte in unterschiedlichen Höhenebenen durch das in Fig. 9 darge-stellte Ausführungsbeispiel,
    Fig. 14:
    zwei Schnitte in Höhenrichtung durch das in Fig. 9 dargestellte Ausfüh-rungsbeispiel,
    Fig. 15:
    oben das E-Feld in einem Hornstrahler bei Anregung der zweiten Polari-sation und unten das E-Feld bei Anregung der ersten Polarisation, je-weils bei Phase 0° und 90°,
    Fig. 16a:
    den S-Parameter in einem Smith Chart im Bereich zwischen 27 GHz und 32GHz für die links dargestellten Ports,
    Fig. 16b:
    ein Diagramm des S-Parameters für die Isolation zwischen den einzel-nen Ports für den Frequenzbereich zwischen 27 GHz und 32 GHz,
    Fig. 17a:
    den S-Parameter in einem Smith Chart für den Frequenzbereich zwi-schen 27,5 GHz und 28,5 GHz,
    Fig. 17b:
    den S-Parameter für die Isolation zwischen den einzelnen Ports in einem Frequenzbereich zwischen 20,5 GHz und 28,5 GHz,
    Fig. 18:
    das Fernfelddiagramm in horizontaler und vertikaler Richtung für die beiden links dargestellten Ports jeweils bei 28 GHz und bei 32 GHz,
    Fig. 19:
    das in Fig. 9 dargestellte Ausführungsbeispiel in einer Draufsicht sowie ein alternatives Ausführungsbeispiel in einer Draufsicht, zur Verdeutlichung der erfindungsgemäß möglichen Einzelstrahlerabstände in horizontaler und vertikaler Richtung,
    Fig. 20:
    drei Varianten für die Grundfläche bzw. Aperturöffnung der erfindungsgemäßen Hornstrahler und
    Fig. 21:
    zwei mögliche Ausführungsbeispiele für ein Speisenetzwerk für ein erfindungsgemäßes Strahlerarray, wobei links ein Ausführungsbeispiel mit Einzelspeisung der einzelnen Ports, und rechts ein Ausführungsbeispiel mit Gruppenspeisung der jeweiligen identischen Polarisationen innerhalb einer Spalte dargestellt ist.
  • Fig. 1 zeigt ein Ausführungsbeispiel zweier dual polarisierter Hornstrahler 20 und 20' gemäß dem ersten Aspekt der vorliegenden Erfindung. Die beiden Strahler bilden damit gleichzeitig ein Ausführungsbeispiel für ein erfindungsgemäßes Strahlerarray.
  • Die beiden Hornstrahler 20 und 20' weisen jeweils ein Horn, d. h. einen in Hauptabstrahlrichtung offenen Hohlkörper auf, über welchen elektromagnetische Wellen abgestrahlt bzw. empfangen werden. Die Speisung des Horns erfolgt durch Hohlleiter, welche in Fig. 1 lediglich mit ihrem Endbereich dargestellt sind.
  • Die Hornstrahler 20 und 20' weisen im Ausführungsbeispiel zwei orthogonale Polarisationen auf, welche durch zwei separate Hohlleiter 1 und 2 gespeist werden, die über Öffnungen 23 bzw. 24 in das Horn des jeweiligen Hornstrahlers 20 und 20' münden. Die Polarisationen der beiden Hohlleiter bzw. der durch die Hohlleiter geführten elektromagnetischen Wellen stehen im Bereich der Mündung der Hohlleiter in den Hornstrahler jeweils senkrecht aufeinander.
  • Der erste Hohlleiter 1 bzw. 1' ist gemäß dem ersten Aspekt der vorliegenden Erfindung von unten nach oben, d.h. in Abstrahlrichtung, zum Hohlstrahler geführt, wobei sein Querschnitt sich im Bereich der Mündung in den Hornstrahler nur teilweise mit der Aperturöffnung 22 des Hohlstrahlers 20 bzw. 20', welchen er mit Signalen versorgt, überlappt, und sich teilweise außerhalb der Aperturöffnung befindet. Bevorzugt verlaufen die Hohlleiter 1 bzw. 1' dabei in Hauptabstrahlrichtung und/oder senkrecht zur Aperturebene.
  • Wie in der Schnittansicht in Fig. 1 rechts oben gezeigt, befindet sich der erste Hohlleiter 1', welcher den Hornstrahler 20' mit Signalen versorgt, daher teilweise unterhalb der Aperturöffnung 22 dieses Hornstrahlers 20', und teilweise unterhalb der Aperturöffnung 22 des benachbarten Hornstrahlers 20. Damit überschneidet sich der Querschnitt des Hohlleiters 1' in einer Projektion auf die Aperturebene teilweise mit der Aperturöffnung des eigenen Strahlers, sowie teilweise mit der Aperturöffnung eines benachbarten Strahlers.
  • Hierdurch wird eine sehr kompakte Anordnung erreicht, da zur Zuführung der Signale zu einem Hohlstrahler der Platz unterhalb des benachbarten Hohlstrahlers genutzt werden kann.
  • Im Ausführungsbeispiel erfolgt die Speisung der Hornstrahler über den ersten Hohlleiter 1 bzw. 1' dabei zum Teil seitlich, und zum Teil von unten. Insbesondere ist hierfür der Teil des Querschnitts des ersten Hohlleiters, welcher unterhalb der Aperturöffnung des jeweiligen Strahlers verläuft, in den Strahler hinein verlängert. Der Bereich des Querschnittes, welcher außerhalb der Aperturöffnung und insbesondere im Bereich der Aperturöffnung des benachbarten Strahlers verläuft, wird dagegen seitlich in den Hornstrahler geführt.
  • Im Ausführungsbeispiel weist der erste Hohlleiter 1 eine Begrenzungswand 27 auf, welche sich von einer Position außerhalb der Aperturöffnung des Hornstrahlers schräg nach oben zu der Mündung 23 in den Hornstrahler erstreckt. Dabei handelt es sich im Ausführungsbeispiel bei der Begrenzungswand 27 um die Wand einer kurzen Seite ersten Hohlleiters. Die Begrenzungswand 27 bildet dabei gleichzeitig einen Bodenbereich des benachbarten Hornstrahlers.
  • Die Mündung 23 des ersten Hohlleiters 1 weist damit sowohl eine Erstreckung 25 in einer Richtung normal zur Aperturebene, und eine Erstreckung 26 innerhalb der Aperturebene auf. Im Ausführungsbeispiel weist die Öffnung 23 hierfür ein Knick auf, d.h. die Öffnung wird durch eine vertikale Kante 25 und eine horizontale Kante 26 begrenzt. In alternativen Ausführungsbeispielen kann die Mündung 23 jedoch auch eine schräg zur Aperturebene verlaufende Kante aufweisen.
  • Die Öffnung 24, mit welcher der zweite Hohlleiter in den Hornstrahler mündet, befindet sich dagegen komplett innerhalb der Aperturöffnung sowie des Bodenbereichs des jeweiligen Hornstrahlers. Im Ausführungsbeispiel ist die Öffnung 24 dabei mittig bezüglich der Aperturöffnung des jeweiligen Hornstrahlers angeordnet.
  • Die Hornstrahler weisen im Ausführungsbeispiel damit jeweils einen Überlagerungsbereich 30 auf, in welchem die Überlagerung der beiden Polarisationen erfolgt, und welcher durch den Boden des Horns sowie einen sich bis zum oberen Ende der Mündung 23 des Hohlleiters erstreckenden Wandbereich des Horns gebildet wird.
  • Im Ausführungsbeispiel folgen darauf ein unterer Hornbereich 28, in welchem sich das Horn im Wesentlichen vertikal nach oben, d.h. in Hauptabstrahlrichtung und/oder senkrecht zur Aperturebene, erstreckt, sowie ein oberer Hornbereich 29, in welchem sich das Horn nach außen hin weitet.
  • In Fig. 1 sind dabei beispielhaft nur zwei erfindungsgemäße Hornstrahler dargestellt. Selbstverständlich können jedoch auch mehr als zwei solcher Strahler in einer Reihe oder Spalte nebeneinander angeordnet werden. Weiterhin weisen die Hornstrahler im Ausführungsbeispiel jeweils eine 6-eckige Grundform auf, so dass eine Wabenförmige Anordnung mehrerer Spalten und Reihen nebeneinander möglich ist.
  • Weitere Einzelheiten und Varianten im Hinblick auf die Ausgestaltung eines Hornstrahlers bzw. Strahlerarrays gemäß dem ersten Aspekt der vorliegenden Erfindung werden im Folgenden noch näher Anhand der Figuren 6 ff. beschrieben.
  • Fig. 2 zeigt das einem dual polarisierten Hornstrahler bzw. einem entsprechenden Strahlerarray gemäß dem zweiten Aspekt der vorliegenden Erfindung zugrunde liegende Konzept. Auch hier erfolgt die Speisung der beiden Polarisationen jeweils über getrennte Hohlleiter 1 und 2.
