EP2830156B1 - Hohlleiter-Strahler, Gruppenantennen-Strahler und Synthetik-Apertur-Radar-Strahler - Google Patents

Hohlleiter-Strahler, Gruppenantennen-Strahler und Synthetik-Apertur-Radar-Strahler Download PDF

Info

Publication number
EP2830156B1
EP2830156B1 EP14002534.7A EP14002534A EP2830156B1 EP 2830156 B1 EP2830156 B1 EP 2830156B1 EP 14002534 A EP14002534 A EP 14002534A EP 2830156 B1 EP2830156 B1 EP 2830156B1
Authority
EP
European Patent Office
Prior art keywords
waveguide
slots
radiator
inner conductor
slotted
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP14002534.7A
Other languages
English (en)
French (fr)
Other versions
EP2830156A1 (de
Inventor
Christian RÖMER
Alexander Herschlein
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Airbus DS GmbH
Original Assignee
Airbus DS GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Airbus DS GmbH filed Critical Airbus DS GmbH
Publication of EP2830156A1 publication Critical patent/EP2830156A1/de
Application granted granted Critical
Publication of EP2830156B1 publication Critical patent/EP2830156B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q13/00Waveguide horns or mouths; Slot antennas; Leaky-waveguide antennas; Equivalent structures causing radiation along the transmission path of a guided wave
    • H01Q13/20Non-resonant leaky-waveguide or transmission-line antennas; Equivalent structures causing radiation along the transmission path of a guided wave
    • H01Q13/203Leaky coaxial lines
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q13/00Waveguide horns or mouths; Slot antennas; Leaky-waveguide antennas; Equivalent structures causing radiation along the transmission path of a guided wave
    • H01Q13/10Resonant slot antennas
    • H01Q13/18Resonant slot antennas the slot being backed by, or formed in boundary wall of, a resonant cavity ; Open cavity antennas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/50Structural association of antennas with earthing switches, lead-in devices or lightning protectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/0006Particular feeding systems
    • H01Q21/0037Particular feeding systems linear waveguide fed arrays
    • H01Q21/0043Slotted waveguides
    • H01Q21/005Slotted waveguides arrays

