EP3529866B1 - Elektrischer steckverbinder mit einem steckzyklenzähler und verfahren zu dessen betrieb - Google Patents

Elektrischer steckverbinder mit einem steckzyklenzähler und verfahren zu dessen betrieb Download PDF

Info

Publication number
EP3529866B1
EP3529866B1 EP18702135.7A EP18702135A EP3529866B1 EP 3529866 B1 EP3529866 B1 EP 3529866B1 EP 18702135 A EP18702135 A EP 18702135A EP 3529866 B1 EP3529866 B1 EP 3529866B1
Authority
EP
European Patent Office
Prior art keywords
plug
piezoelectric sensor
connector
contact
connector according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP18702135.7A
Other languages
English (en)
French (fr)
Other versions
EP3529866A1 (de
Inventor
Frank-Peter Schiefelbein
Christian Wegener
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Publication of EP3529866A1 publication Critical patent/EP3529866A1/de
Application granted granted Critical
Publication of EP3529866B1 publication Critical patent/EP3529866B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R13/00Details of coupling devices of the kinds covered by groups H01R12/70 or H01R24/00 - H01R33/00
    • H01R13/66Structural association with built-in electrical component
    • H01R13/665Structural association with built-in electrical component with built-in electronic circuit
    • H01R13/6683Structural association with built-in electrical component with built-in electronic circuit with built-in sensor
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06MCOUNTING MECHANISMS; COUNTING OF OBJECTS NOT OTHERWISE PROVIDED FOR
    • G06M1/00Design features of general application
    • G06M1/08Design features of general application for actuating the drive
    • G06M1/083Design features of general application for actuating the drive by mechanical means
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06MCOUNTING MECHANISMS; COUNTING OF OBJECTS NOT OTHERWISE PROVIDED FOR
    • G06M1/00Design features of general application
    • G06M1/08Design features of general application for actuating the drive
    • G06M1/10Design features of general application for actuating the drive by electric or magnetic means
    • G06M1/108Design features of general application for actuating the drive by electric or magnetic means by electronic means
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/30Piezoelectric or electrostrictive devices with mechanical input and electrical output, e.g. functioning as generators or sensors
    • H10N30/302Sensors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R13/00Details of coupling devices of the kinds covered by groups H01R12/70 or H01R24/00 - H01R33/00
    • H01R13/02Contact members
    • H01R13/10Sockets for co-operation with pins or blades
    • H01R13/11Resilient sockets