  • Die Hohlleiter sind in einem Speiseabschnitt 3, mit welchem sie mit einem Speisenetzwerk in Verbindung stehen, parallel zueinander geführt und weisen dort die gleiche Ausrichtung der Polarisation auf. In Fig. 2 ist das E-Feld jeweils als Pfeil schematisch dargestellt. In einem Mündungsbereich 5, mit welchem die Hohlleiter in die jeweiligen Hornstrahler münden, weisen die Polarisationen für den ersten und den zweiten Hohlleiter dagegen eine unterschiedliche Ausrichtung auf. Insbesondere stehen dabei die Polarisationen senkrecht aufeinander. Hierfür ist zwischen dem Speiseabschnitt 3 und dem Mündungsabschnitt 5 ein Transformationsabschnitt vorgesehen, welcher der Feld- und/oder Impedanztransformation dient. Insbesondere weist dabei der erste Hohlleiter im Transformationsabschnitt eine Verdrillung bzw. einen Twist auf, durch welchen seine Polarisation gegenüber dem anderen Hohlleiter gedreht wird.
  • Die Hohlleiter 1 und 2 sind vom Speiseabschnitt 3 über den Transformationsabschnitt 4 bis zum Mündungsabschnitt 5 jeweils parallel von unten nach oben, d.h. in Abstrahlrichtung und insbesondere senkrecht zur Aperturebene geführt, so dass durch die Verdrillung im Bereich des Transformationsabschnittes des Hohlleiters 1 eine Drehung seiner Polarisation in der Aperturebene bzw. um eine senkrecht auf der Aperturebene stehende Drehachse erfolgt. Der zweite Hohlleiter weist im Transformationsabschnitt 4 dagegen keine Verdrillung auf, so dass sich seine Polarisation nicht dreht.
  • Diese Anordnung hat den Vorteil, dass im Bereich des Speiseabschnitts 3, welcher an ein Anpassnetzwerk und/oder ein Verteilnetzwerk angeschlossen wird, der zur Verfügung stehende Platz optimal genutzt werden kann. Insbesondere können die ersten und zweiten Hohlleiter in diesem Bereich identisch ausgerichtet sein und/oder einen identischen Querschnitt aufweisen, und damit den vorhandenen Platz optimal ausnutzen. Die Hohlleiter sind somit erst im Bereich des Mündungsabschnittes 5 orthogonal zueinander ausgerichtet, und benötigen daher erst dort entsprechend Platz.
  • Um ausreichend Platz für die gedreht zueinander ausgerichteten Hohlleiter im Bereich der Mündung zu haben, verringert sich die Fläche des Hohlleiterquerschnitts im Transformationsabschnitt in Richtung auf den Hornstrahler. Bevorzugt ist dies sowohl für den ersten, als auch für den zweiten Hohlleiter der Fall. Insbesondere ist damit die Fläche des Hohlleiterquerschnitts in Richtung Antenne kleiner als die Fläche des Hohlleiterquerschnitts in Richtung Verteilnetzwerk. Die Hohlleiter haben daher in Richtung Antenne eine höhere Wellenimpedanz und eine höhere untere Grenzfrequenz (Cut-Off-Frequenz) als in Richtung Verteilnetzwerk.
  • Der Transformationsabschnitt mit der Hohlleiterquerschnittsänderung zur Feld- und Impedanztransformation hat den Vorteil, dass auf der Antennenseite orthogonal polarisierte Strahleröffnungen kompakt verschachtelt werden können, während auf Seiten des Anpass- und/oder Verteilnetzwerks ein größerer, breitbandigerer und verlustärmerer Standardhohlleiter verwendet werden kann.
  • Beispielsweise kann das Anpassungsnetzwerk und/oder Verteilnetzwerk somit breitbandig ausgelegt werden. Beispielsweise könnte ein WR28 Hohlleiter für den
  • Bereich zwischen 26,5 GHz bis 40,0 GHz eingesetzt werden. Die Antennenseite, d.h. zum einen der Transformationsabschnitt sowie die Hornstrahler können dagegen schmalbandiger und austauschbar ausgelegt werden. Beispielsweise würden für zwei unterschiedliche Frequenzbereiche in dem größeren Frequenzbereich des Anpassungs- und/oder Verteilnetzwerkes jeweils unterschiedliche Transformationsabschnitte und unterschiedliche Hornstrahler eingesetzt werden. Bspw. könnte einmal für den Frequenzbereich zwischen 27 GHz und 29 GHz ein erster Hornstrahlertyp und und zum anderen für den Frequenzbereich zwischen 37 GHz und 39 GHz ein zweiter Hornstrahlertyp eingesetzt werden. Hierdurch kann das Gesamtsystem modular aufgebaut werden, und insbesondere das Anpassungs- und/oder Verteilnetzwerk für unterschiedliche Anwendungen verwendet werden.
  • Fig. 3 zeigt nun ein mögliches Ausführungsbeispiel für einen Transformationsabschnitt 4 für den ersten Hohlleiter. Dabei wird ein in x-Richtung polarisierter Hohlleiterquerschnitt, welcher an den Einspeisabschnitt 3 angeschlossen wird, zu einem in z-Richtung polarisierten Hohlleiterquerschnitt transformiert, welcher an den Mündungsabschnitt 5 angeschlossen wird. Gleichzeitig wird die Querschnittsfläche verringert, im Ausführungsbeispiel beispielsweise von einem Hohlleiterquerschnitt von 7,11 mm x 3,55 mm und 572 Ohm Wellenimpedanz zu einem Hohlleiterquerschnitt von 6,11 mm x 2,4 mm und etwa 785 Ohm Wellenimpedanz.
  • Generell kann die Form des Transformationsabschnitts zwischen seinen beiden Enden beliebig sein. Insbesondere können dreidimensionale Rundungen teilweise oder ganz durch Flächen oder Treppenstufen ersetzt werden oder der Transformationsabschnitt aus zwei oder mehr Einzelteile gefertigt und zusammengefügt werden, je nach Fertigungsverfahren. Bei dem in Fig. 3 dargestellten Ausführungsbeispiel besteht der Transformationsabschnitt 4 aus zwei Transformationselementen 8 und 11, welche das Feld jeweils um 45° drehen, und einem zwischengeschalteten Zwischenelement 9 mit konstantem Querschnitt. Es ist aber auch denkbar, ein oder mehrere Elemente mit konstantem Querschnitt um einen beliebigen Winkel zu verdrehen, d.h. eine mehrstufige Transformation durchzuführen, oder kein Zwischenelement zu verwenden und die beiden Seiten durch eine durchgehende Verdrillung zu verbinden. Entscheidend ist lediglich, dass die Polarisation, wie in Fig. 3 links dargestellt, zwischen dem Eingang 3 und dem Ausgang 5 gedreht und der Querschnitt verringert wurde. In Fig. 3 ist dabei das E-Feld im Bereich des Speiseabschnittes 3 mit 11, im Bereich des Mündungsabschnittes 5 als 12 eingezeichnet.
  • Fig. 3 zeigt einen Transformationsabschnitt für den ersten Hohlleiter, bei welchem eine Drehung der Polarisation erfolgt. Bei dem in Fig. 2 dargestellten Ausführungsbeispiel weist der zweite Hohlleiter dagegen keine Verdrillung auf, sondern erfährt im Bereich des Transformationsabschnitts lediglich eine Querschnittsverjüngung. Diese dient dazu, ausreichend Platz zur Anordnung der im Mündungsbereich orthogonal zueinander stehenden Hohlleiter zu schaffen.
  • Dies ist noch einmal anhand von Fig. 4 veranschaulicht, welche die Transformationsabschnitte 6 und 7 von in einer Spalte nebeneinander angeordneten ersten und zweiten Hohlleitern 1 und 2 darstellt. Die Transformationsabschnitte 6 der ersten Hohlleiter 1 weisen dabei eine Verdrillung und eine Querschnittsverjüngung auf, die Transformationsabschnitte 7 der zweiten Hohlleiter 2 dagegen lediglich eine Querschnittsverjüngung. Durch die Querschnittsverjüngung der Transformationsabschnitte 7 der zweiten Hohlleiter wird der Platz geschaffen, welcher benötigt wird, um die Verdrillung der ersten Hohlleiter 1 zu ermöglichen.
  • Im Ausführungsbeispiel werden Hohlleiter mit einer längeren und einer kürzeren Seite eingesetzt. Im Speiseabschnitt 3 sind die ersten und zweiten Hohlleiter jeweils mit ihren längeren Seiten benachbart und parallel zueinander angeordnet. Durch die Verdrillung der ersten Hohlleiter im Transformationsabschnitt 4 stehen sich im Mündungsabschnitt 5 nun aber die längeren Seiten der ersten und zweiten Hohlleiter jeweils senkrecht aufeinander.
  • Während im Speiseabschnitt 3 daher zwischen den langen Seiten von zwei zweiten Hohlleitern lediglich Platz für die kürzere Seite der ersten Hohlleiter benötigt wird, wird im Mündungsbereich 5 dagegen Platz für die längere Seite eines ersten Hohlleiters benötigt. Um diesen Platz zu schaffen, wird insbesondere die kürzere Seite der zweiten Hohlleiter weiter verkürzt. Weiterhin kann auch die längere Seite der ersten Hohlleiter verkürzt werden.
