EP3492846B1 - Dispositif pour effectuer en toute sécurité un cycle de rankine thermodynamique en virage à gauche et sa vidange et son remplissage en toute sécurité au moyen d'un fluide de travail inflammable et procédé pour vider en toute sécurité un fluide de travail inflammable - Google Patents

Dispositif pour effectuer en toute sécurité un cycle de rankine thermodynamique en virage à gauche et sa vidange et son remplissage en toute sécurité au moyen d'un fluide de travail inflammable et procédé pour vider en toute sécurité un fluide de travail inflammable Download PDF

Info

Publication number
EP3492846B1
EP3492846B1 EP18203625.1A EP18203625A EP3492846B1 EP 3492846 B1 EP3492846 B1 EP 3492846B1 EP 18203625 A EP18203625 A EP 18203625A EP 3492846 B1 EP3492846 B1 EP 3492846B1
Authority
EP
European Patent Office
Prior art keywords
working fluid
safety container
pressure
container
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP18203625.1A
Other languages
German (de)
English (en)
Other versions
EP3492846A1 (fr
Inventor
Tobias Lingk
Hans-Josef Spahn
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Vaillant GmbH
Original Assignee
Vaillant GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Vaillant GmbH filed Critical Vaillant GmbH
Priority to PL18203625T priority Critical patent/PL3492846T3/pl
Publication of EP3492846A1 publication Critical patent/EP3492846A1/fr
Application granted granted Critical
Publication of EP3492846B1 publication Critical patent/EP3492846B1/fr
Priority to HRP20201410TT priority patent/HRP20201410T1/hr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B25/00Machines, plants or systems, using a combination of modes of operation covered by two or more of the groups F25B1/00 - F25B23/00
    • F25B25/005Machines, plants or systems, using a combination of modes of operation covered by two or more of the groups F25B1/00 - F25B23/00 using primary and secondary systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/20Disposition of valves, e.g. of on-off valves or flow control valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B45/00Arrangements for charging or discharging refrigerant
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/005Arrangement or mounting of control or safety devices of safety devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2339/00Details of evaporators; Details of condensers
    • F25B2339/04Details of condensers
    • F25B2339/047Water-cooled condensers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2345/00Details for charging or discharging refrigerants; Service stations therefor
    • F25B2345/001Charging refrigerant to a cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2345/00Details for charging or discharging refrigerants; Service stations therefor
    • F25B2345/002Collecting refrigerant from a cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2345/00Details for charging or discharging refrigerants; Service stations therefor
    • F25B2345/003Control issues for charging or collecting refrigerant to or from a cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2345/00Details for charging or discharging refrigerants; Service stations therefor
    • F25B2345/004Details for charging or discharging refrigerants; Service stations therefor with several tanks to collect or charge a cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/12Inflammable refrigerants
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/23Separators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/22Preventing, detecting or repairing leaks of refrigeration fluids