Definitions

  • the invention relates to a waveguide radiator with a slotted waveguide with a plurality of slots mounted in the waveguide.
  • the invention further relates to a group antenna radiator and a synthetic aperture radar system.
  • Waveguide radiators or array antenna radiators are used, for example, in phased array antennas of synthetic aperture radar (SAR) systems with single and dual polarization. So far, so-called microstrip patch antennas or slotted waveguide antennas are used as emitters.
  • SAR synthetic aperture radar
  • Microstrip patch antennas have high electrical losses and their electrical feed network is not efficient in longer radiator lengths than about seven wavelengths feasible (in the X-band about 20 cm).
  • T / R modules transmitting / receiving modules
  • the problem arises of dissipating the heat of the active modules, which are mounted on the back of the radiators, to the front.
  • the slotted waveguide antennas are limited by their electrically resonant behavior in the achievable relative bandwidth ( ⁇ 5%). In addition, they require a high manufacturing accuracy and are very expensive to produce as dual polarized group radiators.
  • Concepts used in the prior art include waveguides with inner lands and longitudinal slots for vertical polarization, and rectangular waveguides with skewed wires and transverse slots for horizontal polarization. Here are Also, the necessary transitions of the connected coaxial cable in the waveguide problematic.
  • a waveguide radiator which comprises a slotted waveguide in which an additional inner conductor, a so-called barline, is mounted.
  • This inner conductor is polarization-dependent specially shaped to excite all slots of the waveguide in phase.
  • the propagation modes are no longer dispersive but correspond to those in coaxial lines, ie TEM modes. This can increase the bandwidth.
  • the cross-sections of the waveguide can be significantly reduced in size, since there is no lower limit frequency (so-called cutoff) in TEM modes.
  • the coupling can be done by a direct coaxial transition, which is mechanically very easy to implement, for example, by commercially available SMA chassis sockets.
  • the waveguide radiator should be broadband, efficient and inexpensive to produce, so that from this a planar array antenna can be built, the u.a. can be used in space or airborne synthetic aperture radar (SAR) systems.
  • SAR synthetic aperture radar
  • a waveguide radiator comprising a slotted waveguide having a plurality of transverse or longitudinal slots mounted in the waveguide. If the waveguide has transverse slots, the direction of the emitted polarization of the waveguide corresponds to the longitudinal direction of the waveguide. If the slotted waveguide has longitudinal slots, the direction of the emitted polarization of the waveguide corresponds to the transverse direction of the waveguide. Depending on the orientation of the slots, thus either horizontally or vertically polarized waves can be radiated.
  • the additional inner conductor mounted in the waveguide is such that the distance between adjacent slots along the waveguide corresponds to exactly one wavelength of a traveling wave to provide in-phase excitation, thereby providing a traveling wave principle and all slots of the waveguide can be excited in phase.
  • a layer of dielectric material is mounted in the waveguide, on the upper side of which the inner conductor is mounted, for example by gluing. According to the height varies July 14, 2015 the dielectric material along the waveguide at least in sections, whereby the amplitude assignment of the slots along the waveguide can be influenced.
  • TEM mode transversely electrically magnetic propagation mode
  • the inner conductor is polarization-dependent specially shaped to stimulate either longitudinal or transverse slots can.
  • the proposed waveguide radiator is distinguished from that in the DE 10 2006 057 144 A1 described waveguide radiators through a significantly higher bandwidth.
  • the height or thickness of the dielectric layer is not uniform along the waveguide, but has an individually shaped height profile. Due to the height profile and the shape of the inner conductor, the amplitude and phase of the electric field strength in the slots along the waveguide can be selectively influenced, so that any aperture can be realized, for example, to suppress secondary maxima in the antenna pattern below a predetermined value. In the same way, it is also possible to achieve a homogeneous amplitude and phase coverage along the waveguide, for example in order to maximize the antenna gain and to minimize the half-width.
  • Each slot of the waveguide radiator can have individual geometric dimensions. It is understood, however, that the waveguide radiator has either only longitudinal or transverse slots.
  • the special shape of the inner conductor is composed of repeating sections of similar geometry along the waveguide. The length of these sections is identical to the spacing of adjacent slots along the waveguide.
  • the additional inner conductor may be formed from, in particular alternately arranged, straight and winding conductor sections.
  • One feature of the standing wave resonant feed is an additional quarter wave transformer located in each of the repeating sections.
  • This quarter-wave transformer is realized by a taper of the inner conductor, i. a reduction of the conductor width.
  • the length of this taper or conductor width reduction is preferably chosen so that it corresponds to an electrical path length of exactly one quarter of a line wavelength.
  • the reduction of the conductor width causes an increase of the characteristic impedance along the tapered portion.
  • the thus realized quarter-wave transformers compensate for the reflection points that would otherwise result at these positions.
  • the inner conductor may have in the region of the ends of the waveguide a straight section as an open stub.
  • a coupling of a signal can take place in the middle of the waveguide radiator through a galvanically coupled coaxial transition, in which the inner conductor a connected coaxial cable (eg via SMA, SMP connection) is connected directly to the feed point of the inner conductor.
  • the outer conductor of the connected coaxial cable is connected directly to the wall of the waveguide.
  • the feed point may be slightly offset in the transverse direction, thus allowing the transition to a mounted on the back of the radiator board at a suitable location.
  • the feed point of the waveguide with respect to the geometric center of the waveguide may be displaced in the longitudinal direction.
  • the displacement may be about 6 to 7 mm in a specific implementation, depending on the wavelength or frequency of the signal to be generated.
  • the feed point of the waveguide can be arranged in the waveguide such that the electrical phase position at the positions of all slits is identical at center frequency.
  • the additional inner conductor has a feed point which is arranged in the longitudinal direction of the slotted waveguide in the geometric center. It may further be provided that the slotted waveguide is formed with the additional inner conductor mirror-symmetrical about the feed point.
  • the invention has the advantage that, in contrast to the resonant power supply, significantly higher bandwidths can be realized.
  • the in the DE 10 2006 057 144 A1 mentioned advantages to conventional slotted waveguides are all preserved without compromising, such as no dispersion, size reduction of the cross section, no lower limit frequency, robustness to manufacturing tolerances, greater possible radiator lengths, low production costs, short production times, unproblematic transition to coaxial cable, high power feedable, low ohmic Losses, high cross-polar suppression.
  • the development of the waveguide radiator in particular the determination of the exact geometric dimensions of the inner conductor and the slots is carried out by means of electromagnetic simulation method.
  • the behavior of the radiator described here can also be described by network models with suitable equivalent circuit diagrams. These models are usually used in a first step in order to optimize the sizes of the elements present in the equivalent circuit diagram. In the second step, these quantities are then translated into suitable geometric parameters.
  • Commercially available software packages can be used for this, which use full-wave analysis to calculate the electromagnetic behavior of the actual geometry (3D models).
  • An array antenna radiator comprises one or more slotted waveguides with transverse slots and one or more slotted waveguides with longitudinal slits of the type described above.
  • the slotted waveguides may be juxtaposed transversely in one configuration, alternately a waveguide with transverse slits and a waveguide Waveguide with longitudinal slots next to each other.
  • the waveguides, ie all waveguides, preferably have an identical length.
  • the waveguides with transverse slots can be offset upwards relative to the waveguides with longitudinal slots, so that a step-like structure of the array antenna radiator is given.
  • At the top is that side of a respective waveguide radiator, on which the waveguides have the slots.
  • a synthetic aperture radar system particularly a high resolution synthetic aperture radar system, comprises at least one array antenna radiator of the type described above.
  • a waveguide radiator according to the invention with a slotted waveguide (hereinafter referred to as waveguide 10, 30) and an inner conductor 14, 34 arranged in the waveguide 10, 30 will be described below. It is between slotted waveguides 10, 30 with transverse slots 12 (FIG. Fig. 1 ) and longitudinal slots 32 (FIG. Fig. 6 ), in which the shape of the inner conductor 14 and 34 used differs.
  • the exact configuration of the inner conductor 14 for the waveguide 10 with transverse slots 12 is in the Fig. 3 to 5 shown.
  • the exact configuration of the inner conductor 34 for the waveguide 30 with longitudinal slots 32 is in the Fig. 8 to 10 shown.
  • the geometrical dimensions given below refer to an exemplary embodiment in the X-band at a center frequency of 9.6 GHz.
  • the radiator described here can be readily designed for deviating center frequencies.
  • the size dimensions in this case scale over the ratio of the respective wavelengths.
  • the waveguides 10, 30 are formed from conventional rectangular waveguides, in the transverse slots 12 and longitudinal slots 32 are introduced.
  • the interior of the waveguides 10, 30 is filled with a dielectric material.
  • the dielectric layer 24, 44 is in the Fig. 2 and 7 shown. While prior art radiators have a constant layer thickness, the dielectric layers 24, 44 of the invention have a variable height in the longitudinal extent of the waveguide.
  • the choice of the material used for the dielectric layer is determined by its electrical properties, namely the dielectric constant and the loss angle.
  • the dielectric constant influences the propagation velocity of the traveling wave traveling on the inner conductor (shortening factor).
  • the distance between adjacent slots along the waveguide corresponds to exactly one wavelength of the traveling wave in order to achieve an in-phase excitation.
  • the slot spacing is smaller than a free space wavelength in order to avoid unwanted secondary maxima (so-called grating praise).
  • the slot pitch is in the range of 0.5 to 0.9 times a free space wavelength. This results in the value of the dielectric constant, which is thus typically in the range from 1.2 to 3.0.
  • the loss angle should be as small as possible in order to keep the dielectric losses as low as possible, for a suitable material the value should be smaller than 1 ⁇ 10 -3 .
  • the thickness of the dielectric layer 24, 44 along the waveguide has a characteristic profile.
  • the height at the positions of the slots 12, 32 determines the proportion of the decoupled power of the traveling wave. A larger height results in a stronger decoupling, a lower level correspondingly reversed.
  • the thickness of the dielectric layer 24, 44 increases to the outer ends of the respective waveguide 10, 30, because of the decreasing power of the traveling wave an ever higher relative proportion must be disconnected.
  • Fig. 1 shows a waveguide 10 with transverse slots 12.
  • the shape of the inner conductor 14 in the waveguide 10 with the transverse slots 12 is in Fig. 3 shown.
  • the positions of the slots are in Fig. 3 indicated by arrows
  • the middle area, which includes a feed point 16, is in Fig. 4 shown enlarged.
  • the feed point 16 is offset relative to the geometric center in the longitudinal direction by approximately 6 mm. This displacement causes a phase difference of 180 ° of the outgoing from the feed point 16 traveling wave in the right and left part of the waveguide 10. In this way, an in-phase excitation of the slots results both in the right and in the left part of the waveguide 10th
  • the inner conductor 14 begins immediately at the feed point 16 with sections 18 (transformation lines) with reduced conductor width. These are used to transform the characteristic impedance of the connected and not shown here coaxial cable of typically 50 ohms.
  • sections 18 transformation lines
  • the further course of the inner conductor 14 to the ends of the waveguide 10 consists of straight sections 18 with reduced conductor width and tortuous sections 20. The straight sections thus act as transformation lines.
  • the twisting of the remaining portions 20 causes a delay of the propagation velocity of the traveling wave in the longitudinal direction of the waveguide 10. A stronger expression of the distortion causes a greater delay and vice versa.
  • the phase difference between adjacent slots 12 can be set to exactly 360 °.
  • the slots 12 are cut transversely into the outer wall of the waveguide 10. They protrude into the side walls with a cutting depth of about 4mm.
  • the width of the slots 12 is about 2-3mm.
  • the slots 12 have resonant behavior, the resonance frequency coincides with the center frequency of the radiator.
  • the outermost slot 12A at the ends of the waveguide 10 with the underlying portion 22 of the inner conductor 14 has a peculiarity.
  • the ends of the traveling waveguide are often resistively terminated in traveling-wave-principle radiators. This leads to undesirable losses, since the power remaining at the end of the line is dissipated in a resistor.
  • the power remaining at the end of the line is radiated completely over the outermost slot, whereby additional losses are avoided.
  • the height profile of the dielectric layer is designed such that the power remaining at the outermost slot 12A corresponds to the power coupled out at the remaining slots, whereby a homogeneous coverage of all slots 12, 12A is achieved while maintaining this boundary condition.
  • Fig. 5 this shows an enlarged view of the region of the ends of the inner conductor Fig. 3 , wherein the unclip, open line termination can be seen with the section 22, which supports the described properties.
  • Fig. 6 shows a waveguide 30 with longitudinal slots.
  • the shape of the inner conductor 34 in a waveguide with longitudinal slots 30 is shown in FIG Fig. 8 shown.
  • the central area containing the feed point 36 is in Fig. 9 shown enlarged.
  • the feed point 36 is seen in the longitudinal direction in the geometric center. Displacement in the longitudinal direction, as in a waveguide with transverse slots 10, is not necessary in this case symmetrical construction of the right and left half of the waveguide 30, an in phase excitation of the slots 32 can be achieved.
  • the inner conductor 34 begins immediately at the feed point 36 with transformation lines with reduced conductor width. These are used to transform to the characteristic impedance of the connected coaxial cable of typically 50 ohms.
  • the further course of the inner conductor 34 to the ends of the waveguide consists of straight sections 38 and winding sections 40.
  • the tortuous shape of the sections 40 is designed so that the inner conductor extends at the middle positions of the slots 32 in the transverse direction. This is necessary for a coupling of the longitudinal slots 32, since for this purpose a flow of the induced current in the transverse direction must be present on the wall of the waveguide 30.
  • the position of the slots is in Fig. 8 indicated by arrows.
  • the tortuous shape of the sections 40 additionally causes a delay of the propagation velocity of the traveling wave in the longitudinal direction of the waveguide. A stronger expression of the tortuous shape causes a greater delay and vice versa. This allows the phase difference between adjacent slots to be set to exactly 360 °.
  • the slits 32 are cut longitudinally (longitudinally) into the outer wall of the waveguide 30.
  • the slots 32 have a length of approximately half the free space wavelength. The exact length can vary slightly from slot to slot.
  • the width of the slots is about 2 mm.
  • the slots have resonant behavior, the resonance frequency coincides with the center frequency of the radiator.
  • the outermost slot 32A at the ends of the waveguide 30 with the underlying portion 42 of the inner conductor 42 has a peculiarity. According to the prior art in emitter with traveling wave principle often the ends the traveling wave line resistive completed. This leads to undesirable losses, since the power remaining at the end of the line is dissipated in a resistor. In the concept of a traveling wave radiator with homogeneous excitation of all slots 32 presented here, the power remaining at the end of the line is radiated completely over the outermost slot 32A, whereby additional losses are avoided.
  • the height profile of the dielectric layer 44 is designed in such a way that the power remaining at the outermost slot 32A corresponds to the power coupled to the remaining slots 32, so that a homogeneous coverage of all the slots 32, 32A can be achieved in compliance with this boundary condition.
  • Fig. 10 shows an enlarged view of the region of the ends of the inner conductor Fig. 8 , Evident is the unsound, open line termination with the section 42 of the inner conductor 34, which supports the described properties.
  • dual polarized radiator groups 60 can be realized in a simple manner. Since the widths of the waveguides can be greatly reduced with the emitter concept described here (up to a quarter of the wavelength), dual-polarized, electronically controllable array antennas with a very large swivel range can be realized (> ⁇ 60 °).
  • Fig. 11 shows the construction of a dual polarized radiator group 60 (group antenna radiator). It consists of a combination of alternately a slotted waveguide 10 with transverse slots 12 and a waveguide 30 with longitudinal slots 32.
  • the waveguides 10 with transverse slots 12 are about 7 mm to 8 mm in relation to the waveguides 30 with longitudinal slots 12 offset upwards, so that a step-like structure is formed.
  • the proposed waveguide radiator is distinguished from the well-known from the prior art waveguide radiators by a significantly higher bandwidth. This is in the FIGS. 12 to 15 exemplified for a radiator of length 250mm for the X-band.
  • Fig. 12 shows a representation of the total occurring in the radiator electrical losses in dB compared to an ideal aperture of the same size.
  • the solid line curve represents traveling wave power source losses
  • the dashed line curve represents resonant standing wave power losses.
  • Fig. 13 shows a representation of the adjustment in dB, wherein the solid line curve to a radiator with traveling wave feed and the dashed line curve is assigned to a radiator with resonant feed (standing wave).
  • Fig. 14 shows a plot of the radiation characteristics in dB (antenna diagram) of a radiator with traveling wave feed, where the dashed line curve shows the antenna pattern at 8.7 GHz, the solid line curve the antenna diagram at 9.6 GHz (center frequency) and the dotted line curve the antenna diagram at 10.5GHz show.
  • Fig. 15 shows a plot of the radiation characteristics in dB (antenna diagram) of a resonant power source with a standing wave, where the dashed line curve shows the antenna pattern at 8.7GHz, the solid line curve the antenna pattern at 9.6GHz (center frequency) and the curve with dotted line show the antenna diagram at 10.5GHz.