  • Im Ausführungsbeispiel erfolgt dabei eine Verkürzung sowohl der längeren als auch der kürzeren Seite der ersten und der zweiten Hohlleiter, wobei jedoch das Verhältnis zwischen längerer und kürzerer Seite vergrößert wird, d.h. die kürzere Seite wird prozentual stärker verkürzt als die längere Seite. Hierdurch wird der Hohlleiter zwar schmalbandiger. Die Cut-off-Frequenz wird jedoch nicht in gleichem Maße erhöht.
  • Erfindungsgemäß wird für die hier eingesetzten einfach polarisierten Wellenleiter ein Querschnitt mit einer größeren Ausdehnung in der H-Feld-Ebene als in der E-Feld-Ebene bevorzugt. Insbesondere weisen die Hohlleiter dabei auf Seiten des Speise- und/oder Verteilnetzwerkes und insbesondere im Speiseabschnitt ein Verhältnis zwischen der längeren Seite und der kürzeren Seite von größer als 1,5 : 1 und kleiner als 2,5 : 1 auf. Im Mündungsabschnitt ist das Verhältnis zwischen der längeren und der kürzeren Seite bevorzugt größer als im Speiseabschnitt, insbesondere größer als 2,5 : 1 und weiterhin bevorzugt größer als 3 : 1. Hierdurch wird ein guter Kompromiss aus Kompaktheit und elektrischen Eigenschaften erzielt.
  • Insbesondere kann erfindungsgemäß ein Hohlleiter mit einem rechteckigen Querschnitt eingesetzt werden. In diesem Fall wird die TE10(H10)-Mode angeregt.
  • Denkbar sind aber auch Hohlleiter mit mindestens einer Querschnittsverengung und/oder mindestens einer Querschnittsverbreiterung in der E-Feld-Ebene und/oder H-Feld-Ebene. Insbesondere können Hohlleitervarianten mit mindestens einer Querschnittsverengung in der H-Feld-Ebene eingesetzt werden, sogenannte Steghohlleiter. In diesem Fall wird bevorzugt ebenfalls die TE10-Mode und/oder eine höhere Mode angeregt.
  • In Fig. 5 sind drei Varianten für den Transformationsabschnitt gemäß dem zweiten Aspekt der vorliegenden Erfindung dargestellt.
  • Dabei weisen die Hohlleiter in bei der links dargestellten Variante bereits im Bereich des Speiseabschnitts 3 eine unterschiedliche Polarisation auf. Weiterhin wird bei der Variante links im Transformationsabschnitt sowohl die Polarisation des ersten Hohlleiters 1, als auch des zweiten Hohlleiters 2 gedreht wird. Dabei weisen die ersten und zweiten Hohlleiter im Speiseabschnitt 3 jeweils entgegengesetzt ausgerichtete Polarisationen auf. Diese werden durch entsprechende Transformationsabschnitte 4 jeweils um 45 Grad gedreht, sodass sie im Mündungsabschnitt orthogonal zueinander stehen.
  • Im Mündungsabschnitt 5 werden zudem Hohlleiter mit einem im Wesentlichen quadratischen Wellenleiterquerschnitt eingesetzt. Diese werden als einfach polarisierte 45 Grad Wellenleiter eingesetzt, bei welchen die Polarisation damit diagonal verläuft.
  • Bei den Ausführungsbeispielen in der Mitte und rechts weisen die Hohlleiter 1 und 2 zumindest im Speiseabschnitt 3 unterschiedliche Querschnittsformen auf. Die Polarisationen der Hohlleiter 1 und 2 sind im Speiseabschnitt 3 dagegen noch in die gleiche Richtung ausgerichtet.
  • In der Mitte von Fig. 5 ist dabei ein Ausführungsbeispiel dargestellt, bei welchem der erste Hohlleiter 1 im Speiseabschnitt 3 einen teilweise verbreiterten Rechteckhohlleiterquerschnitt und im Mündungsabschnitt 5 einen teilweise verengten Rechteckhohlleiterquerschnitt in der H-Ebene aufweist. Im Speiseabschnitt 3 weist der erste Hohlleiter dabei in eine bezüglich der H-Ebene mittleren Bereich eine Querschnittsverbreiterung 72 und im Mündungsabschnitt 5 eine bezüglich der nunmehr gedrehten H-Ebene mittleren Bereich eine Querschnittsverjüngung 70.
  • Der zweite Hohlleiter 2 besitzt im Speiseabschnitt 3 sowie im Mündungsabschnitt 5 einen teilweise verengten Rechteckhohlleiterquerschnitt in der H-Ebene. Insbesondere weist der zweite Hohlleiter 2 jeweils in einem bezüglich der H-Ebene mittleren Bereich eine Querschnittsverjüngung 70.
  • Dies verbessert die Modenselektivität und/oder Bandbreite des Hohlleiters und/oder führt zu einer kompakteren Bauweise, und kann auch bei den übrigen Ausführungsbeispielen eingesetzt werden. Hohlleiter 2 hat in diesem Fall die Feldcharakteristik eines Doppelsteghohlleiters.
  • Durch den Transformationsabschnitt 4 wird die Polarisation des ersten Hohlleiters 1 um 90 Grad gedreht sowie dessen Querschnittsform und Feldverteilung geändert, sodass sich im Mündungsbereich 5 orthogonale Polarisationen mit ähnlicher Feldverteilung ergeben. Im Mündungsbereich werden dabei jeweils wiederum Wellenleiterquerschnitte mit einer deutlich größeren Ausdehnung in der H-Feld-Ebene als in der E-Feld-Ebene eingesetzt.
  • Weiterhin sind die Querschnittsflächen der Hohlleiter sowohl im Speiseabschnitt 3 als auch im Mündungsabschnitt 5 miteinander verschachtelt, indem eine Querschnittsverbreiterung 72 oder ein Endabschnitt 71 des einen Hohlleiters in eine Querschnittsverjüngung 70 des anderen Hohlleiters eingreift.
  • Das Ausführungsbeispiel rechts in Fig. 5. zeigt eine besonders kompakte Variante. Der erste Hohlleiter 1 besitzt im Speiseabschnitt 3 sowie im Mündungsabschnitt 5 einen teilweise verbreiterten und einen teilweise gefüllten Rechteckhohlleiterquerschnitt in der H-Ebene mit einer Querschnittsverbreiterung 72 in einem bezüglich der H-Ebene mittleren Bereich. Durch den Transformationsabschnitt 4 wird die Polarisation von Hohlleiter 1 gedreht sowie dessen Querschnittsfläche verkleinert. Die Querschnittsform und Feldverteilung wird aber im Wesentlichen beibehalten.
  • Der zweite Hohlleiter 2 besitzt wiederum im Speiseabschnitt 3 sowie im Mündungsabschnitt 5 einen teilweise verengten Rechteckhohlleiterquerschnitt in der H-Ebene. Insbesondere weist der zweite Hohlleiter 2 jeweils in einem bezüglich der H-Ebene mittleren Bereich eine Querschnittsverjüngung 70 auf. Weiterhin vergrößert sich zwischen dem Speiseabschnitt 3 und dem Mündungsabschnitt 5 das Verhältnis zwischen der Breite des Querschnitts in E-Feld-Ebene in den breiteren Endbereichen 71 und der Querschnittsverjüngung 70.
  • Dadurch haben Hohlleiter 1 und Hohlleiter 2 im Mündungsabschnitt 5 orthogonale Polarisation und verschiedene Feldverteilungen und/oder Feldverteilungsdichten, was je nach Ausgestaltung des Überlagerungsbereichs 30 zu einer besseren Entkopplung und kompakteren Bauweise führen kann.
  • Weiterhin ergibt sich eine sehr kompakte Anordnung, da im Speiseabschnitt 3 als die Querschnittsverbreiterung 72 des ersten Hohlleiters 1 in die Querschnittsverjüngungen 70 der benachbarten zweiten Hohlleiter 2 eingreift, während im Mündungsabschnitt 5 die nunmehr um 90 Grad gedrehten schmäleren Endbereiche 73 des Querschnitts des ersten Hohlleiters 2 in die nunmehr tieferen Querschnittsverjüngungen 70 der benachbarten zweiten Hohlleiter 2 eingreift.
  • Generell können die Hohlleiter Stege, Materialfüllungen, Materialaussparungen, Querschnittsverbreiterungen, Querschnittsverengungen und viele weitere Maßnahmen zur Kostenreduzierung und/oder Verkleinerung und/oder Verbesserung der elektrischen und mechanischen Eigenschaften aufweisen.
  • Bevorzugt sind beide Aspekte der vorliegenden Erfindung verwirklicht, d.h. die erste Polarisation wird mittig zwischen zwei Strahleröffnungen zum Strahler geführt und über einen Transformationsabschnitt gedreht. Weiterhin bevorzugt ist im Transformationsabschnitt eine Hohlleiterquerschnittsänderung vorgesehen, durch welche sich die Wellenimpedanz ändert.
  • Die Polarisationsdrehung wird bevorzugt über eine Hohlleiterverdrillung realisiert, insbesondere über eine Hohlleiterverdrillung um eine Drehachse, welche normal zur Aperturebene steht. Gleichzeitig findet in einer Richtung normal zur Aperturebene innerhalb der Hohlleiterverdrillung eine Verkleinerung des Hohlleiterquerschnitts statt, was zu einer Wellenimpedanzänderung und kompakteren Abmessung führt. Die gedrehte Strahleröffnung ist bevorzugt zumindest teilweise seitlich in den Strahler geführt.