Definitions

  • the invention relates to a device for safely performing a left-turning thermodynamic Rankine cycle and its safe emptying and filling by means of an inflammable working fluid and a method for safely emptying an inflammable working fluid.
  • the invention relates to irregular conditions in working fluid circulations in which a working fluid acting as a refrigerant is conducted in a thermodynamic cycle, such as the Clausius-Rankine cycle.
  • a working fluid acting as a refrigerant is conducted in a thermodynamic cycle, such as the Clausius-Rankine cycle.
  • thermodynamic cycle such as the Clausius-Rankine cycle.
  • Residential buildings are understood to mean private houses, apartment building complexes, hospitals, hotel facilities, restaurants and combined residential and commercial buildings and commercial establishments in which people live or work permanently, in contrast to mobile devices such as automotive air conditioning systems or transport boxes, or industrial plants or medical technology devices. What these cycle processes have in common is that they generate useful heat or cold
  • thermodynamic cycle processes used have long been known, as are the safety problems that can arise when using suitable working fluids. Apart from water, the best known working fluids at that time were flammable and toxic. In the past century, they led to the development of safety refrigerants, which consisted of fluorinated hydrocarbons. However, it was shown that these safety refrigerants damage the ozone layer, lead to global warming and that their safety-related safety led to constructive inattentiveness. Up to 70% of sales was attributable to the need to refill leaky systems and their leakage losses, which was accepted as long as this was perceived as economically justifiable in individual cases and promoted the need for replacement.
  • the problems that arise with the safety design of such systems are discussed in the WO 2015/032905 A1 described vividly.
  • the lower ignition limit of propane as working fluid is approximately 1.7 percent by volume in air, which corresponds to 38 g / m 3 in air. If the refrigeration process is carried out in a surrounding, hermetically sealed, but otherwise air-filled room with the working fluid propane, the problem arises of recognizing a critical, explosive situation after a fault in which the working fluid escapes into this hermetically sealed room. Electrical sensors for the detection of critical concentrations are difficult to carry out explosion-proof, which is why the propane detection by the sensors themselves considerably increases the risk of explosion, with the exception of infrared sensors. Propane is also toxic; when inhaled above a concentration of approx. 2 g / m 3 , there are narcotic effects, headaches and nausea. This affects people who are supposed to solve a recognized problem on site before there is a risk of explosion.
  • Propane is also heavier than air, so it sinks to the ground in calm air and accumulates there. If a part of the propane is collected in a low-flow zone of the enclosed space in which the faulty unit is located, the local explosion limits can be reached much faster than the quotient of the total volume of space to the amount of propane escaped.
  • the WO 2015/032905 A1 seeks to solve this problem by integrating an electric current generator into the opening or locking of this space and, when actuated, in a first step generates and provides the electrical energy with which the sensor is activated, and which in the event of an alarm Locking then does not release, but causes ventilation of the closed room and only allows unlocking and opening in a second step.
  • the DE-PS 553 295 describes an encapsulated compression refrigeration machine in which the refrigerant compressor 1, its drive motor 2, evaporator 3, condenser 4 and control valve 5 are enclosed in a double-walled capsule 6 and 7, respectively. A vacuum is created in the space between the double-walled capsule and any leaks that could occur at the openings for cooling water and brine are extracted. The extracted working fluid can then be recovered if necessary. It should be noted that there is no ambient air inside the encapsulated room and, due to the negative pressure in the double jacket, it cannot penetrate into the encapsulated interior.
  • the DE 41 14 529 A1 describes a safety device for a refrigeration system filled with a dangerous medium, which consists of at least one complete refrigeration unit, which comprises a refrigerant circuit with evaporator, compressor and condenser, and a drive motor.
  • the system is enclosed in a gas-tight manner, the enclosure being designed for the maximum pressure that is technically possible in the event of a malfunction, and from the enclosure the connections for the coolant, a coolant and electrical supply, monitoring and control lines are pressure-tight to the outside.
  • An expansion tank can be connected.
  • the DE 195 25 064 C1 describes a refrigeration machine with a gas-tight housing, which accommodates all refrigerant-carrying components of the machine, a space is provided that connects the interior of the gas-tight housing with an outlet, and the space is filled with a substance that sorbs the refrigerant.
  • the amount of sorbent material is dimensioned so that the entire amount of any refrigerant escaping can be absorbed and kept away from the environment.
  • the space filled with the sorbent material is open to the surroundings. With refrigerants that are heavier than air, the space is open at the bottom, with those that are lighter, it is open at the top, so that a delivery fan is not required.
  • the sorbent is introduced into the housing and completely surrounds the refrigeration machine or the refrigerant-carrying devices. On its way out, baffles are provided that prevent short circuit currents and force escaping gas through the sorbent.
  • a double-walled embodiment in which the sorbent is arranged in the double jacket is also possible.
  • a measuring device for refrigerants can be provided at the exit of the space filled with the sorbent to the surroundings.
  • the DE 10 2011 116 863 A1 describes a method for securing a device for a thermodynamic cycle, which is operated with a process fluid that contains or consists of at least one environmentally hazardous, toxic and / or flammable substance.
  • a process fluid that contains or consists of at least one environmentally hazardous, toxic and / or flammable substance.
  • an adsorbent is brought into contact with the process fluid, in particular ammonia, propane or propene, and the substance is selectively bound by the adsorbent.
  • the adsorbent is regenerated after use.
  • zeolite also in combination with imidazole or phosphates, CuBTC are also proposed.
  • the adsorbent can be in the form of a bed, a shaped body, a paint, a spray film or a coating.
  • the support structure of the molded body can consist of microstructure, lamella structure, tube bundle, tube register and sheet metal and must be mechanically stable and have a large surface area. Circulation of the potentially contaminated air usually takes place continuously, but can also be initiated by a sensor that switches on the ventilation after a threshold value has been reached or in the event of a recognized accident.
  • the adsorption can be carried out inside or outside a closed room.