Landscapes

  • Waveguide Aerials (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)
  • Radar Systems Or Details Thereof (AREA)

Description

  • Die Erfindung betrifft einen Hohlleiter-Strahler mit einem geschlitzten Hohlleiter mit einer Mehrzahl von in dem Hohlleiter angebrachten Schlitzen. Die Erfindung betrifft ferner einen Gruppenantennen-Strahler und ein Synthetik-Apertur-Radar-System.
  • Hohlleiter-Strahler oder Gruppenantennen-Strahler (in der Literatur auch Radiatoren oder Subarrays genannt) werden beispielsweise in Phased Array Antennen von Synthetik-Apertur-Radar (SAR)-Systemen mit einfacher und dualer Polarisation eingesetzt. Bisher werden als Strahler sogenannte Microstrip-Patch-Antennen oder geschlitzte Hohlleiterantennen verwendet.
  • Microstrip-Patch-Antennen weisen hohe elektrische Verluste auf und sind durch ihr elektrisches Speisenetzwerk nicht effizient in größeren Strahlerlängen als ca. sieben Wellenlängen realisierbar (im X-Band ca. 20 cm). Im Falle einer aktiven Antenne mit verteilter Erzeugung der HF-Sendeleistung durch sog. T/R-Module (Sende- / Empfangsmodule) kommt die Problematik hinzu, die Wärme der aktiven Module, die auf der Rückseite der Strahler angebracht sind, nach vorne abzuführen.
  • Die geschlitzten Hohlleiterantennen hingegen sind durch ihr elektrisch resonantes Verhalten in der erzielbaren relativen Bandbreite limitiert (<5%). Außerdem erfordern sie eine hohe Fertigungsgenauigkeit und sind als dual polarisierte Gruppen-strahler nur sehr kostenaufwendig herstellbar. Nach dem Stand der Technik angewandte Konzepte sind Hohlleiter mit Innenstegen und longitudinalen Schlitzen für die vertikale Polarisation sowie Rechteckhohlleitern mit schräg eingebrachten Drähten und transversalen Schlitzen für die horizontale Polarisation. Hierbei sind auch die notwendigen Übergänge der angeschlossenen Koaxialkabel in die Hohlleiter problematisch.
  • Aus der DE 10 2006 057 144 A1 und dem zugehörigen Familienmitglied WO 2008/064655 A1 , ist ein Hohlleiter-Strahler bekannt, der einen geschlitzten Hohlleiter umfasst, in dem ein zusätzlicher Innenleiter, eine sogenannte Barline, angebracht ist. Dieser Innenleiter ist polarisationsabhängig speziell geformt, um alle Schlitze des Hohlleiters phasengleich anzuregen. Im Gegensatz zu herkömmlichen geschlitzten Hohlleitern sind die Ausbreitungsmoden nicht mehr dispersiv, sondern entsprechen denen in Koaxialleitungen, d. h. TEM-Moden. Hierdurch kann sich die Bandbreite erhöhen. Außerdem können die Querschnitte der Hohlleiter erheblich in ihrer Größe reduziert werden, da bei TEM-Moden keine untere Grenzfrequenz (sog. Cutoff) existiert. Die Einkopplung kann durch einen direkten Koaxialübergang erfolgen, der mechanisch sehr einfach zu realisieren ist, beispielsweise durch handelsübliche SMA-Einbaubuchsen.
  • Aus Römer, Christian: "Slotted waveguide in phased array antennas". Karlsruhe: IHE, 2008 (Forschungsberichte aus dem Institut für Höchstfrequenztechnik und Elektronik der Universität Karlsruhe; 55). 159 S. - Zugl.: Karlsruhe, Univ., Diss., 2008 ist ein weiterer Hohlleiter-Strahler bekannt, der einen geschlitzten Hohlleiter umfasst, in dem ein zusätzlicher Innenleiter auf einem dielektrischen Material angeordnet ist. Die Höhe des dielektrischen Materials wird dazu genutzt, um den elektrischen Leitwert für den Hohlleiter-Strahler zu optimierten.
  • Aus Yamaguchi, Satoshi et al. "Inclined Slot Array Antennas on a Rectangular Coaxial Line", Antennas and Propagation, Proceedings of the 5th European Conference on, IEEE, 11. April 2011, Seiten 1036 - 1040 ist auch ein Hohlleiter-Strahler bekannt, der einen geschlitzten Hohlleiter umfasst, in dem ein zusätzlicher Innenleiter auf einem dielektrischen Material angeordnet ist.
  • Weitere gattungsgemäße Hohlleiterstrahler sind aus der US 2 914 766 A und der US 4 409 595 A bekannt.
  • Es ist Aufgabe der Erfindung, einen Hohlleiter-Strahler anzugeben, der funktional und/oder baulich verbessert ist. Der Hohlleiter-Strahler soll breitbandig, effizient und kostengünstig herstellbar sein, so dass aus diesem eine planare Gruppenantenne aufgebaut werden kann, die u.a. in raum- oder flugzeuggestützten Synthetik-Apertur-Radar (SAR)-Systemen eingesetzt werden kann.
  • Diese Aufgabe wird gelöst durch einen Hohlleiter-Strahler gemäß den Merkmalen des Patentanspruches 1, einen Gruppenantennen-Strahler gemäß den Merkmalen des Patentanspruches 9 sowie ein Synthetik-Apertur-Radar-System gemäß den Merkmalen des Patentanspruches 13.
  • Vorteilhafte Ausgestaltungen ergeben sich aus den abhängigen Patentansprüchen.
  • Diese Aufgabe wird durch einen Hohlleiter-Strahler gelöst, der einen geschlitzten Hohlleiter (Wellenleiter) mit einer Mehrzahl von in dem Hohlleiter angebrachten transversalen oder longitudinalen Schlitzen umfasst. Weist der Hohlleiter transversale Schlitze auf, entspricht die Richtung der abgestrahlten Polarisation des Hohlleiters der Längsrichtung des Hohlleiters. Weist der geschlitzte Hohlleiter longitudinale Schlitze auf, entspricht die Richtung der abgestrahlten Polarisation des Hohlleiters der Querrichtung des Hohlleiters. Je nach Ausrichtung der Schlitze, können somit entweder horizontal oder vertikal polarisierte Wellen abgestrahlt werden. Der in dem Hohlleiter angebrachte zusätzliche Innenleiter ist derart beschaffen, dass der Abstand zwischen benachbarten Schlitzen entlang des Wellenleiters zur Erzielung einer phasengleichen Anregung genau einer Wellenlänge einer Wanderwelle entspricht, wodurch sich eine Speisung nach dem Wanderwellenprinzip ergibt und alle Schlitze des Hohlleiters phasengleich angeregt werden können. Zur Befestigung des Innenleiters wird eine Schicht aus dielektrischem Material in dem Hohlleiter angebracht, auf dessen Oberseite der Innenleiter montiert ist, beispielsweise durch eine Klebung. Erfindungsgemäß variiert die Höhe 14. Juli 2015 des dielektrischen Materials entlang des Hohlleiters zumindest abschnittsweise, wodurch die Amplitudenbelegung der Schlitze entlang des Hohlleiters beeinflussbar ist.
  • Durch den im Innenraum des geschlitzten Hohlleiters befindlichen Innenleiter (sog. Barline) wird ein dispersionsfreier, transversal elektrisch magnetischer Ausbreitungsmode unterstützt (TEM-Mode). Der Innenleiter ist polarisationsabhängig speziell geformt, um entweder longitudinale oder transversale Schlitze anregen zu können. Der vorgeschlagene Hohlleiter-Strahler zeichnet sich gegenüber dem in der DE 10 2006 057 144 A1 beschrieben Hohlleiter-Strahler durch eine nochmals deutlich höhere Bandbreite aus.
  • Die Höhe bzw. Dicke der dielektrischen Schicht ist entlang des Hohlleiters nicht gleichmäßig, sondern weist einen individuell geformten Höhenverlauf auf. Durch den Höhenverlauf und die Form des Innenleiters kann die Amplitude und Phase der elektrischen Feldstärke in den Schlitzen entlang des Wellenleiters gezielt beeinflusst werden, so dass sich beliebige Aperturbelegungen realisieren lassen, beispielsweise um Nebenmaxima im Antennendiagramm unterhalb eines vorgegebenen Werts zu unterdrücken. Auf gleiche Weise lässt sich auch eine homogene Amplituden- und Phasenbelegung entlang des Wellenleiters erzielen, beispielsweise um den Antennengewinn zu maximieren und die Halbwertsbreite zu minimieren.
  • Jeder Schlitz des Hohlleiter-Strahlers kann individuelle geometrische Abmessungen aufweisen. Es versteht sich, dass dabei der Hohlleiter-Strahler jedoch entweder nur longitudinale oder transversale Schlitze aufweist.