  • Fig. 6 zeigt nun ein entsprechendes Ausführungsbeispiel, bei welchem die Speisung der Hornstrahler gemäß dem ersten Aspekt so erfolgt, wie dies bereits oben im Hinblick auf Fig. 1 dargestellt wurde. Die Transformation der Hohlleiter erfolgt so, wie dies oben im Hinblick auf das Ausführungsbeispiel in Fig. 2 bis 4 dargestellt wurde. Insbesondere werden dabei die oben im Hinblick auf den zweiten Aspekt beschriebenen ersten und zweiten Hohlleiter mit ihrem Mündungsabschnitt 5 an die Öffnungen 23 bzw. 24 angeschlossen, über welche die Hornstrahler gemäß dem ersten Aspekt der vorliegenden Erfindung gespeist werden.
  • Wie aus Fig. 6 ersichtlich, hat die Kombination des ersten und des zweiten Aspektes ein ganz erhebliches synergistisches Potenzial. Denn durch die Kombination des ersten und zweiten Aspektes ist es möglich, die zweiten Hohlleiter 2 mittig bezüglich der Aperturöffnung 22 der Hohlstrahler 20 bzw. 20' in den Hohlstrahler münden zu lassen. Dennoch wird der zwischen den Mündungen der zweiten Hohlleiter vorhandener Platz durch die gedrehten Mündungsbereiche der ersten Hohlleiter 1 optimal genutzt, da dieser Mündungsbereich nicht auf den unterhalb der jeweiligen Aperturöffnung zur Verfügung stehenden Platz beschränkt ist, sondern sich unter die jeweilige Aperturöffnung des benachbarten Strahlers erstreckt.
  • Rechts in Fig. 6 ist noch eine mögliche Bemaßung eines erfindungsgemäßen Hornstrahlers dargestellt. Der Transformationsbereich 31 kann dabei beispielsweise eine Höhe H1 von 0,5 λ - 1,5 λ aufweisen, der zur Überlagerung der Polarisationen innerhalb des Hornstrahlers eingesetzte Überlagerungsbereich 30 eine Höhe H2 von 0,5 λ - 1,5 λ, und das eigentliche Horn 32 eine Höhe H3 zwischen 0,5 λ und 4 λ.
  • In Fig. 7 ist links noch einmal eine mögliche Bemaßung für die Aperturöffnung angegeben. Dabei kann beispielsweise der maximale Durchmesser Di auf der Höhe des unteren Hornabschnitts 28, in welchem sich die Wände des Horns im Wesentlichen vertikal nach oben, d.h. in Hauptabstrahlrichtung, erstrecken, bei 0,8λ +- 0,3λ liegen. Der maximale Durchmesser Da der Aperturöffnung 22, d.h. nach der Aufweitung 29, kann beispielsweise bei 1,1λ +- 0,3λ liegen.
  • Bei λ handelt es sich dabei jeweils um die Wellenlänge der Mittenfrequenz des untersten Resonanzfrequenzbereichs des erfindungsgemäßen Strahlers.
  • In Fig. 7a ist rechts eine alternative Ausgestaltung des Überlagerungsbereichs der beiden Polarisationen gezeigt. Die Öffnung 23 weist hierbei schräg zur Aperturebene verlaufende längere Seiten auf, welche die obere und untere Schmalseite miteinander verbinden. Im Ausführungsbeispiel weist die Öffnung hierfür dreieckförmige Seitenwände 33 auf, welche sich entlang der längeren Seiten erstrecken.
  • Weiterhin sind im Bodenbereich des Horns Keilelemente 34 vorgesehen, welche sich von innen zu den Seitenwänden erstrecken. Bevorzugt weisen diese die gleiche Form auf, wie die Begrenzungswände 27 für den Mündungsbereich des benachbarten ersten Hohlleiters. Hierdurch weist der Bodenbereich insgesamt eine Trichterform auf. Die Öffnung 24 für den zweiten Hohlleiter ist im Zentrum des Trichters angeordnet, und schneidet im Ausführungsbeispiel in die Rampen 34.
  • Eine mögliche Bemaßung der Öffnung 23 für den ersten Strahler ist in Fig. 7a rechts angegeben. Die Öffnung 23 kann dabei eine Erstreckung B1 in Richtung ihrer kürzeren Seite von 0,2λ +- 0,2λ aufweisen. Die Erstreckung in Höhenrichtung B3 kann bei 0,7λ +- 0,7λ liegen, die Erstreckung in der Aperturebene B4 bei 0,2λ +-0,2λ.
  • In Fig. 7b sind noch einmal drei Schnitte parallel zur Aperturebene für das in Fig. 7a dargestellte Ausführungsbeispiel gezeigt. Rechts unten ist ein Schnitt durch den Mündungsbereich 5 dargestellt, d.h. knapp unterhalb der Verbindung mit den Öffnungen des Hornstrahlers.
  • In Fig. 7b ist weiterhin eine mögliche Bemaßung für die Hohlleiter im Mündungsbereich angegeben. Insbesondere kann dabei die Schmalseite eine Breite B1 von 0,2λ +- 0,2λ aufweisen, und die längere Seite eine Breite B2 von mehr als 0,5 λ, bspw. von 0,55λ aufweisen.
  • Bei einem normalen Rechteck-Hohlleiter sollte die längere Seite im Hinblick auf die Cut-Off-Frequenz eine Länge von 0,5 λ nicht unterschreiten. Durch die Verwendung von Steghohlleitern und/oder mit Dialektrikum gefüllten Hohlleitern sind jedoch geringere Abmessungen und/oder höhere Bandbreiten möglich. Beispielsweise können dabei mittig in den Hohlleitern eine oder mehrere Stege angeordnet werden, um die Bandbreite zu vergrößern und/oder die Cut-Off-Frequenz zu verringern.
  • Bei λ handelt es sich dabei wiederum bei allen oben angegebenen Bemaßungen um die Mittenfrequenz des untersten Resonanzfrequenzbereichs des erfindungsgemäßen Hornstrahlers.
  • Je nach Hohlleiterquerschnitt kann die Ausgestaltung des Überlagerungsbereichs auch komplexere Formen annehmen. Bei Doppelsteghohlleitern können zum Beispiel die Keilsegmente 34 Materialaussparungen und/oder eine Rampenform, insbesondere eine Rampenform mit einem exponentiellen Verlauf aufweisen.
  • Weiterhin kann der Strahler, wie in Fig. 8 dargestellt, als Steghohlleiterantenne ausgeführt sein. Links ist dabei eine Steghohlleiterantenne 20" mit Seitenwänden, rechts eine Steghohlleiterantenne 20‴ ohne Seitenwände dargestellt. Das Horn der Steghohlleiterantenne 20" weist die gleiche Ausgestaltung auf, welche oben zu Fig. 1 und 6 näher beschrieben wurde. Die Steghohlleiterantenne 20‴ weist dagegen nur den oben beschriebenen Überlagerungsbereich 30 auf, während sich in den Bereich des eigentlichen Horns nur noch die Stege erstrecken und die Seitenwände dort fehlen.
  • Die Steghohlleiterantenne weist jeweils Stege 75 auf, welche sich in Höhenrichtung erstrecken. Die Stege 75 erstrecken sich im Ausführungsbeispiel von dem Übergangsbereich 30 ausgehend in das eigentliche Horn 32 hinein.
  • Die Stege sind plattenförmig. Die Plattenebene der Stege 75 verläuft jeweils radial zur Mittelachse des Strahlers und/oder steht senkrecht auf der Seitenwand, entlang welcher er sich erstreckt. Die Innenkanten der Stege weisen einen sich zur Strahleröffnung hin vergrößernden Abstand auf.
  • Im Ausführungsbeispiel links erstrecken sich die Stege 75 entlang der Innenwände des Horns. Im Ausführungsbeispiel links erstrecken sie sich über die Bereiche 28 und 29 bis zur Strahleröffnung.
  • Je nach Anforderung und Fertigungsverfahren sind aber auch simplere Formen denkbar.
  • Fig. 9 zeigt nun ein Ausführungsbeispiel des Strahlerarrays, welches vier Spalten mit jeweils acht Einzelstrahlern 20 umfasst. Die Einzelstrahler sind dabei jeweils so ausgestaltet, wie dies in Fig. 6 bzw. 7 dargestellt ist. Die entsprechende Ausgestaltung des Überlagerungsbereichs im Bodenbereich der Hornstrahler ist dabei in Fig. 9 links noch einmal in Ausschnitt wiedergegeben. Bei der in Fig. 9 gezeigten Gruppenantenne kann es sich beispielsweise um eine Antenne mit einer Mittenfrequenz von 28 GHz und 2 GHz Bandbreite handeln.
  • Der Spaltenabstand, d.h. der Einzelstrahlerabstand in z-Richtung, beträgt im Ausführungsbeispiel 8,5 mm, d.h. 0,80 λ bei 28 GHz. Der Zeilenabstand, d.h. der Einzelstrahlerabstand in x-Richtung, beträgt im Ausführungsbeispiel 9,0 mm, d.h. 0,84 λ bei 28 GHz.
  • In Fig. 10 und 11 ist nun das E-Feld bei Phase 0 und Phase 90° in einer X-Z-Schnittebene bei unterschiedlichen Höhen Y= -11, Y = -13 und Y = -15 für die erste Polarisation dargestellt, welche über die Öffnung 23, mit welcher der erste Hohlleiter 1 in den Hornstrahler mündet, gespeist wird. Wie aus den Figuren ersichtlich, ergibt sich schon im Höhenbereich der Öffnung 23 eine hervorragende Ausrichtung des E-Felds und damit hervorragende Polarisations- und Symmetrieeigenschaften.
