EP3492846B1 - Device for safely carrying out a left-turning thermodynamic rankine cycle and its safe emptying and filling by means of an inflammable working fluid and a method for safely emptying an inflammable working fluid - Google Patents

Device for safely carrying out a left-turning thermodynamic rankine cycle and its safe emptying and filling by means of an inflammable working fluid and a method for safely emptying an inflammable working fluid Download PDF

Info

Publication number
EP3492846B1
EP3492846B1 EP18203625.1A EP18203625A EP3492846B1 EP 3492846 B1 EP3492846 B1 EP 3492846B1 EP 18203625 A EP18203625 A EP 18203625A EP 3492846 B1 EP3492846 B1 EP 3492846B1
Authority
EP
European Patent Office
Prior art keywords
working fluid
safety container
pressure
container
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP18203625.1A
Other languages
German (de)
French (fr)
Other versions
EP3492846A1 (en
Inventor
Tobias Lingk
Hans-Josef Spahn
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Vaillant GmbH
Original Assignee
Vaillant GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Vaillant GmbH filed Critical Vaillant GmbH
Priority to PL18203625T priority Critical patent/PL3492846T3/en
Publication of EP3492846A1 publication Critical patent/EP3492846A1/en
Application granted granted Critical
Publication of EP3492846B1 publication Critical patent/EP3492846B1/en
Priority to HRP20201410TT priority patent/HRP20201410T1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B25/00Machines, plants or systems, using a combination of modes of operation covered by two or more of the groups F25B1/00 - F25B23/00
    • F25B25/005Machines, plants or systems, using a combination of modes of operation covered by two or more of the groups F25B1/00 - F25B23/00 using primary and secondary systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/20Disposition of valves, e.g. of on-off valves or flow control valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B45/00Arrangements for charging or discharging refrigerant
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/005Arrangement or mounting of control or safety devices of safety devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2339/00Details of evaporators; Details of condensers
    • F25B2339/04Details of condensers
    • F25B2339/047Water-cooled condensers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2345/00Details for charging or discharging refrigerants; Service stations therefor
    • F25B2345/001Charging refrigerant to a cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2345/00Details for charging or discharging refrigerants; Service stations therefor
    • F25B2345/002Collecting refrigerant from a cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2345/00Details for charging or discharging refrigerants; Service stations therefor
    • F25B2345/003Control issues for charging or collecting refrigerant to or from a cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2345/00Details for charging or discharging refrigerants; Service stations therefor
    • F25B2345/004Details for charging or discharging refrigerants; Service stations therefor with several tanks to collect or charge a cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/12Inflammable refrigerants
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/23Separators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/22Preventing, detecting or repairing leaks of refrigeration fluids

Definitions

  • the invention relates to a device for safely performing a left-turning thermodynamic Rankine cycle and its safe emptying and filling by means of an inflammable working fluid and a method for safely emptying an inflammable working fluid.
  • the invention relates to irregular conditions in working fluid circulations in which a working fluid acting as a refrigerant is conducted in a thermodynamic cycle, such as the Clausius-Rankine cycle.
  • a working fluid acting as a refrigerant is conducted in a thermodynamic cycle, such as the Clausius-Rankine cycle.
  • thermodynamic cycle such as the Clausius-Rankine cycle.
  • Residential buildings are understood to mean private houses, apartment building complexes, hospitals, hotel facilities, restaurants and combined residential and commercial buildings and commercial establishments in which people live or work permanently, in contrast to mobile devices such as automotive air conditioning systems or transport boxes, or industrial plants or medical technology devices. What these cycle processes have in common is that they generate useful heat or cold
  • thermodynamic cycle processes used have long been known, as are the safety problems that can arise when using suitable working fluids. Apart from water, the best known working fluids at that time were flammable and toxic. In the past century, they led to the development of safety refrigerants, which consisted of fluorinated hydrocarbons. However, it was shown that these safety refrigerants damage the ozone layer, lead to global warming and that their safety-related safety led to constructive inattentiveness. Up to 70% of sales was attributable to the need to refill leaky systems and their leakage losses, which was accepted as long as this was perceived as economically justifiable in individual cases and promoted the need for replacement.
  • the problems that arise with the safety design of such systems are discussed in the WO 2015/032905 A1 described vividly.
  • the lower ignition limit of propane as working fluid is approximately 1.7 percent by volume in air, which corresponds to 38 g / m 3 in air. If the refrigeration process is carried out in a surrounding, hermetically sealed, but otherwise air-filled room with the working fluid propane, the problem arises of recognizing a critical, explosive situation after a fault in which the working fluid escapes into this hermetically sealed room. Electrical sensors for the detection of critical concentrations are difficult to carry out explosion-proof, which is why the propane detection by the sensors themselves considerably increases the risk of explosion, with the exception of infrared sensors. Propane is also toxic; when inhaled above a concentration of approx. 2 g / m 3 , there are narcotic effects, headaches and nausea. This affects people who are supposed to solve a recognized problem on site before there is a risk of explosion.
  • Propane is also heavier than air, so it sinks to the ground in calm air and accumulates there. If a part of the propane is collected in a low-flow zone of the enclosed space in which the faulty unit is located, the local explosion limits can be reached much faster than the quotient of the total volume of space to the amount of propane escaped.
  • the WO 2015/032905 A1 seeks to solve this problem by integrating an electric current generator into the opening or locking of this space and, when actuated, in a first step generates and provides the electrical energy with which the sensor is activated, and which in the event of an alarm Locking then does not release, but causes ventilation of the closed room and only allows unlocking and opening in a second step.
  • the DE-PS 553 295 describes an encapsulated compression refrigeration machine in which the refrigerant compressor 1, its drive motor 2, evaporator 3, condenser 4 and control valve 5 are enclosed in a double-walled capsule 6 and 7, respectively. A vacuum is created in the space between the double-walled capsule and any leaks that could occur at the openings for cooling water and brine are extracted. The extracted working fluid can then be recovered if necessary. It should be noted that there is no ambient air inside the encapsulated room and, due to the negative pressure in the double jacket, it cannot penetrate into the encapsulated interior.
  • the DE 41 14 529 A1 describes a safety device for a refrigeration system filled with a dangerous medium, which consists of at least one complete refrigeration unit, which comprises a refrigerant circuit with evaporator, compressor and condenser, and a drive motor.
  • the system is enclosed in a gas-tight manner, the enclosure being designed for the maximum pressure that is technically possible in the event of a malfunction, and from the enclosure the connections for the coolant, a coolant and electrical supply, monitoring and control lines are pressure-tight to the outside.
  • An expansion tank can be connected.
  • the DE 195 25 064 C1 describes a refrigeration machine with a gas-tight housing, which accommodates all refrigerant-carrying components of the machine, a space is provided that connects the interior of the gas-tight housing with an outlet, and the space is filled with a substance that sorbs the refrigerant.
  • the amount of sorbent material is dimensioned so that the entire amount of any refrigerant escaping can be absorbed and kept away from the environment.
  • the space filled with the sorbent material is open to the surroundings. With refrigerants that are heavier than air, the space is open at the bottom, with those that are lighter, it is open at the top, so that a delivery fan is not required.
  • the sorbent is introduced into the housing and completely surrounds the refrigeration machine or the refrigerant-carrying devices. On its way out, baffles are provided that prevent short circuit currents and force escaping gas through the sorbent.
  • a double-walled embodiment in which the sorbent is arranged in the double jacket is also possible.
  • a measuring device for refrigerants can be provided at the exit of the space filled with the sorbent to the surroundings.
  • the DE 10 2011 116 863 A1 describes a method for securing a device for a thermodynamic cycle, which is operated with a process fluid that contains or consists of at least one environmentally hazardous, toxic and / or flammable substance.
  • a process fluid that contains or consists of at least one environmentally hazardous, toxic and / or flammable substance.
  • an adsorbent is brought into contact with the process fluid, in particular ammonia, propane or propene, and the substance is selectively bound by the adsorbent.
  • the adsorbent is regenerated after use.
  • zeolite also in combination with imidazole or phosphates, CuBTC are also proposed.
  • the adsorbent can be in the form of a bed, a shaped body, a paint, a spray film or a coating.
  • the support structure of the molded body can consist of microstructure, lamella structure, tube bundle, tube register and sheet metal and must be mechanically stable and have a large surface area. Circulation of the potentially contaminated air usually takes place continuously, but can also be initiated by a sensor that switches on the ventilation after a threshold value has been reached or in the event of a recognized accident.
  • the adsorption can be carried out inside or outside a closed room.
  • the DE 195 26 980 A1 describes a device and a method for cleaning air in closed rooms which have a gaseous contamination. After the contamination has been detected by a gas sensor, the latter controls a compressor which directs the air through an absorber located in this room, as a result of which the contamination is absorbed. The cleaned air leaves the absorber in the closed room.
  • the DE 195 25 064 C1 describes a refrigeration machine with a gas-tight housing, which accommodates all refrigerant-carrying components of the machine, a space is provided that connects the interior of the gas-tight housing with an outlet, and the space is filled with a substance that sorbs the refrigerant.
  • the amount of sorbent material is dimensioned so that the entire amount of any refrigerant escaping can be absorbed and kept away from the environment.
  • the space filled with the sorbent material is open to the surroundings. With refrigerants that are heavier than air, the space is open at the bottom, with those that are lighter, it is open at the top, so that a delivery fan is not required.
  • the sorbent is introduced into the housing and completely surrounds the refrigeration machine or the refrigerant-carrying devices. On its way out, baffles are provided that prevent short circuit currents and force escaping gas through the sorbent.
  • a double-walled embodiment in which the sorbent is arranged in the double jacket is also possible.
  • a measuring device for refrigerants can be provided at the exit of the space filled with the sorbent to the surroundings.
  • the EP 1 666 287 describes a vehicle air conditioning system with a container for the refrigerant, which is connected to a gas-liquid separator via an externally controllable valve.
  • the valve can be closed by means of a pressure detection device when the detected pressure becomes equal to a predetermined pressure.
  • the signal to open the valve can be detected by a leak.
  • the EP 2 921 801 A1 describes a method for the exchange of fluid-flowed parts of an air conditioning refrigeration system.
  • a container is connected into which the working fluid can flow out of the refrigeration cycle, a connecting part and a pressure reduction being provided.
  • the EP 3 115 714 A1 describes the problem of draining the working fluid through a large-lumen pipeline, which is connected to the outlet of the heat source side of the condenser.
  • Working fluid not only collects during draining, but also during normal cooling operation, which also reduces the cooling capacity. If one would counteract the effect by a larger amount of working fluid, the manufacturing costs and the risks of leakages would increase.
  • the problem is solved by a storage container, a first open / close valve in a line between the expansion valve and the useful side of the heat exchanger and a bypass that branches off between the open / close valve and the expansion valve and is connected to the suction side of the compressor . When working fluid is drained into the container, the first on / off valve is closed and the working fluid flows from the heat source side through the bypass into the storage container.
  • the working fluid circulation In the event of leaks or maintenance work in which the working fluid circulation must be opened or heated, the working fluid circulation must be emptied as completely as possible or at least freed from the inflammable working fluid to such an extent that there is never any risk of ignition. Other measures, such as Routine checks may require emptying. Such drains are currently carried out manually and it would be desirable to be able to carry them out remotely. In view of externally caused disturbances such as earthquakes, fires or floods, it would also be desirable if the flammable working fluid could be brought to safety quickly without manual intervention on site being required.
  • the US 2015/0059367 A1 describes a refrigeration circuit with a loading control, an unloading control and connections between the condenser and the expansion valve. Furthermore, a storage container and a feed pump are provided behind the unloading valve. If the ambient conditions change, for example with a heat pump changing seasonally or daily due to weather changes, the amount of working fluid circulating in the refrigeration circuit can be changed and adapted to the respective conditions.
  • US 2015/0059367 A1 a device according to the preamble of claim 1 for safely performing a left-turning thermodynamic Rankine cycle and its safe emptying and filling by means of an inflammable working fluid and a method according to the preamble of claim 8 for safely emptying an inflammable working fluid.
  • the object of the invention is therefore to provide an improved safety container which can remove the working fluid from the cycle, enables a return to the cycle, better solves the problems presented and no longer has the disadvantages.
  • heat transfer fluids are to be understood as all gaseous or liquid media with which heat is transferred, for example air, water, brine, heat transfer oils or the like.
  • propane is used as the working fluid and nitrogen is used as the inert gas.
  • nitrogen is used as the inert gas.
  • inert gas can also be used at other points in such systems, for example for inerting the housing or the cycle if it was previously emptied and work is to be carried out on it. Further inerting measures can be provided for such purposes.
  • the inert gas container provided here is only intended for the inert gas that is used to empty the safety container, return it to the cycle or to discharge and store inert gas from the cycle.
  • the pressure is first increased by pressing inert gas under high pressure into the safety container filled with working fluid.
  • part of the vaporized working fluid is liquefied, with the aim that this proportion is as large as possible.
  • the drain located in the bottom of the safety container first drains liquid working fluid when it is opened. Then there is a gas-liquid mixture in the fume cupboard at the end of the emptying process before only inert gas is drawn off.
  • a pump as is otherwise also used in motor vehicles as a gasoline pump or as an injection pump.
  • the pump should also be protected against running dry, able to deliver a gas-liquid mixture and, best of all, like a compressor, also capable of delivering gaseous fluid.
  • the pressure increase does not have to be high. It is advantageous if the pump carries out forced delivery, as piston pumps, gear pumps, root pumps, peristaltic pumps or diaphragm pumps do.
  • the pump can also be arranged inside the containment.
  • the gas-liquid mixture removed from the safety container which is typically a mixture of liquid propane, gaseous propane and nitrogen, is cooled.
  • the vapor pressure of the propane drops and, depending on the pressure of the inert gas, there is only a liquid working fluid phase and a gaseous inert gas phase at the subsequent gas-liquid separator, which must be separated from one another.
  • the separation takes place with a gas-liquid separator, which is preferably designed as a cyclone separator.
  • the liquid phase is drawn off at the bottom and returned to the circulation of the cycle under pressure and liquid. The pressure is reduced shortly before entering. It is important to ensure that no flash evaporation occurs in such a way that cavitation leads to faults.
  • the system pressure before the pressure reduction is determined by the wishes regarding the further use of the inert gas separated in the gas-liquid separator. If it is to be returned to the inert gas container, the pressure should be high so that as little vaporized working fluid as possible gets into the inert gas container during the separation. In this case, the booster pump only has to compensate for the pressure losses that have to be overcome in the resulting inert gas circuit. If the inert gas is to be discarded, higher pressure can be dispensed with. However, losses of working fluid must also be compensated for.
  • the safety container, inert gas container, booster pump, gas-liquid separator and the associated lines and fittings are integrated together in a pressure-tight, hermetically sealed safety container. This ensures that the containment and its connections do not become a security risk themselves. This will save the safety improvement also simplifies maintenance, since the safety container can be replaced quickly.
  • the filled safety container is used to remove inert gas, which is, for example, after a repair in the working circuit, into which the working fluid is then to be reintroduced.
  • working fluid is first pressed into the working circuit by means of inert gas pressure. With the compressor running, the working fluid / inert gas mixture is then, without heating it up in the heat exchangers of the cycle, fluidly conveyed back into the safety container, from where it returns to the working circuit via the booster pump and the gas / liquid separator.
  • the inert gas can be separated almost completely in this way.
  • the invention also includes a safe method according to claim 8.
  • the method is for emptying the working fluid circulation, its refilling and the removal of inert gas from the working fluid circulation using the described device.
  • the shut-off device within the working fluid circulation is closed and the connection to the safety container is opened.
  • the security container 13 is blocked at its exit. If the compressor can continue to run, which is not always the case in the event of an accident, the propane gas pressure corresponds to the final pressure that the compressor 2 can deliver.
  • FIG. 1 a working fluid circuit and the safety container with inerting equipment
  • Fig. 1 shows a schematic diagram of a working fluid circulation 1 with a compressor 2, a condenser 3, a pressure reduction 4 and an evaporator 5 in a closed housing 6.
  • the housing 6 has a heat source connection 7, a heat source flow 8, a heat sink flow 9 and a heat sink connection 10.
  • the working fluid circuit 1 is operated with the flammable working fluid propane, which is also known under the name R290. Only the most important shut-off devices are shown, of course the specialist will provide further shut-off devices and anti-kickback devices.
  • the three-way valve 11 is switched over so that passage of the working fluid from the compressor 2 to the condenser 3 is prevented, while the previously closed passage from the compressor 2 to the safety container 13 is opened by the working fluid supply line 12 becomes.
  • the security container 13 is blocked at its exit. If the compressor can continue to run, which is not always the case in the event of an accident, the propane gas pressure corresponds to the final pressure that the compressor 2 can deliver.
  • inert gas can be forced out of the pressure container 14 via the inert gas line 23, the working fluid supply line 21 and the pressure reducing valve 22 into the working fluid circulation 1. In this case it should be possible to operate the fittings using emergency power.
  • the three-way valve 11 closes the circuit 1 and directs the propane / inert gas mixture to the safety container 13 through the working fluid supply line 12. Even in the event of a power failure, the filling of the safety container can be ensured in this way while the working fluid circulation is rendered inert. In the event of a leak, the addition of the inert gas also reduces the risk of ignition at the leakage-related outlet.
  • this containment can also be designed for significantly higher pressures than for normal operation. In particular, it must be designed for the same higher pressure as the inert gas container so that an overload when connecting the two containers is excluded.
  • the pressure in the safety container 13 is first increased significantly by opening the shut-off valve 16, in that inert gas flows in from the inert gas supply line 15.
  • the check valve 16 can also be designed as a controllable pressure reducing valve. If nitrogen is selected as the inert gas, the temperature drop in the pressure reduction must be taken into account, this temperature drop should take place in the safety container by constructive measures, which can be brought about by integrating the check valve 16 in the head of the safety container. A lowering of the temperature in the safety container is desirable.
  • the propane in it liquefies and can be drawn off as a liquid phase in the lower part of the safety container. While initially a pure liquid phase is drawn off, the flow in the safety container 13 causes an increasing mixing with inert gas until only inert gas is present at the end of the emptying process. For this reason, this deduction cannot be directly connected to the working fluid circulation.
  • phase withdrawn from the safety container is first increased by means of the pressure booster pump 17, then cooled in the cooler 18 and subsequently fed to the gas-liquid separator 20 via the line 19.
  • the cooling can be carried out by various measures, a cooling battery that was cooled before emptying can be used for this, but external cooling can also be carried out. Cooling is optional.
  • the gas-liquid separator 20 is preferably designed as a cyclone separator, the liquid phase being pressed against the edge by the vortices and drawn off in the funnel, while the gas phase can be returned to the inert gas container. In order for this recirculation to work, a higher pressure than in the inert gas container must be present at the outlet of the gas-liquid separator 20.
  • This pressure difference is to be managed by the pressure booster pump 17.
  • the fact that traces of the gaseous propane can get into the inert gas container 14 with the circulated inert gas may be tolerated, since this does not impair the intended functionality; if necessary, the gas-liquid separator 20 can also perform an adsorptive fine cleaning with regard to propane gas components respectively.
  • the liquid propane phase is returned to the working fluid circulation 1 via the working fluid feed line 21, the high pressure present there being correspondingly reduced by a pressure reducing valve 22 on the working fluid circulation 1 in order to reliably avoid a pressure overload of the working fluid circulation.
  • the three-way valve 11 is switched back so that the path to the safety container 13 is closed and the working fluid circulation is open.
  • the three-way valve 11 initially remains open to the safety container 11 so that inert gas to be discharged is conveyed into the safety container, while propane is fed into the circuit via the working fluid supply line 21 1 flows. For this reason, it makes sense to connect this working fluid supply line 21 immediately to be connected behind the three-way valve 11 so that the dead space between the discharge line and supply line which cannot be traversed remains as small as possible.
  • the working fluid supply line 12 is closed and the three-way valve 11 in the working fluid circulation is opened. The inert gas / propane mixture which has reached the safety container 13 during flushing is then operated as in a normal filling process.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Filling Or Discharging Of Gas Storage Vessels (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)