  • the DE 195 26 980 A1 describes a device and a method for cleaning air in closed rooms which have a gaseous contamination. After the contamination has been detected by a gas sensor, the latter controls a compressor which directs the air through an absorber located in this room, as a result of which the contamination is absorbed. The cleaned air leaves the absorber in the closed room.
  • the DE 195 25 064 C1 describes a refrigeration machine with a gas-tight housing, which accommodates all refrigerant-carrying components of the machine, a space is provided that connects the interior of the gas-tight housing with an outlet, and the space is filled with a substance that sorbs the refrigerant.
  • the amount of sorbent material is dimensioned so that the entire amount of any refrigerant escaping can be absorbed and kept away from the environment.
  • the space filled with the sorbent material is open to the surroundings. With refrigerants that are heavier than air, the space is open at the bottom, with those that are lighter, it is open at the top, so that a delivery fan is not required.
  • the sorbent is introduced into the housing and completely surrounds the refrigeration machine or the refrigerant-carrying devices. On its way out, baffles are provided that prevent short circuit currents and force escaping gas through the sorbent.
  • a double-walled embodiment in which the sorbent is arranged in the double jacket is also possible.
  • a measuring device for refrigerants can be provided at the exit of the space filled with the sorbent to the surroundings.
  • the EP 1 666 287 describes a vehicle air conditioning system with a container for the refrigerant, which is connected to a gas-liquid separator via an externally controllable valve.
  • the valve can be closed by means of a pressure detection device when the detected pressure becomes equal to a predetermined pressure.
  • the signal to open the valve can be detected by a leak.
  • the EP 2 921 801 A1 describes a method for the exchange of fluid-flowed parts of an air conditioning refrigeration system.
  • a container is connected into which the working fluid can flow out of the refrigeration cycle, a connecting part and a pressure reduction being provided.
  • the EP 3 115 714 A1 describes the problem of draining the working fluid through a large-lumen pipeline, which is connected to the outlet of the heat source side of the condenser.
  • Working fluid not only collects during draining, but also during normal cooling operation, which also reduces the cooling capacity. If one would counteract the effect by a larger amount of working fluid, the manufacturing costs and the risks of leakages would increase.
  • the problem is solved by a storage container, a first open / close valve in a line between the expansion valve and the useful side of the heat exchanger and a bypass that branches off between the open / close valve and the expansion valve and is connected to the suction side of the compressor . When working fluid is drained into the container, the first on / off valve is closed and the working fluid flows from the heat source side through the bypass into the storage container.
  • the working fluid circulation In the event of leaks or maintenance work in which the working fluid circulation must be opened or heated, the working fluid circulation must be emptied as completely as possible or at least freed from the inflammable working fluid to such an extent that there is never any risk of ignition. Other measures, such as Routine checks may require emptying. Such drains are currently carried out manually and it would be desirable to be able to carry them out remotely. In view of externally caused disturbances such as earthquakes, fires or floods, it would also be desirable if the flammable working fluid could be brought to safety quickly without manual intervention on site being required.
  • the US 2015/0059367 A1 describes a refrigeration circuit with a loading control, an unloading control and connections between the condenser and the expansion valve. Furthermore, a storage container and a feed pump are provided behind the unloading valve. If the ambient conditions change, for example with a heat pump changing seasonally or daily due to weather changes, the amount of working fluid circulating in the refrigeration circuit can be changed and adapted to the respective conditions.
  • US 2015/0059367 A1 a device according to the preamble of claim 1 for safely performing a left-turning thermodynamic Rankine cycle and its safe emptying and filling by means of an inflammable working fluid and a method according to the preamble of claim 8 for safely emptying an inflammable working fluid.
  • the object of the invention is therefore to provide an improved safety container which can remove the working fluid from the cycle, enables a return to the cycle, better solves the problems presented and no longer has the disadvantages.
  • heat transfer fluids are to be understood as all gaseous or liquid media with which heat is transferred, for example air, water, brine, heat transfer oils or the like.
  • propane is used as the working fluid and nitrogen is used as the inert gas.
  • nitrogen is used as the inert gas.
  • inert gas can also be used at other points in such systems, for example for inerting the housing or the cycle if it was previously emptied and work is to be carried out on it. Further inerting measures can be provided for such purposes.
  • the inert gas container provided here is only intended for the inert gas that is used to empty the safety container, return it to the cycle or to discharge and store inert gas from the cycle.
  • the pressure is first increased by pressing inert gas under high pressure into the safety container filled with working fluid.
  • part of the vaporized working fluid is liquefied, with the aim that this proportion is as large as possible.
  • the drain located in the bottom of the safety container first drains liquid working fluid when it is opened. Then there is a gas-liquid mixture in the fume cupboard at the end of the emptying process before only inert gas is drawn off.
  • a pump as is otherwise also used in motor vehicles as a gasoline pump or as an injection pump.
  • the pump should also be protected against running dry, able to deliver a gas-liquid mixture and, best of all, like a compressor, also capable of delivering gaseous fluid.
  • the pressure increase does not have to be high. It is advantageous if the pump carries out forced delivery, as piston pumps, gear pumps, root pumps, peristaltic pumps or diaphragm pumps do.
  • the pump can also be arranged inside the containment.
  • the gas-liquid mixture removed from the safety container which is typically a mixture of liquid propane, gaseous propane and nitrogen, is cooled.
  • the vapor pressure of the propane drops and, depending on the pressure of the inert gas, there is only a liquid working fluid phase and a gaseous inert gas phase at the subsequent gas-liquid separator, which must be separated from one another.
  • the separation takes place with a gas-liquid separator, which is preferably designed as a cyclone separator.
  • the liquid phase is drawn off at the bottom and returned to the circulation of the cycle under pressure and liquid. The pressure is reduced shortly before entering. It is important to ensure that no flash evaporation occurs in such a way that cavitation leads to faults.
