JP3855901B2 - Refrigeration and air-conditioning cycle device handling method, refrigeration and air-conditioning cycle device refrigerant recovery mechanism - Google Patents

Refrigeration and air-conditioning cycle device handling method, refrigeration and air-conditioning cycle device refrigerant recovery mechanism Download PDF

Info

Publication number
JP3855901B2
JP3855901B2 JP2002280502A JP2002280502A JP3855901B2 JP 3855901 B2 JP3855901 B2 JP 3855901B2 JP 2002280502 A JP2002280502 A JP 2002280502A JP 2002280502 A JP2002280502 A JP 2002280502A JP 3855901 B2 JP3855901 B2 JP 3855901B2
Authority
JP
Japan
Prior art keywords
refrigerant
air
conditioning cycle
cycle apparatus
refrigeration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2002280502A
Other languages
Japanese (ja)
Other versions
JP2004116885A (en
Inventor
雅弘 中山
浩招 牧野
義浩 田邉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2002280502A priority Critical patent/JP3855901B2/en
Publication of JP2004116885A publication Critical patent/JP2004116885A/en
Application granted granted Critical
Publication of JP3855901B2 publication Critical patent/JP3855901B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2345/00Details for charging or discharging refrigerants; Service stations therefor
    • F25B2345/002Collecting refrigerant from a cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2345/00Details for charging or discharging refrigerants; Service stations therefor
    • F25B2345/004Details for charging or discharging refrigerants; Service stations therefor with several tanks to collect or charge a cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/12Inflammable refrigerants

Landscapes

  • Air Conditioning Control Device (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は、エアコンや冷蔵庫などのように冷媒を回路内を循環させる冷凍空調サイクル装置における冷媒回収や充填にかかわる方法、装置に関するものである。
【0002】
【従来の技術】
近年オゾン層破壊防止や地球温暖化防止の観点から、冷凍空調サイクル装置に用いられている地球温暖化係数の高いフロン系の冷媒(例えば地球温暖化係数2300のR407C冷媒)を、地球温暖化係数の低いR32冷媒(温暖化係数650)やさらに地球温暖化係数が低いプロパン(温暖化係数3)やイソブタン(温暖化係数3)に代替する動きが加速されている。しかしこれら冷媒は可燃性冷媒であるため、製品化のためには製品自体の発火防止安全対策だけでなく、製品のサービス時、例えば移設や故障に伴う冷媒回収時に冷媒を大気中に放出しないようにし、発火を防ぐ必要がある。
【0003】
従来の冷凍空調サイクル装置における冷媒回収、移設方法など冷媒回路を用いた装置の取り扱いを説明する。蒸気圧縮機式の冷媒回路では、圧縮機、四方弁、室外熱交換器、流量制御弁、室内熱交換器、再び四方弁を介し圧縮機へと順に接続された冷媒回路が形成され、ガス側三方弁、液側二方弁に、ガス接続配管、液接続配管が接続されて室外機と遠方の室内機を冷媒が循環可能に一体にしている。また、またメインテナンスや、移設、取替えなどのために冷媒を回収するときには真空ポンプ、冷媒回収用器、真空ポンプ上の真空引き回路上に設けられたバルブよりなる回収装置が冷媒回路に弁の接続部を介して真空ポンプは三方弁に接続してある。次に冷媒回収方法について説明する。
【0004】
液側二方弁を閉じ、ガス側三方弁の外部冷媒回収装置側接続部を閉じて、冷媒回路の四方弁を冷房運転を行う方向とし、室内熱交換器や液接続配管、ガス接続配管に存在する冷媒を、圧縮機で吸引して、室外熱交換器に溜め込む運転を行い、冷媒を室外機側に回収する。これら一連の運転をポンプダウン運転と呼ぶ。この運転の後、液やガスの接続配管を室外機の弁からはずして、室内機と接続配管を室外機から分離し、移設や廃却、故障修理といった作業を実施する。この時従来からの冷媒回収法におけるポンプダウン運転では冷媒回路内の圧力が大気圧の0.1MPa程度となったときにその運転を停止しており、室内熱交換器や液やガスの接続配管には0.1MPa程度の冷媒が微量に残留する。従来の冷媒回収においては、室内熱交換器や各接続配管に残る冷媒は微量のため、この残留冷媒を大気中に放出していた。