Description

Die Erfindung betrifft eine Vorrichtung zur sicheren Durchführung eines linksdrehenden thermodynamischen Clausius-Rankine-Kreisprozesses sowie seiner sicheren Entleerung und Befüllung mittels eines entzündlichen Arbeitsfluids und ein Verfahren zur sicheren Entleeren eines entzündlichen Arbeitsfluids. Die Erfindung betrifft irreguläre Zustände in Arbeitsfluidumlaufen, in denen ein als Kältemittel wirkendes Arbeitsfluid in einem thermodynamischen Kreisprozess, wie zum Beispiel dem Clausius-Rankine-Kreisprozess, geführt wird. Vorwiegend sind dies Wärmepumpen, Klimaanlagen und Kühlgeräte, wie sie in Wohngebäuden gebräuchlich sind. Unter Wohngebäuden werden dabei Privathäuser, Miethauskomplexe, Krankenhäuser, Hotelanlagen, Gastronomie und kombinierte Wohn- und Geschäftshäuser und Gewerbebetriebe verstanden, in denen Menschen dauerhaft leben oder arbeiten, im Unterschied zu mobilen Vorrichtungen wie KFZ-Klimaanlagen oder Transportboxen, oder auch Industrieanlagen oder medizintechnischen Geräten. Gemeinsam ist diesen Kreisprozessen, dass sie unter Einsatz von Energie Nutzwärme oder Nutzkälte erzeugen und Wärmeverschiebungssysteme bilden.The invention relates to a device for safely performing a left-turning thermodynamic Rankine cycle and its safe emptying and filling by means of an inflammable working fluid and a method for safely emptying an inflammable working fluid. The invention relates to irregular conditions in working fluid circulations in which a working fluid acting as a refrigerant is conducted in a thermodynamic cycle, such as the Clausius-Rankine cycle. Mainly these are heat pumps, air conditioning systems and cooling devices, as are common in residential buildings. Residential buildings are understood to mean private houses, apartment building complexes, hospitals, hotel facilities, restaurants and combined residential and commercial buildings and commercial establishments in which people live or work permanently, in contrast to mobile devices such as automotive air conditioning systems or transport boxes, or industrial plants or medical technology devices. What these cycle processes have in common is that they generate useful heat or cold using energy and form heat transfer systems.

Die zum Einsatz kommenden thermodynamischen Kreisprozesse sind seit langem bekannt, ebenso die Sicherheitsprobleme, die bei der Verwendung geeigneter Arbeitsfluide entstehen können. Abgesehen von Wasser sind die bekanntesten damaligen Arbeitsfluide brennbar und giftig. Sie führten im vergangenen Jahrhundert zur Entwicklung der Sicherheitskältemittel, die aus fluorierten Kohlenwasserstoffen bestanden. Es zeigte sich jedoch, dass diese Sicherheitskältemittel die Ozonschicht schädigen, zur Klimaerwärmung führen, und dass ihre sicherheitstechnische Unbedenklichkeit zu konstruktiven Unachtsamkeiten führte. Bis zu 70 % des Umsatzes entfiel auf den Nachfüllbedarf undichter Anlagen und deren Leckageverluste, der hingenommen wurde, solange dies im Einzelfall als wirtschaftlich vertretbar empfunden wurde und Bedarf an Ersatzbeschaffung förderte.The thermodynamic cycle processes used have long been known, as are the safety problems that can arise when using suitable working fluids. Apart from water, the best known working fluids at that time were flammable and toxic. In the past century, they led to the development of safety refrigerants, which consisted of fluorinated hydrocarbons. However, it was shown that these safety refrigerants damage the ozone layer, lead to global warming and that their safety-related safety led to constructive inattentiveness. Up to 70% of sales was attributable to the need to refill leaky systems and their leakage losses, which was accepted as long as this was perceived as economically justifiable in individual cases and promoted the need for replacement.

Der Einsatz dieser Kältemittel wurde aus diesem Grund Restriktionen unterworfen, in der Europäischen Union beispielsweise durch die F-Gas-Verordnung (EU) 517/2014.For this reason, the use of these refrigerants has been subject to restrictions, for example in the European Union through the F-Gas Regulation (EU) 517/2014.

Es ist daher einerseits äußerst problematisch, die konstruktiven Prinzipien für Kältemittel-führende thermodynamische Prozesse zu übernehmen, die sich bei Sicherheitskältemitteln scheinbar gut bewährt haben, andererseits auf die Anlagenkonzepte aus der Zeit vor Einführung der Sicherheitskältemittel aufzusetzen. Dies liegt auch daran, dass inzwischen aus Einzelgeräten komplexe Anlagen geworden sind, was die Anzahl der Möglichkeiten für Störungen und deren Folgen vervielfältigt hat. Hierdurch ergeben sich beispielhaft die folgenden Anforderungen an das Sicherheitskonzept:

  • Im Normalbetrieb muss die Anlage absolut dicht sein.
  • Weder bei einer Leckage im Kondensator noch bei einer Leckage im Verflüssiger darf
On the one hand, it is extremely problematic to adopt the design principles for refrigerant-carrying thermodynamic processes, which seem to have proven their worth with safety refrigerants, and on the other hand to build on the system concepts from before the safety refrigerants were introduced. This is also due to the fact that individual devices have now become complex systems, which has multiplied the number of possibilities for malfunctions and their consequences. This results, for example, in the following requirements for the security concept:
  • In normal operation, the system must be absolutely tight.
  • Neither with a leak in the condenser nor with a leak in the condenser

Arbeitsfluid in den gekoppelten Nutzwärme- oder Nutzkältekreislauf gelangen.