Definitions

  • the invention relates to an electrical connector with an electrical contact structure and a plug cycle counter.
  • the invention also relates to a method for operating such a connector.
  • Mating cycle counters can be used, for example, for plug connections that are used to charge electric motor vehicles.
  • the mating cycle counter is intended to prevent the connector from being used beyond a predetermined number of mating cycles in order to avoid malfunctions.
  • the mating cycle counter can, for example, communicate with the charging station for the electric motor vehicle and prevent activation of the same if the permissible number of mating cycles of the connector is exceeded.
  • WO 2015/070946 A1 describes a connector that has a mechanical counter to count the number of mating cycles.
  • the plug connector has a pin which is pushed into the plug connector when the plug connection is formed and thereby actuates the mechanical counter.
  • a connector having a wireless IC tag in which a connector ID which is identification information of the connector is stored.
  • the socket is operated by the generated power of the piezoelectric element and reads the plug ID from the wireless IC tag.
  • Plug connections usually consist of a pin contact and a socket contact into which the pin contact can be plugged.
  • plug-in contacts in which the contacts are designed in such a way that they interlock and so the same connection geometry of the plug-in connector can be used on both sides of the plug-in connection.
  • Contact pins can preferably be flat, square or round.
  • the socket contact can consist, for example, of a fork contact, which can preferably be punched from a flat sheet metal.
  • the contact area that is provided for the contact pin is designed to be flexible, so that a contact pressure is created to establish the contact after the pin contact has been inserted.
  • so-called double or triple spring contacts can also be used, in which the stamped sheet metal is folded to produce the spring effect.
  • Precision contacts can also contain other spring mechanisms and are equipped with several contact blades.
  • Electromechanical, detachable connections between the contact partners are created with connectors.
  • Circuit carriers, electronic or electromechanical assemblies or printed circuit boards can be used as contact partners. Connections to external devices such as sensors, keyboards, displays, cables or other assemblies can be established. Circuit carriers can also be connected directly to one another.
  • the main motivation for using a plug connection is its detachability. This may be desirable for a variety of reasons, e.g. B. from manufacturing strategy considerations to make assemblies or subsystems independent to be able to produce from each other and only bring them together during final assembly. Another requirement can be given by the possibility of exchanging assemblies.
  • the repeated connection of devices with each other or devices with cables is a typical application.
  • the application determines how many mating cycles it should be provided for. If, for example, circuit boards are connected with connectors in a control cabinet, mating cycles only occur when circuit carriers are exchanged, which is comparatively seldom necessary.
  • the connectors can typically be designed for 25 mating cycles. If the plug-in connection is intended for a connection cable (for example a charging cable), this leads to comparatively high required plug-in cycles of over 100 or even over 1000 plug-in cycles.
  • the object of the invention is therefore to provide an electrical connector with a plug-in cycle counter, in which the plug-in cycle counter has a high level of functional reliability and with which the plug-in cycle counter can be manufactured inexpensively.
  • an electrical connector according to claim 1.
  • a piezoelectric sensor according to the invention use is made of the effect that, in order to form the electrical contact in the connector, a certain contact force must always be ensured with which the Contact surfaces must be pressed against one another for the transmission of an electrical current.
  • the mechanical connection of the sensor to the contact structure, which provides a contact surface for forming the electrical contact makes it possible for the plugging cycle to be recognized by means of the piezoelectric sensor in that a contact force is built up in the connector. This contact force is then transmitted to the piezoelectric sensor, which, like the contact structure, is elastically deformed.
  • a plugging process generates an electrical pulse in the piezoelectric sensor both when closing and when opening the electrical connection.
  • the piezoelectric sensor In order to be able to detect this, the piezoelectric sensor must be electrically isolated from the contact element. There is thus only a mechanical connection for transmitting the contact force.
  • the connector is usually accommodated in a housing of the connector (connector housing).
  • This fulfills the function of electrical insulation of the plug contacts from one another and from the environment.
  • Mechanical functions of the housing lie in the positioning of the contact structure and the inclusion of the other connector for making the electrical contact.
  • the other connector can be held by a force fit or a form fit.
  • the piezoelectric sensor is supported in the housing so that the contact force can act on the piezoelectric sensor.
  • This advantageously creates a design of the electrical plug connector that is easy to assemble and in which the piezoelectric sensor can be inserted into the housing.
  • the piezoelectric sensor it is also possible for the piezoelectric sensor to be integrated into the contact structure in such a way that its deformation also deforms the piezoelectric sensor. According to one embodiment of the invention, this can thereby What can be achieved is that the piezoelectric sensor is mechanically fixed between two subregions of the contact structure, these subregions being movable relative to one another during plugging processes.
  • the piezoelectric sensor consists of several disks which are mechanically connected in series, the disks being delimited on both sides by electrode plates which are alternately connected electrically in parallel.
  • This advantageously makes it possible to produce a piezoelectric sensor in which the electrical current pulse that arises when the contact force occurs is a multiple of the pulse that would arise if the piezoelectric sensor were constructed from only a disk.
  • the sensor signal can advantageously be recorded more easily when the plug connector is plugged in or detached, since an evaluation unit for recording the plugging process has to be designed to be less sensitive.
  • the evaluation unit is integrated into the connector and has a memory module for the number of plugging cycles that have taken place.
  • the evaluation unit also has an output module for information relating to the number of plugging cycles.
  • the output module can either output the number of mating cycles that have already taken place (e.g. a display) or only indicate that the maximum number of mating cycles has been exceeded (e.g. an LED). This makes it possible to display the relevant information about the mating cycles directly on the connector housing.
  • the memory module can also be read out in order to obtain the number of mating cycles.
  • An RFID tag can be used as an output module for this purpose (RFID stands for Radio Frequency Identification).
  • RFID tag consists of a transponder and an antenna, the transponder being supplied with electrical energy via the antenna. It is advantageous if the rest of the evaluation unit is also supplied with energy by the output module designed as a transponder with antenna (ie the RFID tag) during the readout.
  • the energy supply of the evaluation unit during the registration of the plug-in cycles can be formed by the piezoelectric sensor.
  • the electrical charge that is generated by the piezoelectric effect is not only used to count the plug-in cycles, but the current flow resulting from the charge is used as an energy supply for the evaluation unit.
  • the evaluation unit can thus advantageously work as a self-sufficient system without being equipped with an energy store, for example in the form of a battery. This also assumes that the memory module contains a non-volatile memory that is independent of an energy supply for storage.
  • the piezoelectric sensor is attached to a receiving surface of the housing for a corresponding plug connector or is embedded in the material of the housing below this receiving surface.
  • the mating cycle is detected in that a force is exerted on the receiving surface by the corresponding connector.
  • This can be a compressive force that acts on the receiving surface due to the holding forces or the friction that occurs when plugging in when the corresponding connector comes into contact with this receiving surface.
  • a plug-in force required to close the plug connection is triggered in the piezoelectric sensor, depending on which receiving surface is used to accommodate the sensor.
  • the piezoelectric sensor can be attached to the receiving surface, whereby it itself makes part of the receiving surface available. The piezoelectric sensor then comes into direct contact with the corresponding connector. Another possibility is to arrange the piezoelectric sensor below the receiving surface, which is then embedded in the material of the housing. In this case, the piezo sensor does not come into contact with the corresponding connector, but experiences a pressure increase that triggers the sensor signal due to an elastic deformation of the housing material surrounding it.
  • the piezoelectric sensor is mechanically fixed between two subregions of the contact structure, these subregions being movable relative to one another.
  • the contact structure can be designed in the shape of a fork, the piezoelectric sensor being accommodated in the space formed by the fork (the fork here forms a pin contact).