  • Die spezielle Form des Innenleiters setzt sich zusammen aus sich wiederholenden Abschnitten ähnlicher Geometrie entlang des Hohlleiters. Die Länge dieser Abschnitte ist dabei identisch mit dem Abstand benachbarter Schlitze entlang des Hohlleiters. Der zusätzliche Innenleiter kann aus, insbesondere abwechselnd angeordneten, geraden und gewundenen Leiterabschnitten gebildet sein.
  • Eine Ausprägung gegenüber der resonanten Speisung mit stehender Welle ist ein zusätzlicher Viertelwellentransformator, der sich in jedem der sich wiederholenden Abschnitte befindet. Dieser Viertelwellentransformator wird realisiert durch eine Verjüngung des Innenleiters, d.h. eine Reduktion der Leiterbreite. Die Länge dieser Verjüngung bzw. Leiterbreitenreduktion wird vorzugsweise so gewählt, dass sie einer elektrischen Weglänge von genau dem Viertel einer Leitungswellenlänge entspricht. Die Reduktion der Leiterbreite bewirkt eine Erhöhung des Wellenwiderstandes entlang des verjüngten Abschnitts. Durch die so realisierten Viertelwellentransformatoren werden die Reflexionsstellen ausgeglichen, die sich ansonsten an diesen Positionen ergeben würden.
  • Der Innenleiter kann im Bereich der Enden des Hohlleiters einen geraden Abschnitt als offene Stichleitung aufweisen.
  • Während der in der DE 10 2006 057 144 A1 beschriebene Strahler eine Speisung mit stehender Welle einsetzt, kommt in dem erfindungsgemäßen Hohlleiter eine sog. Wanderwellenspeisung zum Einsatz.
  • Eine Einkopplung eines Signals kann in der Mitte des Hohlleiter-Strahlers durch einen galvanisch gekoppelten Koaxialübergang erfolgen, bei dem der Innenleiter eines angeschlossenen Koaxialkabels (z.B. über SMA, SMP Verbindung) direkt mit dem Einspeisepunkt des Innenleiters verbunden ist. Der Außenleiter des angeschlossenen Koaxialkabels ist direkt mit der Wandung des Wellenleiters verbunden.
  • Der Einspeisepunkt kann in Querrichtung geringfügig verschoben sein, um somit den Übergang auf eine auf der Rückseite des Strahlers angebrachte Platine an einer geeigneten Stelle zu ermöglichen.
  • Bei einem geschlitzten Hohlleiter mit transversalen Schlitzen kann der Einspeisepunkt des Hohlleiters gegenüber dem geometrischen Mittelpunkt des Hohlleiters in Längsrichtung verschoben sein. Die Verschiebung kann in einer konkreten Realisierung ca. 6 bis 7 mm betragen, wobei diese von der Wellenlänge bzw. Frequenz des zu erzeugenden Signals abhängig ist.
  • In einer weiteren Ausgestaltung eines geschlitzten Hohlleiters mit transversalen Schlitzen kann der Einspeisepunkt des Hohlleiters derart in dem Hohlleiter angeordnet sein, dass die elektrische Phasenlage an den Positionen aller Schlitze bei Mittenfrequenz identisch ist.
  • Bei einem geschlitzten Hohlleiter mit longitudinalen Schlitzen weist der zusätzliche Innenleiter einen Einspeisepunkt auf, der in Längsrichtung des geschlitzten Hohlleiters im geometrischen Mittelpunkt angeordnet ist. Es kann weiter vorgesehen sein, dass der geschlitzte Hohlleiter mit dem zusätzlichen Innenleiter spiegelsymmetrisch um den Einspeisepunkt ausgebildet ist.
  • Insgesamt wird erreicht, dass die am Einspeisepunkt des Strahlers eingespeiste Welle in der Mitte des Strahlers sich reflexionsfrei bis zu den Enden des Innenleiters ausbreiten kann.
  • Die Erfindung hat den Vorteil, dass im Gegensatz zur resonanten Speisung deutlich höhere Bandbreiten realisiert werden können. Die in der DE 10 2006 057 144 A1 genannten Vorteile zu herkömmlichen geschlitzten Hohlleitern bleiben alle ohne Abstriche erhalten, wie z.B. keine Dispersion, Größenreduktion des Querschnitts, keine untere Grenzfrequenz, Robustheit gegenüber Fertigungstoleranzen, größer mögliche Strahlerlängen, geringe Herstellungskosten, kurze Fertigungszeiten, unproblematischer Übergang auf Koaxialkabel, hohe Leistungen einspeisbar, niedrige ohmsche Verluste, hohe kreuzpolare Unterdrückung.
  • Die Entwicklung der Hohlleiter-Strahler, insbesondere die Bestimmung der exakten geometrischen Abmessungen des Innenleiters und der Schlitze erfolgt mittels elektromagnetischer Simulationsverfahren. Näherungsweise kann das Verhalten des hier beschriebenen Strahlers auch durch Netzwerkmodelle mit geeigneten Ersatzschaltbildern beschrieben werden. Diese Modelle werden üblicherweise in einem ersten Schritt herangezogen, um die Größen der im Ersatzschaltbild vorhandenen Elemente zu optimieren. Im zweiten Schritt werden diese Größen dann in geeignete geometrische Parameter übersetzt. Hierzu können kommerziell verfügbare Softwarepakete angewendet werden, die durch Vollwellenanalyse das elektromagnetische Verhalten der tatsächlichen Geometrie (3D-Modelle) berechnen.
  • Ein erfindungsgemäßer Gruppenantennen-Strahler umfasst einen oder mehrere geschlitzte Hohlleiter mit transversalen Schlitzen und einen oder mehrere geschlitzte Hohlleiter mit longitudinalen Schlitzen der oben beschriebenen Art. Die geschlitzten Hohlleiter können in einer Ausgestaltung in Querrichtung nebeneinander angeordnet sein, wobei abwechselnd ein Hohlleiter mit transversalen Schlitzen und ein Hohlleiter mit longitudinalen Schlitzen nebeneinander liegen. Hierbei weisen die Hohlleiter, d.h. alle Hohlleiter, vorzugsweise eine identische Länge auf.
  • Die Hohlleiter mit transversalen Schlitzen können gegenüber den Hohlleitern mit longitudinalen Schlitzen nach oben versetzt sein, so dass eine stufenartige Struktur des Gruppenantennen-Strahlers gegeben ist. Oben ist dabei diejenigen Seite eines jeweiligen Hohlleiter-Strahlers, auf der die Hohlleiter die Schlitze aufweisen.
  • Ein Synthetik-Apertur-Radarsystem, insbesondere ein hochauflösendes Synthetik-Apertur-Radarsystem umfasst wenigstens einen Gruppenantennen-Strahler der oben beschriebenen Art.
  • Die Erfindung wird nachfolgend näher anhand von Ausführungsbeispielen in der Zeichnung erläutert. Es zeigen:
  • Fig. 1
    eine Darstellung eines erfindungsgemäßen Hohlleiter-Strahlers mit transversalen Schlitzen;
    Fig. 2
    einen Höhenverlauf einer im Inneren des Hohlleiters aus Fig. 1 angeordneten dielektrischen Schicht;
    Fig. 3
    eine Darstellung der Form des Innenleiters (Barline) in dem Hohlleiter-Strahler mit transversalen Schlitzen aus Fig. 1;
    Fig. 4
    eine vergrößerte Darstellung des mittleren Bereichs des Innenleiters aus Fig. 3;
    Fig. 5
    eine vergrößerte Darstellung des Bereichs der Enden des Innenleiters aus Fig. 3;
    Fig. 6
    eine Darstellung eines erfindungsgemäßen Hohlleiter-Strahlers mit longitudinalen Schlitzen;
    Fig. 7
    einen Höhenverlauf einer im Inneren des Hohlleiters aus Fig. 6 angeordneten dielektrischen Schicht;
    Fig. 8
    eine Darstellung der Form des Innenleiters (Barline) in dem Hohlleiter-Strahler mit longitudinalen Schlitzen aus Fig. 6;
    Fig. 9
    eine vergrößerte Darstellung des mittleren Bereich des Innenleiters aus Fig. 8;
    Fig. 10
    eine vergrößerte Darstellung des Bereichs der Enden des Innenleiters aus Fig. 8;
    Fig. 11
    einen dual polarisierten Gruppenantennen-Strahler aus einer Kombination von Hohlleitern mit transversalen Schlitzen und Hohlleitern mit longitudinalen Schlitzen;
    Fig. 12
    eine graphische Darstellung der insgesamt im Strahler auftretenden elektrischen Verluste in dB gegenüber einer idealen Apertur gleicher Größe;
    Fig. 13
    eine graphische Darstellung der Anpassung in dB;
    Fig. 14
    eine graphische Darstellung der Abstrahlungseigenschaften in dB (Antennendiagramm) eines Strahlers mit Wanderwellenspeisung; und
    Fig. 15
    eine graphische Darstellung der Abstrahlungseigenschaften in dB (Antennendiagramm) eines Strahlers mit resonanter Speisung und stehender Welle.