  • In Fig. 12 ist das in Fig. 9 dargestellte Ausführungsbeispiel oben in einer Draufsicht gezeigt, in welcher die erste Öffnung 23 für die ersten Hohlleiter und die zweite Öffnung 24 für die zweiten Hohlleiter gut zu erkennen ist. Unten ist eine Ansicht von unten, und zwar im Bereich des Speiseabschnitts, dargestellt. Hier weisen die ersten und zweiten Hohlleiter jeweils die gleiche Ausrichtung und den gleichen Querschnitt auf, und sind jeweils entlang der Spalten aufgereiht. Weiterhin ist der verkleinerte und bei den ersten Hohlleitern gedrehte Querschnitt 5 im Mündungsbereich durch den Transformationsabschnitt hindurch gesehen zu erkennen.
  • In Fig. 13 sind noch einmal Schnitte parallel zur Aperturebene für unterschiedliche Höhen gezeigt, wobei links oben ein Schnitt durch den Speiseabschnitt 3, links in der Mitte ein Schnitt durch den Transformationsabschnitt 4, und links unten ein Schnitt durch den Mündungsabschnitt 5 gezeigt ist. Rechts sind dann oben und in der Mitte Schnitte durch den Überlagerungsbereich, in welchem sich die Öffnung 23 erstreckt, gezeigt, und rechts unten ein Schnitt durch das Horn oberhalb des Überlagerungsbereichs.
  • In Fig. 15 sind noch einmal Schnitte senkrecht zur Aperturebene entlang der Spalten gezeigt. Hervorragend zu erkennen ist dabei die äußerst kompakte Anordnung sowohl der Hörner, als auch der Hohlleiter, welche die Hornstrahler mit Signalen versorgen. Entlang einer Spalte ist dabei jeweils abwechselnd ein erster und zweiter Hohlleiter vorgesehen, wobei die zweiten Hohlleiter jeweils mittig unterhalb des jeweiligen Hornstrahlers angeordnet sind, die ersten Hohlleiter dagegen zwischen zwei Hornstrahlern.
  • In Fig. 15 ist das E-Feld für die beiden Polarisationen gezeigt, und zwar oben für Port 24, d.h. einen durch einen zweiten Hohlleiter gespeisten Port, und unten für Port 23, d.h. einen durch einen ersten Hohlleiter gespeisten Port. Wie die Figuren eindrücklich belegen, weisen die Hornstrahler eine sehr gute Orthogonalität der beiden Polarisationen, sowie eine sehr gleichmäßige Feldverteilung auf.
  • In Fig. 16a und 16b ist der S-Parameter für die einzelnen Ports im Bereich zwischen 27 GHz und 32 GHz, d.h. bei 17% relativer Bandbreite eingezeichnet, in Fig. 17a und 17b im Bereich 27,5 GHz bis 28,5 GHz, d.h. bei 3,6% relativer Bandbreite.
  • Fig. 16a und 17a zeigen jeweils die Anpassung im Smith-Diagramm, Fig. 16b und 17b die Isolation der Ports untereinander.
  • In Fig. 16a ist ein VSWR von 2,0, d.h. eine Anpassung von größer 9,54 dB eingezeichnet, in Fig. 17a ein VSWR von 1,5, d.h. eine Anpassung von größer 13,98 dB. Das Potenzial ist jedoch tatsächlich noch wesentlich höher. Die Entkopplung liegt in beiden Fällen bei größer 25 dB.
  • In Fig. 18 ist jeweils das Fernfeld bei 28 GHz bzw. 32 GHz für die Ports P23 und P24 wiedergegeben. Eingezeichnet ist das Fernfeld in der horizontalen und der vertikalen Ebene, wobei die Phi-Komponente jeweils die Co-Polarisation, die Theta-Komponente jeweils die Kreuzpolarisation wiedergibt. Auch diese Diagramme zeigen die hervorragende Symmetrie des Fernfeldes und die geringe Kreuzpolarisation.
  • Bei dem Ausführungsbeispiel eines Strahlerarrays sind die Einzelstrahler benachbarter Spalten versetzt gegeneinander angeordnet. Insbesondere sind in Spaltenrichtung gesehen die Strahler einer ersten Spalte mittig zwischen den Strahlern der benachbarten zweiten Spalte angeordnet.
  • Aufgrund der im bisher beschriebenen Ausführungsbeispiel gewählten sechs-eckigen Form der eingesetzten Einzelstrahler und der in etwa gleichen Einzelstrahlerabstände innerhalb der Spalte und zwischen zwei Spalten ergibt sich hierdurch eine optimale Abdeckung der Fläche durch die sich ergebende Wabenstruktur.
  • Die vorliegende Erfindung erlaubt jedoch auch andere Grundformen des Strahlers und/oder eine nicht-wabenförmige Anordnung. Fig. 19 zeigt dabei zwei Ausführungsbeispiele erfindungsgemäßer Strahlerarrays.
  • Links ist ein Ausführungsbeispiel gezeigt, welches im Wesentlichen dem bereits oben diskutierten Ausführungsbeispiel in Fig. 9 entspricht und eine Wabenstruktur mit sechs-eckigen Einzelstrahlern aufweist. Die Einzelstrahler weisen hier jedoch ein Einzelstrahlerabstand in horizontaler Richtung Dh von 0,75λ, und ein Einzelstrahlerabstand Dv in vertikaler Richtung von 0,75λ auf, d.h. die Einzelstrahler sind geringfügig kleiner als die im Ausführungsbeispiel in Fig. 9.
  • Rechts in Fig. 19 ist ein alternatives Ausführungsbeispiel gezeigt, bei welchen der Einzelstrahlerabstand in horizontaler Richtung Dh, d.h. innerhalb der Spalte, zu Gunsten eines kleineren Einzelstrahlerabstands in vertikaler Richtung, d.h. zwischen den Spalten, vergrößert wurde. Bevorzugt ist dabei die Summe aus dem Abstand Dh und Dv kleiner als 2λ und weiter bevorzugt kleiner als 1,5λ.
  • Im Ausführungsbeispiel weisen die Strahler einen Einzelstrahlerabstand in horizontaler Richtung Dh von 1λ, und einen Einzelstrahlerabstand in vertikaler Richtung Dv von 0,5λ auf.
  • Im Ausführungsbeispiel sind zwischen den Strahlern innerhalb der Spalte Abstandsflächen angeordnet, durch welche der Abstand der Strahler innerhalb der Strahler erhöht wird, und in welche die Strahler der benachbarten Spalten seitlich hineinreichen. Die Spalten können hierdurch mit einem geringeren Spaltenabstand angeordnet werden. Im Ausführungsbeispiel wird dabei wieder eine sechs-eckige Grundform eingesetzt, es wäre hier jedoch auch eine acht-eckige Grundform denkbar.
  • Wie in Fig. 20 links dargestellt, ist statt einer sechs-eckigen Grundform der Einzelstrahler auch eine andere Ausgestaltung denkbar. Beispielsweise können die Einzelstrahler eine kreisförmige Grundform haben, welche teilweise überlappend angeordnet ist.
  • Fig. 20 rechts zeigt weiterhin ein Strahlerarray mit einer näherungsweise kreisförmigen Gruppenapertur. Eine näherungsweise kreisförmige Anordnung der Einzelstrahler kann zum Beispiel bei Zusammenschaltung der Einzelstrahler mit verschiedener Amplitude und Phase im Antennendiagramm zu niedrigeren Nebenkeulen führen.
  • Die Einzelstrahler eines erfindungsgemäßen Strahlerarrays können einzeln gespeist und/oder angepasst werden, oder teilweise in Untergruppen über einen Verteil- und Anpassnetzwerk zusammengeschaltet werden.
  • Fig. 21 zeigt links ein Ausführungsbeispiel eines Speisenetzwerks bei Einzelspeisung, und rechts bei Gruppenspeisung. Die dargestellten Verteil- und Anpassnetzwerke können dabei an die Speiseabschnitte der ersten und zweiten Hohlleiter der erfindungsgemäßen Hornstrahler angeschlossen werden.
  • Beiden Ausgestaltungen ist gemeinsam, dass die Hohlleiter jeweils über Bends in unterschiedlichen Ebenen 51 bis 54 zur Seite geführt sind.
  • Insbesondere sind dabei die ersten Hohlleiter 1 und die zweiten Hohlleiter 2 einer Spalte in jeweils unterschiedlichen Ebenen zur Seite herausgeführt. Weiterhin sind auch die Hohlleiter, welche unterschiedliche Spalten versorgen, in unterschiedlichen Ebenen angeordnet.
  • Bei der Gruppenspeisung sind dabei Verteiler 55, 56, 59 und 60 vorgesehen, durch welche jeweils die ersten Strahler 1 (Verteiler 55 bzw. 59) und die zweiten Hohlleiter (Verteiler 56 bzw. 60) einer Spalte zusammengeschaltet werden. Über einen weiteren Bend und Filter 57, 58, 61 und 62 stehen die Verteiler dann mit einer auf einer PCB angeordneten Speisung in Verbindung.
  • Die Strahler gemäß der vorliegenden Erfindung sind insbesondere in einem Frequenzbereich zwischen 10 GHz und 100 GHz oder für 5G-Anwendungen, insbesondere Anwendungen mit Beamsteering und/oder Beamforming, geeignet.