【0005】
また、例えば非共沸混合冷媒であるR407Cにおいて、冷媒漏洩時や移設時に冷媒追加の必要があるとき、組成変化を防ぐため、一度全冷媒を冷凍空調サイクル装置外に回収した後、冷媒回路内を真空引きし、正式組成の冷媒を必要量充填する必要がある。この時、冷媒回収後、冷媒回路内を真空引きするが、圧縮機内の冷凍機油などに溶解していた冷媒が徐々に回路内に析出し、真空ポンプにて吸引され吐出されて、大気に放出される。この中には空気だけでなく、残留冷媒も混じっている。
【0006】
また、特許文献1には、可燃性冷媒を用いた冷凍空調サイクル装置における冷媒回収方法の記述があるが、冷媒回収装置を接続した配管内に残留した冷媒の回収や真空引きした排気に混入した冷媒の回収方法については、特段の方法を示していないばかりか,最終的に大気へ放出している。
【0007】
【特許文献1】
特開平10−238909号公報(請求項1,第4頁−第5頁)
【0008】
【発明が解決しようとする課題】
以上、従来技術には、室内熱交換器や各接続配管に冷媒が微量に残留する場合、真空ポンプはその圧力が100mmHg程度となるまで冷媒を排気するが、当然真空ポンプの排気には冷媒が存在する。前述した可燃性冷媒を用いた冷凍空調サイクル装置においては、この残留冷媒が大気放出されると着火という危険性があって安全性に問題があり、この残存冷媒の量を管理するという概念はない。更に冷媒に可燃性があるならば、微量な冷媒でも多数の冷媒が集中して燃焼限界以上となれば、着火の危険性が生じ、安全性上問題がある。また冷媒は化学物質であり微少でも人体への影響があれば長期間に悪影響をもたらすと言う問題がある。可燃性や毒性がない場合でも地球温暖化係数が高い冷媒ならば、多数の冷媒が溜まれば地球温暖化に悪影響を与える恐れがある。
【0009】
本発明は、以上のような問題点を解決するためのもので、冷凍サイクル装置を取り扱う際の安全性や信頼性を確保することを目的とする。また冷凍サイクル装置の長期的な性能維持のみならず、移設・交換、メインテナンスや廃却時などでも安全性を確保できる取り扱い方法などを提供することを目的とする。また本発明は環境や人体・生物に悪影響を与えない方法や構造を提案するものである。
【0011】
【課題を解決するための手段】
本発明にかかる冷凍空調サイクル装置の取り扱い方法は、冷媒を外部容器から冷凍空調サイクル装置に充填する際、充填する冷媒が入った容器と冷凍空調サイクル装置を接続する配管上に真空ポンプを接続するステップと、冷媒充填終了後、この接続配管上に残存する冷媒を真空ポンプを用いて回収するステップと、真空ポンプで回収する際、この真空ポンプ排気口から排出される冷媒を閉容器内に回収するステップと、を備えたものである。
【0012】
本発明にかかる冷凍空調サイクル装置の取り扱い方法は、可燃性冷媒が封入された冷凍空調サイクル装置の冷媒回路から冷媒を回収する際、前記冷媒を回収する冷媒回収装置および不燃気体を封入した不燃気体容器を前記冷媒回路にそれぞれ第1および第2の開閉弁を介して接続するステップと、前記冷媒より凝縮圧力が高い不燃気体を前記不燃気体容器から前記冷媒回路の一方に充填させるとともに、前記冷媒回収装置にて前記冷媒を前記冷媒回路の他方から回収するステップと、前記不燃気体充填を前記第2の開閉弁を閉じて終了させ、前記冷媒回路内に残存する冷媒を前記冷媒回収装置にて回収するステップと、前記冷媒回収装置の前記冷媒回収を前記第1の開閉弁を閉じて終了させるとともに、前記第2の開閉弁を開いて前記不燃気体を前記冷媒回路に再度充填するステップと、を備えたものである。
【0013】
本発明にかかる冷凍空調サイクル装置の取り扱い方法は、可燃性冷媒が封入される冷凍空調サイクル装置の既冷媒充填量が、前記冷凍サイクル装置の室内機を設置する室内側の部屋の空間容積などの前記冷凍サイクル装置の設置条件から、可燃性冷媒の燃焼限界から得られる許容充填量を上回るかどうかを判断するステップと、前記既冷媒充填量が前記許容充填量を上回る場合、前記可燃性冷媒の燃焼限界以下となるように追加する不燃性冷媒の量を求め、前記冷凍サイクル装置にこの不燃性冷媒量を追加充填するステップと、前記冷凍サイクル装置の過剰冷媒を冷媒回収装置に回収するもしくは前記冷凍サイクル装置に設けた液だめ容器に回収するステップと、を備えたものである。
【0014】
本発明にかかる冷凍空調サイクル装置の取り扱い方法は、可燃性冷媒が封入される冷凍サイクル装置の設置条件である室内側と室外側を接続する配管の内容積が大きく冷媒追加充填を判断するステップと、追加充填後の合計冷媒量が部屋の空間容積から決定される可燃性冷媒の燃焼限界から得られる許容充填量を上回るかどうかを判断するステップと、前記前記可燃性冷媒の許容充填量を上回る場合に冷凍サイクル装置の室内機を設置する部屋にこの部屋の空気を換気する換気装置を設けるステップと、を備えたものである。
【0015】
本発明に係わる冷凍空調サイクル装置の取り扱い方法は、冷凍空調サイクル装置の冷媒回路に封入された冷媒を冷媒回収装置又は室外機もしくは熱源装置にポンプダウン運転で回収するように、前記冷媒を回収する方法およびポンプダウンに使用される圧縮機を決定するステップと、前記圧縮機を使用するポンプダウン運転で回収できない残存冷媒量を予測し、使用冷媒の特性から残存冷媒の大気放出量の管理を判断するステップと、前記大気放出量の許容値により残存冷媒の回収方法を選択するステップと、を備え、冷凍空調サイクル装置の冷媒を充填、回収など取り扱う際に残存冷媒を回収するものである。
【0017】
本発明に係わる冷凍空調サイクル装置の冷媒回収機構は、室内機を室内に設置し、この室内機と室外に設けた室外機を配管で接続させて少なくとも一部に可燃性冷媒を含む冷媒を循環させる冷凍サイクル装置と、前記室内機を設置する室内の空間容積や配管径・長さなど前記冷凍サイクル装置の設置条件から、封入されている可燃性冷媒が前記室内で燃焼限界以下となるように前記冷凍サイクル装置に追加する所定量の不燃性冷媒と、前記不燃性冷媒の追加により生ずる過剰冷媒を回収する前記冷凍サイクル装置に接続可能な回収手段と、を備えものである。
【0018】
【発明の実施の形態】
実施の形態1.