  • the fork When the plug connection is closed, the fork is compressed, which generates a sensor signal in the piezoelectric sensor.
  • This is advantageously a particularly space-saving design that can preferably be used in plug connectors acting as pin contacts.
  • the outside of the fork is used as a contact surface for the associated socket contact, while the inside of the fork, as already explained, serves to accommodate the piezoelectric sensor.
  • the piezoelectric sensor is mechanically fixed between the contact structure and the housing, the contact structure being movable relative to the housing.
  • the contact structure is elastically deformed when the contact is closed, while the housing is designed with greater mechanical rigidity.
  • the piezoelectric sensor is subjected to the contact force via the contact structure, whereby a sensor signal is generated.
  • This structure is preferably suitable for socket contacts because the sockets deform towards the housing surrounding them when the plug connection is closed.
  • the above-mentioned object is achieved according to the invention with the method specified at the beginning in that a plug-in connection is closed or opened with the plug connector and the forces arising during the establishment or opening (as already described, these are contact forces, pressure forces or insertion forces) on the piezoelectric Sensor generate an electrical charge that causes a current to flow in a measuring circuit. This current flow is counted.
  • a current flow is generated both when opening and when closing the connector. This is due to the fact that an electrical charge always arises on the piezoelectric sensor when the application of pressure to the piezoelectric crystal changes. This requires that every two measured current pulses are interpreted by the evaluation unit as a plug cycle.
  • the electrical energy generated by the piezoelectric sensor is used to operate an evaluation unit with a memory module for the number of plugging cycles that have taken place. By opening or closing the plug connection and the resulting current pulse, the evaluation unit is woken up in each case, the electrical energy being sufficient to store the detected event in the memory module.
  • FIG. 1 two plug connectors 18a, 18b with contact structures 11, 12 are shown, one being designed as a socket contact 11 and the other as a pin contact 12. These are designed to be complementary and can therefore be closed to form a plug connection. Both contact structures have a housing 13a, 13b in which a contact structure is accommodated. In addition, a piezoelectric sensor 15a, 15b is provided, which is connected to an evaluation unit 17a, 17b via a measuring circuit 16a, 16b.
  • the plug connector 18a with the pin contact 12 is produced in that the pin contact 12 is cast into the housing 13a.
  • the pin contact 12 has a receiving socket 19 for a cable end (not shown), with two tongues 20a being attached to the opposite end of the pin contact 12, which are designed as partial areas that can move relative to one another. The relative movement of these sub-areas is due to the elasticity of the metallic material of the pin contact possible.
  • the piezoelectric sensor 15a is held between the tongues 20a.
  • the plug connector 18b is designed as a socket contact 11 and has a mounting surface 21 for mounting on a circuit carrier 22.
  • the socket contact 11 has a contact plate 23 which extends out of the housing 13b and rests on the circuit carrier 22. In this way, electrical contacting of the socket contact 11 on the circuit carrier 22 is possible, for example by means of a soldered connection not shown in detail.
  • the socket contact 11 also has two tongues 20b which are bent apart by the pin contact 12 when the plug connection is closed. In this case, an electrical signal is generated in the piezoelectric sensor 15b, which is attached between one of the tongues 20b and the housing 13b, which can be fed into the evaluation unit 17b via the measuring circuit 16b.
  • the piezoelectric sensors each consist of a piezo crystal 24, on the top and bottom of which electrode plates 25 are attached. These are connected to the circuit 16a, 16b.
  • an electrical insulation layer 26 is arranged in each case for the metallic contact structures 11, 12, so that a charge on the piezocrystal cannot drain into the contact structure 11, 12.
  • the housing 13b is made of plastic, which is why it is not necessary to isolate the piezoelectric sensor 15b from the housing 13b. This is different with the piezoelectric sensor 15a, which is supported on both sides on the tongues 20a and therefore has insulation layers 26 on both sides.
  • the piezoelectric sensor 15c is built up in several layers. It consists of several disks 27 made of a piezoelectric material, for example a piezoelectric ceramic such as a lead-zirconate-titanate ceramic or a single-crystal material such as quartz, tourmaline or gallium phosphate. These disks 27 are arranged between electrode plates which alternately form the positive pole and the negative pole for the circuit 16a, 16b. The disks are thus connected mechanically in series, but electrically in parallel, whereby the amount of charge that can be generated is increased in order to obtain a more easily detectable signal and at the same time to increase the energy supply of the evaluation unit 17b.
  • a piezoelectric ceramic such as a lead-zirconate-titanate ceramic or a single-crystal material such as quartz, tourmaline or gallium phosphate.
  • These disks 27 are arranged between electrode plates which alternately form the positive pole and the negative pole for the circuit 16a, 16b.
  • the disks are
  • the evaluation unit 17b is shown schematically as a block diagram. It has a processor 28 which controls the evaluation unit 17b. On the one hand, the evaluation unit is activated via the processor 28 as soon as a sensor signal from the piezoelectric sensor 15c flows through the circuit 16b, whereby the evaluation unit 17b is activated. This event is counted in the processor and stored in a memory module 29 as a number.
  • an output module 30 is provided, which can be characterized by different functions.
  • the output module 30 can consist of a red and a green light-emitting diode, with the generated current being used while the plug connection is being released or closed in order to output a green flashing signal within the scope of the service life and to output a red flashing signal when the service life is exceeded.
  • an LCD display can be used, which shows the number of mating cycles. It should be noted here that a mating cycle consists of two events, namely opening and closing, so that the events counted must be divided by two in order to determine the number of mating cycles.
  • the output module is designed as an RFID tag. This makes it possible to read out the number of mating cycles with a reader at any time, with the External energy supply is provided by an antenna.
  • the functionality of the transponder can form a structural unit with the processor 28 or be integrated in the output module 30. In any case, the energy fed into the evaluation unit 17b via the antenna must also be sufficient for the processor 28 to call up the information on the number of cycles from the memory module 29.
  • an energy module 31 can also be integrated in the evaluation unit 17b.
  • This can be an electrical energy store or a combination of an energy store and an energy generator. In the latter case, the energy store must be chargeable in order to be able to temporarily store the energy of the energy generator.
  • the energy generator can be a solar cell, for example.
  • FIG 3 further mounting options for piezoelectric sensors 15d, 15e, 15f in the housing 18b are shown, with which different effects of the plugging process can be detected.
  • the piezoelectric sensor 15d is attached to the wall of the housing 13b and thus forms part of a receiving surface 32.
  • the receiving surface is the part of the surface in the plug connector 18b which makes direct contact with the plug connector 18a in the closed state.
  • an insertion force is applied which also contributes to the snap-in connection 33.
  • the insertion force is transmitted to the piezoelectric sensor 15d via the receiving surface 32 and can thus be counted.
  • Another part of the receiving surface 32 is formed between the side walls of the two housings 13a, 13b. Due to the fit between the components, a pressure is exerted on the housing 13b, which pressure can be detected by the piezoelectric sensor 15e. This is completely cast into the material of the housing 13b, this being elastic and the pressure exerted by the housing 13a is transmitted to the cast piezoelectric sensor 15e.
  • the piezoelectric sensor 15f is mounted in a recess in the housing 13b in such a way that it forms part of the receiving surface 32 and therefore comes into contact with the housing 13a when it is plugged in. During the plugging process, therefore, a frictional force arises which is transmitted to the piezoelectric sensor and triggers an electrical signal from the piezoelectric sensor.
  • the peeling effect is used in the sensor 15f to generate the sensor signal.
  • the sensor can also be used to exploit the peeling effect, as in Figure 2 described, be constructed in several layers.
  • sensors 15a to 15f In order to be able to record mating cycles, several sensors are not necessarily required, even if they increase the reliability of the recording of mating cycles. In order to be able to count mating cycles for a connector, at least one piezoelectric sensor is required in it. If the plug-in connection is to be carried out with plug-in connectors that are permanently assigned to one another, it is even sufficient to count the mating cycles in only one of the two plug-in connectors.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Details Of Connecting Devices For Male And Female Coupling (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Description