  • the system pressure before the pressure reduction is determined by the wishes regarding the further use of the inert gas separated in the gas-liquid separator. If it is to be returned to the inert gas container, the pressure should be high so that as little vaporized working fluid as possible gets into the inert gas container during the separation. In this case, the booster pump only has to compensate for the pressure losses that have to be overcome in the resulting inert gas circuit. If the inert gas is to be discarded, higher pressure can be dispensed with. However, losses of working fluid must also be compensated for.
  • the safety container, inert gas container, booster pump, gas-liquid separator and the associated lines and fittings are integrated together in a pressure-tight, hermetically sealed safety container. This ensures that the containment and its connections do not become a security risk themselves. This will save the safety improvement also simplifies maintenance, since the safety container can be replaced quickly.
  • the filled safety container is used to remove inert gas, which is, for example, after a repair in the working circuit, into which the working fluid is then to be reintroduced.
  • working fluid is first pressed into the working circuit by means of inert gas pressure. With the compressor running, the working fluid / inert gas mixture is then, without heating it up in the heat exchangers of the cycle, fluidly conveyed back into the safety container, from where it returns to the working circuit via the booster pump and the gas / liquid separator.
  • the inert gas can be separated almost completely in this way.
  • the invention also includes a safe method according to claim 8.
  • the method is for emptying the working fluid circulation, its refilling and the removal of inert gas from the working fluid circulation using the described device.
  • the shut-off device within the working fluid circulation is closed and the connection to the safety container is opened.
  • the security container 13 is blocked at its exit. If the compressor can continue to run, which is not always the case in the event of an accident, the propane gas pressure corresponds to the final pressure that the compressor 2 can deliver.
  • FIG. 1 a working fluid circuit and the safety container with inerting equipment
  • Fig. 1 shows a schematic diagram of a working fluid circulation 1 with a compressor 2, a condenser 3, a pressure reduction 4 and an evaporator 5 in a closed housing 6.
  • the housing 6 has a heat source connection 7, a heat source flow 8, a heat sink flow 9 and a heat sink connection 10.
  • the working fluid circuit 1 is operated with the flammable working fluid propane, which is also known under the name R290. Only the most important shut-off devices are shown, of course the specialist will provide further shut-off devices and anti-kickback devices.
  • the three-way valve 11 is switched over so that passage of the working fluid from the compressor 2 to the condenser 3 is prevented, while the previously closed passage from the compressor 2 to the safety container 13 is opened by the working fluid supply line 12 becomes.
  • the security container 13 is blocked at its exit. If the compressor can continue to run, which is not always the case in the event of an accident, the propane gas pressure corresponds to the final pressure that the compressor 2 can deliver.
  • inert gas can be forced out of the pressure container 14 via the inert gas line 23, the working fluid supply line 21 and the pressure reducing valve 22 into the working fluid circulation 1. In this case it should be possible to operate the fittings using emergency power.
  • the three-way valve 11 closes the circuit 1 and directs the propane / inert gas mixture to the safety container 13 through the working fluid supply line 12. Even in the event of a power failure, the filling of the safety container can be ensured in this way while the working fluid circulation is rendered inert. In the event of a leak, the addition of the inert gas also reduces the risk of ignition at the leakage-related outlet.
  • this containment can also be designed for significantly higher pressures than for normal operation. In particular, it must be designed for the same higher pressure as the inert gas container so that an overload when connecting the two containers is excluded.
  • the pressure in the safety container 13 is first increased significantly by opening the shut-off valve 16, in that inert gas flows in from the inert gas supply line 15.
  • the check valve 16 can also be designed as a controllable pressure reducing valve. If nitrogen is selected as the inert gas, the temperature drop in the pressure reduction must be taken into account, this temperature drop should take place in the safety container by constructive measures, which can be brought about by integrating the check valve 16 in the head of the safety container. A lowering of the temperature in the safety container is desirable.
  • the propane in it liquefies and can be drawn off as a liquid phase in the lower part of the safety container. While initially a pure liquid phase is drawn off, the flow in the safety container 13 causes an increasing mixing with inert gas until only inert gas is present at the end of the emptying process. For this reason, this deduction cannot be directly connected to the working fluid circulation.
  • phase withdrawn from the safety container is first increased by means of the pressure booster pump 17, then cooled in the cooler 18 and subsequently fed to the gas-liquid separator 20 via the line 19.
  • the cooling can be carried out by various measures, a cooling battery that was cooled before emptying can be used for this, but external cooling can also be carried out. Cooling is optional.
  • the gas-liquid separator 20 is preferably designed as a cyclone separator, the liquid phase being pressed against the edge by the vortices and drawn off in the funnel, while the gas phase can be returned to the inert gas container. In order for this recirculation to work, a higher pressure than in the inert gas container must be present at the outlet of the gas-liquid separator 20.
  • This pressure difference is to be managed by the pressure booster pump 17.
  • the fact that traces of the gaseous propane can get into the inert gas container 14 with the circulated inert gas may be tolerated, since this does not impair the intended functionality; if necessary, the gas-liquid separator 20 can also perform an adsorptive fine cleaning with regard to propane gas components respectively.
  • the liquid propane phase is returned to the working fluid circulation 1 via the working fluid feed line 21, the high pressure present there being correspondingly reduced by a pressure reducing valve 22 on the working fluid circulation 1 in order to reliably avoid a pressure overload of the working fluid circulation.
  • the three-way valve 11 is switched back so that the path to the safety container 13 is closed and the working fluid circulation is open.
  • the three-way valve 11 initially remains open to the safety container 11 so that inert gas to be discharged is conveyed into the safety container, while propane is fed into the circuit via the working fluid supply line 21 1 flows. For this reason, it makes sense to connect this working fluid supply line 21 immediately to be connected behind the three-way valve 11 so that the dead space between the discharge line and supply line which cannot be traversed remains as small as possible.
  • the working fluid supply line 12 is closed and the three-way valve 11 in the working fluid circulation is opened. The inert gas / propane mixture which has reached the safety container 13 during flushing is then operated as in a normal filling process.