図1、2、3は、この発明の実施の形態1である冷凍空調サイクル装置の構成を表す図である。また図4には、この実施の形態における一連の作業手順を示す。図1は蒸気圧縮機式の冷媒回路であり、圧縮機1、四方弁2、室外熱交換器3、流量制御弁4、室内熱交換器5が順に接続され、室内機104と室外機105は各接続配管でそれぞれ遠方に配置できるようになっており、室外機105にガス側接続配管8と接続されるガス側三方弁6が、液側接続配管9と接続される液側二方弁7が設けられている。また、冷媒を回収する構造として真空ポンプ11、冷媒回収容器12、真空ポンプ上の真空引き回路上に設けられたバルブ21,22,23,24,25が設けられている。弁6と弁21の接続部13で、真空ポンプ11は三方弁6に接続してある。図1中には閉じている弁は黒く塗りつぶし、開いている弁は白塗りとしてある。冷媒は、R32やプロパンやイソブタンなどの可燃性冷媒を用いている。以下この図における冷媒回収方法、移設について説明する。
【0019】
図1において、まず最初に、四方弁6を冷房運転の方向に冷媒を循環させるようにして、弁7を閉じ、弁6の外部接続装置との接続部13側を閉じて、ポンプダウン運転を行い、室外機に冷媒を回収する。この時室内熱交換器5や接続配管8、9の中には回収しきれなかった冷媒を全量回収するため、室外機105の内部側との接続部の弁6bを閉じ、外部側との接続部の弁6a、6c側を開けて、弁6aに接続された真空ポンプ11にて、室内熱交換器5やガス接続配管8、液接続配管9に残留した微量冷媒を排気する。この時排気口22を大気開放とはせずに、弁23を介して接続された冷媒回収容器12(事前に弁25から真空引きされている)に排気・回収することにより、回路内に残留した微量冷媒も確実に回収することができる。
【0020】
ここで真空ポンプ11で回収すべき、熱交換器5や接続配管8、9の残存冷媒の管理値について述べる。空気中に可燃性冷媒が存在する場合、燃焼下限限界濃度(単位容積あたりの冷媒存在量、単位kg/m3)以上の冷媒が存在すると、着火の危険性がある。ちなみにこの値は、R32冷媒では0.283kg/m3、プロパンでは0.038kg/m3、イソブタンでは0.043kg/m3程度である。室内熱交換器5や接続配管8、9の残存冷媒が急速に空気中に放出されれば、この燃焼下限限界濃度を下回る可能性があるが、ポンプダウン運転後に室内熱交換器5や接続配管8、9が取り外されることを想定すると、室内熱交換器5や接続配管8、9内に残存する冷媒の圧力は大気圧程度であり、急速に大気中に放出されるとは限らない。従って、これら室内熱交換器5や接続配管8、9内の閉空間の空間容積を基準とし、この空間が全て空気であることを想定して、室内熱交換器5や接続配管8、9内に残存する冷媒を、燃焼下限限界濃度以下となるまで回収する必要がある。
【0021】
例えば、冷媒R32における大気圧、常温20℃での蒸気密度は2.2kg/m3であり、冷媒回収後そのまま室内熱交換器5や接続配管8、9を取り外すと、最悪の場合、燃焼下限限界濃度0.283kg/m3を大幅に上回る可能性がある。よってR32冷媒ではその蒸気密度が0.283kg/m3以下となる95mmHg程度まで(プロパンやイソブタンでは15mmHg程度まで)、真空ポンプにて圧力を下げてやる必要がある。なお、冷媒回収をさらに確実にするため、容器内に冷媒吸着剤14を内蔵してもよい。この吸着剤としては例えば活性炭を用いる。この吸着剤に吸収された冷媒は、容器ごと冷媒回収・再生・破壊工程に回され、加熱などにより吸着剤から冷媒が分離される。そして更なる高温にて冷媒を燃焼破壊したり、冷媒の再生に用いられる。
【0022】
また、図2は別の構成図であり、図に示すように、冷媒回収をさらに確実にするため、容器12を冷却装置15(冷却槽でもよい)で冷却することにより、冷媒の凝縮液化が促進され、冷媒回収を迅速に行うことができる。なお上記説明では移設を例にしているが、冷媒回収が必要な作業、例えばエアコンなどの製品使用後廃却の際であっても確実に冷媒を回収することが環境対策などに良いことは当然である。
【0023】
また、図3は別の構成図であり、図に示すように、真空ポンプが使用できない場合には、容器12を直接弁6aに接続する。そしてこの容器内には冷媒吸着剤14を充填しておくとともに、容器を冷却する装置15により、冷媒の凝縮液化を促進することにより、室内熱交換器5や接続配管8、9に残留していた微量の冷媒を回収することができる。この時、冷却方法として液体窒素などの極低温冷却媒体で冷やしてやれば、冷媒回収がより迅速化されるとともに地球環境に悪影響を与えることもない。
【0024】
図4は図1,2,3の構成における作業手順を示すフローチャートであり、冷凍空調サイクル装置を移設などのため冷媒を回収する手順であって、まず移設開始St1、冷媒回収容器12を弁25から事前に真空引きしておき、冷媒回収装置として冷媒回路の弁6aの接続部13に弁21,21,23を介して真空ポンプ11、冷媒回収容器12を接続するSt2。次に弁7を閉じ、四方弁2の冷媒流れ方向を冷房として圧縮機1を運転し、ポンプダウン運転にて室外機内に冷媒を回収するSt3。室外機に冷媒を回収後弁6b閉じて冷媒を室外機内に保持させたあとで、弁6a,6cを開いて真空ポンプを動作させ室内熱交換器5、接続配管8,9の残存冷媒を真空ポンプの排気口22から吐出させ、この吐出口22に接続された冷媒回収容器12に回収させるSt4。冷媒を回収後は弁23を閉じ回収容器12を取り外しSt5、接続配管を弁6,7から外し、移設St6など行う。移設後再び使用する場合は、接続配管8,9を弁6,7に取り付けSt7、弁6bを閉じたまま、弁6aの接続部13に真空ポンプ11を接続し、接続配管8,9、熱交換器5を真空引きして次の運転に備えるSt8。このあと弁6aを閉めて真空ポンプ11を取り外し後、弁6b、7を開けてst9、室外機内に封入していた冷媒を回路に循環可能として移設を完了するSt10。