  • Die im Folgenden angegebenen absoluten Werte und Maßangaben sind nur beispielhafte Werte und stellen keine Einschränkung der Erfindung auf derartige Dimensionen dar. Die Darstellungen zeigen die Erfindung lediglich schematisch und sind insbesondere nicht als maßstabsgerecht zu betrachten.
  • Nachfolgend wird der Aufbau eines erfindungsmäßen Hohlleiter-Strahlers (kurz: Strahler) mit einem geschlitzten Hohlleiter (nachfolgend als Wellenleiter 10, 30 bezeichnet) und einem in dem Wellenleiter 10, 30 angeordneten Innenleiter 14, 34 beschrieben. Es wird dabei zwischen geschlitzten Wellenleitern 10, 30 mit transversalen Schlitzen 12 (Fig. 1) und longitudinalen Schlitzen 32 (Fig. 6) unterschieden, bei denen sich die Form des verwendeten Innenleiters 14 und 34 unterscheidet. Die genaue Ausgestaltung des Innenleiters 14 für den Wellenleiter 10 mit transversalen Schlitzen 12 ist in den Fig. 3 bis 5 dargestellt. Die genaue Ausgestaltung des Innenleiters 34 für den Wellenleiter 30 mit longitudinalen Schlitzen 32 ist in den Fig. 8 bis 10 dargestellt.
  • Die nachfolgend angegebenen geometrischen Abmessungen beziehen sich auf eine beispielhafte Ausführung im X-Band bei einer Mittenfrequenz von 9.6GHz. Der hier beschriebene Strahler kann ohne weiteres auch für hiervon abweichende Mittenfrequenzen ausgelegt werden. Die Größenabmessungen skalieren sich in diesem Fall über das Verhältnis der entsprechenden Wellenlängen.
  • Die Wellenleiter 10, 30 sind aus herkömmlichen rechteckigen Hohlleitern gebildet, in die transversale Schlitze 12 bzw. longitudinale Schlitze 32 eingebracht sind. Das Innere der Wellenleiter 10, 30 ist mit einem dielektrischen Material gefüllt. Die dielektrische Schicht 24, 44 ist in den Fig. 2 und 7 dargestellt. Während Strahler nach Stand der Technik eine konstante Schichtdicke aufweisen, weisen die dielektrischen Schichten 24, 44 der Erfindung in Längserstreckung des Wellenleiters eine variable Höhe bzw. Dicke auf.
  • Die Wahl des für die dielektrische Schicht verwendeten Materials wird bestimmt durch dessen elektrische Eigenschaften, nämlich der Dielektrizitätszahl und dem Verlustwinkel. Die Dielektrizitätszahl beeinflusst die Ausbreitungsgeschwindigkeit der auf dem Innenleiter laufenden Wanderwelle (Verkürzungsfaktor). Der Abstand zwischen benachbarten Schlitzen entlang des Wellenleiters entspricht zur Erzielung einer phasengleichen Anregung genau einer Wellenlänge der Wanderwelle. Zudem ist der Schlitzabstand kleiner als eine Freiraumwellenlänge, um unerwünschte Nebenmaxima zu vermeiden (sog. Grating Lobes). Typischerweise liegt der Schlitzabstand im Bereich des 0,5 bis 0,9 fachen einer Freiraumwellenlänge. Hieraus ergibt sich der Wert der Dielektrizitätszahl, die damit typischerweise im Bereich 1,2 bis 3,0 liegt. Der Verlustwinkel sollte dabei möglichst klein sein, um die dielektrischen Verluste so gering wie möglich zu halten, für ein geeignetes Material sollte der Wert kleiner als 1·10-3 sein.
  • Die Dicke der dielektrischen Schicht 24, 44 entlang des Wellenleiters weist ein charakteristisches Profil auf. Die Höhe an den Positionen der Schlitze 12, 32 bestimmt den Anteil der ausgekoppelten Leistung der Wanderwelle. Eine größere Höhe resultiert in einer stärkeren Auskopplung, eine geringere Höhe entsprechend umgekehrt.
  • Das in den Fig. 2 und 7 dargestellte Beispiel zeigt den Fall einer homogenen Anregung aller Schlitze 12, 32. Die Dicke der dielektrischen Schicht 24, 44 nimmt in diesem Fall zu den äußeren Enden des jeweiligen Wellenleiters 10, 30 zu, da aus der abnehmenden Leistung der Wanderwelle ein immer höherer relativer Anteil ausgekoppelt werden muss.
  • Eine weitere Gemeinsamkeit der beiden Varianten ist, wie dies aus der nachfolgenden Beschreibung deutlich werden wird, dass die Innenleiter 14, 34 Teilabschnitte mit reduzierter Leiterbreite 18 und 38 (vgl. Fig. 4 und 8) aufweisen. Diese wirken als Transformationsleitungen und verhindern das Auftreten von Reflexionen (stehende Wellen) auf der Leitung.
  • Im Folgenden werden die Merkmale des Wellenleiters mit transversalen Schlitzen und des Wellenleiters mit longitudinalen Schlitzen getrennt beschrieben:
  • Wellenleiter mit transversalen Schlitzen
  • Fig. 1 zeigt einen Wellenleiter 10 mit transversalen Schlitzen 12. Die Form des Innenleiters 14 in dem Wellenleiter 10 mit den transversalen Schlitzen 12 ist in Fig. 3 dargestellt. Die Positionen der Schlitze sind in Fig. 3 durch Pfeile gekennzeichnet Der mittlere Bereich, der einen Einspeisepunkt 16 beinhaltet, ist in Fig. 4 vergrößert dargestellt. Der Einspeisepunkt 16 befindet sich gegenüber dem geometrischen Mittelpunkt in Längsrichtung um ca. 6 mm verschoben. Diese Verschiebung bewirkt eine Phasendifferenz von 180° der vom Einspeisepunkt 16 ausgehenden Wanderwelle in den rechten und linken Teil des Wellenleiters 10. Auf diese Weise ergibt sich eine phasengleiche Anregung der Schlitze sowohl im rechten als auch im linken Teil des Wellenleiters 10.
  • Der Innenleiter 14 beginnt unmittelbar am Einspeisepunkt 16 mit Abschnitten 18 (Transformationsleitungen) mit reduzierter Leiterbreite. Diese dienen zur Transformation auf den charakteristischen Wellenwiderstand des angeschlossenen und hier nicht näher dargestellten Koaxialkabels von typischerweise 50 Ohm. Der weitere Verlauf des Innenleiters 14 zu den Enden des Wellenleiters 10 besteht aus geraden Abschnitten 18 mit reduzierter Leiterbreite und gewundenen Abschnitten 20. Die geraden Abschnitte wirken somit als Transformationsleitungen. Die Verwindung der übrigen Abschnitte 20 bewirkt eine Verzögerung der Ausbreitungsgeschwindigkeit der Wanderwelle in Längsrichtung des Wellenleiters 10. Eine stärkere Ausprägung der Verwindung bewirkt eine größere Verzögerung und entsprechend umgekehrt. Hiermit kann die Phasendifferenz zwischen benachbarten Schlitzen 12 auf exakt 360° eingestellt werden.
  • Die Schlitze 12 sind in Querrichtung (transversal) in die äußere Wandung des Wellenleiters 10 geschnitten. Sie ragen in die seitlichen Wände mit einer Schnitttiefe von ca. 4mm ein. Die Breite der Schlitze 12 beträgt ca. 2-3mm. Die Schlitze 12 weisen resonantes Verhalten auf, die Resonanzfrequenz fällt mit der Mittenfrequenz des Strahlers zusammen.
  • Der äußerste Schlitz 12A an den Enden des Wellenleiters 10 mit dem darunter befindlichen Abschnitt 22 des Innenleiters 14 weist eine Besonderheit auf. Nach Stand der Technik werden in Strahlern mit Wanderwellenprinzip häufig die Enden der Wanderwellenleitung resistiv abgeschlossen. Dies führt zu unerwünschten Verlusten, da die am Ende der Leitung verbleibende Leistung in einem Widerstand dissipiert wird. Bei dem hier vorgestellten Konzept eines Wanderwellenstrahlers mit homogener Anregung aller Schlitze wird die am Ende der Leitung verbleibende Leistung komplett über den äußersten Schlitz abgestrahlt, wodurch zusätzliche Verluste vermieden werden. Hierzu ist das Höhenprofil der dielektrischen Schicht derart ausgelegt, dass die am äußersten Schlitz 12A verbleibende Leistung der an den übrigen Schlitzen ausgekoppelten Leistung entspricht, wodurch unter Einhaltung dieser Randbedingung eine homogene Belegung aller Schlitze 12, 12A erreicht wird. Fig. 5 zeigt hierzu eine vergrößerte Darstellung des Bereichs der Enden des Innenleiters aus Fig. 3, wobei der ungewundene, offene Leitungsabschluss mit dem Abschnitt 22 zu erkennen ist, der die beschriebenen Eigenschaften unterstützt.
  • Wellenleiter mit longitudinalen Schlitzen