  • Es darf kein Arbeitsfluid aus dem Kältekreislauf unbemerkt entweichen können.
  • Im Verdichter darf das Arbeitsfluid nicht durch die Lagerung entweichen.
  • Im Entspannungssystem darf das Arbeitsfluid nicht durch den Ventilsitz diffundieren oder durch Kavitation zu Leckagen führen.
  • Gekapselte Teile müssen für Wartungs- und Kontrollzwecke zugänglich bleiben.
  • In Notfällen dürfen sich keine Gefahren einstellen.
  • Die Anlage soll in vorhandene Räumlichkeiten integrierbar sein
  • Das Kältemittel soll abgelassen und eingefüllt werden können.
Working fluid get into the coupled useful heating or cooling circuit.
  • No working fluid must be able to escape from the refrigeration cycle without being noticed.
  • The working fluid in the compressor must not escape through storage.
  • In the expansion system, the working fluid must not diffuse through the valve seat or lead to leakage due to cavitation.
  • Encapsulated parts must remain accessible for maintenance and inspection purposes.
  • No dangers may arise in emergencies.
  • The plant should be able to be integrated into existing premises
  • The refrigerant should be able to be drained and filled.

Der Begriff des Notfalls muss weit gesehen werden. Denkbar sind Stromausfälle, Erdbeben, Erdrutsche, Überschwemmungen, Brände, technische Fehler und klimatische Extrembedingungen. Sofern die Anlagen in einem Netzwerk betrieben werden, ist auch ein Netzausfall oder eine Netzstörung als Notfall anzusehen. Gegenüber solchen Gefahren oder Störungen soll die Vorrichtung inhärent sicher sein. Aber auch ein Ausfall der verfügbaren Primärenergie kann einen Notfall begründen und darf keine Gefahrentwicklung zur Folge haben. Alle diese Notfälle können auch kombiniert auftreten.The concept of an emergency must be seen widely. Power outages, earthquakes, landslides, floods, fires, technical errors and extreme climatic conditions are conceivable. If the systems are operated in a network, a power failure or a network fault is also to be regarded as an emergency. Against such dangers or disturbances the device is said to be inherently safe. However, a failure of the available primary energy can also justify an emergency and must not result in the development of danger. All of these emergencies can also occur in combination.

Hierbei sind die verschiedenen Bauformen und Anwendungsfälle für derartige thermodynamische Kreisprozesse gesondert zu berücksichtigen, bei ortsfesten Anlagen für Wohngebäude beispielsweise folgende:

  • Haushaltskühlschränke,
  • Haushaltsgefrierschränke,
  • Haushaltstrockner,
  • Haushaltskühl-Gefrierkombinationen,
  • Kühlkammern für Hotel- und Gastronomie,
  • Gefrierkammern für Hotel- und Gastronomie,
  • Klimaanlage für Haus, Hotel- und Gastronomie,
  • Warmwassererzeugung für Haus, Hotel- und Gastronomie,
  • Beheizung für Haus, Hotel- und Gastronomie,
  • Sauna-Schwimmbadanlagen für Haus, Hotel- und Gastronomie,
  • Kombinierte Anlagen für die oben genannten Anwendungen,
wobei diese Aufzählung nicht vollständig ist.The various designs and applications for such thermodynamic cycle processes have to be considered separately, for example the following for fixed systems for residential buildings:
  • Household refrigerators,
  • Freezers,
  • Household dryer,
  • Household fridge-freezers,
  • Cooling chambers for hotel and catering,
  • Freezers for hotels and restaurants,
  • Air conditioning for home, hotel and catering,
  • Hot water generation for home, hotel and catering,
  • Heating for home, hotel and catering,
  • Sauna swimming pool facilities for home, hotel and catering,
  • Combined systems for the above-mentioned applications,
this list is not exhaustive.

Die Energie für den Betrieb der Anlagen einschließlich der zu verschiebenden Wärmeenergie kann aus verschiedenen Quellen stammen:

  • Erdwärme aus Erdwärmespeichern,
  • Geothermische Wärme,
  • Fernwärme,
  • Elektrische Energie aus allgemeiner Stromversorgung,
  • Elektrische Solarenergie,
  • Solarwärme,
  • Abwärme,
  • Warmwasserspeicher,
  • Eisspeicher,
  • Latentwärmespeicher,
  • Fossile Energieträger wie Erdgas, Erdöl, Kohle,
  • Nachwachsende Rohstoffe wie Holz, Pellets, Biogas,
  • Kombinationen aus den oben genannten Energiequellen,
wobei auch diese Aufzählung nicht vollständig ist.The energy for operating the systems, including the thermal energy to be moved, can come from various sources:
  • Geothermal energy from geothermal energy storage,
  • Geothermal heat,
  • District heating,
  • Electrical energy from general power supply,
  • Electrical solar energy,
  • Solar heat,
  • Waste heat,
  • Hot water tank,
  • Ice storage,
  • Latent heat storage,
  • Fossil energy sources such as natural gas, oil, coal,
  • Renewable raw materials such as wood, pellets, biogas,
  • Combinations of the above energy sources,
although this list is also not complete.

Die auftretenden Probleme bei der Sicherheitsauslegung solcher Anlagen werden in der WO 2015/032905 A1 anschaulich beschrieben. So liegt die untere Zündgrenze von Propan als Arbeitsfluid etwa bei 1,7 Volumenprozent in Luft, was 38 g/m3 in Luft entspricht. Sofern der Kälteprozess in einem ihn umgebenden, hermetisch abgeschlossenen, ansonsten aber luftgefüllten Raum mit dem Arbeitsfluid Propan durchgeführt wird, stellt sich das Problem der Erkennung einer kritischen, explosiven Situation nach einer Störung, bei der das Arbeitsfluid in diesen hermetisch abgeschlossenen Raum austritt. Elektrische Sensoren zur Erkennung kritischer Konzentrationen sind nur schwierig explosionsgeschützt auszuführen, weswegen gerade die Propan-Erkennung durch die Sensoren selbst das Explosionsrisiko erheblich verschärft, ausgenommen hiervon sind Infrarotsensoren. Propan ist auch giftig, bei Inhalation oberhalb einer Konzentration von ca. 2 g/m3 stellen sich narkotische Effekte, Kopfschmerzen und Übelkeit ein. Dies betrifft Personen, die ein erkanntes Problem vor Ort lösen sollen, noch bevor Explosionsgefahr entsteht.The problems that arise with the safety design of such systems are discussed in the WO 2015/032905 A1 described vividly. The lower ignition limit of propane as working fluid is approximately 1.7 percent by volume in air, which corresponds to 38 g / m 3 in air. If the refrigeration process is carried out in a surrounding, hermetically sealed, but otherwise air-filled room with the working fluid propane, the problem arises of recognizing a critical, explosive situation after a fault in which the working fluid escapes into this hermetically sealed room. Electrical sensors for the detection of critical concentrations are difficult to carry out explosion-proof, which is why the propane detection by the sensors themselves considerably increases the risk of explosion, with the exception of infrared sensors. Propane is also toxic; when inhaled above a concentration of approx. 2 g / m 3 , there are narcotic effects, headaches and nausea. This affects people who are supposed to solve a recognized problem on site before there is a risk of explosion.

Propan ist auch schwerer als Luft, sinkt also in ruhender Luft auf den Boden und sammelt sich dort an. Sollte sich also ein Teil des Propans in einer strömungsarmen Zone des abgeschlossenen Raums, in dem sich das gestörte Aggregat befindet, sammeln, können die lokalen Explosionsgrenzen wesentlich schneller erreicht werden, als es der Quotient aus Gesamtraumvolumen zu ausgetretener Propanmenge erwarten lässt. Die WO 2015/032905 A1 sucht dieses Problem zu lösen, indem ein Generator für elektrischen Strom in die Öffnung bzw. deren Verriegelung dieses Raums integriert wird und bei deren Betätigung in einem ersten Schritt die elektrische Energie erzeugt und bereitstellt, mit der der Sensor aktiviert wird, und der im Alarmfall die Verriegelung dann nicht freigibt, sondern eine Lüftung des abgeschlossenen Raums veranlasst, und erst in einem zweiten Schritt eine Entriegelung und Öffnung zulässt.Propane is also heavier than air, so it sinks to the ground in calm air and accumulates there. If a part of the propane is collected in a low-flow zone of the enclosed space in which the faulty unit is located, the local explosion limits can be reached much faster than the quotient of the total volume of space to the amount of propane escaped. The WO 2015/032905 A1 seeks to solve this problem by integrating an electric current generator into the opening or locking of this space and, when actuated, in a first step generates and provides the electrical energy with which the sensor is activated, and which in the event of an alarm Locking then does not release, but causes ventilation of the closed room and only allows unlocking and opening in a second step.

Schon zu Beginn der Technologie der Kompressionskältemaschinen wurde der Versuch unternommen, einen abgeschlossenen Raum zu bilden, in dem die apparativen Ausrüstungen alle sicher untergebracht werden konnten und der diese vollständig umhüllt. Die DE-PS 553 295 beschreibt eine gekapselte Kompressionskältemaschine, bei der der Kältemittelverdichter 1, sein Antriebsmotor 2, Verdampfer 3, Verflüssiger 4 und Regelventil 5 in einer doppelwandigen Kapsel 6 bzw. 7 eingeschlossen sind. Im Zwischenraum der doppelwandigen Kapsel wird ein Unterdruck angelegt und Leckagen, die an den Durchbrüchen für Kühlwasser und Sole auftreten könnten, abgesaugt. Das abgesaugte Arbeitsfluid kann im Anschluss daran ggf. zurückgewonnen werden. Zu bemerken ist dabei, dass sich innerhalb des gekapselten Raums keine Umgebungsluft befindet und aufgrund des Unterdrucks im Doppelmantel auch nicht in den gekapselten Innenraum eindringen kann.Already at the beginning of the technology of the compression chillers, an attempt was made to form a closed room in which the equipment could all be safely accommodated and which completely encased it. The DE-PS 553 295 describes an encapsulated compression refrigeration machine in which the refrigerant compressor 1, its drive motor 2, evaporator 3, condenser 4 and control valve 5 are enclosed in a double-walled capsule 6 and 7, respectively. A vacuum is created in the space between the double-walled capsule and any leaks that could occur at the openings for cooling water and brine are extracted. The extracted working fluid can then be recovered if necessary. It should be noted that there is no ambient air inside the encapsulated room and, due to the negative pressure in the double jacket, it cannot penetrate into the encapsulated interior.

Die DE 41 14 529 A1 beschreibt eine Sicherheitseinrichtung für eine mit einem gefährlichen Medium gefüllte kältetechnische Anlage, die aus mindestens einem kompletten Kälteaggregat besteht, das einen Kältemittelkreislauf mit Verdampfer, Verdichter und Verflüssiger, sowie einen Antriebsmotor umfasst. Die Anlage ist gasdicht eingeschlossen, wobei die Umschließung nach dem im Störfall technisch möglichen Höchstdruck ausgelegt ist, und aus der Umschließung die Anschlüsse für den Kälteträger, ein Kühlmittel sowie elektrische Versorgungs-, Überwachungs- und Steuerleitungen druckdicht nach außen geführt sind. Es kann ein Ausgleichsbehälter angeschlossen sein.The DE 41 14 529 A1 describes a safety device for a refrigeration system filled with a dangerous medium, which consists of at least one complete refrigeration unit, which comprises a refrigerant circuit with evaporator, compressor and condenser, and a drive motor. The system is enclosed in a gas-tight manner, the enclosure being designed for the maximum pressure that is technically possible in the event of a malfunction, and from the enclosure the connections for the coolant, a coolant and electrical supply, monitoring and control lines are pressure-tight to the outside. An expansion tank can be connected.