【0025】
図5、6、7は、この発明の実施の形態1である冷凍空調サイクル装置において、室外機に回収した冷媒をさらに回収するための構成を表す図である。図1、2、3と同一部分には同一符号を記してある。また図8には、この実施の形態における一連の作業手順を示す。実施の形態2は、実施の形態1でポンプダウン運転で室外機に冷媒を回収し、室内熱交換器5や接続配管8、9の冷媒回収が完了した後、室外機に回収した冷媒を室外機の外に回収する方法に関するものである。この時弁6bは閉じられた状態である。以下、この図における冷媒回収方法について説明する。
【0026】
まず図5に示すように、弁6cに、冷媒回収装置31および冷媒回収容器32を接続する。弁41、42は、この回路上に設けられた弁である。ここで冷媒回収装置31の例としては、冷凍空調サイクル装置に用いられる圧縮機と凝縮器を備え、室外機にポンプダウン運転にて回収された冷媒を、弁6cからペン14を経由して冷媒回収装置31内に備えた圧縮機で直接吸引し、加圧後、冷媒回収装置31の凝縮器で液化させて(この時送風機に空気冷却,水などによる冷却などの手段を取っても良い)、弁42,43を経由して回収容器32に充填するものなどがある。また、弁6aには、真空ポンプ11を接続する。そして、真空ポンプ11により、冷媒回収装置31および冷媒回収容器32の配管内や容器内を真空引きし、弁24から排気を大気へ放出する。なお、冷媒回収容器32に以前回収した冷媒が入っている場合は、弁43を閉じて、真空引きする。
【0027】
続いて図6に示すように、弁6a、24を閉じた後、弁6bを開け、冷媒回収装置31により冷媒回収容器32に室外機に保持されていた冷媒を回収する。この時室外機の冷媒回路上に圧力測定装置などを接続し、この圧力が低くなるまで冷媒回収を実施する。
【0028】
次の作業を図7に示す。回収後弁43を閉じる。この時、冷媒回収装置31を含む冷媒回路上には極微量の未回収冷媒が存在する。従来の方法ではこの残留冷媒を大気解放してきた。しかし図7においては、冷媒回収後、弁6aに接続した真空ポンプ11を運転して冷媒回収容器12にこの極微量の未回収冷媒まで回収する。図7に示す動作により、未回収冷媒を大気解放せずに済むので、地球温暖化防止を防ぐことができる。また使用冷媒が可燃性のある冷媒においては、発火の危険性を極力低くすることができる。またたとえ人体に悪影響を与える化学物質が含まれていたとしても確実に回収し大気中への放出をさせないことで従来とは異なり完全な環境対策を行うことができる。
【0029】
図8は図5,6,7の構成における作業手順を示すフローチャートであり、冷凍空調サイクル装置を移設などのため冷媒を回収する手順であって、まず移設開始St11、冷媒回収容器12を弁25から事前に真空引きしておき、冷媒回収装置として冷媒回路の弁6aの接続部13に弁21,21,23を介して真空ポンプ11、冷媒回収容器12を接続するSt12。次に弁7を閉じ、四方弁2の冷媒流れ方向を冷房として圧縮機1を運転し、ポンプダウン運転にて室外機内に冷媒を回収するSt13。室外機に冷媒を回収後弁6b閉じて冷媒を室外機内に保持させたあとで、弁6a,6cを開いて真空ポンプを動作させ室内熱交換器5、接続配管8,9の残存冷媒を真空ポンプの排気口22から吐出させ、この吐出口22に接続された冷媒回収容器12に回収させるSt14。冷媒を回収後は弁23を閉じ回収容器12を取り外しSt15、接続配管を弁6,7から外すSt16。弁6cに冷媒回収装置31、冷媒回収容器32を弁41、42、43を介して接続し、弁6c、6aを介して真空ポンプ11にて冷媒回収装置31などを真空引きするSt17。弁6aを閉じ、冷媒回収装置31にて容器32に室外機から冷媒を回収するSt18。弁43を閉じたあと、弁6aを開いて真空ポンプ11にて残存冷媒を容器12に回収するSt19。弁23を閉めて、回収容器12を取り外すとともに回収容器32も取り外す。このあと冷媒が回収された室内機、室外機とも移設したり廃却するなど、St21、により冷媒が存在しない装置として処理可能に完了するSt22。
【0030】
なお、冷媒回路内に存在する冷凍機油に溶解した冷媒は、冷媒回収を行ってもなかなか析出せず、冷媒回収装置31を冷媒回路から切り離した後でも、微量ずつ析出してくる。特にガス冷媒の冷凍機油への溶解度が低い場合で、例えば、R134a、R407C、R410A冷媒とアルキルベンゼン油の組み合わせや、R32冷媒とアルキルベンゼン油、エステル油、エーテル油の組み合わせなどである。この時、冷媒回収装置31の運転後、冷媒吸着剤14が入った容器12や、容器12を冷却しながらこの回路に接続し一定時間放置しておけば、冷凍機油から析出してくる微量の冷媒を回収することができ、回収作業の確実化、迅速化を図ることができる。また図6に示すように、冷凍機油は圧縮機内にその大部分が存在するので、圧縮機1を加熱し、冷凍機油から冷媒を蒸発させて冷媒の析出を迅速化させてやればよい。図6では、圧縮機外部から電気ヒータ16にて加熱する例を示したが、例えば圧縮機シェル内に内蔵された電気モータに、結線が溶融せずかつ圧縮機が回転しない程度の低圧高電量を流して、圧縮機モータを電気抵抗体として使用し、加熱してもよい。
【0031】
なお、ポンプダウン運転や冷媒回収装置31に用いる圧縮機としては、その構造の違いからレシプロ方式、ロータリー方式、スクロール方式などがあり、またその圧縮機格納容器内の圧力状態の違いとして高圧シェル方式と低圧シェル方式があり、それぞれ極力低い圧力まで冷媒を吸引できる能力に差がある。特に低圧シェル方式のスクロール圧縮機は、その構造上吸入圧力が極端に低下すると破壊の恐れがあるので、ポンプダウン運転やポンプダウン運転後に冷媒を回収する場合には、その圧縮機の選択により、適切かつ短時間で冷媒を回収する方法を図1−3,5−7などや上記説明の中から選択する必要がある。
【0032】
実施の形態2.