Claims (14)

  1. Dual polarisierter Hornstrahler (20), insbesondere für eine Mobilfunkbasisstation, mit einer ersten und mit einer zweiten Polarisation, welche getrennt voneinander über einen ersten Hohlleiter (1) und einen zweiten Hohlleiter (2) des Hornstrahlers (20) gespeist werden, wobei die erste und die zweite Polarisation orthogonal aufeinander stehen, wofür die beiden Hohlleiter (1, 2) im Bereich ihrer Mündung (23, 24) in den Hornstrahler (20) eine orthogonale Polarisation aufweisen, wobei der erste Hohlleiter (1) in Abstrahlrichtung zu seiner Mündung (23) in den Hornstrahler (20) verläuft und dabei einen Querschnitt aufweist, welcher sich in Projektion auf die Aperturebene teilweise innerhalb und teilweise außerhalb der Aperturöffnung (22) des Hornstrahlers (20) erstreckt, wobei die Mündung (23) des ersten Hohlleiters (1) in den Hornstrahler (20) entlang ihrer langen Seite eine Erstreckung (25, 26) sowohl parallel zu der Aperturebene als auch senkrecht zur Aperturebene aufweist, wobei eine äußere kurze Seite der Mündung höher angeordnet ist als die gegenüberliegende innere kurze Seite der Mündung.
  2. Dual polarisierter Hornstrahler nach Anspruch 1, wobei der erste Hohlleiter (1) eine stirnseitige Begrenzungswand (27) aufweist, welche sich von einer Position, welche in Projektion auf die Aperturebene außerhalb der Aperturöffnung (22) des Hornstrahlers (20) liegt, zu einer Kante der Mündung (23) in den Hornstrahler erstreckt, wobei es sich bevorzugt um die Wand einer kurzen Seite des ersten Hohlleiters (1) handelt, wobei die Begrenzungswand (27) bevorzugt schräg zur Aperturebene verläuft.
  3. Dual polarisierter Hornstrahler (20), insbesondere nach Anspruch 1 oder 2, insbesondere für eine Mobilfunkbasisstation, mit einer ersten und mit einer zweiten Polarisation, weiche getrennt voneinander über einen ersten Hohlleiter (1) und einen zweiten Hohlleiter (2) gespeist werden,
    dadurch gekennzeichnet,
    dass die beiden Hohlleiter (1, 2) in Abstrahlrichtung zu ihren Mündungen (23, 24) in den Hornstahler verlaufen, wobei mindestens einer der Hohlleiter und insbesondere der erste Hohlleiter (1) einen Transformationsabschnitt (4) aufweist, durch welchen seine Polarisation in der Aperturebene gegenüber dem anderen Hohlleiter (2) gedreht wird, bevor er in den Hornstrahler (20) mündet.
  4. Dual polarisierter Hornstrahler nach Anspruch 3, wobei die beiden Hohlleiter (1, 2) nebeneinander und/oder parallel zueinander in Abstrahlrichtung zu ihren Mündungen (23, 24) in den Hornstahler (20) verlaufen und zunächst die gleiche Polarisation aufweisen und wobei der Transformationsabschnitt (4) eine Verdrillung aufweist und wobei der zweite Hohlleiter (2) keine Drehung der Polarisation oder eine Drehung um einen anderen Winkel aufweist als der erste Hohlleiter (1), wofür der zweite Hohlleiter keine Verdrillung oder eine andere Verdrillung aufweist als der erste Hohlleiter (1),
    und/oder wobei sich der Querschnitt des ersten Hohlleiters (1) in dem Transformationsabschnitt (4) verkleinert und wobei der zweite Hohlleiter (2) einen Transformationsabschnitt (4) aufweist, in welchem sich sein Querschnitt verkleinert.
  5. Dual polarisierter Hornstrahler nach Anspruch 3 oder 4, wobei die beiden Hohlleiter (1, 2) einen rechteckigen Querschnitt mit einer langen und einer kurzen Seite aufweisen, und/oder einen Querschnitt mit mindestens einer Querschnittsverengung (70) und/oder mindestens einer Querschnittsverbreiterung (72), wobei die langen Seiten der beiden Hohlleiter (1, 2) zunächst parallel zueinander verlaufen, und wobei durch die Verdrillung die langen Seiten der Hohlleiter (1, 2) am Ende des Transformationsabschnitts (4) senkrecht zueinander stehen, und/oder wobei die Verkleinerung (70) des Querschnitts zumindest eine Verkleinerung der kurzen Seite und/oder eine Vergrößerung des Verhältnisses zwischen der langen und der kurzen Seite umfasst, und/oder wobei der Transformationsabschnitt (4) mindestens eine Querschnittsverbreiterung (72) in eine Querschnittsverengung (70), und/oder umgekehrt, transformiert und/oder wobei die Querschnitte benachbarter Hohlleiter (1, 2) ineinander verschachtelt sind.
  6. Dual polarisierter Hornstrahler nach einem der vorangegangenen Ansprüche, wobei einer der Hohlleiter und insbesondere der zweite Hohlleiter (2) in Abstrahlrichtung zu dem Hornstrahler (20) geführt ist, wobei sich sein Querschnitt in Projektion auf die Aperturebene innerhalb der Aperturöffnung (22) befindet und/oder wobei die Mündung (24) eines der Hohlleiter und insbesondere des zweiten Hohlleiters (2) in den Hornstrahler (20) bezüglich der Aperturöffnung (22) mittig angeordnet und/oder wobei der Boden des Hornstrahlers (20) einen trichterförmigen Bereich aufweist und die Mündung (24) eines de Hohlleiter und insbesondere des zweiten Hohlleiters (2) an der Spitze des trichterförmigen Bereiches angeordnet ist.
  7. Dual polarisierter Hornstrahler nach einem der vorangegangenen Ansprüche, dadurch gekennzeichnet dass,
    mindestens ein Hornbereich (28) Materialaussparungen und/oder Materialeinbringungen besitzt, insbesondere in Höhenrichtung verlaufende Stege (75) und/oder Stufen und/oder Dielektrika,
    und/oder
    dass der Hornstrahler (20ʺ, 20‴) einen Steghohlleiterstrahler mit Seitenwänden oder ohne Seitenwände bildet,
    und/oder
    dass die Stege (75) auf ihrer nach innen gewandten Seite in Höhenrichtung eine Trichterform und/oder eine Exponentialform aufweisen.
  8. Dual polarisierter Hornstrahler nach einem der vorangegangenen Ansprüche, wobei der Hornstrahler (20) einen Resonanzfrequenzbereich in einem Bereich zwischen 10 GHz und 100 GHz aufweist, bevorzugt zwischen 25 GHz und 50 GHz, wobei es sich bevorzugt um den untersten Resonanzfrequenzbereich handelt, und/oder wobei der maximale Durchmesser der Aperturöffnung des Hornstrahlers zwischen 0,3 λ und 1,4 λ beträgt, bevorzugt zwischen 0,5 λ und 1,1 λ, weiter bevorzugt zwischen 0,6 λ und 0,9 λ, und/oder wobei der Hornstrahler eine Höhe zwischen 0,5 λ und 4 λ aufweist, bevorzugt zwischen 1,5 λ und 2,5 A, wobei es sich bei λ um die Wellenlänge der Mittenfrequenz eines Resonanzfrequenzbereichs des Hornstrahlers und insbesondere des untersten Resonanzfrequenzbereichs handelt, und/oder wobei das Horn des Hornstrahlers einen ersten Hornbereich (28) mit im wesentlichen in Hauptabstrahlrichtung verlaufenden Seitenwänden und einen zweiten Hornbereich (29) mit sich trichterförmig aufweitenden Seitenwänden aufweist, wobei die Höhe des zweiten Hornbereiches (29) kleiner als die Höhe des ersten Hornbereiches (28) ist und/oder wobei die Aufweitung der Aperturöffnung im zweiten Hornbereich kleiner als 50 %, weiter bevorzugt kleiner als 20 % ist, und/oder wobei der erste und der zweite Hornbereich kontinuierlich ineinander übergehen und/oder wobei der Hornstrahler eine sechseckige oder runde Aperturöffnung aufweist.
  9. Strahlerarray, insbesondere für eine Mobilfunkbasisstation, aus einer Mehrzahl von in einer Spalte oder Reihe nebeneinander angeordneten dual-polarisierten Hornstrahlern (20, 20'), wobei jeder der Hornstrahler durch einen ersten und einen zweiten Hohlleiter (1, 2) gespeist wird, wobei die Hohlleiter (1, 2) einer Spalte oder Reihe jeweils in Abstrahlrichtung zu ihren Mündungen (23, 24) in den Hornstahlern (20, 20') geführt sind, wobei jeder zweite Hohlleiter (2) in der Spalte oder Reihe einen Transformationsabschnitt (4) aufweist, durch welchen seine Polarisation in der Aperturebene gedreht wird, bevor er in den Hornstrahler (20, 20') mündet, und wobei jeweils ein Hohlleiter und insbesondere der erste Hohlleiter (1) eines Hornstrahlers (20, 20') in Abstrahlrichtung zu seiner Mündung (23) in den Hornstrahler (20') verläuft und dabei mit seinem Querschnitt in Projektion auf die Aperturebene zumindest zum Teil unterhalb der Aperturöffnung (22) eines benachbarten Hornstrahlers (20) verläuft, wobei die erste und die zweite Polarisation orthogonal aufeinander stehen, wofür die beiden Hohlleiter (1, 2) im Bereich ihrer Mündung (23, 24) in den Hornstrahler eine orthogonale Polarisation aufweisen.
  10. Strahlerarray nach Anspruch 9, wobei die Hornstrahler (20, 20') einen Resonanzfrequenzbereich in einem Bereich zwischen 10 GHz und 100 GHz aufweisen, bevorzugt zwischen 25 GHz und 50 GHz, wobei es sich bevorzugt um den untersten Resonanzfrequenzbereich handelt, und/oder wobei der Einzelstrahlerabstand in der Spalte und/oder Reihe weniger als 1 λ beträgt, bevorzugt weniger als 0,85 λ beträgt, weiter bevorzugt weniger als 0,75 λ beträgt, weiter bevorzugt weniger als 0,5 λ beträgt, und/oder wobei die Hornstrahler in mehreren nebeneinander angeordneten Spalten und/oder Reihen angeordnet sind und die Summe des Einzelstrahlerabstands in der Spalte oder Reihe und des Einzelstrahlerabstands senkrecht zur Spalte oder Reihe weniger als 2 λ beträgt, bevorzugt weniger als 1,7 λ, weiter bevorzugt weniger als 1,5 λ, wobei es sich bei λ um die Wellenlänge der Mittenfrequenz eines Resonanzfrequenzbereichs des Strahlerarrays und insbesondere des untersten Resonanzfrequenzbereichs handelt.
  11. Strahlerarray nach einem der Ansprüche 9 oder 10, wobei der Hohlleiter (1), welcher mit seinem Querschnitt in Projektion auf die Aperturebene zumindest zum Teil unterhalb der Aperturöffnung (22) eines benachbarten Hornstrahlers (20) verläuft, sich in Projektion auf die Aperturebene teilweise innerhalb und teilweise außerhalb der Aperturöffnung des Hornstrahlers erstreckt und/oder wobei das Strahlerarray eine Mehrzahl von nebeneinander angeordneten dual-polarisierten Hornstrahlern (20, 20') nach einem der Ansprüche 2 bis 8 umfasst.
  12. Strahlerarray nach einem der Ansprüche 9 bis 11, wobei die Hornstrahler in (20, 20') mehreren nebeneinander angeordneten Spalten oder Reihen angeordnet sind, wobei bevorzugt die Hornstrahler benachbarter Spalten oder Reihen gegeneinander versetzt angeordnet sind, wobei bevorzugt die Hornstrahler wabenförmig angeordnet sind.
  13. Strahlerarray nach einem der Ansprüche 9 bis 12 mit einem Speisenetzwerk (3), wobei die ersten Hohlleiter (1) und die zweiten Hohlleiter (2) der in einer Spalte oder Reihe angeordneten Hornstrahler (20, 20') in unterschiedlichen Höhenebenen einen Bend (51 - 54) zur Seite hin aufweisen, wobei bevorzugt jeweils die ersten Hohlleiter der in einer Spalte oder Reihe angeordneten Hornstrahler und/oder die zweiten Hohlleiter der in einer Spalte oder Reihe angeordneten Hornstrahler in der gleichen Höhenebene einen Bend (51 - 54) zur Seite hin aufweisen, und/oder wobei die Hohlleiter von in zwei benachbarten Reihen oder Spalten angeordneten Hornstrahlern in unterschiedlichen Höhenebenen einen Bend (51 - 54) zur Seite hin aufweisen, und/oder wobei die Hohlleiter (1, 2) der Hornstahler jeweils einzeln gespeist werden oder wobei die ersten Hohlleiter der in einer Spalte oder Reihe angeordneten Hornstrahler und/oder die zweiten Hohlleiter der in einer Spalte oder Reihe angeordneten Hornstrahler durch einen Verteiler (55, 56) mit einer gemeinsamen Speisung (57, 58) in Verbindung stehen.
  14. Mobilfunk-Basisstation mit einem oder mehreren Hornstrahlern nach einem der Ansprüche 1 bis 8 und/oder einem oder mehreren Strahlerarrays nach einem der Ansprüche 9 bis 13.
EP17808068.5A 2016-12-02 2017-12-01 Dual polarisierter hornstrahler Active EP3533110B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102016014385.1A DE102016014385A1 (de) 2016-12-02 2016-12-02 Dual polarisierter Hornstrahler
PCT/EP2017/081124 WO2018100133A1 (de) 2016-12-02 2017-12-01 Dual polarisierter hornstrahler