Die DE 195 25 064 C1 beschreibt eine Kältemaschine mit einem gasdicht ausgebildeten Gehäuse, welches alle kältemittelführenden Komponenten der Maschine aufnimmt, ein das Innere des gasdichten Gehäuses mit einem Auslass verbindender Raum vorgesehen ist, und der Raum mit einem das Kältemittel sorbierenden Stoff gefüllt ist. Die Menge des sorbierenden Stoffes wird dabei so dimensioniert, dass die gesamte Menge an eventuell austretendem Kältemittel aufgenommen und von der Umwelt ferngehalten werden kann. Der mit dem sorbierenden Stoff gefüllte Raum ist zur Umgebung hin offen. Bei Kältemitteln, die schwerer als Luft sind, ist der Raum nach unten hin offen, bei solchen, die leichter sind, ist er nach oben hin offen, so dass ein Fördergebläse nicht erforderlich ist. Das Sorptionsmittel wird in das Gehäuse eingebracht und umschließt die Kältemaschine bzw. die kältemittelführenden Einrichtungen vollständig. Auf seinem Weg nach außen sind Schikanen vorgesehen, die Kurzschlussströmungen verhindern und entweichendes Gas durch das Sorptionsmittel zwingen. Auch eine doppelwandige Ausführungsform, bei der das Sorptionsmittel im Doppelmantel angeordnet ist, ist möglich. Am Ausgang des mit dem sorbierenden Stoffes gefüllten Raumes zur Umgebung hin kann eine Messeinrichtung für Kältemittel vorgesehen werden.The DE 195 25 064 C1 describes a refrigeration machine with a gas-tight housing, which accommodates all refrigerant-carrying components of the machine, a space is provided that connects the interior of the gas-tight housing with an outlet, and the space is filled with a substance that sorbs the refrigerant. The amount of sorbent material is dimensioned so that the entire amount of any refrigerant escaping can be absorbed and kept away from the environment. The space filled with the sorbent material is open to the surroundings. With refrigerants that are heavier than air, the space is open at the bottom, with those that are lighter, it is open at the top, so that a delivery fan is not required. The sorbent is introduced into the housing and completely surrounds the refrigeration machine or the refrigerant-carrying devices. On its way out, baffles are provided that prevent short circuit currents and force escaping gas through the sorbent. A double-walled embodiment in which the sorbent is arranged in the double jacket is also possible. A measuring device for refrigerants can be provided at the exit of the space filled with the sorbent to the surroundings.

Die DE 10 2011 116 863 A1 beschreibt ein Verfahren zur Sicherung einer Vorrichtung für einen thermodynamischen Kreisprozess, welche mit einem Prozessfluid betrieben wird, das mindesten eine umweltgefährliche, giftige und/oder entzündliche Substanz enthält oder daraus besteht. Im Falle einer Leckage in der Vorrichtung für einen thermodynamischen Kreisprozess ein Adsorptionsmittel mit dem Prozessfluid, insbesondere Ammoniak, Propan oder Propen, in Kontakt gebracht und die Substanz durch das Adsorptionsmittel selektiv gebunden. Das Adsorptionsmittel wird nach Gebrauch regeneriert. Als Adsorptionsmittel werden Zeolith, auch in Kombination mit Imidazol oder Phosphaten, ferner CuBTC vorgeschlagen, das Adsorptionsmittel kann in Form einer Schüttung, eines Formkörpers, eines Anstrichs, eines Sprühfilms oder einer Beschichtung ausgestattet sein. Die Trägerstruktur des Formkörpers kann aus Mikrostruktur, Lamellenstruktur, Rohrbündel, Rohrregister und Blech bestehen und muss mechanisch stabil sowie stark oberflächenvergrößernd sein. Eine Umwälzung der potenziell kontaminierten Luft erfolgt üblicherweise kontinuierlich, kann aber auch durch einen Sensor initiiert werden, der die Lüftung nach Erreichen eines Schwellenwerts oder bei einem erkannten Havariefall einschaltet. Die Adsorption kann innerhalb oder außerhalb eines geschlossenen Raums durchgeführt werden.The DE 10 2011 116 863 A1 describes a method for securing a device for a thermodynamic cycle, which is operated with a process fluid that contains or consists of at least one environmentally hazardous, toxic and / or flammable substance. In the event of a leak in the device for a thermodynamic cycle, an adsorbent is brought into contact with the process fluid, in particular ammonia, propane or propene, and the substance is selectively bound by the adsorbent. The adsorbent is regenerated after use. As an adsorbent, zeolite, also in combination with imidazole or phosphates, CuBTC are also proposed. The adsorbent can be in the form of a bed, a shaped body, a paint, a spray film or a coating. The support structure of the molded body can consist of microstructure, lamella structure, tube bundle, tube register and sheet metal and must be mechanically stable and have a large surface area. Circulation of the potentially contaminated air usually takes place continuously, but can also be initiated by a sensor that switches on the ventilation after a threshold value has been reached or in the event of a recognized accident. The adsorption can be carried out inside or outside a closed room.

Die DE 195 26 980 A1 beschreibt eine Vorrichtung und ein Verfahren zur Reinigung von Luft geschlossener Räume, die eine gasförmige Verunreinigung aufweisen. Nachdem die Verunreinigung von einem Gassensor erkannt wurde, steuert dieser einen Verdichter an, der die Luft durch einen in diesem Raum befindlichen Absorber leitet, wodurch die Verunreinigung absorbiert wird. Die gereinigte Luft verlässt den Absorber in den geschlossenen Raum.The DE 195 26 980 A1 describes a device and a method for cleaning air in closed rooms which have a gaseous contamination. After the contamination has been detected by a gas sensor, the latter controls a compressor which directs the air through an absorber located in this room, as a result of which the contamination is absorbed. The cleaned air leaves the absorber in the closed room.

Die DE 195 25 064 C1 beschreibt eine Kältemaschine mit einem gasdicht ausgebildeten Gehäuse, welches alle kältemittelführenden Komponenten der Maschine aufnimmt, ein das Innere des gasdichten Gehäuses mit einem Auslass verbindender Raum vorgesehen ist, und der Raum mit einem das Kältemittel sorbierenden Stoff gefüllt ist. Die Menge des sorbierenden Stoffes wird dabei so dimensioniert, dass die gesamte Menge an eventuell austretendem Kältemittel aufgenommen und von der Umwelt ferngehalten werden kann. Der mit dem sorbierenden Stoff gefüllte Raum ist zur Umgebung hin offen. Bei Kältemitteln, die schwerer als Luft sind, ist der Raum nach unten hin offen, bei solchen, die leichter sind, ist er nach oben hin offen, so dass ein Fördergebläse nicht erforderlich ist. Das Sorptionsmittel wird in das Gehäuse eingebracht und umschließt die Kältemaschine bzw. die kältemittelführenden Einrichtungen vollständig. Auf seinem Weg nach außen sind Schikanen vorgesehen, die Kurzschlussströmungen verhindern und entweichendes Gas durch das Sorptionsmittel zwingen. Auch eine doppelwandige Ausführungsform, bei der das Sorptionsmittel im Doppelmantel angeordnet ist, ist möglich. Am Ausgang des mit dem sorbierenden Stoffes gefüllten Raumes zur Umgebung hin kann eine Messeinrichtung für Kältemittel vorgesehen werden.The DE 195 25 064 C1 describes a refrigeration machine with a gas-tight housing, which accommodates all refrigerant-carrying components of the machine, a space is provided that connects the interior of the gas-tight housing with an outlet, and the space is filled with a substance that sorbs the refrigerant. The amount of sorbent material is dimensioned so that the entire amount of any refrigerant escaping can be absorbed and kept away from the environment. The space filled with the sorbent material is open to the surroundings. With refrigerants that are heavier than air, the space is open at the bottom, with those that are lighter, it is open at the top, so that a delivery fan is not required. The sorbent is introduced into the housing and completely surrounds the refrigeration machine or the refrigerant-carrying devices. On its way out, baffles are provided that prevent short circuit currents and force escaping gas through the sorbent. A double-walled embodiment in which the sorbent is arranged in the double jacket is also possible. A measuring device for refrigerants can be provided at the exit of the space filled with the sorbent to the surroundings.

Die EP 1 666 287 beschreibt eine Fahrzeugklimaanlage mit einem Auffangbehälter für das Kältemittel, der über ein extern steuerbares Ventil mit einem Gas-Flüssigkeits-Trenner in Verbindung steht. Mittels einer Druckerfassungsvorrichtung kann das Ventil geschlossen werden, wenn der erfasste Druck gleich einem vorbestimmten Druck wird. Das Signal zum Öffnen des Ventils kann durch eine Leckageerkennung erfolgen.The EP 1 666 287 describes a vehicle air conditioning system with a container for the refrigerant, which is connected to a gas-liquid separator via an externally controllable valve. The valve can be closed by means of a pressure detection device when the detected pressure becomes equal to a predetermined pressure. The signal to open the valve can be detected by a leak.

Die EP 2 921 801 A1 beschreibt eine Methode zum Austausch von fluiddurchströmten Teilen einer Klima-Kälteanlage. Hierbei wird ein Behälter angeschlossen, in den das Arbeitsfluid aus dem Kältekreislauf hineinströmen kann, wobei ein Verbindungsteil und eine Druckreduzierung vorgesehen werden. Sobald der größte Teil des Kältekreislaufs in den Behälter geströmt ist, befindet sich nur so wenig entzündliches Arbeitsfluid in den von Arbeitsfluid üblicherweise durchströmten Teilen, dass das schadhafte Teil entfernt und durch ein Ersatzteil ersetzt werden kann, ohne dass bei dieser Arbeit auch bei Wärmezufuhr, z.B. durch Löten, eine Entzündungsgefahr besteht.The EP 2 921 801 A1 describes a method for the exchange of fluid-flowed parts of an air conditioning refrigeration system. Here, a container is connected into which the working fluid can flow out of the refrigeration cycle, a connecting part and a pressure reduction being provided. As soon as the major part of the refrigeration circuit has flowed into the container, there is only so little flammable working fluid in the parts through which the working fluid usually flows that the defective part can be removed and replaced by a spare part without this work also involving heat, for example due to soldering, there is a risk of ignition.

Die EP 3 115 714 A1 beschreibt die Problematik eines Ablasses des Arbeitsfluids durch eine großlumige Rohrleitung, die am Auslass der Wärmequellenseite des Kondensators angeschlossen ist. Hierbei sammelt sich Arbeitsfluid nicht nur während des Ablassens, sondern auch während des normalen Kühlbetriebs, und dadurch sinkt auch die Kühlleistung. Würde man dem Effekt durch eine größere Menge an Arbeitsfluid entgegensteuern, stiegen die Herstellungskosten und auch die Risiken bei Leckagen. Das Problem wird gelöst durch einen Lagerbehälter, ein erstes Auf/Zu-Ventil in einer Leitung zwischen der Entspannungsventil und der Nutzseite des Wärmetauschers und einen Bypass, der zwischen dem Auf/Zu-Ventil und dem Entspannungsventil abzweigt und mit der Saugseite des Verdichters verbunden ist. Beim Ablassen von Arbeitsfluid in den Behälter wird das erste Auf/Zu-Ventil geschlossen und das Arbeitsfluid strömt von der Wärmequellenseite durch den Bypass in den Lagerbehälter.The EP 3 115 714 A1 describes the problem of draining the working fluid through a large-lumen pipeline, which is connected to the outlet of the heat source side of the condenser. Working fluid not only collects during draining, but also during normal cooling operation, which also reduces the cooling capacity. If one would counteract the effect by a larger amount of working fluid, the manufacturing costs and the risks of leakages would increase. The problem is solved by a storage container, a first open / close valve in a line between the expansion valve and the useful side of the heat exchanger and a bypass that branches off between the open / close valve and the expansion valve and is connected to the suction side of the compressor . When working fluid is drained into the container, the first on / off valve is closed and the working fluid flows from the heat source side through the bypass into the storage container.