図9、10、11、12には、この発明の実施の形態2となる冷凍空調サイクル装置の構成図を示す。実施の形態1、2と同一部分には同一符号を記してあり同一部分の構成動作は同一である。また図13には、この実施の形態における一連の作業手順を示す。実施の形態2は、移設に伴う冷媒追加充填の方法、および追加充填時の冷媒回収方法に関するものである。この時弁6aは閉じられた状態である。以下、この図における冷媒回収方法について説明する。
【0033】
初期据付時や、長期運転後に冷凍空調サイクル装置の能力不足を見つけた時など、冷媒不足と判断された場合に冷媒追加充填作業が生じる。この時、図9に示すように、弁6aに真空ポンプ11、冷媒回収容器12を弁21,22,23を介して、更に冷媒追加充填容器51(チャージングシリンダ)を弁52を介して接続する。弁21、22、23、24、25、52は、この回路に付属する各装置を動作させる際に開閉する弁である。まず図9における弁52を閉じるなど黒塗りの弁を閉じ白いままの弁を開放してた状態で、この回路を真空ポンプ11にて真空引きする。排気は弁24より大気に放出する。続いて図10に示すように、弁21、24を閉じ、弁6a、52を開けて、容器51より回路内に冷媒を追加充填する。この時、容器51内圧力と冷凍空調サイクル装置冷媒回路内の圧力がバランスしてしまった後では、圧縮機1を運転し(図10では冷房時の冷媒回路で運転する例)、冷凍サイクル低圧側に接続された容器51から冷媒を追加充填する。なおこの時容器51内の圧力は、冷凍サイクル低圧側圧力よりも高い必要がある。容器51の重量を計測しながら、必要量が充填されたら、図11に示すように弁6a、52を閉じ、圧縮機運転を停止する。この時従来の方法では、弁6a、52、21間の接続部13などにも極微量の冷媒が残留しており、この冷媒はそのまま大気解放されていた。そこで図11においては、弁6aに接続されたままの真空ポンプ11にて、この回路内の冷媒を排気し、真空ポンプに接続された容器12にて回収する。この動作により、未回収冷媒を大気解放せずに済むので、地球温暖化防止や人体への影響などを防ぐことができる。また使用冷媒が可燃性のある冷媒においては、発火の危険性を極力低くすることができる。
【0034】
また図12には、他の実施形態の例を示す。容器51はそれぞれ、追加充填量に応じた幾種類かの大きさ51a、51b、51cを用意し(例えば10gごと)、追加充填時は容器51内の全冷媒を圧縮機に吸入させるようにする。このような動作により、容器51内の残留冷媒が図9の場合より減少するので、冷媒追加充填後、容器51からもし冷媒が漏れた場合の漏れ量が減少し、地球温暖化防止や可燃性冷媒での発火防止を図ることができる。
【0035】
図13は図9,10,11,12の構成における作業手順を示すフローチャートであり、冷凍空調サイクル装置の性能維持などのため冷媒を充填してかつ残存冷媒を回収する手順であって、まず追加充填開始St31、冷媒回収容器12を弁25から事前に真空引きしておき、冷媒回収装置として冷媒回路の弁6aの接続部13に弁21,21,23を介して真空ポンプ11、冷媒回収容器12を接続するSt32。次に弁52を閉じたまま、弁6a下流13部以降の冷媒回路の真空引きを行う。このときの排気は冷媒が存在せず弁24から放出しても良いSt33。弁21,24を閉じ、弁6a、52を開いて容器51より冷媒を充填量を計測しながら追加充填するSt34。容器51と冷媒回路内の圧力がバランスしたが、追加充填量がまだ不足している場合は、四方弁の流路を冷房の方向として圧縮機1を運転し冷媒を容器51から吸引するSt35。必要量充填後圧縮機1を停止するSt36。弁6a、52を閉じ、真空ポンプ11を運転し残存冷媒を容器12に回収するSt37。弁22、23を閉めて、回収容器12を取り外すSt38。これにより冷凍サイクル装置の移設に伴うなどの冷媒追加充填を完了するSt39。
【0036】
実施の形態3.
図14には、この発明の実施の形態3となる冷凍空調サイクル装置の構成図を示す。実施の形態1、2と同一部分には同一符号を記し同一部分の構成や動作は同一である。また図15には、この実施の形態における一連の作業手順を示す。実施の形態3は、実施の形態1でポンプダウン運転で室外機に冷媒を回収し、室内熱交換器5や接続配管8、9の冷媒回収が完了した後、室外機に回収した冷媒を室外機の外に回収する方法に関するものである。以下、この図における冷媒回収方法について説明する。
【0037】
図14において、弁6b、7を閉じた状態で冷媒回収装置31、回収容器32を接続し、かつ弁6aにも真空ポンプ11を接続して、この回路を真空引きし、弁6aを閉じて真空ポンプを取り外し後、弁7に不燃気体容器61を接続した例である。62はこの不燃気体容器61に付属する弁である。この時、不燃気体容器61内の圧力は、室外機冷媒回路内圧力より高い圧力に保たれている。弁7、61を開放し、弁6bを開放すると、高圧の不燃気体容器61から不燃気体が室外機内冷媒回路内に噴出し、冷媒回路内の冷媒が押し出され、低圧側の容器32に流入する。またこの後、弁7または弁62を閉じ、回収装置31を運転し、冷媒回路内残留気体を容器32に回収する。回路内圧力が十分低下した後、回収装置を停止し、弁6cまたは弁41を閉じ、前工程で閉じた弁7または弁52を開放すれば、不燃気体が回路内に噴出する。そして、弁7または弁62を閉じ、前工程で閉じた弁6cまたは弁41を開放し、回収装置31を運転し、冷媒回路内残留気体を容器32に回収するこの動作を繰り返すことにより、回路内残留冷媒を容器32に回収し、かつ室外機冷媒回路内は不燃気体で満たされる。
【0038】