Publications (2)

Publication Number Publication Date
EP3533110A1 EP3533110A1 (de) 2019-09-04
EP3533110B1 true EP3533110B1 (de) 2022-03-16

Family

ID=60543549

Family Applications (1)

Application Number Title Priority Date Filing Date
EP17808068.5A Active EP3533110B1 (de) 2016-12-02 2017-12-01 Dual polarisierter hornstrahler

Country Status (6)

Country Link
US (1) US11196178B2 (de)
EP (1) EP3533110B1 (de)
KR (1) KR20190086533A (de)
CN (1) CN110337758B (de)
DE (1) DE102016014385A1 (de)
WO (1) WO2018100133A1 (de)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102016014385A1 (de) 2016-12-02 2018-06-07 Kathrein-Werke Kg Dual polarisierter Hornstrahler
CN112290234A (zh) 2019-07-24 2021-01-29 台达电子工业股份有限公司 通信装置
CN112290235A (zh) 2019-07-24 2021-01-29 台达电子工业股份有限公司 天线阵列
CN110994195B (zh) * 2019-12-24 2020-12-08 北京交通大学 一种空气波导平面阵列天线
CN116868445A (zh) * 2021-03-05 2023-10-10 胡贝尔和茹纳股份公司 波导天线

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5818396A (en) * 1996-08-14 1998-10-06 L-3 Communications Corporation Launcher for plural band feed system
US20090213022A1 (en) * 2008-02-25 2009-08-27 Lockheed Martin Corporation Horn antenna, waveguide or apparatus including low index dielectric material
US20100078203A1 (en) * 2008-09-30 2010-04-01 Lockheed Martin Corporation Low index metamaterial