Die vorgestellten Systeme hatten am Markt bislang nur wenig Erfolg. Dies kann auf die folgenden Gründe zurückgeführt werden:

  • Montagefreundlichkeit: Im Falle von Modernisierungen von alten Heizungsanlagen müssen die neu zu installierenden Vorrichtungen zerlegbar und transportabel sein. Beispielsweise müssen sie über Kellertreppen und in verwinkelte und niedrige Kellerräume verbracht werden können. Zusammenbau, Inbetriebnahme und Wartung müssen ohne großen Aufwand vor Ort möglich sein. Dies schließt große und schwere Druckbehälter weitgehend aus, ferner Systeme, die nach einer Havarie nicht mehr demontierbar sind.
  • Diagnosefreundlichkeit: Die Betriebszustände sollten von außen gut erkennbar sein, dies betrifft die Sichtbarkeit und Prüfbarkeit bezüglich möglicher Leckagen und schließt den Füllstand des Arbeitsfluids sowie den Befüllungsgrad ggf. eingebrachter Sorbentien ein.
  • Wartungsfreundlichkeit: Systemdiagnosen sollten ohne großen zusätzlichen Aufwand erfolgen können. Sicherheitsrelevante Systeme sollten regelmäßig getestet bzw. auf ihre Zuverlässigkeit geprüft werden können. Sofern Systemdiagnosen nicht einfach durchführbar sind, sollten möglicherweise belastete Teile leicht durch Neuteile austauschbar sein.
  • Ausfallsicherheit: Die System sollen einerseits gegen Störungen gesichert sein, gleichzeitig aber zuverlässig laufen können, wenigstens im Notbetrieb. Im Falle einer vorübergehenden externen Störung sollten die Systeme entweder selbstständig wieder anfahren oder ohne großen Aufwand wiederangefahren werden können.
  • Energieeffizienz: Die Anlagen sollen energetisch günstig betrieben werden können, ein hoher Eigenverbrauch an Energie für Sicherheitsmaßnahmen wirkt dem entgegen.
  • Robustheit: Im Falle größerer Störungen, seien sie extern oder systemintern aufgeprägt, muss die Beherschbarkeit gewährleistet sein, dies betrifft z.B. Lüftungssysteme, die verstopfen können oder Druckbehälter, die unter Druck stehen oder heiß werden, etwa bei einem Brand.
  • Kosten: Die Sicherheitsmaßnahmen sollen weder bei den Anschaffungskosten noch bei den laufenden Kosten bedeutend sein und die Einsparungen bei den Energiekosten gegenüber herkömmlichen Systemen übersteigen. Sie sollen günstig sein.
The systems presented have so far had little success on the market. This can be attributed to the following reasons:
  • Ease of installation: In the case of modernization of old heating systems, the new devices to be installed must be dismantled and transportable. For example, they must be able to be moved up and down cellar stairs and into angled and low basement rooms. Assembly, commissioning and maintenance must be possible on site without much effort. This largely excludes large and heavy pressure vessels, as well as systems that cannot be dismantled after an accident.
  • Ease of diagnosis: The operating states should be clearly recognizable from the outside, this concerns the visibility and testability with regard to possible leaks and includes the level of the working fluid and the degree of filling of any sorbents that may have been introduced.
  • Ease of maintenance: System diagnostics should be able to be carried out without much additional effort. Security-relevant systems should be tested regularly or their reliability should be checked. If system diagnoses are not easy to carry out, it should be easy to replace parts that are under load with new parts.
  • Reliability: On the one hand, the systems should be secured against malfunctions, but at the same time they should run reliably, at least in emergency operation. In the event of a temporary external fault, the systems should either restart independently or be restarted with little effort.
  • Energy efficiency: The plants should be able to be operated at low energy costs, a high self-consumption of energy for security measures counteracts this.
  • Robustness: In the event of major malfunctions, be they external or internal to the system, manageability must be guaranteed, for example ventilation systems that can clog or pressure vessels that are under pressure or get hot, for example in the event of a fire.
  • Costs: The security measures should not be significant in terms of acquisition costs or running costs and should not exceed the savings in energy costs compared to conventional systems. They should be cheap.

Im Falle von Leckagen oder Wartungsarbeiten, bei denen der Arbeitsfluidumlauflauf geöffnet oder erhitzt werden muss, ist der Arbeitsfluidumlauf möglichst vollständig zu entleeren oder wenigstens vom entzündlichen Arbeitsfluid so weitgehend zu befreien, dass nie die Gefahr einer Entzündung entstehen kann. Auch sonstige Maßnahmen, wie z.B. Routineprüfungen, können eine Entleerung erfordern. Solche Entleerungen werden derzeit manuell durchgeführt und es wäre wünschenswert, sie auch per Fernwartung durchführen zu können. Wünschenswert angesichts extern verursachter Störungen wie Erdbeben, Bränden oder Überschwemmungen wäre ferner, wenn das entzündliche Arbeitsfluid schnell in Sicherheit gebracht werden könnte, ohne dass ein manuelles Eingreifen vor Ort erforderlich ist.In the event of leaks or maintenance work in which the working fluid circulation must be opened or heated, the working fluid circulation must be emptied as completely as possible or at least freed from the inflammable working fluid to such an extent that there is never any risk of ignition. Other measures, such as Routine checks may require emptying. Such drains are currently carried out manually and it would be desirable to be able to carry them out remotely. In view of externally caused disturbances such as earthquakes, fires or floods, it would also be desirable if the flammable working fluid could be brought to safety quickly without manual intervention on site being required.

Es ist auch eine Möglichkeit zur Regelung der Menge an Arbeitsfluid im Kältekreislauf bekannt geworden. Die US 2015/0059367 A1 beschreibt einen Kältekreis mit einer Beladekontrolle, einer Entladekontrolle sowie Anschlüssen zwischen dem Kondensator und dem Expansionsventil. Weiterhin ist ein Lagerbehälter und eine Förderpumpe hinter dem Entladeventil vorgesehen. Wenn sich die Umgebungsbedingungen ändern, bei einer Wärmepumpe beispielsweise jahreszeitlich oder täglich anlässlich Wetterwechseln, kann die im Kältekreis zirkulierende Menge an Arbeitsfluid verändert und den jeweiligen Bedingungen angepasst werden. Des Weiteren offenbart die US 2015/0059367 A1 eine Vorrichtung gemäß dem Oberbegriff des Anspruchs 1 zur sicheren Durchführung eines linksdrehenden thermodynamischen Clausius-Rankine-Kreisprozesses sowie seiner sicheren Entleerung und Befüllung mittels eines entzündlichen Arbeitsfluids sowie ein Verfahren gemäß dem Oberbegriff des Anspruchs 8 zur sicheren Entleeren eines entzündlichen Arbeitsfluids.A way of regulating the amount of working fluid in the refrigeration cycle has also become known. The US 2015/0059367 A1 describes a refrigeration circuit with a loading control, an unloading control and connections between the condenser and the expansion valve. Furthermore, a storage container and a feed pump are provided behind the unloading valve. If the ambient conditions change, for example with a heat pump changing seasonally or daily due to weather changes, the amount of working fluid circulating in the refrigeration circuit can be changed and adapted to the respective conditions. Furthermore, the US 2015/0059367 A1 a device according to the preamble of claim 1 for safely performing a left-turning thermodynamic Rankine cycle and its safe emptying and filling by means of an inflammable working fluid and a method according to the preamble of claim 8 for safely emptying an inflammable working fluid.

Die Aufgabe der Erfindung ist daher, einen verbesserten Sicherheitsbehälter bereitzustellen, der das Arbeitsfluid aus dem Kreisprozess entnehmen kann, eine Rückführung in den Kreisprozess ermöglicht, die dargestellten Probleme besser löst und die Nachteile nicht mehr aufweist.The object of the invention is therefore to provide an improved safety container which can remove the working fluid from the cycle, enables a return to the cycle, better solves the problems presented and no longer has the disadvantages.

Die Erfindung löst diese Aufgabe durch eine Vorrichtung gemäß Anspruch 1. Die Vorrichtung ist geeignet zur sicheren Durchführung eines linksdrehenden thermodynamischen Clausius-Rankine-Kreisprozesses mittels eines entzündlichen Arbeitsfluids, welches im gasförmigen Zustand unter Atmosphärenbedingungen schwerer als Luft ist und in einem geschlossenen, hermetisch dichten Arbeitsfluidumlauf geführt wird, aufweisend

  • mindestens einen Verdichter für Arbeitsfluid,
  • mindestens eine Entspannungseinrichtung für Arbeitsfluid,
  • mindestens zwei Wärmeübertrager für Arbeitsfluid mit jeweils mindestens zwei Anschlüssen für Wärmeüberträgerfluide,
  • ein geschlossenes Gehäuse, welches alle am geschlossenen Arbeitsfluidumlauf angeschlossenen Einrichtungen umfasst, weitere Einrichtungen umfassen kann,
  • mindestens einen Sicherheitsbehälter zur Aufnahme von Arbeitsfluid
  • mindestens eine Absperrvorrichtung innerhalb des Arbeitsfluidumlaufes,
  • ein Absperrventil und einen Abzweig aus dem Arbeitsfluidumlauf zum Sicherheitsbehälter,
  • am Abzug des Sicherheitsbehälters eine Einrichtung zur Druckerhöhung,
  • mindestens einen Druckbehälter zur Aufnahme von Inertgas,
  • eine absperrbare Zuführleitung vom Inertgasbehälter zum Sicherheitsbehälter,
  • eine Abzugsleitung vom Sicherheitsbehälter mit einem nachfolgenden Gas-Flüssigkeitsabscheider,
  • einer Verbindungsleitung vom Flüssigabzug des Gas-Flüssigkeitsabscheider zu einer Druckreduzierungs- und Absperrvorrichtung, die mit dem Arbeitsfluidumlauf des Kreisprozesses verbunden ist.
The invention solves this problem by a device according to claim 1. The device is suitable for safely performing a left-turning thermodynamic Rankine cycle using an inflammable working fluid, which is heavier than air in the gaseous state under atmospheric conditions and in a closed, hermetically sealed working fluid circuit is performed
  • at least one compressor for working fluid,
  • at least one relaxation device for working fluid,
  • at least two heat exchangers for working fluid, each with at least two connections for heat transfer fluids,
  • a closed housing, which includes all devices connected to the closed working fluid circuit, can comprise further devices,
  • at least one safety container for holding working fluid
  • at least one shut-off device within the working fluid circulation,
  • a shut-off valve and a branch from the working fluid circulation to the safety container,
  • a device for increasing the pressure at the trigger of the safety container,
  • at least one pressure vessel for holding inert gas,
  • a lockable supply line from the inert gas container to the safety container,
  • a discharge line from the safety container with a subsequent gas-liquid separator,
  • a connecting line from the liquid discharge of the gas-liquid separator to a pressure reduction and shut-off device, which is connected to the working fluid circulation of the cycle.

Als Wärmeübertragerfluide sind hier alle gasförmigen oder flüssigen Medien zu verstehen, mit denen Wärme übertragen wird, also etwa Luft, Wasser, Sole, Wärmeträgeröle oder dergleichen.Here, heat transfer fluids are to be understood as all gaseous or liquid media with which heat is transferred, for example air, water, brine, heat transfer oils or the like.

In einer Ausgestaltung der Erfindung werden als Arbeitsfluid Propan und als Inertgas Stickstoff verwendet. Bei der Wahl des Inertgases ist darauf zu achten, dass sich Inertgas nicht in flüssigem Arbeitsfluid lösen kann. Inertgas kann auch an anderen Stellen in solchen Anlagen verwendet werden, beispielsweise zur Inertisierung des Gehäuses oder des Kreisprozesses, wenn er zuvor entleert wurde und Arbeiten hieran stattfinden sollen. Für solche Zwecke können weitere Inertisierungsmaßnahmen vorgesehen werden. Der hier vorgesehene Inertgasbehälter ist nur für solches Inertgas vorgesehen, welches zum Entleeren des Sicherheitsbehälters, der Rückführung in den Kreisprozess oder zur Ausschleusung und Aufbewahrung von Inertgas aus dem Kreisprozess dient.In one embodiment of the invention, propane is used as the working fluid and nitrogen is used as the inert gas. When choosing the inert gas, make sure that the inert gas cannot dissolve in the liquid working fluid. Inert gas can also be used at other points in such systems, for example for inerting the housing or the cycle if it was previously emptied and work is to be carried out on it. Further inerting measures can be provided for such purposes. The inert gas container provided here is only intended for the inert gas that is used to empty the safety container, return it to the cycle or to discharge and store inert gas from the cycle.

Hierbei wird zum Entleeren des Sicherheitsbehälters zunächst der Druck erhöht, indem unter hohem Druck stehendes Inertgas in den mit Arbeitsfluid gefüllten Sicherheitsbehälter gedrückt wird. Hierdurch wird ein Teil des dampfförmig vorliegenden Arbeitsfluids verflüssigt, wobei angestrebt wird, dass dieser Anteil möglichst groß ist. Der unten im Sicherheitsbehälter befindliche Ablass leitet beim Öffnen also zunächst flüssiges Arbeitsfluid ab. Danach ergibt sich gegen Ende des Entleerungsvorgangs ein Gas-Flüssigkeits-Gemisch im Abzug, bevor nur noch Inertgas abgezogen wird.To empty the safety container, the pressure is first increased by pressing inert gas under high pressure into the safety container filled with working fluid. As a result, part of the vaporized working fluid is liquefied, with the aim that this proportion is as large as possible. The drain located in the bottom of the safety container first drains liquid working fluid when it is opened. Then there is a gas-liquid mixture in the fume cupboard at the end of the emptying process before only inert gas is drawn off.