  • Fig. 6 zeigt einen Wellenleiter 30 mit longitudinalen Schlitzen. Die Form des Innenleiters 34 in einem Wellenleiter mit longitudinalen Schlitzen 30 ist in Fig. 8 dargestellt. Der mittlere Bereich, der den Einspeisepunkt 36 beinhaltet ist in Fig. 9 vergrößert dargestellt. Der Einspeisepunkt 36 befindet sich in Längsrichtung gesehen im geometrischen Mittelpunkt. Eine Verschiebung in Längsrichtung, wie bei einem Wellenleiter mit transversalen Schlitzen 10, ist in diesem Fall nicht notwendig, da durch symmetrischen Aufbau der rechten und linken Hälfte des Wellenleiters 30 eine phasengleiche Anregung der Schlitze 32 erzielt werden kann.
  • Der Innenleiter 34 beginnt unmittelbar am Einspeisepunkt 36 mit Transformationsleitungen mit reduzierter Leiterbreite. Diese dienen zur Transformation auf den charakteristischen Wellenwiderstand des angeschlossenen Koaxialkabels von typischerweise 50 Ohm. Der weitere Verlauf des Innenleiters 34 zu den Enden des Wellenleiters besteht aus geraden Abschnitten 38 und gewundenen Abschnitten 40. Die gewundene Form der Abschnitte 40 ist so ausgeführt, dass der Innenleiter an den mittleren Positionen der Schlitze 32 in transversaler Richtung verläuft. Dies ist notwendig für eine Ankopplung der longitudinalen Schlitze 32, da hierzu ein Fluss des induzierten Stromes in transversaler Richtung auf der Wandung des Wellenleiters 30 vorhanden sein muss. Die Position der Schlitze ist in Fig. 8 durch Pfeile gekennzeichnet.
  • Die gewundene Form der Abschnitte 40 bewirkt zusätzlich eine Verzögerung der Ausbreitungsgeschwindigkeit der Wanderwelle in Längsrichtung des Wellenleiters. Eine stärkere Ausprägung der gewundenen Form bewirkt eine größere Verzögerung und entsprechend umgekehrt. Hiermit kann die Phasendifferenz zwischen benachbarten Schlitzen auf exakt 360° eingestellt werden.
  • Die Schlitze 32 sind in Längsrichtung (longitudinal) in die äußere Wandung des Wellenleiters 30 geschnitten. Die Schlitze 32 weisen eine Länge von ungefähr einer halben Freiraumwellenlänge auf. Die exakte Länge kann dabei von Schlitz zu Schlitz leicht variieren. Die Breite der Schlitze beträgt ca. 2 mm. Die Schlitze weisen resonantes Verhalten auf, die Resonanzfrequenz fällt mit der Mittenfrequenz des Strahlers zusammen.
  • Der äußerste Schlitz 32A an den Enden des Wellenleiters 30 mit dem darunter befindlichen Abschnitt 42 des Innenleiters 42 weist eine Besonderheit auf. Nach Stand der Technik werden in Strahlern mit Wanderwellenprinzip häufig die Enden der Wanderwellenleitung resistiv abgeschlossen. Dies führt zu unerwünschten Verlusten, da die am Ende der Leitung verbleibende Leistung in einem Widerstand dissipiert wird. Bei dem hier vorgestellten Konzept eines Wanderwellenstrahlers mit homogener Anregung aller Schlitze 32 wird die am Ende der Leitung verbleibende Leistung komplett über den äußersten Schlitz 32A abgestrahlt, wodurch zusätzliche Verluste vermieden werden. Hierzu ist das Höhenprofil der dielektrischen Schicht 44 derart ausgelegt, dass die am äußersten Schlitz 32A verbleibende Leistung der an den übrigen Schlitzen 32 ausgekoppelten Leistung entspricht, so dass unter Einhaltung dieser Randbedingung kann eine homogene Belegung aller Schlitze 32, 32A erreicht werden. Fig. 10 zeigt eine vergrößerte Darstellung des Bereichs der Enden des Innenleiters aus Fig. 8. Zu erkennen ist der ungewundene, offene Leitungsabschluss mit dem Abschnitt 42 des Innenleiters 34, der die beschriebenen Eigenschaften unterstützt.
  • Dual polarisierte Strahlergruppe
  • Durch Kombination eines Wellenleiters 10 mit transversalen Schlitzen mit einem Wellenleiter 30 mit longitudinalen Schlitzen lassen sich auf einfache Weise dual polarisierte Strahlergruppen 60 realisieren. Da sich die Breiten der Wellenleiter mit dem hier beschriebenen Strahlerkonzept stark reduzieren lassen (bis zu einem Viertel der Wellenlänge) lassen sich dual polarisierte, elektronisch steuerbare Gruppenantennen mit sehr großem Schwenkbereich realisieren (>±60°).
  • Fig. 11 zeigt den Aufbau einer dual polarisierten Strahlergruppe 60 (Gruppenantennen-Strahler). Sie besteht aus einer Zusammensetzung von jeweils abwechselnd einem geschlitzten Wellenleiter 10 mit transversalen Schlitzen 12 und einem Wellenleiter 30 mit longitudinalen Schlitzen 32. Die Wellenleiter 10 mit transversalen Schlitzen 12 sind gegenüber den Wellenleitern 30 mit longitudinalen Schlitzen 12 dabei um ca. 7 mm bis 8 mm nach oben versetzt, so dass eine stufenartige Struktur entsteht.
  • Der vorgeschlagene Hohlleiter-Strahler zeichnet sich gegenüber den aus dem Stand der Technik bekannten Hohlleiter-Strahlern durch eine nochmals deutlich höhere Bandbreite aus. Dies ist in den Figuren 12 bis 15 beispielhaft für einen Strahler der Länge 250mm für das X-Band dargestellt.
  • Fig. 12 zeigt eine Darstellung der insgesamt im Strahler auftretenden elektrischen Verluste in dB gegenüber einer idealen Apertur gleicher Größe. Die Kurve mit durchgezogener Linie repräsentiert Verluste des Strahlers mit Wanderwellenspeisung, die Kurve mit gestrichelter Linie repräsentiert Verluste bei resonanter Speisung mit stehender Welle.
  • Fig. 13 zeigt eine Darstellung der Anpassung in dB, wobei die Kurve mit durchgezogener Linie einem Strahler mit Wanderwellenspeisung und die Kurve mit gestrichelter Linie einem Strahler mit resonanter Speisung (stehende Welle) zuzuordnen ist.
  • Fig. 14 zeigt eine Darstellung der Abstrahlungseigenschaften in dB (Antennendiagramm) eines Strahlers mit Wanderwellenspeisung, wobei die Kurve mit gestrichelter Linie das Antennendiagramm bei 8,7GHz, die Kurve mit durchgezogener Linie das Antennendiagramm bei 9,6GHz (Mittenfrequenz) und die Kurve mit gepunkteter Linie das Antennendiagramm bei 10,5GHz zeigen.
  • Fig. 15 zeigt schließlich eine Darstellung der Abstrahlungseigenschaften in dB (Antennendiagramm) eines Strahlers mit resonanter Speisung und stehender Welle, wobei die Kurve mit gestrichelter Linie das Antennendiagramm bei 8,7GHz, die Kurve mit durchgezogener Linie das Antennendiagramm bei 9,6GHz (Mittenfrequenz) und die Kurve mit gepunkteter Linie das Antennendiagramm bei 10,5GHz zeigen.
  • BEZUGSZEICHENLISTE
  • 10
    geschlitzter Wellenleiter mit transversalen Schlitzen
    12
    transversaler Schlitz
    12A
    transversaler Schlitz am Ende des Wellenleiters
    14
    Innenleiter des Wellenleiters mit transversalen Schlitzen
    16
    Speisepunkt des Wellenleiters mit transversalen Schlitzen
    18
    Transformationsleitungsabschnitt des Innenleiters (Wellenleiter mit transversalen Schlitzen)
    20
    gewundener Teilabschnitt des Innenleiters (Wellenleiter mit transversalen Schlitzen)
    22
    Endabschnitt des Innenleiters mit offener Stichleitung (Wellenleiter mit transversalen Schlitzen)
    24
    dielektrische Schicht des Wellenleiters mit transversalen Schlitzen
    30
    geschlitzter Wellenleiter mit longitudinalen Schlitzen
    32
    longitudinale Schlitz
    32A
    longitudinaler Schlitz am Ende des Wellenleiters
    34
    Innenleiter des Wellenleiters mit longitudinalen Schlitzen
    36
    Speisepunkt des Wellenleiters mit longitudinalen Schlitzen
    38
    Transformationsleitungsabschnitt des Innenleiters (Wellenleiter mit longitudinalen Schlitzen)
    40
    gewundener Teilabschnitt des Innenleiters (Wellenleiter mit longitudinalen Schlitzen)
    42
    Endabschnitt des Innenleiters mit offener Stichleitung (Wellenleiter mit longitudinalen Schlitzen)
    44
    dielektrische Schicht des Wellenleiters mit longitudinalen Schlitzen
    60
    Dual polarisierte Strahlergruppe