Claims (12)

  1. Dispositif pour effectuer en toute sécurité un cycle thermodynamique de Rankine avec rotation à gauche et sa vidange et son remplissage en toute sécurité au moyen d'un fluide de travail inflammable,
    avec un fluide de travail inflammable lequel est à l'état gazeux dans des conditions atmosphériques plus lourd que l'air,
    avec une circulation de fluide de travail (1) fermée, hermétiquement étanche, dans lequel la circulation de fluide de travail (1) présente
    - au moins un compresseur (2) pour fluide de travail,
    - au moins un dispositif de détente (4) pour fluide de travail,
    - au moins deux échangeurs thermiques (3, 5) pour fluide de travail avec respectivement au moins deux raccords (7, 8, 9, 10) pour fluides caloporteurs, et
    - au moins un dispositif d'arrêt (11),
    avec
    au moins un récipient de sécurité (13) pour la réception de fluide de travail, qui est raccordé à la circulation de fluide de travail (1),
    avec une soupape d'arrêt (11) et un branchement (12) de la circulation de fluide de travail (1) vers le récipient de sécurité (13),
    et au niveau de l'évacuation du récipient de sécurité (13) avec un dispositif d'augmentation de pression (17), dans lequel l'au moins un dispositif d'arrêt est la soupape d'arrêt (11),
    caractérisé par
    - au moins un récipient sous pression (14) pour la distribution et la réception de gaz inerte,
    - une conduite d'alimentation (15) verrouillable du récipient sous pression (14) vers le récipient de sécurité (13),
    - une conduite d'évacuation du récipient de sécurité (13) avec un séparateur gaz-liquide (20) suivant,
    - une conduite de liaison (21) de l'évacuation de liquide du séparateur gaz-liquide (20) vers un dispositif de réduction de pression et d'arrêt (22), qui est relié à la circulation de fluide de travail (1) du cycle,
    et par
    un boîtier fermé (6), lequel comprend tous les dispositifs raccordés à la circulation de fluide de travail (1) fermée, et peut comprendre d'autres dispositifs.
  2. Dispositif selon la revendication 1, caractérisé en ce que le fluide de travail est du propane et le gaz inerte de l'azote.
  3. Dispositif selon l'une quelconque des revendications 1 ou 2, caractérisé en ce que le dispositif d'augmentation de pression comprend une pompe (17) avec refoulement forcé.
  4. Dispositif selon l'une quelconque des revendications 1 à 3, caractérisé en ce que le dispositif d'augmentation de pression (17) est agencé à l'intérieur du récipient de sécurité (13).
  5. Dispositif selon l'une quelconque des revendications 1 à 4, caractérisé en ce qu'un dispositif (18) de refroidissement du fluide évacué est prévu au niveau de l'évacuation du récipient de sécurité (13).
  6. Dispositif selon l'une quelconque des revendications 1 à 5, caractérisé en ce qu'une évacuation (23) pour gaz du séparateur gaz-liquide (20) est raccordée au récipient sous pression (14) pour gaz inerte.
  7. Dispositif selon l'une quelconque des revendications 1 à 6, caractérisé en ce que le récipient de sécurité (13), le récipient sous pression (14), le dispositif d'augmentation de pression (17), le séparateur gaz-liquide (20) ainsi que les conduites et robinets correspondants sont intégrés ensemble dans un conteneur de sécurité étanche à la pression, hermétiquement fermé.
  8. Procédé pour vider en toute sécurité un fluide de travail inflammable, lequel est à l'état gazeux dans des conditions atmosphériques plus lourd que l'air et est guidé dans une circulation de fluide de travail (1) fermée, hermétiquement étanche d'un cycle thermodynamique de Rankine avec rotation à gauche, présentant
    - au moins un compresseur (2) pour fluide de travail,
    - au moins un dispositif de détente (4) pour fluide de travail,
    - au moins deux échangeurs thermiques (3, 5) pour fluide de travail avec respectivement au moins deux raccords (7, 8, 9, 10) pour fluides caloporteurs,
    - un boîtier (6) fermé,
    - lequel comprend tous les dispositifs raccordés à la circulation de fluide de travail fermée, et
    - peut comprendre d'autres dispositifs,
    - et au moins un récipient de sécurité (13) pour la réception de fluide de travail, qui est raccordé à la circulation de fluide de travail (1),
    - au moins un dispositif d'arrêt (11) à l'intérieur de la circulation de fluide de travail (1)