In einer weiteren Ausgestaltung der Erfindung ist vorgesehen, dass mit dem Propangasabzug des Sicherheitsbehälters als Einrichtung zur Druckerhöhung eine Pumpe, wie sie sonst auch in KFZ als Benzinpumpe oder als Einspritzpumpe eingesetzt wird. Die Pumpe sollte auch gegen ein Trockenlaufen geschützt sein, ein Gas-Flüssigkeitsgemisch fördern können und am besten wie ein Verdichter auch allein gasförmiges Fluid fördern können. Die Druckerhöhung muss dabei nicht hoch sein. Vorteilhaft ist es, wenn die Pumpe eine Zwangsförderung durchführt, wie es Kolbenpumpen, Zahnradpumpen, Rootspumpen, Schlauchpumpen oder Membranpumpen tun. Die Pumpe kann dabei auch innerhalb des Sicherheitsbehälters angeordnet sein.In a further embodiment of the invention, it is provided that with the propane gas discharge from the safety container as a device for increasing the pressure, a pump, as is otherwise also used in motor vehicles as a gasoline pump or as an injection pump. The pump should also be protected against running dry, able to deliver a gas-liquid mixture and, best of all, like a compressor, also capable of delivering gaseous fluid. The pressure increase does not have to be high. It is advantageous if the pump carries out forced delivery, as piston pumps, gear pumps, root pumps, peristaltic pumps or diaphragm pumps do. The pump can also be arranged inside the containment.

In einer weiteren Ausgestaltung der Erfindung wird das aus dem Sicherheitsbehälter entnommene Gas-Flüssigkeitsgemisch, das typischerweise ein Gemisch aus flüssigem Propan, gasförmigem Propan und Stickstoff ist, gekühlt. Hierdurch sinkt der Dampfdruck des Propans und je nach Druck des Inertgases liegen am nachfolgenden Gas-Flüssigkeitsabscheider nur noch eine flüssige Arbeitsfluid-Phase und eine gasförmige Inertgas-Phase vor, die voneinander getrennt werden müssen.In a further embodiment of the invention, the gas-liquid mixture removed from the safety container, which is typically a mixture of liquid propane, gaseous propane and nitrogen, is cooled. As a result, the vapor pressure of the propane drops and, depending on the pressure of the inert gas, there is only a liquid working fluid phase and a gaseous inert gas phase at the subsequent gas-liquid separator, which must be separated from one another.

Die Trennung erfolgt mit einem Gas-Flüssigkeitsabscheider, der vorzugsweise als Zyklonabscheider ausgeführt ist. Die flüssige Phase wird darin unten abgezogen und flüssig und unter Druck zum Umlauf des Kreisprozesses zurückgeführt. Kurz vor dem Eintritt wird der Druck reduziert. Hierbei ist darauf zu achten, dass keine Flash-Verdampfung in der Weise geschieht, dass Kavitation zu Störungen führt.The separation takes place with a gas-liquid separator, which is preferably designed as a cyclone separator. The liquid phase is drawn off at the bottom and returned to the circulation of the cycle under pressure and liquid. The pressure is reduced shortly before entering. It is important to ensure that no flash evaporation occurs in such a way that cavitation leads to faults.

Der Systemdruck vor der Druckreduzierung wird dabei von den Wünschen bezüglich der Weiterverwendung des im Gas-Flüssigkeitsabscheider abgeschiedenen Inertgases bestimmt. Sofern es in den Inertgasbehälter zurückgeführt werden soll, ist der Druck hoch zu wählen, damit während der Abscheidung möglichst wenig dampfförmiges Arbeitsfluid in den Inertgasbehälter gelangt. In diesem Fall muss die Druckerhöhungspumpe lediglich die Druckverluste ausgleichen, die im entstehenden Inertgaskreislauf überwunden werden müssen. Soll das Inertgas verworfen werden, kann auf höheren Druck verzichtet werden. Allerdings müssen dann auch Verluste an Arbeitsfluid ausgeglichen werden.The system pressure before the pressure reduction is determined by the wishes regarding the further use of the inert gas separated in the gas-liquid separator. If it is to be returned to the inert gas container, the pressure should be high so that as little vaporized working fluid as possible gets into the inert gas container during the separation. In this case, the booster pump only has to compensate for the pressure losses that have to be overcome in the resulting inert gas circuit. If the inert gas is to be discarded, higher pressure can be dispensed with. However, losses of working fluid must also be compensated for.

In einer Ausgestaltung der Erfindung wird vorgesehen, dass Sicherheitsbehälter, Inertgasbehälter, Druckerhöhungspumpe, Gas-Flüssig-Abscheider sowie die zugehörigen Leitungen und Armaturen gemeinsam in einen druckdichten, hermetisch verschlossenen Sicherheitscontainer integriert werden. Auf diese Weise wird sichergestellt, dass der Sicherheitsbehälter und seine Anschlüsse nicht selbst zum Sicherheitsrisiko werden. Hierdurch wird außer der Sicherheitsverbesserung auch die Wartung vereinfacht, da der Sicherheitscontainer schnell ausgetauscht werden kann.In one embodiment of the invention, it is provided that the safety container, inert gas container, booster pump, gas-liquid separator and the associated lines and fittings are integrated together in a pressure-tight, hermetically sealed safety container. This ensures that the containment and its connections do not become a security risk themselves. This will save the safety improvement also simplifies maintenance, since the safety container can be replaced quickly.

In einer Ausgestaltung der Erfindung wird der befüllte Sicherheitsbehälter dazu genutzt, Inertgas, welches sich beispielsweise nach einer Reparatur im Arbeitskreislauf befindet, in den das Arbeitsfluid danach wieder eingeführt werden soll, zu entfernen. Hierzu wird zunächst, wie oben beschrieben, Arbeitsfluid mittels Inertgasdruck in den Arbeitskreislauf gedrückt. Bei laufendem Verdichter wird das Arbeitsfluid-Inertgasgemisch sodann, ohne es in den Wärmetauschern des Kreisprozesses zu erwärmen, wieder flüssig in den Sicherheitsbehälter zurückgefördert, von wo aus es über die Druckerhöhungspumpe und den Gas-Flüssigkeitsabscheider wieder in den Arbeitskreislauf gelangt. Das Inertgas kann auf diese Weise praktisch vollständig abgeschieden werden.In one embodiment of the invention, the filled safety container is used to remove inert gas, which is, for example, after a repair in the working circuit, into which the working fluid is then to be reintroduced. For this purpose, as described above, working fluid is first pressed into the working circuit by means of inert gas pressure. With the compressor running, the working fluid / inert gas mixture is then, without heating it up in the heat exchangers of the cycle, fluidly conveyed back into the safety container, from where it returns to the working circuit via the booster pump and the gas / liquid separator. The inert gas can be separated almost completely in this way.

Die Erfindung umfasst auch ein sicheres Verfahren gemäß Anspruch 8. Das Verfahren ist zur Entleerung des Arbeitsfluidumlaufes seiner Wiederbefüllung und der Entfernung von Inertgas aus dem Arbeitsfluidumlauf unter Verwendung der beschriebenen Vorrichtung.The invention also includes a safe method according to claim 8. The method is for emptying the working fluid circulation, its refilling and the removal of inert gas from the working fluid circulation using the described device.

Zur Entleerung aus dem Arbeitsfluidumlauf, bzw. dem Befüllungsfall für den Sicherheitsbehälter wird die Absperrvorrichtung innerhalb des Arbeitsfluidumlaufes geschlossen und der Anschluss zum Sicherheitsbehälter geöffnet. Der Sicherheitsbehälter 13 wird dabei an seinem Ausgang versperrt. Sofern der Verdichter weiter laufen kann, was im Havariefall nicht immer der Fall ist, entspricht der Propangasdruck dem Enddruck, den der Verdichter 2 liefern kann.For emptying from the working fluid circulation or the filling case for the safety container, the shut-off device within the working fluid circulation is closed and the connection to the safety container is opened. The security container 13 is blocked at its exit. If the compressor can continue to run, which is not always the case in the event of an accident, the propane gas pressure corresponds to the final pressure that the compressor 2 can deliver.

Die Erfindung wird nachfolgend anhand einer Skizze näher erläutert. Hierbei zeigt Fig. 1 einen Arbeitsfluidumlauf und dem Sicherheitsbehälter mit InertisierungsausstattungThe invention is explained in more detail below with the aid of a sketch. Here shows Fig. 1 a working fluid circuit and the safety container with inerting equipment

Fig. 1 zeigt eine Prinzipskizze eines Arbeitsfluidumlaufes 1 mit einem Verdichter 2, einem Kondensator 3, einer Druckreduzierung 4 und einem Verdampfer 5 in einem geschlossenen Gehäuse 6. Das Gehäuse 6 verfügt über einen Wärmequellen-Anschluss 7, einen Wärmequellen-Vorlauf 8, einen Wärmesenken-Vorlauf 9 und einen Wärmesenken-Anschluss 10. Der Arbeitsfluidumlauf 1 wird in diesem Beispiel mit dem entzündlichen Arbeitsfluid Propan, welches auch unter der Bezeichnung R290 bekannt ist, betrieben. Dargestellt sind nur die wichtigsten Absperrorgane, selbstverständlich wird der Fachmann weitere Absperreinrichtungen und Rückschlagsicherungen vorsehen. Fig. 1 shows a schematic diagram of a working fluid circulation 1 with a compressor 2, a condenser 3, a pressure reduction 4 and an evaporator 5 in a closed housing 6. The housing 6 has a heat source connection 7, a heat source flow 8, a heat sink flow 9 and a heat sink connection 10. In this example, the working fluid circuit 1 is operated with the flammable working fluid propane, which is also known under the name R290. Only the most important shut-off devices are shown, of course the specialist will provide further shut-off devices and anti-kickback devices.

Im Entleerungsfall aus dem Arbeitsfluidumlauf, bzw. dem Befüllungsfall für den Sicherheitsbehälter wird das Dreiwegeventil 11 so umgeschaltet, dass ein Durchgang des Arbeitsfluids vom Verdichter 2 zum Kondensator 3 verhindert wird, während der zuvor geschlossene Durchgang vom Verdichter 2 zum Sicherheitsbehälter 13 durch die Arbeitsfluidzuleitung 12 geöffnet wird. Der Sicherheitsbehälter 13 wird dabei an seinem Ausgang versperrt. Sofern der Verdichter weiter laufen kann, was im Havariefall nicht immer der Fall ist, entspricht der Propangasdruck dem Enddruck, den der Verdichter 2 liefern kann.In the case of emptying from the working fluid circulation, or the filling case for the safety container, the three-way valve 11 is switched over so that passage of the working fluid from the compressor 2 to the condenser 3 is prevented, while the previously closed passage from the compressor 2 to the safety container 13 is opened by the working fluid supply line 12 becomes. The security container 13 is blocked at its exit. If the compressor can continue to run, which is not always the case in the event of an accident, the propane gas pressure corresponds to the final pressure that the compressor 2 can deliver.

Falls der Verdichter 2 nicht mehr betriebsbereit ist, kann notfalls Inertgas aus dem Druckbehälter 14 über die Inertgasleitung 23, die Arbeitsfluidzuleitung 21 und das Druckreduzierventil 22 in den Arbeitsfluidumlauf 1 gedrückt werden. Die Betätigung der Armaturen sollte in diesem Fall mittels Notstrom möglich sein. Das Drei-Wege-Ventil 11 schließt hierbei den Kreislauf 1 und leitet das Propan-Inertgas-Gemisch zum Sicherheitsbehälter 13 durch die Arbeitsfluidzuleitung 12. Auch im Falle eines Stromausfalls kann auf diese Weise die Befüllung des Sicherheitsbehälters bei gleichzeitiger Inertisierung des Arbeitsfluidumlaufes sichergestellt werden. Im Falle einer Leckage bewirkt die Zugabe des Inertgases auch am leckagebedingten Austritt eine Reduzierung des Entzündungsrisikos.If the compressor 2 is no longer ready for operation, if necessary, inert gas can be forced out of the pressure container 14 via the inert gas line 23, the working fluid supply line 21 and the pressure reducing valve 22 into the working fluid circulation 1. In this case it should be possible to operate the fittings using emergency power. The three-way valve 11 closes the circuit 1 and directs the propane / inert gas mixture to the safety container 13 through the working fluid supply line 12. Even in the event of a power failure, the filling of the safety container can be ensured in this way while the working fluid circulation is rendered inert. In the event of a leak, the addition of the inert gas also reduces the risk of ignition at the leakage-related outlet.