Claims (13)

  1. Hohlleiter-Strahler umfassend
    - einen geschlitzten Hohlleiter (10; 30) mit einer Mehrzahl von in dem Hohlleiter (10; 30) angebrachten transversalen oder longitudinalen Schlitzen (12; 32); und
    - einen in dem Hohlleiter (10; 30) angebrachten zusätzlichen Innenleiter (14; 34), der Leiterabschnitte (18, 20; 38, 40) umfasst, die gegenüber der übrigen Leitung eine reduzierte Leiterbreite aufweisen, wobei die Länge der Leiterbreitenreduktion so gewählt wird, dass sie einer elektrischen Weglänge von genau dem Viertel einer Leitungswellenlänge entspricht, so dass sich eine Speisung der Schlitze nach einem Wanderwellenprinzip ergibt und bei dem der Abstand zwischen benachbarten Schlitzen (12, 32) entlang des Wellenleiters zur Erzielung einer phasengleichen Anregung genau einer Wellenlänge einer Wanderwelle entspricht;
    - wobei der geschlitzte Hohlleiter (10; 30) teilweise mit einem dielektrischen Material (24; 44) gefüllt ist, auf dem der zusätzliche Innenleiter (14; 34) angeordnet ist;
    dadurch gekennzeichnet, dass die Höhe des dielektrischen Materials (24; 44) entlang des Hohlleiters (10; 30) zumindest abschnittsweise variiert, wodurch die Amplitudenbelegung der Schlitze (12; 32) entlang des Hohlleiters (10, 30) beeinflussbar ist.
  2. Hohlleiter-Strahler nach Anspruch 1, dadurch gekennzeichnet, dass der zusätzliche Innenleiter (14; 34) aus, insbesondere abwechselnd angeordneten, geraden und gewundenen Leiterabschnitten (18, 20; 38, 40) gebildet ist.
  3. Hohlleiter-Strahler nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der Innenleiter (14; 34) sich aus wiederholenden Leiterabschnitten (18, 20; 38, 40) entlang des Hohlleiters (10; 30) zusammensetzt, wobei die Länge der Leiterabschnitte identisch mit dem Abstand benachbarter Schlitze (12; 32) entlang des Hohlleiters ist.
  4. Hohlleiter-Strahler nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der Innenleiter (14; 34) im Bereich der Enden des Hohlleiters (10; 30) einen geraden Abschnitt als offene Stichleitung (22; 42) aufweist.
  5. Hohlleiter-Strahler nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass bei einem geschlitzten Hohlleiter (10) mit transversalen Schlitzen (12) ein Einspeisepunkt (16) des Hohlleiters (10) gegenüber dem geometrischen Mittelpunkt des Hohlleiters in Längsrichtung verschoben ist.
  6. Hohlleiter-Strahler nach dem Anspruch 5, dadurch gekennzeichnet, dass der Einspeisepunkt (16) des Hohlleiters (10) gegenüber dem geometrischen Mittelpunkt des Hohlleiters (10) in Längsrichtung so verschoben ist, dass die elektrische Phasenlage an den Positionen aller Schlitze (12) bei Mittenfrequenz identisch ist.
  7. Hohlleiter-Strahler nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass bei einem geschlitzten Hohlleiter (30) mit longitudinalen Schlitzen (32) der zusätzliche Innenleiter (34) einen Einspeisepunkt (36) aufweist, der in Längsrichtung des geschlitzten Hohlleiters (30) im geometrischen Mittelpunkt angeordnet ist.
  8. Hohlleiter-Strahler nach Anspruch 7, dadurch gekennzeichnet, dass der geschlitzte Hohlleiter (30) mit dem zusätzlichen Innenleiter (34) spiegelsymmetrisch um den Einspeisepunkt (36) ausgebildet ist.
  9. Gruppenantennen-Strahler, umfassend einen oder mehrere geschlitzte Hohlleiter (10) mit transversalen Schlitzen (12) gemäß einem der Ansprüche 1 bis 6 und einen oder mehrere geschlitzte Hohlleiter (30) mit longitudinalen Schlitzen (32) gemäß einem der Ansprüche 1 bis 4 sowie 7 oder 8.
  10. Gruppenantennen-Strahler nach Anspruch 9, dadurch gekennzeichnet, dass die geschlitzten Hohlleiter (10; 30) in Querrichtung nebeneinander angeordnet sind, wobei abwechselnd ein Hohlleiter (10) mit transversalen Schlitzen (12) und ein Hohlleiter (30) mit longitudinalen Schlitzen (32) nebeneinander liegen.
  11. Gruppenantennen-Strahler nach Anspruch 9, dadurch gekennzeichnet, dass die Hohlleiter (10; 30) eine identische Länge aufweisen.
  12. Gruppenantennen-Strahler nach einem der Ansprüche 9 bis 11, dadurch gekennzeichnet, dass die Hohlleiter (10) mit transversalen Schlitzen (12) gegenüber den Hohlleitern (30) mit longitudinalen Schlitzen (32) nach oben versetzt sind, so dass eine stufenartige Struktur des Gruppenantennen-Strahlers gegeben ist.
  13. Synthetik-Apertur-Radar System, insbesondere hochauflösendes Synthetik-Apertur-Radar System, umfassend einen Gruppenantennen-Strahler (60) nach einem der Ansprüche 9 bis 12.
EP14002534.7A 2013-07-25 2014-07-22 Hohlleiter-Strahler, Gruppenantennen-Strahler und Synthetik-Apertur-Radar-Strahler Active EP2830156B1 (de)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102013012315.1A DE102013012315B4 (de) 2013-07-25 2013-07-25 Hohlleiter-Strahler. Gruppenantennen-Strahler und Synthetik-Apertur-Radar-System

Publications (2)

Publication Number Publication Date
EP2830156A1 EP2830156A1 (de) 2015-01-28
EP2830156B1 true EP2830156B1 (de) 2016-12-07

Family

ID=51229797

Family Applications (1)

Application Number Title Priority Date Filing Date
EP14002534.7A Active EP2830156B1 (de) 2013-07-25 2014-07-22 Hohlleiter-Strahler, Gruppenantennen-Strahler und Synthetik-Apertur-Radar-Strahler

Country Status (6)

Country Link
US (1) US10651560B2 (de)
EP (1) EP2830156B1 (de)
JP (1) JP6370143B2 (de)
KR (1) KR101926895B1 (de)
CA (1) CA2857658C (de)
DE (1) DE102013012315B4 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3817147A1 (de) 2019-10-31 2021-05-05 Airbus Defence and Space GmbH Innenleitervorrichtung für einen hohlleiter-strahler

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11605903B2 (en) * 2016-08-10 2023-03-14 Mitsubishi Electric Corporation Array antenna apparatus and method for manufacturing array antenna apparatus
US11830831B2 (en) 2016-09-23 2023-11-28 Intel Corporation Semiconductor package including a modular side radiating waveguide launcher
US11309619B2 (en) 2016-09-23 2022-04-19 Intel Corporation Waveguide coupling systems and methods
US10566672B2 (en) 2016-09-27 2020-02-18 Intel Corporation Waveguide connector with tapered slot launcher
US10256521B2 (en) 2016-09-29 2019-04-09 Intel Corporation Waveguide connector with slot launcher
US11394094B2 (en) 2016-09-30 2022-07-19 Intel Corporation Waveguide connector having a curved array of waveguides configured to connect a package to excitation elements
US10461388B2 (en) 2016-12-30 2019-10-29 Intel Corporation Millimeter wave fabric network over dielectric waveguides
RU174536U1 (ru) * 2017-03-30 2017-10-19 Федеральное государственное бюджетное образовательное учреждение высшего образования "Сибирский государственный университет геосистем и технологий" (СГУГиТ) Волноводный излучатель
JP6752394B2 (ja) * 2018-05-02 2020-09-09 三菱電機株式会社 導波管スロットアレーアンテナ
US11201414B2 (en) * 2018-12-18 2021-12-14 Veoneer Us, Inc. Waveguide sensor assemblies and related methods
US11196171B2 (en) * 2019-07-23 2021-12-07 Veoneer Us, Inc. Combined waveguide and antenna structures and related sensor assemblies
WO2021050173A1 (en) * 2019-09-10 2021-03-18 Commscope Technologies Llc Leaky waveguide antennas having spaced-apart radiating nodes with respective coupling ratios that support efficient radiation
EP4197064A4 (de) * 2020-10-13 2024-02-28 The Board of Regents of the University of Oklahoma X-band doppelpolarisierte schlitzwellenleiter-gruppenzelle für grosse e-scanning-radarsysteme
EP4148901A1 (de) 2021-09-09 2023-03-15 Aptiv Technologies Limited Antenne
KR102710215B1 (ko) * 2022-11-04 2024-09-26 엘아이지넥스원 주식회사 복사 소자 어레이 구조 및 이를 포함하는 aesa 레이더 시스템
WO2024151832A1 (en) * 2023-01-12 2024-07-18 The Penn State Research Foundation Deployable electromagnetic waveguides