    - au moins un récipient sous pression (14) pour la distribution et la réception de gaz inerte,
    - une soupape d'arrêt (11) et un branchement (12) de la circulation de fluide de travail (1) vers le récipient de sécurité (13), dans lequel l'au moins dispositif d'arrêt (11) est la soupape d'arrêt (11),
    - une conduite d'alimentation (15) verrouillable du récipient sous pression (14) vers le récipient de sécurité (13),
    - une conduite d'évacuation du récipient de sécurité (13) avec un séparateur gaz-liquide (20) suivant,
    - une conduite de liaison (21) de l'évacuation de liquide du séparateur gaz-liquide (20) vers un dispositif de réduction de pression et d'arrêt (22), qui est relié à la circulation de fluide de travail (1) du cycle,
    dans lequel
    - le dispositif d'arrêt (11) est fermé à l'intérieur de la circulation de fluide de travail (1),
    - le raccord (12) au récipient de sécurité (13) est ouvert, et
    - le récipient de sécurité (13) est bloqué à sa sortie.
  9. Procédé selon la revendication 8, dans lequel le compresseur (2) est utilisé pour le refoulement du fluide de travail dans le récipient de sécurité (13).
  10. Procédé selon la revendication 8, dans lequel le gaz inerte du récipient sous pression (14) est utilisé pour le refoulement du fluide de travail dans le récipient de sécurité (13), par le fait que ce gaz inerte est conduit sous pression dans la circulation de fluide de travail (1).
  11. Procédé de remplissage d'une circulation de fluide de travail (1), dans lequel le récipient de sécurité (13) a été rempli selon l'une quelconque des revendications 8 à 10, dans lequel en cas d'alimentation de fluide de travail fermée vers le récipient de sécurité (13), la pression dans le récipient de sécurité (13) est d'abord augmentée par liaison au récipient sous pression (14), dans lequel le gaz inerte entre, puis du fluide est évacué du récipient de sécurité (13) et le fluide évacué est soumis à une séparation gaz-liquide (20), et le fluide de travail liquide obtenu est guidé par le biais d'un dispositif de détente (22) dans la circulation de fluide de travail (1).
  12. Procédé de remplissage d'une circulation de fluide de travail (1) selon la revendication 11, dans lequel le récipient de sécurité (13) a été rempli selon l'une quelconque des revendications 8 à 10, dans lequel en cas d'alimentation de fluide de travail (11) fermée vers le récipient de sécurité (13), la pression dans le récipient de sécurité (13) est d'abord augmentée par liaison au récipient sous pression (14), dans lequel le gaz inerte entre, puis du fluide est évacué du récipient de sécurité (13) et le fluide évacué est soumis à une séparation gaz-liquide (20), et le fluide de travail liquide obtenu est guidé par le biais d'un dispositif de détente (22) dans la circulation de fluide de travail (1), ensuite en cas de dispositif d'arrêt (11) fermé dans la circulation de fluide de travail, le fluide de travail chargé de gaz inerte est rempli une autre fois dans le récipient de sécurité (13), et ensuite la conduite d'alimentation (12) vers le récipient de sécurité (13) est fermée et le dispositif d'arrêt (11) dans la circulation de fluide de travail (1) est ouvert et après séparation du gaz inerte dans la séparation gaz-liquide (20), une autre opération de remplissage selon la revendication 11 a lieu.
EP18203625.1A 2017-12-04 2018-10-31 Dispositif pour effectuer en toute sécurité un cycle de rankine thermodynamique en virage à gauche et sa vidange et son remplissage en toute sécurité au moyen d'un fluide de travail inflammable et procédé pour vider en toute sécurité un fluide de travail inflammable Active EP3492846B1 (fr)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PL18203625T PL3492846T3 (pl) 2017-12-04 2018-10-31 Urządzenie do bezpiecznego przeprowadzania termodynamicznego cyklu clausiusa-rankine’a w kierunku w lewo oraz jego bezpiecznego opróżniania i napełniania łatwopalnym płynem roboczym oraz sposób bezpiecznego opróżniania z łatwopalnego płynu roboczego
HRP20201410TT HRP20201410T1 (hr) 2017-12-04 2020-09-03 Uređaj za sigurno provođenje clausius-rankineovog ciklusa u lijevom smjeru vrtnje, njegovo sigurno pražnjenje i punjenje uz pomoć zapaljivog radnog fluida, te postupak sigurnog pražnjenja zapaljivog radnog fluida