  • Die Erfindung betrifft einen elektrischen Steckverbinder mit einer elektrischen Kontaktstruktur und einem Steckzyklenzähler. Außerdem betrifft die Erfindung ein Verfahren zum Betrieb eines solchen Steckverbinders.
  • Ein derartiger Steckverbinder ist beispielsweise aus der DE 10 2010 045 329 A1 bekannt. Steckzyklenzähler können beispielsweise bei Steckverbindungen zum Einsatz kommen, die für die Ladung elektrischer Kraftfahrzeuge zum Einsatz kommen. Der Steckzyklenzähler soll verhindern, dass der Steckverbinder über eine vorbestimmte Steckzyklenzahl hinaus verwendet wird, um Fehlfunktionen zu vermeiden. Der Steckzyklenzähler kann beispielsweise mit der Ladestation für das elektrische Kraftfahrzeug kommunizieren und eine Aktivierung derselben verhindern, sofern die zulässige Steckzyklenzahl des Steckverbinders überschritten wird.
  • Gemäß der WO 2015/070946 A1 ist ein Steckverbinder beschrieben, der zum Zählen der Steckzyklen ein mechanisches Zählwerk aufweist. Der Steckverbinder weist einen Stift auf, der bei Ausbilden der Steckverbindung in den Steckverbinder hineingeschoben wird und hierbei das mechanische Zählwerk betätigt.
  • Aus der JP 2016-100114 A ist ein Stecker mit einem drahtlosen IC-Tag bekannt, in dem eine Stecker-ID gespeichert ist, die eine Identifikationsinformation des Steckers ist. Die Steckdose wird durch die erzeugte Leistung des piezoelektrischen Elements betrieben und liest die Stecker-ID aus dem drahtlosen IC-Tag aus.
  • Elektrische Steckverbinder finden in der Technik breite Anwendung. Gemäß der Erfindung soll als Steckverbinder ein Bauelement verstanden werden, das es gestattet, elektrische Leiter anzuschließen, wobei der Steckverbinder die Aufgabe übernimmt, mit einem passenden Gegenstück eine Verbindung herzustellen und/oder zu trennen (das Verbinden und Trennen stellt einen Steckzyklus dar). Das passende Gegenstück ist somit auch ein Steckverbinder. Meistens bestehen Steckverbindungen somit aus einem Stiftkontakt und einem Buchsenkontakt, in den der Stiftkontakt eingesteckt werden kann. Darüber hinaus gibt es auch Steckkontakte, bei denen die Kontakte so konstruiert sind, dass sie ineinandergreifen und so auf beiden Seiten der Steckverbindung die gleiche Anschlussgeometrie des Steckverbinders verwendet werden kann. Kontaktstifte können vorzugsweise flach, quadratisch oder rund ausgeführt sein. Der Buchsenkontakt kann beispielsweise aus einem Gabelkontakt bestehen, der vorzugsweise aus einem flachen Blech gestanzt werden kann. Der Kontaktbereich, der für den Kontaktstift vorgesehen ist, ist flexibel ausgeführt, so dass zum Herstellen des Kontakts nach Einstecken des Stiftkontakts ein Anpressdruck entsteht. Um diesen zu erhöhen, können auch sogenannten Doppel- oder Dreifachfederkontakte verwendet werden, bei denen das gestanzte Blech zur Erzeugung des Federeffekts gefaltet wird. Präzisionskontakte können auch andere Federmechanismen enthalten und sind mit mehreren Kontaktlamellen ausgestattet.
  • Mit Steckverbindern werden elektromechanische, lösbare Verbindungen der Kontaktpartner erzeugt. Als Kontaktpartner können Schaltungsträger, elektronische oder elektromechanische Baugruppen oder Leiterplatten zum Einsatz kommen. Es können Verbindungen zu externen Geräten, wie Sensoren, Tastaturen, Displays, Kabeln oder anderen Baugruppen, hergestellt werden. Auch lassen sich Schaltungsträger untereinander direkt verbinden.
  • Wesentliche Motivation des Einsatzes einer Steckverbindung ist deren Lösbarkeit. Diese kann aus unterschiedlichen Gründen erwünscht sein, z. B. aus fertigungsstrategischen Überlegungen, um Baugruppen oder Subsysteme unabhängig voneinander herstellen zu können und erst bei der Endmontage zusammenzuführen. Eine andere Anforderung kann durch die Möglichkeit eines Auswechselns von Baugruppen gegeben sein. Außerdem ist das wiederholte Verbinden von Geräten untereinander oder Geräten mit Kabeln ein typischer Anwendungsfall. Der Anwendungsfall bestimmt bei der Auslegung der Steckverbindung, für wie viele Steckzyklen diese vorgesehen werden soll. Werden beispielsweise Leiterplatten in einem Schaltschrank mit Steckverbindern verbunden, entstehen Steckzyklen nur bei einem Austausch von Schaltungsträgern, was vergleichsweise selten erforderlich wird. Die Steckverbinder können typischerweise für 25 Steckzyklen ausgelegt werden. Ist die Steckverbindung für ein Anschlusskabel (beispielsweise Ladekabel) gedacht, führt dieses zu vergleichsweise hohen erforderlichen Steckzyklen von über 100 oder sogar über 1000 Steckzyklen.
  • Es besteht daher der Bedarf, elektrische Steckverbinder mit Steckzyklenzählern auszustatten, was einen zusätzlichen konstruktiven Aufwand bewirkt, der mit Kosten verbunden ist. Die Aufgabe der Erfindung besteht daher darin, einen elektrischen Steckverbinder mit Steckzyklenzähler anzugeben, bei dem der Steckzyklenzähler eine hohe Funktionszuverlässigkeit aufweist und mit dem der Steckzyklenzähler kostengünstig hergestellt werden kann. Außerdem ist es Aufgabe der Erfindung, ein Verfahren zum Betrieb eines solchen Steckverbinders anzugeben, welches eine hohe Funktionszuverlässigkeit aufweist.
  • Die Aufgabe wird mit einem elektrischen Steckverbinder gemäß Anspruch 1 gelöst. Bei dem erfindungsgemäßen Einsatz eines piezoelektrischen Sensors macht man sich den Effekt zunutze, dass zum Ausbilden des elektrischen Kontakts im Steckverbinder immer eine gewisse Kontaktkraft gewährleistet sein muss, mit der die Kontaktflächen zur Übertragung eines elektrischen Stroms aufeinander gepresst werden müssen. Durch die mechanische Verbindung des Sensors mit der Kontaktstruktur, die zum Ausbilden des elektrischen Kontakts eine Kontaktfläche zur Verfügung stellt, ist es möglich, dass der Steckzyklus mittels des piezoelektrischen Sensors dadurch erkannt wird, dass eine Kontaktkraft in dem Steckverbinder aufgebaut wird. Diese Kontaktkraft überträgt sich dann auf den piezoelektrischen Sensor, wobei dieser ebenso wie die Kontaktstruktur elastisch verformt wird.
  • Damit erzeugt ein Steckvorgang sowohl beim Schließen als auch beim Öffnen der elektrischen Verbindung einen elektrischen Impuls im piezoelektrischen Sensor. Um diesen detektieren zu können, muss der piezoelektrische Sensor von dem Kontaktelement elektrisch isoliert sein. Es besteht somit lediglich eine mechanische Verbindung zur Übertragung der Kontaktkraft.
  • Üblicherweise ist der Steckverbinder in einem Gehäuse des Steckverbinders (Steckverbindergehäuse) untergebracht. Dieses erfüllt die Funktion einer elektrischen Isolation der Steckkontakte untereinander und gegenüber der Umgebung. Mechanische Funktionen des Gehäuses liegen in der Positionierung der Kontaktstruktur sowie der Aufnahme des anderen Steckverbinders zum Herstellen des elektrischen Kontakts. Die Halterung des anderen Steckverbinders kann durch einen Kraftschluss oder durch einen Formschluss erfolgen. Außerdem ist es von besonderem Vorteil, wenn sich der piezoelektrische Sensor in dem Gehäuse abstützt, damit die Kontaktkraft auf den piezoelektrischen Sensor einwirken kann. Hierdurch entsteht vorteilhaft eine einfach zu montierende Bauform des elektrischen Steckverbinders, bei dem der piezoelektrische Sensor in das Gehäuse eingesetzt werden kann. Es ist aber auch möglich, dass der piezoelektrische Sensor derart in die Kontaktstruktur integriert wird, dass deren Verformung auch den piezoelektrischen Sensor verformt. Dies kann gemäß einer Ausgestaltung der Erfindung dadurch erreicht werden, dass der piezoelektrische Sensor zwischen zwei Teilbereichen der Kontaktstruktur mechanisch fixiert ist, wobei diese Teilbereiche bei Steckvorgängen relativ zueinander beweglich sind.