回収終了の判定は、封入冷媒量が分かっているときはその量に近づいたとき、封入冷媒量が不明なときは秤りで測定している回収量の増加がなくなったとき、または弁6と四方弁2の間に設けた流動状態を監視するガラス窓(図示せず)などで観察し液冷媒が流れなくなった判断されるとき、または冷媒回路内を循環している流体を分析して冷媒の成分が所定値以下になったとき、などとすれば良い。
【0039】
図15は図14の構成における作業手順を示すフローチャートであり、冷凍空調サイクル装置を移設などのため冷媒を回収する手順であって、まず移設開始St41、冷媒回収容器12を弁25から事前に真空引きしておき、冷媒回収装置として冷媒回路の弁6aの接続部13に弁21,21,23を介して真空ポンプ11、冷媒回収容器12を接続するSt42。次に弁7を閉じ、四方弁2の冷媒流れ方向を冷房として圧縮機1を運転し、ポンプダウン運転にて室外機内に冷媒を回収するSt43。室外機に冷媒を回収後弁6b閉じて冷媒を室外機内に保持させたあとで、弁6a,6cを開いて真空ポンプを動作させ室内熱交換器5、接続配管8,9の残存冷媒を真空ポンプの排気口22から吐出させ、この吐出口22に接続された冷媒回収容器12に回収させるSt44。冷媒を回収後は接続配管を弁6,7から外すSt45。弁7に容器61、弁6cに冷媒回収装置31、冷媒回収容器32を弁41、42、43を介して接続し、弁6bを閉じて弁6a,6cをあけ、真空ポンプ11にて冷媒回収装置31などを真空引きするSt46。弁7を開け弁62で圧力を調整しながら不燃性気体容器61内の不燃気体を冷凍サイクル装置の室外機に注入しつつ、冷媒回収装置31内の圧縮機などを運転しながら冷媒を容器32に液化吸収するst47。弁43を閉めて、容器32を取り外すSt48。弁23を閉じ回収容器12を取り外すSt49。このあと冷媒が回収された室内機、室外機とも移設したり廃却するなどSt50、により冷凍サイクル装置の冷媒回収と移設を完了するSt51。
【0040】
この方法によれば、室外機内部の冷媒回路を不燃気体で満たすことができるので、室外機の廃棄やリサイクルにおいて輸送する際の、残留冷媒漏れによる危険(地球温暖化、発火)を回避することができる。なお実施の形態2においても冷媒回収後、室外機内冷媒回路には冷媒は残らず真空に近い状態となるが、実施の形態3によれば、大気圧以上の不燃気体で冷媒回路内を満たすことができる。真空状態を保持したまま輸送し、廃棄やリサイクルを行うためには、弁6、7に高い密封精度が要求される。仮に弁6、7の封止精度が悪い場合には、空気が冷媒回路内に流入する可能性があり、長時間放置することにより、空気内の水分や酸素等により冷媒回路内部品が劣化し、リサイクル性に悪影響を与えるおそれがある。そこで、不燃気体でかつ不活性気体で大気圧以上の圧力を保持したまま置換することにより、仮に弁6、7の封止精度が悪くても、空気が室外機冷媒回路内に流入することが無く、冷媒回路内の部品劣化のおそれが少なく、リサイクル性を高めることができる。
【0041】
なお回収装置31を連絡する冷媒回路内の冷媒まで回収する場合は、実施の形態3に示した方法に続いて、実施の形態1で示したように、真空ポンプ11を用いて容器12に冷媒を回収すればよい。
【0042】
なお不燃気体の例としては、オゾン破壊係数が0で地球温暖化係数が極端に低い気体、例えば、窒素(地球温暖化係数0)、二酸化炭素(地球温暖化係数1)などを用いる。これらは金属に対して不活性ならばなおよい。
【0043】
また、充填されている冷媒がR32では、R32と混合して不燃となるオゾン層破壊係数0のHFC冷媒を充填してもよい。この時、R32の存在量に対して、R125ではR32存在量の1倍以上、R134aではR32の存在量の2.3倍以上を充填してやればよい。また、R32、R134aを両方混合し、不燃としてもよい。
【0044】
実施の形態4.
図16、17、18には、この発明の実施の形態4となる冷凍空調サイクル装置の構成図を示す。実施の形態1、2、3と同一部分には同一符号を記し同一部分は同一構成、動作である。また図19には、この実施の形態における一連の作業手順を示す。実施の形態4は、図16の説明図に示すように、大きい部屋に設置された冷凍空調サイクル装置が、小さい部屋に移設されるような場合、または、移設後の室内機と室外機を接続する接続配管8、9の内容積が移設前より小さくなるような場合における、冷媒回収方法について示すものである。以下、これらの図における冷媒回収、移設方法について説明する。
【0045】
可燃性冷媒の使用において、万一室内に冷媒が全量漏洩したとしても、その濃度が前述した燃焼下限限界濃度(単位容積あたりの冷媒存在量、単位kg/mm3)以下ならば着火する危険性を回避することができると考えられる。従って空調される部屋の空間を閉空間としたとき、例えば換気装置が無かったり、外部との空気のやり取りが存在しない部屋の空間に充填冷媒全量が漏洩した場合、この空間容積が十分に大きく燃焼下限限界濃度の量以下ならば着火する危険性を回避することができるので、部屋の大きさによって冷媒充填量の上限値を定めることができる。このことから可燃性冷媒においては着火する危険性を回避するため、部屋の大きさによって可燃性冷媒の重点量の上限値を定めることができる。ただし現実には可燃性冷媒として用いられる冷媒は一般に空気より比重が大きいので室内に漏洩した場合室内の天井高さ方向に濃度分布が生じ床面上に滞留しやすい。したがって漏洩全量が室内空間内に均一分布するケースは稀で空間の天井高さ、漏洩口の高さ、冷媒の拡散駆動力などからの空間内の濃度分布を考慮し、床面の高濃度域を基準にして、かつ、安全率なども考慮して着火する危険性を回避するため、部屋の大きさなどによる冷媒充填量の上限値を定めることができる。なお仮に漏洩したとしても、常時運転の換気装置(自然換気含む)、または漏洩を素早く検知して動作する換気装置により室外に放出し、その濃度を燃焼下限限界濃度以下としてやれば、着火する危険性は低くなる。よって換気装置の有無や換気量によってもその部屋の冷媒量上限値を定めることができる。