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102017128702.7A DE102017128702A1 (de) 2017-12-04 2017-12-04 Sicherheitsbehälter für Arbeitsfluid

Publications (2)

Publication Number Publication Date
EP3492846A1 EP3492846A1 (fr) 2019-06-05
EP3492846B1 true EP3492846B1 (fr) 2020-06-10

Family

ID=64048878

Family Applications (1)

Application Number Title Priority Date Filing Date
EP18203625.1A Active EP3492846B1 (fr) 2017-12-04 2018-10-31 Dispositif pour effectuer en toute sécurité un cycle de rankine thermodynamique en virage à gauche et sa vidange et son remplissage en toute sécurité au moyen d'un fluide de travail inflammable et procédé pour vider en toute sécurité un fluide de travail inflammable

Country Status (6)

Country Link
EP (1) EP3492846B1 (fr)
DE (1) DE102017128702A1 (fr)
DK (1) DK3492846T3 (fr)
ES (1) ES2817439T3 (fr)
HR (1) HRP20201410T1 (fr)
PL (1) PL3492846T3 (fr)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102019118977A1 (de) * 2019-02-06 2020-08-20 Vaillant Gmbh Adsorberkühlung

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE553295C (de) 1931-02-03 1932-06-23 Bbc Brown Boveri & Cie Gekapselte Kompressionskaeltemaschine
DE4114529A1 (de) 1991-05-03 1993-02-11 Aero Tech Klima Kaelte Sicherheitseinrichtung fuer eine kaeltetechnische anlage
DE19525064C1 (de) 1995-07-10 1996-08-01 Joachim Dr Ing Paul Kältemaschine
DE19526980A1 (de) 1995-07-25 1997-01-30 York Int Gmbh Verfahren und eine Vorrichtung zur Reinigung von Luft
JP3855901B2 (ja) * 2002-09-26 2006-12-13 三菱電機株式会社 冷凍空調サイクル装置の取り扱い方法、冷凍空調サイクル装置の冷媒回収機構
JP2006162122A (ja) 2004-12-06 2006-06-22 Sanden Corp 車両用空調装置
EP2921801B1 (fr) 2010-12-03 2018-09-19 Mitsubishi Electric Corporation Procédé de remplacement de pièces pour appareil à cycle de réfrigération
DE102011116863A1 (de) 2011-10-25 2013-04-25 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Verfahren zur Sicherung einer Vorrichtung für einen thermodynamischen Kreisprozess und abgesicherte Vorrichtung für einen thermodynamischen Kreisprozess
US20150059367A1 (en) * 2013-09-04 2015-03-05 University Of Dayton Active charge control methods for vapor cycle refrigeration or heat pump systems
WO2015032905A1 (fr) 2013-09-05 2015-03-12 Holger König Procédé permettant d'empêcher une fuite d'un contenant et contenant pourvu d'un dispositif anti-fuite
KR101810809B1 (ko) 2014-03-07 2017-12-19 미쓰비시덴키 가부시키가이샤 공기 조화 장치
US10054346B2 (en) * 2015-10-27 2018-08-21 Mahle Aftermarket Italy S.P.A. Method for checking the presence of incondensable gases in climate recovery and charging station

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
HRP20201410T1 (hr) 2021-02-05
ES2817439T3 (es) 2021-04-07
PL3492846T3 (pl) 2020-11-16
DE102017128702A1 (de) 2019-06-06
EP3492846A1 (fr) 2019-06-05
DK3492846T3 (da) 2020-09-07