  • Gemäß einer anderen Ausgestaltung der Erfindung kann vorgesehen werden, dass der piezoelektrische Sensor aus mehreren Scheiben besteht, die mechanisch in Reihe geschaltet sind, wobei die Scheiben beidseitig von Elektrodenplatten begrenzt sind, die wechselseitig elektrisch parallel geschaltet sind. Hierdurch lässt sich vorteilhaft ein piezoelektrischer Sensor erzeugen, bei dem der elektrische Stromimpuls, der bei Auftreten der Kontaktkraft entsteht, ein Vielfaches des Impulses beträgt, der bei einem Aufbau des piezoelektrischen Sensor nur aus einer Scheibe entstehen würde. Hierdurch lässt sich vorteilhaft das Sensorsignal beim Stecken oder Lösen des Steckverbinders einfacher erfassen, da eine Auswertungseinheit zur Erfassung des Steckvorgangs weniger empfindlich ausgeführt sein muss. Erfindungsgemäß ist die Auswertungseinheit in den Steckverbinder integriert und besitzt ein Speichermodul für die erfolgte Zahl der Steckzyklen.
  • Gemäß einer vorteilhaften Ausgestaltung der Erfindung besitzt die Auswertungseinheit auch ein Ausgabemodul für eine die Steckzyklenzahl betreffende Information. Das Ausgabemodul kann entweder die Zahl der bereits erfolgten Steckzyklen ausgeben (z. B. ein Display) oder nur das Überschreiten der Höchstzahl an Steckzyklen anzeigen (z. B. eine LED). Es ist hierdurch möglich, die relevante Information über die Steckzyklen direkt am Steckergehäuse anzuzeigen.
  • Alternativ kann das Speichermodul auch ausgelesen werden, um die Steckzyklenzahl zu erhalten. Als Ausgabemodul kann zu diesem Zweck ein RFID-Tag Verwendung finden (RFID steht für Radio Frequency Identification). Das RFID-Tag besteht aus einem Transponder und einer Antenne, wobei der Transponder über die Antenne mit elektrischer Energie versorgt wird. Vorteilhaft ist es, wenn während des Auslesens auch die restliche Auswertungseinheit durch das als Transponder mit Antenne ausgeführte Ausgabemodul (also das RFID-Tag) mit Energie versorgt wird.
  • Die Energieversorgung der Auswertungseinheit während der Registrierung der Steckzyklen kann gemäß einer anderen Ausgestaltung der Erfindung durch den piezoelektrischen Sensor ausgebildet sein. Hierbei wird die elektrische Ladung, die durch den piezoelektrischen Effekt erzeugt wird, nicht nur zur Zählung der Steckzyklen verwendet, sondern der durch die Ladung erfolgende Stromfluss wird als Energieversorgung für die Auswertungseinheit verwendet. Vorteilhaft kann die Auswertungseinheit damit als autarkes System arbeiten, ohne mit einem Energiespeicher, beispielsweise in Form einer Batterie, ausgestattet zu werden. Dies setzt weiterhin voraus, dass das Speichermodul einen nicht flüchtigen Speicher enthält, der zur Speicherung von einer Energieversorgung unabhängig ist.
  • Gemäß einer besonderen Ausgestaltung der Erfindung kann vorgesehen sein, dass der piezoelektrische Sensor auf einer Aufnahmefläche des Gehäuses für einen korrespondierenden Steckverbinder angebracht oder unterhalb dieser Aufnahmefläche in das Material des Gehäuses eingebettet ist. In diesem Fall wird der Steckzyklus dadurch detektiert, dass auf die Aufnahmefläche durch den korrespondierenden Steckverbinder eine Kraft ausgeübt wird. Hierbei kann es sich um eine Druckkraft handeln, die aufgrund der Haltekräfte oder der entstehenden Reibung beim Stecken auf die Aufnahmefläche wirkt, wenn der korrespondierende Steckverbinder mit dieser Aufnahmefläche in Kontakt kommt. Es ist jedoch auch möglich, dass eine zum Schließen der Steckverbindung notwendige Steckkraft im piezoelektrischen Sensor auslöst, je nachdem welche Aufnahmefläche zur Unterbringung des Sensors genutzt wird.
  • Der piezoelektrische Sensor kann auf der Aufnahmefläche angebracht sein, wobei dieser damit selbst einen Teil der Aufnahmefläche zur Verfügung stellt. Der piezoelektrische Sensor kommt dann mit dem korrespondierenden Steckverbinder in direktem Kontakt. Eine andere Möglichkeit besteht darin, den piezoelektrischen Sensor unterhalb der Aufnahmefläche anzuordnen, wobei dieser dann in das Material des Gehäuse eingebettet ist. In diesem Fall kommt der Piezosensor nicht mit dem korrespondierenden Steckverbinder in Kontakt, sondern erfährt eine das Sensorsignal auslösende Druckerhöhung durch eine elastische Verformung des ihn umgebenden Materials des Gehäuses.
  • Gemäß einer anderen Ausgestaltung der Erfindung ist vorgesehen, dass der piezoelektrische Sensor zwischen zwei Teilbereichen der Kontaktstruktur mechanisch fixiert ist, wobei diese Teilbereiche relativ zueinander beweglich sind. Beispielsweise kann die Kontaktstruktur gabelförmig ausgebildet sein, wobei der piezoelektrische Sensor in dem durch die Gabel gebildeten Zwischenraum untergebracht ist (die Gabel bildet dabei einen Stiftkontakt). Beim Schließen der Steckverbindung wird der die Gabel zusammengedrückt, wodurch ein Sensorsignal in dem piezoelektrischen Sensor erzeugt wird. Hierbei handelt es sich vorteilhaft um eine besonders platzsparende Ausführung, die vorzugsweise in als Stiftkontakt wirkenden Steckverbindern zum Einsatz kommen kann. Dabei wird die Außenseite der Gabel als Kontaktfläche für den zugehörigen Buchsenkontakt verwendet, während die Innenseite der Gabel, wie bereits erläutert, der Aufnahme des piezoelektrischen Sensors dient.
  • Eine wieder andere Ausgestaltung der Erfindung sieht vor, dass der piezoelektrische Sensor zwischen der Kontaktstruktur und dem Gehäuse mechanisch fixiert ist, wobei die Kontaktstruktur relativ zum Gehäuse beweglich ist. Mit anderen Worten wird die Kontaktstruktur beim Schließen des Kontakts elastisch verformt, während das Gehäuse mit einer größeren mechanischen Steifigkeit ausgeführt ist. Daher wird beim Schließen einer Steckverbindung der piezoelektrische Sensor über die Kontaktstruktur mit der Kontaktkraft beaufschlagt, wodurch ein Sensorsignal erzeugt wird. Dieser Aufbau ist vorzugsweise für Buchsenkontakte geeignet, weil sich die Buchsen beim Schließen der Steckverbindung zu dem sie umgebenden Gehäuse hin verformen.
  • Weiterhin wird die oben genannte Aufgabe mit dem eingangs angegebenen Verfahren erfindungsgemäß dadurch gelöst, dass mit dem Steckverbinder eine Steckverbindung geschlossen oder geöffnet wird und die beim Herstellen oder Öffnen entstehenden Kräfte (wie bereits beschrieben handelt es sich um Kontaktkräfte, Druckkräfte oder Steckkräfte) an dem piezoelektrischen Sensor eine elektrische Ladung erzeugen, die einen Stromfluss in einem Mess-Stromkreis hervorruft. Dieser Stromfluss wird gezählt. Mit dem Verfahren werden die oben bereits erläuterten Vorteile erreicht.
  • Ein Stromfluss wird sowohl beim Öffnen als auch beim Schließen des Steckverbinders erzeugt. Dies liegt daran, dass eine elektrische Ladung an dem piezoelektrischen Sensor immer entsteht, wenn sich die Druckbeaufschlagung des Piezokristalls ändert. Dies erfordert es, dass je zwei gemessene Stromimpulse durch die Auswertungseinheit als ein Steckzyklus interpretiert wird.
  • Gemäß einer Ausgestaltung des Verfahrens kann vorgesehen werden, dass die durch den piezoelektrischen Sensor erzeugte elektrische Energie zum Betreiben einer Auswertungseinheit mit einem Speichermodul für die erfolgte Zahl der Steckzyklen verwendet wird. Durch Öffnen oder Schließen der Steckverbindung und den daraus resultierenden Stromimpuls wird die Auswertungseinheit jeweils aufgeweckt, wobei die elektrische Energie ausreicht, um das detektierte Ereignis im Speichermodul abzulegen.
  • Weitere Einzelheiten der Erfindung werden nachfolgend anhand der Zeichnung beschrieben. Gleiche oder sich entsprechende Zeichnungselemente werden jeweils mit den gleichen Bezugszeichen versehen und sind nur insoweit mehrfach erläutert, wie sich Unterschiede zwischen den einzelnen Figuren ergeben. Es zeigen:
  • Figur 1
    ein Ausführungsbeispiel für zwei komplementäre Steckverbinder, die zu einer Steckverbindung zusammengesteckt werden können,
    Figur 2
    den Einsatz eines aus mehreren Scheiben bestehenden piezoelektrischen Sensors, der an die Stelle II gemäß Figur 2 des Steckverbinders eingebaut werden könnte und
    Figur 3
    Ausführungsbeispiele für die alternative Unterbringung von piezoelektrischen Sensoren in einem Bereich III gemäß Figur 1 im Querschnitt.