【0046】
図16のように、室内空間容積大の広い部屋から室内空間容積小の狭い部屋へ冷凍空調サイクル装置、室内機、室外機ともを移設する場合には、そのままでは冷媒量の上限値を上回るおそれがある。また換気装置がある部屋から換気装置のない部屋に移設する場合も、冷媒量上限値を上回るおそれがある。また移設時、室内機と室外機を結ぶ接続配管8、9長が長くなるなどして配管内容積が増加した場合には冷媒不足状態となるので、冷媒の追加充填が生じる。この時、前述の上限値を上回るおそれがある。
【0047】
移設時には、まず接続配管長など冷凍空調装置の設置条件などから、移設後の冷媒量を決定する。この量が、移設後の部屋の大きさ、ならびに換気条件(常時換気や漏洩検知換気など)から決まる冷媒量の上限値を上回るかどうかをまず判断する。上回らない場合は、すでに述べている方法で冷媒回収等を行い移設する。もし上回った場合には、すでに述べた手法により上回った量だけ回収するなどして移設を実行する。
【0048】
図17はこの発明の構成図を示し、図にて不燃性冷媒を充填するときの動作を説明する。弁6aに冷媒回路内存在冷媒と混合すると不燃となる冷媒が充填された容器71を弁72を介して接続する。この時容器71に充填された冷媒は、移設後の冷媒量に対して混合することにより不燃となる量をあらかじめ算出しておき、その量に見合った分だけ充填されている。この後、容器71内の冷媒を追加充填する動作を行う。この方法は、実施の形態3に示した方法によってもよい。この動作により冷凍空調サイクル装置内の冷媒回路に存在する冷媒は不燃となる。不燃性冷媒の充填によりシステム全体としては冷媒が過剰な状態となる。冷媒過剰のままでは圧縮機の液バック運転などを引き起こす可能性がありシステムの信頼性定価が懸念されるためこの過剰分を回収する必要がある。図18にて不燃性冷媒追加充填後の冷媒回収方法を説明する。図18に示すように、弁6aに、冷媒回収装置31と冷媒回収容器32を弁41,42,43を介して接続する。弁44,45は冷媒回収装置31や冷媒回収容器32を真空引きするときに使用する弁である。個々で冷媒回収装置としては、例えば冷凍空調サイクル装置に用いられる圧縮機と凝縮機を内部に備えたものであり、冷媒を圧縮機で直接吸引し加圧後凝縮器で液化させて回収容器32に充填する。この回収装置を動作させて冷凍サイクル内の不燃冷媒充填により過剰となった冷媒を回収する。
【0049】
この時の回収方法は、すでに述べた方法による。これら一連の手順をまとめたフローチャートを図19に示す。図19は冷凍サイクル装置移設などの手順を説明するもので、移設開始St61すると、まず移設前の接続配管長さと移設後の接続配管長などの据付条件や設置する部屋の負荷条件などから移設後の冷媒量を決定するSt62。なお個々では移設前後で説明しているが標準の冷凍サイクル装置、すなわちあらかじめ設定された負荷に対してすでに充填された冷媒量を有する商品を販売後初めて設置する環境に適合させる方法とするなど広い用途に適用できる冷凍サイクル装置の取り扱い方法であり、特に移設に限定されたものではない。そして仮に移設前後とすると移設前の充填冷媒量との比較から冷媒不足か冷媒過剰かを判断し過不足量を決定するSt63。続いて移設後の冷媒量が移設後の部屋の大きさや常時換気しているなどの換気条件などから予測して可燃性冷媒量を決定しSt64、その可燃性冷媒量上限値を上回るかどうかを判断するSt65。
【0050】
もし上限値を上回った場合には移設後冷媒量に対し混合することにより部屋の大きさにかかわらず不燃となる冷媒の冷媒量を決定しSt66、この量の不燃冷媒を追加するSt67。移設後の冷媒量が許容上限値以内で上回らない場合、冷媒不足のときは冷媒を追加充填するが過剰のときは冷媒充填をしない。冷媒を充填などした後ですでに述べてきたようにポンプダウン運転で室外機へ冷媒を回収しSt69、接続配管や室内機を真空引きしSt70、過剰となる冷媒があればこれを回収しSt71、室外機、接続配管、室内機を取り外して移設しSt72、移設先で室外機、接続配管、室内機を取り付けて、接続配管、室内機を真空引きしSt73、冷媒回収装置などのすえつけよう装置を取り外しサイクル内に冷媒が循環可能にして冷凍サイクルの移設を完了する。なおすでに述べたように例えば工場手羽標準の冷媒量を充填した状態で出荷し、冷凍サイクル装置の据付先で据付条件などから冷媒量を見直しSt62、冷媒の過不足を判断してSt64、設置条件などから可燃性冷媒に対する許容冷媒量上限値を推測してSt65、不燃性冷媒の量を決めて追加しSt66、67、運転を開始しても良いことは当然である。このような手順を採用すれば据付条件や設置場所が事前にわからなくとも、あるいは途中で大幅に変わるような場合でも、安全で性能が良く信頼性の高い装置を提供できる取り扱い方法が得られる。
【0051】