Family Cites Families (41)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2914766A (en) * 1955-06-06 1959-11-24 Sanders Associates Inc Three conductor planar antenna
NL277059A (de) * 1961-04-11
US3106713A (en) * 1962-01-26 1963-10-08 Furukawa Electric Co Ltd Slot antenna having short radiating slots and long nonradiating distributed capacitance tuning slot
US3193830A (en) * 1963-07-25 1965-07-06 Joseph H Provencher Multifrequency dual ridge waveguide slot antenna
US3701162A (en) * 1964-03-24 1972-10-24 Hughes Aircraft Co Planar antenna array
US3688225A (en) * 1969-05-21 1972-08-29 Us Army Slot-line
US3599216A (en) * 1969-08-11 1971-08-10 Nasa Virtual-wall slot circularly polarized planar array antenna
US3697993A (en) * 1969-09-15 1972-10-10 Westinghouse Electric Corp Airborne pulse doppler radar system
US3696433A (en) * 1970-07-17 1972-10-03 Teledyne Ryan Aeronautical Co Resonant slot antenna structure
US4197549A (en) * 1977-08-17 1980-04-08 Harris Corporation Slot antenna
US4160145A (en) * 1978-02-16 1979-07-03 Armstrong Cork Company Microwave applicator device
JPS553584U (de) * 1978-06-22 1980-01-10
US4243990A (en) * 1979-04-30 1981-01-06 International Telephone And Telegraph Corporation Integrated multiband array antenna
JPS56132805U (de) * 1980-03-07 1981-10-08
US4409595A (en) * 1980-05-06 1983-10-11 Ford Aerospace & Communications Corporation Stripline slot array
US4435715A (en) * 1980-09-29 1984-03-06 Hughes Aircraft Company Rod-excited waveguide slot antenna
FR2654555B1 (fr) * 1989-11-14 1992-06-19 Thomson Csf Guide a fentes rayonnantes non inclinees a excitation par motif rayonnant.
US5010351A (en) * 1990-02-08 1991-04-23 Hughes Aircraft Company Slot radiator assembly with vane tuning
SE469540B (sv) * 1991-11-29 1993-07-19 Ericsson Telefon Ab L M Vaagledarantenn med slitsade haalrumsvaagledare
US5483248A (en) * 1993-08-10 1996-01-09 Hughes Aircraft Company Continuous transverse stub element devices for flat plate antenna arrays
SE501714C2 (sv) * 1993-09-06 1995-05-02 Ericsson Telefon Ab L M Gruppantenn
SE510082C2 (sv) * 1993-11-30 1999-04-19 Saab Ericsson Space Ab Vågledarantenn med tvärgående och längsgående slitsar
US5650793A (en) * 1995-06-06 1997-07-22 Hughes Missile Systems Company Centered longitudinal series/series coupling slot for coupling energy between a boxed stripline and a crossed rectangular waveguide and antenna array employing same
US5914694A (en) * 1996-09-19 1999-06-22 Cal Corporation Dual-band, dual polarization radiating structure
FR2764739B1 (fr) * 1997-06-13 1999-09-17 Thomson Csf Antenne reseau a fentes rayonnantes
US6201507B1 (en) * 1998-04-09 2001-03-13 Raytheon Company Centered longitudinal shunt slot fed by a resonant offset ridge iris
US6166701A (en) * 1999-08-05 2000-12-26 Raytheon Company Dual polarization antenna array with radiating slots and notch dipole elements sharing a common aperture
US6304228B1 (en) * 2000-10-06 2001-10-16 Space Systems/Loral, Inc. Stepped waveguide slot array with phase control and satellite communication system employing same
JP4021150B2 (ja) * 2001-01-29 2007-12-12 沖電気工業株式会社 スロットアレーアンテナ
US6731241B2 (en) * 2001-06-13 2004-05-04 Raytheon Company Dual-polarization common aperture antenna with rectangular wave-guide fed centered longitudinal slot array and micro-stripline fed air cavity back transverse series slot array
US6977621B2 (en) * 2004-01-07 2005-12-20 Motia, Inc. Vehicle mounted satellite antenna system with inverted L-shaped waveguide
US7202832B2 (en) * 2004-01-07 2007-04-10 Motia Vehicle mounted satellite antenna system with ridged waveguide
US6999039B2 (en) * 2004-07-04 2006-02-14 Victory Microwave Corporation Extruded slot antenna array and method of manufacture
WO2006019339A1 (en) * 2004-08-18 2006-02-23 Telefonaktiebolaget Lm Ericsson (Publ) Wave-guide-notch antenna
US7109928B1 (en) * 2005-03-30 2006-09-19 The United States Of America As Represented By The Secretary Of The Air Force Conformal microstrip leaky wave antenna
JP4822262B2 (ja) * 2006-01-23 2011-11-24 沖電気工業株式会社 円形導波管アンテナ及び円形導波管アレーアンテナ
WO2008068825A1 (ja) * 2006-12-01 2008-06-12 Mitsubishi Electric Corporation 同軸線路スロットアレーアンテナとその製造方法
DE102006057144B4 (de) 2006-12-01 2013-10-17 Astrium Gmbh Hohlleiter-Strahler
US8149177B1 (en) * 2008-05-09 2012-04-03 The United States Of America As Represented By The Secretary Of The Air Force Slotted waveguide antenna stiffened structure
JP5091044B2 (ja) * 2008-07-31 2012-12-05 株式会社デンソー マイクロストリップアレーアンテナ
EP2587586B1 (de) * 2011-10-26 2017-01-04 Alcatel Lucent Verteiltes Antennensystem und Verfahren zur Herstellung eines verteilten Antennensystems

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3817147A1 (de) 2019-10-31 2021-05-05 Airbus Defence and Space GmbH Innenleitervorrichtung für einen hohlleiter-strahler
WO2021083661A1 (de) * 2019-10-31 2021-05-06 Airbus Defence and Space GmbH Innenleitervorrichtung für einen hohlleiter-strahler

Also Published As

Publication number Publication date
JP2015027086A (ja) 2015-02-05
DE102013012315A1 (de) 2015-01-29
KR20150013051A (ko) 2015-02-04
EP2830156A1 (de) 2015-01-28
JP6370143B2 (ja) 2018-08-08
CA2857658C (en) 2019-10-29
DE102013012315B4 (de) 2018-05-24
KR101926895B1 (ko) 2018-12-07
US10651560B2 (en) 2020-05-12
CA2857658A1 (en) 2015-01-25
US20150029069A1 (en) 2015-01-29

Similar Documents

Publication Publication Date Title
EP2830156B1 (de) Hohlleiter-Strahler, Gruppenantennen-Strahler und Synthetik-Apertur-Radar-Strahler
EP2256864B1 (de) Antenne für zirkulare Polarisation mit einer leitenden Grundfläche
EP3411921B1 (de) Dual polarisierte antenne
DE69008116T2 (de) Ebene Antenne.
DE69907322T2 (de) Antenne
DE60315654T2 (de) Kompakte Mehrbandantenne
DE102009035359B4 (de) Mikrostreifenleiterarrayantenne
DE60009874T2 (de) V-Schlitz-Antenne für zirkulare Polarisation
DE69608132T2 (de) Schlitzspiralantenne mit integrierter symmetriereinrichtung und integrierter zuleitung
DE60035003T2 (de) Dualpolarisierte gedruckte Antenne und entsprechende Gruppenantenne
DE60034042T2 (de) Rahmenantenne mit vier resonanzfrequenzen
DE102014112467B4 (de) Speisenetzwerk für antennensysteme
DE3931752A1 (de) Koaxialschlitzantenne des wanderwellenleitungstyps
DE102011076209B4 (de) Antenne
EP3533110B1 (de) Dual polarisierter hornstrahler
DE69013199T2 (de) Übergang von einem Hohlleiter mit reduzierter Höhe auf eine Mikrostreifenleitung.
EP2100348B1 (de) Hohlleiter-strahler, insbesondere für synthetik-apertur-radar-systeme
DE102010014916B4 (de) Phasengesteuerte Gruppenantenne
EP0933833B1 (de) Hohlleiterstrahler
DE102010014864B4 (de) Hohlleiterverbindung für ein Antennensystem und Antennensystem
DE102020121358A1 (de) Mäanderförmige Antennenanordnung
EP0285879B1 (de) Breitband-Polarisationsweiche
WO2022038003A1 (de) Antenne
DE102013004707A1 (de) Richtantenne für elektromagnetische Wellen
DE3009734A1 (de) Antenne in form eines trichterhorns zur abstrahlung orthogonal polarisierter wellen

Legal Events

Date Code Title Description
17P Request for examination filed

Effective date: 20140722

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

R17P Request for examination filed (corrected)

Effective date: 20150727

17Q First examination report despatched

Effective date: 20151211

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20160621

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: AIRBUS DS GMBH

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: AT

Ref legal event code: REF

Ref document number: 852451

Country of ref document: AT

Kind code of ref document: T

Effective date: 20161215

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502014002112

Country of ref document: DE

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161207

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20161207

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161207

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170308

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170307

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161207

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161207

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161207

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161207

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161207

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 4

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161207

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161207

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161207

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170407

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161207

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161207

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161207

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170307

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170407

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502014002112

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20170908

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161207

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161207

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 502014002112

Country of ref document: DE

Representative=s name: WUESTHOFF & WUESTHOFF, PATENTANWAELTE PARTG MB, DE

Ref country code: DE

Ref legal event code: R081

Ref document number: 502014002112

Country of ref document: DE

Owner name: AIRBUS DEFENCE AND SPACE GMBH, DE

Free format text: FORMER OWNER: AIRBUS DS GMBH, 82024 TAUFKIRCHEN, DE

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170722

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170731

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170731

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

Free format text: REGISTERED BETWEEN 20180405 AND 20180411

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20170731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170722

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 5

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161207

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161207

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20140722

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161207

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161207

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161207

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161207

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 852451

Country of ref document: AT

Kind code of ref document: T

Effective date: 20190722

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190722

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20230724

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20230719

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240719

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20240725

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20240730

Year of fee payment: 11