  • In Figur 1 sind zwei Steckverbinder 18a, 18b mit Kontaktstrukturen 11, 12 dargestellt, wobei die eine als Buchsenkontakt 11 und die andere als Stiftkontakt 12 ausgeführt ist. Diese sind komplementär ausgebildet und können daher zu einer Steckverbindung geschlossen werden. Beide Kontaktstrukturen weisen ein Gehäuse 13a, 13b auf, in welchem eine Kontaktstruktur untergebracht ist. Außerdem ist jeweils ein piezoelektrischer Sensor 15a, 15b vorgesehen, der über einen Messstromkreis 16a, 16b mit je einer Auswertungseinheit 17a, 17b in Verbindung steht.
  • Der Steckverbinder 18a mit dem Stiftkontakt 12 wird dadurch hergestellt, dass der Stiftkontakt 12 in das Gehäuse 13a eingegossen wird. Der Stiftkontakt 12 weist eine Aufnahmebuchse 19 für ein nicht dargestelltes Kabelende auf, wobei am entgegengesetzten Ende des Stiftkontakts 12 zwei Zungen 20a angebracht sind, die als relativ zueinander bewegliche Teilbereiche ausgeführt sind. Die Relativbewegung dieser Teilbereiche ist aufgrund der Elastizität des metallischen Materials des Stiftkontakts möglich. Zwischen den Zungen 20a ist der piezoelektrische Sensor 15a gehalten.
  • Der Steckverbinder 18b ist als Buchsenkontakt 11 ausgeführt und besitzt eine Montagefläche 21 zur Montage auf einem Schaltungsträger 22. Der Buchsenkontakt 11 weist ein Kontaktplättchen 23 auf, welches aus dem Gehäuse 13b herausgeführt ist und auf dem Schaltungsträger 22 aufliegt. Hierdurch ist eine elektrische Kontaktierung des Buchsenkontakts 11 auf dem Schaltungsträger 22 beispielsweise mittels einer nicht näher dargestellten Lötverbindung möglich. Außerdem weist auch der Buchsenkontakt 11 zwei Zungen 20b auf, die durch den Stiftkontakt 12 beim Schließen der Steckverbindung auseinandergebogen werden. Hierbei wird im piezoelektrischen Sensor 15b, der zwischen einer der Zungen 20b und dem Gehäuse 13b angebracht ist, ein elektrisches Signal generiert, welches über den Messstromkreis 16b in die Auswertungseinheit 17b eingespeist werden kann. Die piezoelektrischen Sensoren bestehen jeweils aus einem Piezokristall 24, an dessen Oberseite und Unterseite Elektrodenplatten 25 angebracht sind. Diese sind mit dem Stromkreis 16a, 16b verbunden. Außerdem ist zu den metallischen Kontaktstrukturen 11, 12 jeweils eine elektrische Isolationsschicht 26 angeordnet, damit eine Ladung auf dem Piezokristall nicht in die Kontaktstruktur 11, 12 abließen kann. Das Gehäuse 13b ist aus Kunststoff gefertigt, weswegen eine Isolation des piezoelektrischen Sensors 15b zum Gehäuse 13b nicht notwendig ist. Anders verhält sich dies bei dem piezoelektrischen Sensor 15a, der sich beidseitig an den Zungen 20a abstützt und deswegen beidseitig Isolationsschichten 26 aufweist.
  • Der piezoelektrische Sensor 15c gemäß Figur 2 ist mehrschichtig aufgebaut. Er besteht aus mehreren Scheiben 27 aus einem piezoelektrischen Material, beispielsweise einer piezoelektrischen Keramik, wie einer Blei-Zirkonat-Titanat-Keramik oder einem einkristallinen Material, wie Quarz, Turmalin oder Galliumphosphat. Diese Scheiben 27 sind zwischen Elektrodenplatten angeordnet, die wechselseitig den Pluspol bzw. den Minuspol für den Stromkreis 16a, 16b bilden. Damit sind die Scheiben mechanisch in Serie elektrisch jedoch parallel geschaltet, wodurch die erzeugbare Ladungsmenge vergrößert wird, um ein besser detektierbares Signal zu erhalten und gleichzeitig die Energieversorgung der Auswertungseinheit 17b zu erhöhen.
  • Die Auswertungseinheit 17b ist schematisch als Blockschaltbild dargestellt. Sie weist einen Prozessor 28 auf, der die Auswertungseinheit 17b steuert. Einerseits wird die Auswertungseinheit über den Prozessor 28 aktiviert, sobald ein Sensorsignal des piezoelektrischen Sensors 15c über den Stromkreis 16b fließt, wodurch die Auswertungseinheit 17b aktiviert wird. Dieses Ereignis wird in dem Prozessor gezählt und in einem Speichermodul 29 als Zahl abgelegt.
  • Weiterhin ist ein Ausgabemodul 30 vorgesehen, welches durch unterschiedliche Funktionen gekennzeichnet sein kann. Beispielsweise kann das Ausgabemodul 30 aus einer roten und einer grünen Leuchtdiode bestehen, wobei noch während des Lösens oder Schließens der Steckverbindung der erzeugte Strom genutzt wird, um im Rahmen der Lebensdauer ein grünes Blinksignal auszugeben und bei Überschreiten der Lebensdauer ein rotes Blinksignal auszugeben. Stattdessen kann auch ein LCD-Display verwendet werden, welches die Zahl der Steckzyklen anzeigt. Hierbei ist zu beachten, dass ein Steckzyklus aus zwei Ereignissen, nämlich dem Öffnen und Schließen, besteht, so dass die gezählten Ereignisse durch zwei geteilt werden müssen, um die Zahl der Steckzyklen zu ermitteln.
  • Eine weitere Möglichkeit, die optional oder zusätzlich zu den bereits erwähnten Anwendungen finden kann, ist die Ausgestaltung des Ausgabemoduls als RFID-Tag. Hierdurch besteht die Möglichkeit, die Zahl der Steckzyklen mit einem Lesegerät jederzeit auslesen zu können, wobei die Ernergieversorgung von außen durch eine Antenne erfolgt. Die Funktionalität des Transponders kann mit dem Prozessor 28 eine Baueinheit bilden oder in dem Ausgabemodul 30 integriert sein. Auf jeden Fall muss die über die Antenne in die Auswertungseinheit 17b eingespeiste Energie auch ausreichen, damit der Prozessor 28 aus dem Speichermodul 29 die Information der Zyklenzahl abruft.
  • Optional und daher gestrichelt dargestellt kann zusätzlich auch ein Energiemodul 31 in der Auswertungseinheit 17b integriert sein. Hierbei kann es sich um einen elektrischen Energiespeicher oder auch um eine Kombination aus Energiespeicher und Energieerzeuger handeln. Im letzteren Falle muss der Energiespeicher aufladbar sein, um die Energie des Energieerzeugers zwischenspeichern zu können. Der Energieerzeuger kann beispielsweise eine Solarzelle sein.
  • In Figur 3 sind weitere Anbringungsmöglichkeiten für piezoelektrische Sensoren 15d, 15e, 15f in dem Gehäuse 18b gezeigt, mit denen unterschiedliche Effekte des Steckvorgangs detektiert werden können. Der piezoelektrische Sensor 15d ist an der Wand des Gehäuses 13b angebracht und bildet so den Teil einer Aufnahmefläche 32. Bei der Aufnahmefläche handelt es sich um den Teil der Fläche in dem Steckverbinder 18b, die mit dem Steckverbinder 18a im geschlossenen Zustand direkt kontaktiert. Beim Schließen der Steckverbindung 18a, 18b wird eine Steckkraft aufgebracht, die auch zum Einschnappen einer Rastverbindung 33 beiträgt. Die Steckkraft wird über die Aufnahmefläche 32 auf den piezoelektrischen Sensor 15d übertragen und kann so gezählt werden.
  • Ein weiterer Teil der Aufnahmefläche 32 ist zwischen den Seitenwänden der beiden Gehäuse 13a, 13b ausgebildet. Durch die Passung zwischen den Bauteilen wird auf das Gehäuse 13b ein Druck ausgeübt, welcher durch den piezoelektrischen Sensor 15e detektiert werden kann. Dieser ist vollständig in das Material des Gehäuses 13b eingegossen, wobei dieses elastisch ist und der durch das Gehäuse 13a ausgeübte Druck auf den eingegossenen piezoelektrischen Sensor 15e übertragen wird.
  • Der piezoelektrische Sensor 15f ist in einer Vertiefung des Gehäuses 13b derart angebracht, dass dieser einen Teil der Aufnahmefläche 32 bildet und beim Stecken daher mit dem Gehäuse 13a in Kontakt kommt. Während des Steckvorgangs entsteht daher eine Reibkraft, die sich auf dem piezoelektrischen Sensor überträgt und ein elektrisches Signal des piezoelektrischen Sensors auslöst. Anders als die bereits beschriebenen piezoelektrischen Sensoren 15a, 15b, 15c, 15d, 15e, die den Longitudinaleffekt zur Erzeugung des Sensorsignals nutzen, wird bei dem Sensor 15f zur Erzeugung des Sensorsignals der Schäleffekt genutzt. Auch zur Ausnutzung des Schäleffekts kann der Sensor, wie in Figur 2 beschrieben, mehrschichtig aufgebaut sein.
  • In den Figuren 1 bis 3 sind für die Sensoren 15a bis 15f Einbaubeispiele angegeben. Um Steckzyklen erfassen zu können, sind nicht notwendigerweise mehrere Sensoren erforderlich, auch wenn diese die Sicherheit der Erfassung von Steckzyklen erhöhen. Um für einen Steckverbinder Steckzyklen zählen zu können, benötigt man in diesem mindestens einen piezoelektrischen Sensor. Sofern die Steckverbindung miteinander fest zugeordneten Steckverbindern durchgeführt werden soll, genügt es sogar, nur in einem der beiden Steckverbinder die Steckzyklen zu zählen.