Family Cites Families (47)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB551585A (en) 1940-08-31 1943-03-02 Marconi Wireless Telegraph Co Electro-magnetic horn radiators
US2965898A (en) * 1958-05-26 1960-12-20 Rca Corp Antenna
US2972148A (en) * 1958-06-11 1961-02-14 Bendix Corp Multi-channel horn antenna
US3274604A (en) * 1958-12-12 1966-09-20 Bernard L Lewis Multi-mode simultaneous lobing antenna
US4097869A (en) * 1977-03-14 1978-06-27 Stanford Research Institute Orthogonal-port, biconical-horn, direction-finder antenna
US4246583A (en) * 1979-03-16 1981-01-20 Rca Corporation Multimode feed for a monopulse radar
DE3111731A1 (de) * 1981-03-25 1982-10-14 Licentia Patent-Verwaltungs-Gmbh, 6000 Frankfurt Mikrowellenuebertragungseinrichtung mit mehrmodendiversity-kombinationsempfang
FR2523376A1 (fr) 1982-03-12 1983-09-16 Labo Electronique Physique Element rayonnant ou recepteur de signaux hyperfrequences a polarisations circulaires gauche et droite et antenne plane comprenant un reseau de tels elements juxtaposes
US4716415A (en) 1984-12-06 1987-12-29 Kelly Kenneth C Dual polarization flat plate antenna
FR2599899B1 (fr) 1986-06-05 1989-09-15 Emmanuel Rammos Antenne plane a reseau avec conducteurs d'alimentation imprimes a faible perte et paires incorporees de fentes superposees rayonnantes a large bande
EP0252779B1 (de) 1986-06-05 1993-10-06 Emmanuel Rammos Antennenelement mit einem Streifen, der zwischen zwei selbsttragenden und mit untereinanderliegenden strahlenden Schlitzen vorgesehenen Grundplatten hängt und Verfahren zur Herstellung desselben
US4797681A (en) * 1986-06-05 1989-01-10 Hughes Aircraft Company Dual-mode circular-polarization horn
US4996535A (en) * 1988-09-08 1991-02-26 General Electric Company Shortened dual-mode horn antenna
US4998113A (en) * 1989-06-23 1991-03-05 Hughes Aircraft Company Nested horn radiator assembly
DE4009288C2 (de) * 1990-03-22 1994-03-03 Siemens Ag Rechteckhohlleiter mit E-H-Doppelversatz
EP0746880B1 (de) 1994-02-26 2001-06-27 Fortel Technology Limited Mikrowellenantennen
US5619216A (en) 1995-06-06 1997-04-08 Hughes Missile Systems Company Dual polarization common aperture array formed by waveguide-fed, planar slot array and linear short backfire array
FI99221C (fi) 1995-08-25 1997-10-27 Nokia Telecommunications Oy Planaarinen antennirakenne
GB9703748D0 (en) 1997-02-22 1997-04-09 Fortel International Limited Microwave antennas
US6201508B1 (en) 1999-12-13 2001-03-13 Space Systems/Loral, Inc. Injection-molded phased array antenna system
JP3739637B2 (ja) * 2000-07-27 2006-01-25 アルプス電気株式会社 一次放射器
US7187342B2 (en) 2003-12-23 2007-03-06 The Boeing Company Antenna apparatus and method
RU2292098C1 (ru) * 2005-06-29 2007-01-20 Федеральное государственное унитарное предприятие "Особое конструкторское бюро МЭИ" Многочастотная облучающая система зеркальной антенны с разделением ортогональных поляризаций
IL174549A (en) 2005-10-16 2010-12-30 Starling Advanced Comm Ltd Dual polarization planar array antenna and cell elements therefor
WO2008069358A1 (en) 2006-12-08 2008-06-12 Idoit Co., Ltd. Horn array type antenna for dual linear polarization
KR20080105856A (ko) 2007-06-01 2008-12-04 주식회사 아이두잇 듀얼선형편파 혼어레이 안테나
CN201060943Y (zh) 2007-07-10 2008-05-14 中国电子科技集团公司第五十四研究所 高增益双线极化或双圆极化波导阵列天线
CN101083359B (zh) 2007-07-10 2012-05-09 中国电子科技集团公司第五十四研究所 高增益双线极化或双圆极化波导阵列天线制造方法
WO2009008601A1 (en) 2007-07-11 2009-01-15 Idoit Co., Ltd. Support bracket for satellite antenna
KR20090038803A (ko) 2007-10-16 2009-04-21 주식회사 아이두잇 듀얼선형편파 혼어레이 안테나 및 이에 사용되는 혼
WO2009093779A1 (en) 2008-01-25 2009-07-30 Microface Co., Ltd Feeding network structure for flat type antenna
US7564421B1 (en) 2008-03-10 2009-07-21 Richard Gerald Edwards Compact waveguide antenna array and feed
US8125400B2 (en) * 2008-11-14 2012-02-28 Norsat International Inc. Compact antenna feed assembly and support arm with integrated waveguide
WO2010124867A1 (de) 2009-04-30 2010-11-04 Qest Quantenelektronische Systeme Gmbh Breitband-antennensystem zur satellitenkommunikation
EP2330681A1 (de) 2009-12-07 2011-06-08 European Space Agency Kompakte OMT-Vorrichtung
KR101090188B1 (ko) 2009-12-17 2011-12-06 (주)마이크로페이스아이엔씨 평판형 회전편파 도파관 안테나 및 도파관의 꺽임 구조
US8988294B2 (en) 2011-12-06 2015-03-24 Viasat, Inc. Antenna with integrated condensation control system
US20150288068A1 (en) * 2012-11-06 2015-10-08 Sharp Kabushiki Kaisha Primary radiator
CN102938497B (zh) * 2012-11-20 2014-12-17 北京遥测技术研究所 一种四频多极化共口径馈源
KR101497678B1 (ko) 2013-06-24 2015-03-09 주식회사 마이크로페이스 평판 배열 안테나용 듀얼 선형편파 혼 안테나 소자
CN203326116U (zh) 2013-07-26 2013-12-04 南京友乔电子科技有限公司 动中通卫星通信双极化四脊方喇叭阵列天线
CN103390798B (zh) 2013-07-26 2016-03-16 南京友乔电子科技有限公司 动中通卫星通信双极化四脊方喇叭阵列天线
CN103474787B (zh) 2013-07-30 2015-12-02 安徽四创电子股份有限公司 双极化平面阵列卫星电视接收天线
FR3012917B1 (fr) 2013-11-04 2018-03-02 Thales Repartiteur de puissance compact bipolarisation, reseau de plusieurs repartiteurs, element rayonnant compact et antenne plane comportant un tel repartiteur
US10096904B2 (en) * 2014-03-06 2018-10-09 Viasat, Inc. Waveguide feed network architecture for wideband, low profile, dual polarized planar horn array antennas
CN104332714B (zh) 2014-11-13 2017-05-03 安徽四创电子股份有限公司 双极化斜波束波导缝隙阵列天线
DE102016014385A1 (de) 2016-12-02 2018-06-07 Kathrein-Werke Kg Dual polarisierter Hornstrahler

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5818396A (en) * 1996-08-14 1998-10-06 L-3 Communications Corporation Launcher for plural band feed system
US20090213022A1 (en) * 2008-02-25 2009-08-27 Lockheed Martin Corporation Horn antenna, waveguide or apparatus including low index dielectric material
US20100078203A1 (en) * 2008-09-30 2010-04-01 Lockheed Martin Corporation Low index metamaterial

Also Published As

Publication number Publication date
KR20190086533A (ko) 2019-07-22
WO2018100133A1 (de) 2018-06-07
DE102016014385A1 (de) 2018-06-07
US11196178B2 (en) 2021-12-07
CN110337758A (zh) 2019-10-15
EP3533110A1 (de) 2019-09-04
US20200006863A1 (en) 2020-01-02
CN110337758B (zh) 2021-11-12

Similar Documents

Publication Publication Date Title
EP3533110B1 (de) Dual polarisierter hornstrahler
EP3329545B1 (de) Dual-polarisierte antenne
EP3214695B1 (de) Mobilfunkantenne
EP3411921B1 (de) Dual polarisierte antenne
EP2929589B1 (de) Dualpolarisierte, omnidirektionale antenne
EP1749331B1 (de) Mobilfunkantenne mit strahlformungselement
EP2830156B1 (de) Hohlleiter-Strahler, Gruppenantennen-Strahler und Synthetik-Apertur-Radar-Strahler
EP3220480B1 (de) Dipolförmige strahleranordnung
DE102008023030B4 (de) Radarantennenanordnung
EP1964205B1 (de) Dual polarisierte antenne mit längs- oder querstegen
EP3306742A1 (de) Mobilfunk-antenne
DE10012809A1 (de) Dualpolarisierte Dipolantenne
DE10203873A1 (de) Dualpolarisierte Strahleranordnung
EP2548262A1 (de) Breitbandige omnidirektionale antenne
WO2015010760A1 (de) Breitband-antennenarray
DE102007047741A1 (de) Speisenetzwerk für eine Gruppenantenne
DE102015005468A1 (de) Antenne
WO2019162345A1 (de) Multibandantennenanordnung für mobilfunkanwendungen
WO2004051796A1 (de) Zweidimensionales antennen-array
WO2016050336A1 (de) Multiband-strahlersystem
DE2810483C2 (de) Antenne mit einem Schlitze aufweisenden Speisehohlleiter und einer mit diesem einen Winkel einschließenden Strahlerzeile
DE3915048C2 (de)
WO2000028623A1 (de) Planarantenne mit optimiertem kopplungsnetzwerk

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20190531

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: ERICSSON AB

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: TELEFONAKTIEBOLAGET LM ERICSSON (PUBL)

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: TELEFONAKTIEBOLAGET LM ERICSSON (PUBL)

PUAG Search results despatched under rule 164(2) epc together with communication from examining division

Free format text: ORIGINAL CODE: 0009017

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20210118

B565 Issuance of search results under rule 164(2) epc

Effective date: 20210118

RIC1 Information provided on ipc code assigned before grant

Ipc: H01Q 25/00 20060101ALI20210113BHEP

Ipc: H01Q 1/24 20060101ALI20210113BHEP

Ipc: H01Q 13/02 20060101ALI20210113BHEP

Ipc: H01Q 21/24 20060101ALI20210113BHEP

Ipc: H01Q 21/06 20060101AFI20210113BHEP

Ipc: H01Q 21/00 20060101ALI20210113BHEP

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20211026

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502017012797

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1476548

Country of ref document: AT

Kind code of ref document: T

Effective date: 20220415

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20220316

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220316

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220316

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220616

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220316

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220316

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220616

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220316

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220617

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220316

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220316

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220316

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220316

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220316

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220718

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220316

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220316

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220316

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220316

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220716

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220316

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502017012797

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220316

26N No opposition filed

Effective date: 20221219

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220316

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20221228

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220316

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20221231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20221201

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20221231

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20221201

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20221231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20221231

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20221231

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20231227

Year of fee payment: 7

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1476548

Country of ref document: AT

Kind code of ref document: T

Effective date: 20221201

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20171201

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20221201