Ist das Propan aus dem Arbeitsfluidumlauf 1 vollständig, ggf. zusammen mit etwas Inertgas im Sicherheitsbehälter, kann dieser auch über einen längeren Zeitraum zur Zwischenlagerung des Propans dienen. Um auch Sicherheit gegenüber thermischer Einwirkung durch Brände zu bieten, kann dieser Sicherheitsbehälter einschließlich seiner Absperrungen auch auf deutlich höhere Drücke als für den Regelbetrieb ausgelegt werden. Insbesondere muss er auf denselben höheren Druck wie der Inertgasbehälter ausgelegt werden, damit eine Überlastung bei Verbindung der beiden Behälter ausgeschlossen ist.If the propane from the working fluid circulation 1 is complete, possibly together with some inert gas in the safety container, this can also be used for intermediate storage of the propane over a longer period of time. In order to also offer security against thermal effects from fires, this containment can also be designed for significantly higher pressures than for normal operation. In particular, it must be designed for the same higher pressure as the inert gas container so that an overload when connecting the two containers is excluded.

Zur Entleerung in den betriebsbereiten Arbeitsfluidumlauf wird zunächst der Druck im Sicherheitsbehälter 13 durch Öffnen des Sperrventils 16 deutlich erhöht, indem Inertgas aus der Inertgaszuleitung 15 zuströmt. Das Sperrventil 16 kann dabei auch als regelbares Druckreduzierventil ausgeführt werden. Bei der Wahl von Stickstoff als Inertgas ist der Temperaturabfall bei der Druckreduzierung zu beachten, dieser Temperaturabfall sollte in den Sicherheitsbehälter durch konstruktive Maßnahmen erfolgen, was durch Integration des Sperrventils 16 in den Kopf des Sicherheitsbehälters bewirkt werden kann. Eine Temperatursenkung im Sicherheitsbehälter ist dabei erwünscht.For emptying into the ready-to-use working fluid circulation, the pressure in the safety container 13 is first increased significantly by opening the shut-off valve 16, in that inert gas flows in from the inert gas supply line 15. The check valve 16 can also be designed as a controllable pressure reducing valve. If nitrogen is selected as the inert gas, the temperature drop in the pressure reduction must be taken into account, this temperature drop should take place in the safety container by constructive measures, which can be brought about by integrating the check valve 16 in the head of the safety container. A lowering of the temperature in the safety container is desirable.

Sobald im Sicherheitsbehälter ein hoher Druck erreicht wird, verflüssigt sich das in ihm befindliche Propan und kann als Flüssigphase im unteren Teil des Sicherheitsbehälters abgezogen werden. Während anfangs eine reine Flüssigphase abgezogen wird, bewirkt die Strömung im Sicherheitsbehälter 13 eine zunehmende Vermischung mit Inertgas, bis am Ende des Entleerungsvorgangs nur noch Inertgas vorliegt. Aus diesem Grund kann dieser Abzug nicht direkt mit dem Arbeitsfluidumlauf verbunden werden.As soon as a high pressure is reached in the safety container, the propane in it liquefies and can be drawn off as a liquid phase in the lower part of the safety container. While initially a pure liquid phase is drawn off, the flow in the safety container 13 causes an increasing mixing with inert gas until only inert gas is present at the end of the emptying process. For this reason, this deduction cannot be directly connected to the working fluid circulation.

Zuvor ist daher eine Trennung von flüssigem Propan von gasförmigem Inertgas vorzunehmen. Hierzu wird die aus dem Sicherheitsbehälter abgezogenen Phase zunächst mittels der Druckerhöhungspumpe 17 erhöht, danach im Kühler 18 gekühlt und nachfolgend über die Leitung 19 dem Gas-Flüssig-Abscheider 20 zugeführt.It is therefore necessary to separate liquid propane from gaseous inert gas beforehand. For this purpose, the phase withdrawn from the safety container is first increased by means of the pressure booster pump 17, then cooled in the cooler 18 and subsequently fed to the gas-liquid separator 20 via the line 19.

Die Kühlung kann durch verschiedene Maßnahmen erfolgen, es kann hierfür ein Kühlakku verwendet werden, der vor der Entleerung gekühlt wurde, es kann aber auch eine externe Kühlung erfolgen. Die Kühlung ist dabei optional.The cooling can be carried out by various measures, a cooling battery that was cooled before emptying can be used for this, but external cooling can also be carried out. Cooling is optional.

Der Gas-Flüssig-Abscheider 20 wird vorzugsweise als Zyklonabscheider ausgeführt, wobei die Flüssigphase durch die Wirbel an den Rand gedrückt und im Trichter abgezogen wird, während die Gasphase wieder in den Inertgasbehälter zurückgeführt werden kann. Damit diese Rückführung funktioniert, muss am Ausgang des Gas-Flüssig-Abscheiders 20 ein höherer Druck als im Inertgasbehälter anliegen.The gas-liquid separator 20 is preferably designed as a cyclone separator, the liquid phase being pressed against the edge by the vortices and drawn off in the funnel, while the gas phase can be returned to the inert gas container. In order for this recirculation to work, a higher pressure than in the inert gas container must be present at the outlet of the gas-liquid separator 20.

Diese Druckdifferenz soll durch die Druckerhöhungspumpe 17 bewältigt werden. Dass Spuren des gasförmigen Propans auf diese Weise mit dem im Kreislauf geführten Inertgas in den Inertgasbehälter 14 gelangen können, darf toleriert werden, da die bestimmungsgemäße Funktionalität hierdurch nicht beeinträchtigt wird, ggf. kann dem Gas-Flüssig-Abscheider 20 auch eine adsorptiven Feinreinigung bezüglich Propangasanteilen erfolgen.This pressure difference is to be managed by the pressure booster pump 17. The fact that traces of the gaseous propane can get into the inert gas container 14 with the circulated inert gas may be tolerated, since this does not impair the intended functionality; if necessary, the gas-liquid separator 20 can also perform an adsorptive fine cleaning with regard to propane gas components respectively.

Die flüssige Propanphase wird über die Arbeitsfluidzuleitung 21 in den Arbeitsfluidumlauf 1 zurückgeführt, wobei der dort anliegende hohe Druck durch ein Druckreduzierventil 22 am Arbeitsfluidumlauf 1 entsprechend reduziert wird, um eine Drucküberlastung des Arbeitsfluidumlaufes sicher zu vermeiden. Beim Wiederbefüllen wird das Drei-Wege-Ventil 11 wieder so zurückgeschaltet, dass der Weg zum Sicherheitsbehälter 13 geschlossen und der Arbeitsfluidumlauf offen ist.The liquid propane phase is returned to the working fluid circulation 1 via the working fluid feed line 21, the high pressure present there being correspondingly reduced by a pressure reducing valve 22 on the working fluid circulation 1 in order to reliably avoid a pressure overload of the working fluid circulation. When refilling, the three-way valve 11 is switched back so that the path to the safety container 13 is closed and the working fluid circulation is open.

Müssen bei der Wiederbefüllung des Arbeitsfluidumlaufes 1 dagegen größere Mengen Inertgas aus dem Arbeitsfluidumlauf ausgeschleust werden, bleibt das Drei-Wege-Ventil 11 zunächst zum Sicherheitsbehälter 11 hin offen, damit auszuschleusendes Inertgas in den Sicherheitsbehälter gefördert wird, während über die Arbeitsfluidzuleitung 21 Propan in den Kreislauf 1 strömt. Es ist aus diesem Grund sinnvoll, diese Arbeitsfluidzuleitung 21 unmittelbar hinter dem Drei-Wege-Ventil 11 anzuschließen, damit der nicht durchströmbare Totraum zwischen Ableitung und Zuleitung möglichst klein bleibt. Sobald das Inertgas aus dem Arbeitsfluidumlauf 1 dann in den Sicherheitsbehälter 13 gespült worden ist, wird die Arbeitsfluidzuleitung 12 geschlossen und das Drei-Wege-Ventil 11 im Arbeitsfluidumlauf geöffnet. Mit dem Inertgas-Propan-Gemisch, welches beim Durchspülen dabei in den Sicherheitsbehälter 13 gelangt ist, wird danach wie in einem normalen Befüllvorgang verfahren.On the other hand, if larger amounts of inert gas have to be removed from the working fluid circulation when refilling the working fluid circulation 1, the three-way valve 11 initially remains open to the safety container 11 so that inert gas to be discharged is conveyed into the safety container, while propane is fed into the circuit via the working fluid supply line 21 1 flows. For this reason, it makes sense to connect this working fluid supply line 21 immediately to be connected behind the three-way valve 11 so that the dead space between the discharge line and supply line which cannot be traversed remains as small as possible. As soon as the inert gas from the working fluid circulation 1 has then been flushed into the safety container 13, the working fluid supply line 12 is closed and the three-way valve 11 in the working fluid circulation is opened. The inert gas / propane mixture which has reached the safety container 13 during flushing is then operated as in a normal filling process.

BezugszeichenlisteReference symbol list

11
ArbeitsfluidumlaufWorking fluid circulation
22nd
Verdichtercompressor
33rd
Kondensatorcapacitor
44th
DruckreduzierungPressure reduction
55
VerdampferEvaporator
66
Gehäusecasing
77
Wärmequellen-AnschlussHeat source connection
88th
Wärmequellen-VorlaufHeat source flow
99
Wärmesenken-VorlaufHeat sink flow
1010th
Wärmesenken-AnschlussHeat sink connection
1111
Drei-Wege-VentilThree-way valve
1212
ArbeitsfluidzuleitungWorking fluid supply
1313
SicherheitsbehälterSecurity container
1414
InertgasbehälterInert gas container
1515
InertgaszuleitungInert gas supply
1616
SperrventilCheck valve
1717th
DruckerhöhungspumpeBooster pump
1818th
Kühlercooler
1919th
Leitungmanagement
2020th
Gas-Flüssig-AbscheiderGas-liquid separator
2121st
ArbeitsfluidleitungWorking fluid line
2222
DruckreduzierventilPressure reducing valve
2323
InertgasleitungInert gas line

Claims (12)