Claims (11)

  1. Elektrischer Steckverbinder mit einem Gehäuse (13a, 13b) in dem zumindest teilweise eine elektrische Kontaktstruktur (11, 12), ein Steckzyklenzähler und eine Auswertungseinheit (17a, 17b) mit einem Speichermodul (29) angeordnet sind, wobei der Steckzyklenzähler zum Detektieren von Steckvorgängen mit einem piezoelektrischen Sensor (15a, 15b) ausgestattet ist, wobei der piezoelektrische Sensor (15a, 15b) mit der Kontaktstruktur (11, 12) und/oder mit dem Gehäuse mechanisch verbunden ist,
    und wobei die Auswertungseinheit (17a, 17b) zum Speichern der detektierten Zahl von Steckvorgängen in dem Speichermodul (29) ausgebildet ist.
  2. Steckverbinder nach Anspruch 1,
    dadurch gekennzeichnet,
    dass die elektrische Kontaktstruktur als Stiftkontakt (12) oder als Buchsenkontakt (11) ausgeführt ist.
  3. Steckverbinder nach einem der voranstehenden Ansprüche,
    dadurch gekennzeichnet,
    dass der piezoelektrische Sensor (15d, 15e, 15f) an einer Aufnahmefläche (32) des Gehäuses (13a, 13b) für einen korrespondierenden Steckverbinder angebracht oder unterhalb dieser Aufnahmefläche in das Material des Gehäuses eingebettet ist.
  4. Steckverbinder nach einem der Ansprüche 1 oder 2,
    dadurch gekennzeichnet,
    dass der piezoelektrische Sensor (15a) zwischen zwei Teilbereichen der Kontaktstruktur (12) mechanisch fixiert ist, wobei diese Teilbereiche relativ zueinander beweglich sind.
  5. Steckverbinder nach einem der voranstehenden Ansprüche,
    dadurch gekennzeichnet,
    dass der piezoelektrische Sensor (15b) zwischen der Kontaktstruktur (11) und dem Gehäuse (13a, 13b) mechanisch fixiert ist, wobei die Kontaktstruktur (11) relativ zum Gehäuse beweglich ist.
  6. Steckverbinder nach einem der voranstehenden Ansprüche,
    dadurch gekennzeichnet,
    dass der piezoelektrische Sensor aus mehreren Scheiben (27) besteht, die mechanisch in Reihe geschaltet sind, wobei die Scheiben (27) beidseitig von Elektrodenplatten (25) begrenzt sind, die wechselseitig elektrisch parallelgeschaltet sind.
  7. Steckverbinder nach Anspruch 1,
    dadurch gekennzeichnet,
    dass die Auswertungseinheit (17a, 17b) ein Ausgabemodul (30) für eine die Steckzyklenzahl betreffende Information aufweist.
  8. Steckverbinder nach einem der Ansprüche 1 oder 7,
    dadurch gekennzeichnet,
    dass die Energieversorgung der Auswertungseinheit (17a, 17b) durch den piezoelektrischen Sensor (15a, 15b) ausgebildet ist.
  9. Steckverbinder nach Anspruch 8,
    dadurch gekennzeichnet,
    dass die Energieversorgung der Auswertungseinheit (17a, 17b) zusätzlich durch das als Transponder mit Antenne ausgeführte Ausgabemodul (30) ausgebildet ist.
  10. Verfahren zum Betrieb eines Steckverbinders nach einem der voranstehenden Ansprüche,
    dadurch gekennzeichnet,
    dass
    • mit dem Steckverbinder eine Steckverbindung geschlossen oder geöffnet wird,
    • die beim Herstellen oder Öffnen entstehenden Kräfte an dem piezoelektrischen Sensor (15a, 15b) eine elektrische Ladung erzeugen, die einen Stromfluss in einem Messstromkreis (16a, 16b) hervorruft,
    • der Stromfluss gezählt wird.
  11. Verfahren nach Anspruch 10,
    dadurch gekennzeichnet,
    dass die durch den piezoelektrischen Sensor (15a, 15b) erzeugte elektrische Energie zum Betreiben einer Auswertungseinheit (17a, 17b) mit einem Speichermodul (29) zum Zählen der Steckzyklen verwendet wird.
EP18702135.7A 2017-01-20 2018-01-17 Elektrischer steckverbinder mit einem steckzyklenzähler und verfahren zu dessen betrieb Active EP3529866B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102017200931.4A DE102017200931A1 (de) 2017-01-20 2017-01-20 Elektrischer Steckverbinder mit einem Steckzyklenzähler und Verfahren zu dessen Betrieb
PCT/EP2018/051046 WO2018134217A1 (de) 2017-01-20 2018-01-17 Elektrischer steckverbinder mit einem steckzyklenzähler und verfahren zu dessen betrieb