Similar Documents

Publication Publication Date Title
EP3486582B1 (fr) Dispositif de détection des fuites au moyen de capacité adsorbante
EP3578895B1 (fr) Dispositif et procédé pour le rinçage sûr et économique d'une enceinte
EP3581861B1 (fr) Sorption du fluide
EP2193313B1 (fr) Échangeur thermique de sécurité pour la combinaison d'une pompe à chaleur avec un dispositif d'une installation publique d'alimentation en eau potable
EP3543629B1 (fr) Boîtier étanche aux fuites pour un processus cyclique
EP3486564B1 (fr) DISPOSITIF POUR UNE MISE EN OEUVRE SÉCURITAIRE D'UN PROCESSUS DE RANKINE CLAUSIUS THERMODYNAMIQUE À COMMUTATION GAUCHE
BASÉ SUR UNE ADSORPTION DE FLUIDE DE TRAVAIL À REFOULEMENT DE GAZ INERTE
EP3693687B1 (fr) Refroidissement d'adsorbant
EP3492846B1 (fr) Dispositif pour effectuer en toute sécurité un cycle de rankine thermodynamique en virage à gauche et sa vidange et son remplissage en toute sécurité au moyen d'un fluide de travail inflammable et procédé pour vider en toute sécurité un fluide de travail inflammable
EP3486583B1 (fr) Circuit froid à sécurité anti-fuite
EP3486575B1 (fr) Dispositif et procédé d'évacuation de sécurité du flux de travail
EP0598787A1 (fr) Systeme d'elimination de la chaleur residuelle par le cote secondaire pour les reacteurs nucleaires a eau sous pression.
EP3705823B1 (fr) Dispositif pour une intervention de service en toute sécurité pour un boîtier et procédé d'ouverture du boîtier.
EP3647684A1 (fr) Zone de sécurité du condenseur
EP3748257B1 (fr) Dispositif pour la performance sûre d'un procédé circulaire thermodynamique à rotation à gauche au moyen d'un fluide de travail inflammable avec adsorption de fluide
EP3647685B1 (fr) Dispositif
EP3657102A1 (fr) Gestion de liquides de travail
EP3719416A1 (fr) Pompe à chaleur avec fluide de travail inflammable
DE102019114738A1 (de) Fluidadsorption
DE102019121496A1 (de) Sicherheitsspülvorrichtung für eine Wärmepumpe
DE102019118977A1 (de) Adsorberkühlung
DE10139236A1 (de) Verfahren zum Separieren von Kältemittel aus einem Kältemittel-Öl-Gemisch und Vorrichtung zur Durchführung des Verfahrens
EP3712531A1 (fr) Dispositif de rinçage de sécurité pour une pompe à chaleur
EP4339529A1 (fr) Port de service pour un boîtier de pompe à chaleur

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20191203

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RIC1 Information provided on ipc code assigned before grant

Ipc: F25B 41/04 20060101AFI20191219BHEP

Ipc: F25B 49/00 20060101ALI20191219BHEP

Ipc: F25B 45/00 20060101ALI20191219BHEP

Ipc: F25B 25/00 20060101ALI20191219BHEP

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20200123

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: AT

Ref legal event code: REF

Ref document number: 1279515

Country of ref document: AT

Kind code of ref document: T

Effective date: 20200615

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502018001640

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: HR

Ref legal event code: TUEP

Ref document number: P20201410T

Country of ref document: HR

REG Reference to a national code

Ref country code: DK

Ref legal event code: T3

Effective date: 20200903

REG Reference to a national code

Ref country code: NL

Ref legal event code: FP

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200610

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200610

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200910

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200911

REG Reference to a national code

Ref country code: HR

Ref legal event code: ODRP

Ref document number: P20201410T

Country of ref document: HR

Payment date: 20200922

Year of fee payment: 3

REG Reference to a national code

Ref country code: DE

Ref legal event code: R079

Ref document number: 502018001640

Country of ref document: DE

Free format text: PREVIOUS MAIN CLASS: F25B0041040000

Ipc: F25B0041200000

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200610

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200610

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200910

REG Reference to a national code

Ref country code: SK

Ref legal event code: T3

Ref document number: E 35265

Country of ref document: SK

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200610

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201012

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200610

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200610

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200610

REG Reference to a national code

Ref country code: HR

Ref legal event code: T1PR

Ref document number: P20201410

Country of ref document: HR

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201010

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502018001640

Country of ref document: DE

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2817439

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20210407

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20210311

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200610

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200610

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201031

REG Reference to a national code

Ref country code: HR

Ref legal event code: ODRP

Ref document number: P20201410

Country of ref document: HR

Payment date: 20210927

Year of fee payment: 4

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200610

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200610

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200610

REG Reference to a national code

Ref country code: HR

Ref legal event code: ODRP

Ref document number: P20201410

Country of ref document: HR

Payment date: 20220926

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20220929

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20230927

Year of fee payment: 6

Ref country code: GB

Payment date: 20230927

Year of fee payment: 6

REG Reference to a national code

Ref country code: HR

Ref legal event code: ODRP

Ref document number: P20201410

Country of ref document: HR

Payment date: 20230928

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SK

Payment date: 20230927

Year of fee payment: 6

Ref country code: PL

Payment date: 20230929

Year of fee payment: 6

Ref country code: HR

Payment date: 20230928

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20231102

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: TR

Payment date: 20231002

Year of fee payment: 6

Ref country code: SE

Payment date: 20231023

Year of fee payment: 6

Ref country code: IT

Payment date: 20231030

Year of fee payment: 6

Ref country code: FR

Payment date: 20231024

Year of fee payment: 6

Ref country code: DK

Payment date: 20231002

Year of fee payment: 6

Ref country code: DE

Payment date: 20230927

Year of fee payment: 6

Ref country code: CZ

Payment date: 20230929

Year of fee payment: 6

Ref country code: CH

Payment date: 20231101

Year of fee payment: 6

Ref country code: AT

Payment date: 20231003

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20230927

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20201031

Year of fee payment: 3