  1. Device for safely carrying out a left-turning thermodynamic Clausius-Rankine cycle and the safe emptying and filling thereof by means of an inflammable working fluid, having an inflammable working fluid
    which is heavier than air in the gaseous state under atmospheric conditions, having a closed, hermetically sealed working fluid circuit (1), wherein the working fluid circuit (1)
    - has at least one compressor (2) for working fluid,
    - at least one pressure relief apparatus (4) for working fluid,
    - at least two heat exchangers (3, 5) for working fluid, each with at least two connections (7, 8, 9, 10) for heat transfer fluids, and
    - at least one shut-off device (11), having
    at least one safety container (13) for receiving working fluid which is connected to the working fluid circuit (1),
    having a shut-off valve (11) and a branch (12) from the working fluid circuit (1) to the safety container (13), and
    at the outlet of the safety container (13), having an apparatus for increasing pressure (17), wherein the at least one shut-off device is the shut-off valve (11),
    characterised by
    - at least one pressure container (14) for dispensing and receiving inert gas,
    - a lockable supply line (15) from the pressure container (14) to the safety container (13),
    - a withdrawal line from the safety container (13) with a subsequent gas-liquid separator (20),
    - a connecting line (21) from the liquid outlet of the gas-liquid separator (20) to a pressure-reducing and shut-off device (22) which is connected to the working fluid circuit (1) of the cycle,
    and by
    a closed housing (6), which comprises all apparatuses connected to the closed working fluid circuit (1) and can comprise further apparatuses.
  2. Device according to claim 1, characterised in that the working fluid is propane and the inert gas is nitrogen.
  3. Device according to any of claims 1 or 2, characterised in that the apparatus for increasing pressure comprises a pump (17) with forced delivery.
  4. Device according to any of claims 1 to 3, characterised in that the apparatus for increasing pressure (17) is arranged within the safety container (13).
  5. Device according to any of claims 1 to 4, characterised in that a device (18) for cooling the withdrawn fluid is provided at the outlet of the safety container (13).
  6. Device according to any of claims 1 to 5, characterised in that an outlet (23) for gas of the gas-liquid separator (20) is connected to the pressure container (14) for inert gas.
  7. Device according to any of claims 1 to 6, characterised in that the safety container (13), pressure container (14), pressure-increasing device (17), gas-liquid separator (20) and the associated lines and fittings are integrated together in a pressure-tight, hermetically sealed safety container.
  8. Method for safely emptying an inflammable working fluid, which is heavier than air in the gaseous state under atmospheric conditions and is conducted in a closed, hermetically sealed working fluid circuit (1) of a left-turning thermodynamic Clausius-Rankine cycle, having
    - at least one compressor (2) for working fluid,
    - at least one pressure relief apparatus (4) for working fluid,
    - at least two heat exchangers (3, 5) for working fluid, each with at least two connections (7, 8, 9, 10) for heat transfer fluids,
    - a closed housing (6),
    - which comprises all apparatuses connected to the closed working fluid circuit (1), and
    - can comprise further apparatuses,
    - and at least one safety container (13) for receiving working fluid which is connected to the working fluid circuit (1),
    - at least one shut-off device (11) within the working fluid circuit (1)
    - at least one pressure container (14) for dispensing and receiving inert gas,
    - a shut-off valve (11) and a branch (12) from the working fluid circuit (1) to the safety container (13), wherein the at least one shut-off device (11) is the shut-off valve (11),
    - a lockable supply line (15) from the pressure container (14) to the safety container (13),
    - a withdrawal line from the safety container (13) with a subsequent gas-liquid separator (20),
    - a connecting line (21) from the liquid outlet of the gas-liquid separator (20) to a pressure-reducing and shut-off device (22) which is connected to the working fluid circuit (1) of the cycle,
    wherein
    - the shut-off device (11) within the working fluid circuit (1) is closed,
    - the connection (12) to the safety container (13) is opened, and
    - the safety container (13) is blocked at its outlet.
  9. Method according to claim 8, wherein the compressor (2) is used to convey the working fluid into the safety container (13).
  10. Method according to claim 8, wherein the inert gas from the pressure container (14) is used to convey the working fluid into the safety container (13) by guiding this inert gas under pressure into the working fluid circuit (1).
  11. Method for refilling a working fluid circuit (1), wherein the safety container (13) has been filled according to any of methods 8 to 10, wherein, when the working fluid supply to the safety container (13) is closed, the pressure in the safety container (13) is first increased by connecting said safety container to the pressure container (14), wherein inert gas flows in, then fluid is withdrawn from the safety container (13) and the withdrawn fluid is subjected to a gas-liquid separation (20), and the liquid working fluid obtained is conducted into the working fluid circuit (1) via a pressure relief apparatus (22).
  12. Method for refilling a working fluid circuit (1) according to claim 11, wherein the safety container (13) has been filled according to any of methods 8 to 10, wherein, when the working fluid supply (11) to the safety container (13) is closed, the pressure in the safety container (13) is first increased by connecting said safety container to the pressure container (14), wherein inert gas flows in, then fluid is withdrawn from the safety container (13) and the withdrawn fluid is subjected to a gas-liquid separation (20), and the liquid working fluid obtained is conducted into the working fluid circuit (1) via a pressure relief apparatus (22), and thereafter, when the shut-off device (11) is closed in the working fluid circuit, the working fluid charged with inert gas is filled once again into the safety container (13), and thereafter the supply line (12) to the safety container (13) is closed and the shut-off device (11) in the working fluid circuit (1) is opened and, after separation of the inert gas in the gas-liquid separation (20), a further filling process according to claim 11 takes place.
EP18203625.1A 2017-12-04 2018-10-31 Device for safely carrying out a left-turning thermodynamic rankine cycle and its safe emptying and filling by means of an inflammable working fluid and a method for safely emptying an inflammable working fluid Active EP3492846B1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PL18203625T PL3492846T3 (en) 2017-12-04 2018-10-31 Device for safely carrying out a left-turning thermodynamic rankine cycle and its safe emptying and filling by means of an inflammable working fluid and a method for safely emptying an inflammable working fluid
HRP20201410TT HRP20201410T1 (en) 2017-12-04 2020-09-03 Device for safely carrying out a left-turning thermodynamic rankine cycle and its safe emptying and filling by means of an inflammable working fluid and a method for safely emptying an inflammable working fluid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102017128702.7A DE102017128702A1 (en) 2017-12-04 2017-12-04 Safety container for working fluid

Publications (2)

Publication Number Publication Date
EP3492846A1 EP3492846A1 (en) 2019-06-05
EP3492846B1 true EP3492846B1 (en) 2020-06-10

Family

ID=64048878

Family Applications (1)

Application Number Title Priority Date Filing Date
EP18203625.1A Active EP3492846B1 (en) 2017-12-04 2018-10-31 Device for safely carrying out a left-turning thermodynamic rankine cycle and its safe emptying and filling by means of an inflammable working fluid and a method for safely emptying an inflammable working fluid

Country Status (6)

Country Link
EP (1) EP3492846B1 (en)
DE (1) DE102017128702A1 (en)
DK (1) DK3492846T3 (en)
ES (1) ES2817439T3 (en)
HR (1) HRP20201410T1 (en)
PL (1) PL3492846T3 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102019118977A1 (en) * 2019-02-06 2020-08-20 Vaillant Gmbh Adsorber cooling

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE553295C (en) 1931-02-03 1932-06-23 Bbc Brown Boveri & Cie Encapsulated compression refrigeration machine
DE4114529A1 (en) 1991-05-03 1993-02-11 Aero Tech Klima Kaelte Safety arrangement esp. for ammonia-filled refrigeration plate - provides gas-tight container for take=up of material leaking from either of two interconnected pressure vessels
DE19525064C1 (en) 1995-07-10 1996-08-01 Joachim Dr Ing Paul Refrigeration machine with housing for containing coolant
DE19526980A1 (en) 1995-07-25 1997-01-30 York Int Gmbh Removing gaseous impurities from air in room - by monitoring air for impurities, and passing air in compressed form, through liq., when impurities are found
JP3855901B2 (en) * 2002-09-26 2006-12-13 三菱電機株式会社 Refrigeration and air-conditioning cycle device handling method, refrigeration and air-conditioning cycle device refrigerant recovery mechanism
JP2006162122A (en) 2004-12-06 2006-06-22 Sanden Corp Vehicular air conditioner
US9279607B2 (en) 2010-12-03 2016-03-08 Mitsubishi Electric Corporation Method of part replacement for refrigeration cycle apparatus
DE102011116863A1 (en) 2011-10-25 2013-04-25 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Method for securing device for closed thermodynamic cycle, involves contacting adsorbent with environmentally hazardous, toxic and/or flammable material, and selectively binding flammable substance by adsorbent
US20150059367A1 (en) * 2013-09-04 2015-03-05 University Of Dayton Active charge control methods for vapor cycle refrigeration or heat pump systems
WO2015032905A1 (en) 2013-09-05 2015-03-12 Holger König Method for preventing leakage from a container and a container having leakage safeguard
AU2014385084B2 (en) 2014-03-07 2017-08-03 Mitsubishi Electric Corporation Air-conditioning apparatus
US10054346B2 (en) * 2015-10-27 2018-08-21 Mahle Aftermarket Italy S.P.A. Method for checking the presence of incondensable gases in climate recovery and charging station

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
PL3492846T3 (en) 2020-11-16
HRP20201410T1 (en) 2021-02-05
DK3492846T3 (en) 2020-09-07
EP3492846A1 (en) 2019-06-05
ES2817439T3 (en) 2021-04-07
DE102017128702A1 (en) 2019-06-06

Similar Documents

Publication Publication Date Title
EP3486582B1 (en) Device for leakage detection using absorber
EP3578895B1 (en) Device and method for safe and energy-saving flushing of a housing
EP3581861B1 (en) Fluid absorption
EP2193313B1 (en) Safety heat exchanger for combining a heat pump with a device of a public drinking water supply facility
EP3748257B1 (en) Device for the safe performance of a left-rotating thermodynamic circular process by means of a flammable working fluid with the use of fluidadsoption
EP3543629B1 (en) No leak housing for a cycle process
EP3486564B1 (en) DEVICE FOR SAFE IMPLEMENTATION OF A LEFT-SWITCHING THERMODYNAMIC CLAUSIUS RANKINE PROCESS
BASED ON WORK FLUID ADSORPTION WITH INERTGAS DISPLACEMENT
EP3693687B1 (en) Adsorption cooling
EP4008979A1 (en) Device for safely carrying out a left-turning thermodynamic cycle
EP3705823B1 (en) Device for a safe service intervention for an enclosure and method for opening the enclosure.
EP3492846B1 (en) Device for safely carrying out a left-turning thermodynamic rankine cycle and its safe emptying and filling by means of an inflammable working fluid and a method for safely emptying an inflammable working fluid
EP3486583B1 (en) Cooling circuit with leak prevention
EP3486575B1 (en) Device and method for a security drain of working fluid
EP3647684B1 (en) Safety zone of the condenser
EP0598787A1 (en) Pressurized-water reactor residual-heat extraction system using the secondary cooling circuit.
EP3647685B1 (en) Device
EP3657102A1 (en) Operating fluid management
EP3719416A1 (en) Heat pump circuit with inflammable working fluid
DE102019114738A1 (en) Fluid adsorption
DE102019121496A1 (en) Safety flushing device for a heat pump
DE10139236A1 (en) Separation of mixture of waste refrigerator coolant and oil comprises double evaporation sequence with energy recovery
EP3712531A1 (en) Safety ventilation device for a heat pump
EP4339529A1 (en) Service connection for a heat pump housing

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20191203

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RIC1 Information provided on ipc code assigned before grant

Ipc: F25B 41/04 20060101AFI20191219BHEP

Ipc: F25B 49/00 20060101ALI20191219BHEP

Ipc: F25B 45/00 20060101ALI20191219BHEP

Ipc: F25B 25/00 20060101ALI20191219BHEP

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20200123

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: AT

Ref legal event code: REF

Ref document number: 1279515

Country of ref document: AT

Kind code of ref document: T

Effective date: 20200615

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502018001640

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: HR

Ref legal event code: TUEP

Ref document number: P20201410T

Country of ref document: HR

REG Reference to a national code

Ref country code: DK

Ref legal event code: T3

Effective date: 20200903

REG Reference to a national code

Ref country code: NL

Ref legal event code: FP

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200610

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200610

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200910

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200911

REG Reference to a national code

Ref country code: HR

Ref legal event code: ODRP

Ref document number: P20201410T

Country of ref document: HR

Payment date: 20200922

Year of fee payment: 3

REG Reference to a national code

Ref country code: DE

Ref legal event code: R079

Ref document number: 502018001640

Country of ref document: DE

Free format text: PREVIOUS MAIN CLASS: F25B0041040000

Ipc: F25B0041200000

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200610

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200610

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200910

REG Reference to a national code

Ref country code: SK

Ref legal event code: T3

Ref document number: E 35265

Country of ref document: SK

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200610

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201012

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200610

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200610

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200610

REG Reference to a national code

Ref country code: HR

Ref legal event code: T1PR

Ref document number: P20201410

Country of ref document: HR

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201010

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502018001640

Country of ref document: DE

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2817439

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20210407

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20210311

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200610

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200610

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201031

REG Reference to a national code

Ref country code: HR

Ref legal event code: ODRP

Ref document number: P20201410

Country of ref document: HR

Payment date: 20210927

Year of fee payment: 4

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200610

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200610

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200610

REG Reference to a national code

Ref country code: HR

Ref legal event code: ODRP

Ref document number: P20201410

Country of ref document: HR

Payment date: 20220926

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20230927

Year of fee payment: 6

Ref country code: GB

Payment date: 20230927

Year of fee payment: 6

REG Reference to a national code

Ref country code: HR

Ref legal event code: ODRP

Ref document number: P20201410

Country of ref document: HR

Payment date: 20230928

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SK

Payment date: 20230927

Year of fee payment: 6

Ref country code: PL

Payment date: 20230929

Year of fee payment: 6

Ref country code: HR

Payment date: 20230928

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20231102

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: TR

Payment date: 20231002

Year of fee payment: 6

Ref country code: SE

Payment date: 20231023

Year of fee payment: 6

Ref country code: IT

Payment date: 20231030

Year of fee payment: 6

Ref country code: FR

Payment date: 20231024

Year of fee payment: 6

Ref country code: DK

Payment date: 20231002

Year of fee payment: 6

Ref country code: DE

Payment date: 20230927

Year of fee payment: 6

Ref country code: CZ

Payment date: 20230929

Year of fee payment: 6

Ref country code: CH

Payment date: 20231101

Year of fee payment: 6

Ref country code: AT

Payment date: 20231003

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20230927

Year of fee payment: 6