Publications (2)

Publication Number Publication Date
EP3529866A1 EP3529866A1 (de) 2019-08-28
EP3529866B1 true EP3529866B1 (de) 2021-05-19

Family

ID=61094441

Family Applications (1)

Application Number Title Priority Date Filing Date
EP18702135.7A Active EP3529866B1 (de) 2017-01-20 2018-01-17 Elektrischer steckverbinder mit einem steckzyklenzähler und verfahren zu dessen betrieb

Country Status (6)

Country Link
US (1) US10938165B2 (de)
EP (1) EP3529866B1 (de)
JP (1) JP6956792B2 (de)
CN (1) CN110192311B (de)
DE (1) DE102017200931A1 (de)
WO (1) WO2018134217A1 (de)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102017113162A1 (de) * 2017-06-14 2018-12-20 Phoenix Contact E-Mobility Gmbh Verfahren zum Erfassen eines Steckvorgangs
EP3757536A1 (de) * 2019-06-25 2020-12-30 Kistler Holding AG Kontaktkraftmessvorrichtung und verfahren zum messen einer kontaktkraft mit einer solchen kontaktkraftmessvorrichtung
CN110783748A (zh) * 2019-11-18 2020-02-11 东阳坪洲电动车科技有限公司 一种电瓶车充电红绿色盲用插座
JP6933270B2 (ja) * 2020-01-10 2021-09-08 トヨタ自動車株式会社 評価治具
DE102020100900B4 (de) 2020-01-16 2021-11-04 Phoenix Contact E-Mobility Gmbh Kontaktelementbaugruppe für ein Steckverbinderteil, Steckverbinderteil und Ladesystem
DE102021108607A1 (de) 2021-04-07 2022-10-13 WAGO Verwaltungsgesellschaft mit beschränkter Haftung System zur lösbaren verbindung elektrischer leiter
IT202100026018A1 (it) * 2021-10-11 2023-04-11 Datainabox S R L Rilevatore di cicli per miniapplicatori
EP4239812A1 (de) * 2022-03-04 2023-09-06 TE Connectivity Germany GmbH Elektrischer verbinder mit einem druckempfindlichen bereich und einem drucksensor

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3388590A (en) 1965-11-29 1968-06-18 Hugh L. Dryden Connector internal force gauge
DE2307951C2 (de) 1973-02-17 1974-05-22 Friedrich Dr.-Ing. 8600 Bamberg Wieland Elektrische Kontaktverbindung, insbesondere Klemm- oder Steck-Kontakt
JPH0610638B2 (ja) * 1986-12-05 1994-02-09 日本電気株式会社 積層型圧電素子
JPH058880A (ja) * 1991-07-01 1993-01-19 Seikosha Co Ltd 記録紙の分離装置
JPH058880U (ja) * 1991-07-17 1993-02-05 日本電気株式会社 高周波コネクタ
JPH11162570A (ja) * 1997-11-26 1999-06-18 Nec Corp コネクタの寿命警告表示方法とその装置
WO2009137817A1 (en) * 2008-05-08 2009-11-12 Outsmart Power Systems Llc Device and method for measuring current and power in a plug or receptacle
DE102010045329A1 (de) * 2010-09-14 2012-03-15 Siemens Aktiengesellschaft Verfahren und Anordnung zur Erfassung einer Anzahl von Steckzyklen einer Steckverbindungs-Komponente
JP5644729B2 (ja) * 2011-09-30 2014-12-24 コニカミノルタ株式会社 超音波振動子、超音波探触子及び超音波画像診断装置
DE202011052324U1 (de) 2011-12-16 2013-03-18 Gira Giersiepen Gmbh & Co. Kg "Elektrische Netz-Steckdose"
US8727802B2 (en) * 2012-09-24 2014-05-20 Apple Inc. Generating a synthetic tactile sensation in a connector
DE202013011923U1 (de) * 2013-11-15 2015-02-19 Phoenix Contact Gmbh & Co. Kg Prüfsteckerblock
EP3201996A4 (de) 2014-10-02 2018-05-16 ADC Telecommunications Inc. Systeme und verfahren für verbinder mit einsteckzählern
JP5911944B1 (ja) 2014-11-19 2016-04-27 中国電力株式会社 電気機器管理システム、電源コンセント、及び電源プラグ
US10211576B2 (en) 2016-02-10 2019-02-19 Ford Global Technologies, Llc Connector with self-powered mating detection

Also Published As

Publication number Publication date
US20200052446A1 (en) 2020-02-13
JP6956792B2 (ja) 2021-11-02
US10938165B2 (en) 2021-03-02
DE102017200931A1 (de) 2018-07-26
JP2020506498A (ja) 2020-02-27
EP3529866A1 (de) 2019-08-28
CN110192311A (zh) 2019-08-30
WO2018134217A1 (de) 2018-07-26
CN110192311B (zh) 2021-08-10

Similar Documents

Publication Publication Date Title
EP3529866B1 (de) Elektrischer steckverbinder mit einem steckzyklenzähler und verfahren zu dessen betrieb
DE102010041278A1 (de) Batteriefach sowie Messgerät mit einem Batteriefach
EP0302189B1 (de) Anzeigevorrichtung mit einer Flüssigkeitskristallanzeige
DE102008061234A1 (de) Elektrisches Gerät
DE102013213848A1 (de) Abdeckung für Batterien
EP0818133A1 (de) Steuergerät für ein kraftfahrzeug
DE19709188C2 (de) Tragbares elektronisches Gerät
DE102007016474A1 (de) Anschlusseinheit für eine Druckmesszelle
DE102014118465A1 (de) Akku-Pack mit schaltbarer Gesamtkapazität
WO2014068005A1 (de) Kontaktvorrichtung, schaltungsanordnung
DE102016203560A1 (de) Sensormodul für einen Aktor mit verschiebbarem Anker sowie Aktoranordnung
DE102013203466A1 (de) Schalter
DE102019102713A1 (de) Antriebseinheit
EP2766977B1 (de) Stellantrieb
WO2016156011A1 (de) Elektronisches gerät
DE102007052896A1 (de) Elektrischer Schalter
DE102011085924A1 (de) Elektrisches Steuergerät für ein Kraftfahrzeug
EP2441968B1 (de) Fluidelektrische Anschlussvorrichtung und Ventilbatterie
EP1491077B2 (de) Steuergerät
DE102019102018A1 (de) Batteriemodul mit einer Leiterplatte, Traktionsbatterie und Flurförderzeug
EP3513634B1 (de) Gehäusekontaktierung eines steuergerätes
DE102022124426A1 (de) Zweiteilige, elektrische Stift-Kontakteinrichtung
EP2886401B1 (de) Antriebsanordnung einer Lenkverriegelung
DE102020107626A1 (de) Verbindungsanordnung
DE102020002478A1 (de) Batterie

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20190520

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20201221

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502018005311

Country of ref document: DE

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1394904

Country of ref document: AT

Kind code of ref document: T

Effective date: 20210615

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20210519

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210519

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210519

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210519

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210819

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210820

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210919

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210920

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210819

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210519

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210519

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210519

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210519

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210519

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210519

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210519

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210519

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210519

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210519

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210519

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502018005311

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20220222

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210919

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210519

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210519

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20220117

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20220131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220117

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220117

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220131

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220117

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230510

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1394904

Country of ref document: AT

Kind code of ref document: T

Effective date: 20230117

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230117

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210519

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210519

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210519

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230117

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240318

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20180117

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20240124

Year of fee payment: 7

Ref country code: FR

Payment date: 20240116

Year of fee payment: 7