さらに別の構成例を図20に示す。不燃冷媒充填により過剰となった冷媒は回収してもよいが、図20に示すように、不燃性冷媒をたとえ充填して冷媒が過剰になったとしても、冷媒回路内にあらかじめ流量制御弁81、82ではさまれた位置に液だめ容器83を設けたり、圧縮機吸入での液だめ容器(アキュムレータ)84などを設けてやることにより、これら容器が冷媒過剰時の液だめとして働き、冷凍サイクルを適切な状態、液バックなどシステムの不良を招かず、かつ、性能維持に必要十分な冷媒量を循環させるなど、にて運転することができる。例えば不燃冷媒充填後に、容器83に余剰冷媒を溜め込む場合であって、容器84が無い場合の動作について説明する。冷媒を追加する前、冷房時は流量制御弁81により、暖房時は流量制御弁82により、冷凍サイクルの流量制御を実施し、例えば、蒸発器出口スーパーヒート制御、圧縮機吸入スーパーヒート制御、圧縮機吐出スーパーヒート制御、圧縮機吐出温度制御、圧縮機吸入温度制御、凝縮器出口サブクール制御、流量制御弁入り口サブクール制御など、冷房時流量制御弁82を全開、暖房時流量制御弁81を全開とする。一方冷媒を追加充填後、冷房時は流量弁81によりサブクール制御、例えば凝縮器出口、流量制御弁入り口、流量制御弁82によりスーパーヒート制御、例えば蒸発器出口、圧縮機吸入、圧縮機吐出、や圧縮機吐出温度制御、圧縮機吸入温度制御などを行い、凝縮器、蒸発器となる熱交換器を高伝熱となる状態とするとともに、容器83に余剰冷媒をためることが可能となる。
【0052】
また容器84に余剰冷媒を溜める場合で流量制御弁82と容器83が無い場合、冷凍サイクル装置の流量制御は弁81で行う。例えば、蒸発器出口スーパーヒート制御、圧縮機吸入スーパーヒート制御、圧縮機吐出スーパーヒート制御、圧縮機吐出温度制御、圧縮機吸入温度制御、凝縮器出口サブクール制御、流量制御弁入り口サブクール制御などを行う。追加充填後は、流量制御弁81にて蒸発器湿り度制御、圧縮機吸入湿り度制御、圧縮機吐出スーパーヒート制御、圧縮機吐出温度制御、圧縮機吸入温度制御、凝縮器出口サブクール制御、流量制御弁入り口サブクール制御などにより、圧縮機吸入が湿り状態となるように流量制御弁81を制御することにより、二相冷媒が容器84に流入するので容器84への冷媒貯留が可能となる。
【0053】
充填する不燃性冷媒の例としては、例えば充填されている冷媒がR32の場合では、R32と混合して不燃となるオゾン層破壊係数0のHFC冷媒を充填してやってもよい。この時、R32の存在量に対して、R125ではR32存在量の1倍以上(ちょうど1倍の時R410A冷媒化)、R134aではR32の存在量の2.3倍以上を充填してやればよい。また、R32、R134aを両方混合し(R407C化)、不燃としてやってもよい。特にR32に対してR125を追加充填しても、動作圧力はほぼ変わらず、冷凍空調サイクル装置の能力、効率もほぼ変わらないので、信頼性なども確保しつつ確実な運転を実施することができる。
【0054】
以上、各実施の形態における冷媒について述べる。使用冷媒としては、例えばR32、R41、R143、R152a、R245ca(以上冷媒はHFC系)やイソブタンやプロパン、アンモニア等の可燃性冷媒(アンモニアは毒性冷媒でもある)であり、これら冷媒の微量な大気放出や漏洩を防止し、安全性や信頼性を高めることができる。またこれら可燃性や毒性のある冷媒と他のHFC冷媒の混合でも、その効果が発揮される。また大気放出や漏洩を防止しするという観点からは、不燃ではあるが地球温暖化係数が大きい冷媒、例えばR134a、R410A、R407C、R404AなどのHFC系冷媒(単一、混合含む)、HE冷媒、FC冷媒(単一、混合含む)、不燃ではあるがオゾン破壊係数が0ではない冷媒(例えばR22、R12などのHCFC冷媒)、これら冷媒同志の混合冷媒でも大気への放出を回避することができ、地球温暖化へ悪影響を微量ながら抑制することができる。
【0055】
ここで各冷媒の温暖化係数について述べる。窒素、空気=0、二酸化炭素、アンモニア=1、プロパン=3、イソブタン=3、R134a=1300、R407C=1500〜2300、R410A=1700〜1900、R22=1700、R32=650、R404A=3300が一般的な値である。
【0056】
また前述各種冷媒に対して冷凍機油は、アルキルベンゼン油、エステル油、エーテル油、フッ素油、鉱油、ポリビニールエーテル油などを用いてもその信頼性は十分に確保され、冷媒漏洩防止効果は発揮される。特に冷媒と非相溶、もしくは難溶の冷凍機油(例えば、HFC系冷媒のR410Aとアルキルベンゼン油、R134aとアルキルベンゼン油、R407Cとアルキルベンゼン油、R32とアルキルベンゼン油、R32とエステル油、R32とエーテル油などの組み合わせ)の組み合わせでは、冷凍機油に冷媒が溶解した冷媒が、相溶系(液冷媒への冷凍機油の質量分率溶解度で1%以上)の冷凍機油(例えばHFC系冷媒のR410Aとエステル油の組合せ,HFC系冷媒のR410Aとエーテル油の組合せなど)より析出しにくい。この理由は溶解した冷凍機油の絶対量が少ないためで,完全に析出させるために回収時間を長くしたり,加熱するといった手段が取られる場合がある。これに対し、冷媒回路内の完全な冷媒回収を実現できる本実施の形態は、有効な手段となる。
【0057】
なお、上記説明の各実施の形態における弁間の配管内容積について述べる。ここでは例えば図9における弁6aと弁52の間の配管部13に着目する。容器51を弁6aに接続する場合、配管13部を真空引きする必要があるが、この配管内容積が極端に小さく弁同志を接続した時に封止される空気の量が微量で仮に冷凍サイクル内にこの微量空気が混入しても能力やエネルギ効率、信頼性に問題がないならば、真空引きをしなくても簡易な作業により冷媒追加充填を実施することができる。この時、混入しても信頼性上問題ない空気量を把握するため、冷凍空調サイクル装置に微量の空気を混合して、長時間運転後に生ずるスラッジの発生量を把握する実験を行った。この結果を図21に示す。図21は横軸に冷媒充填量に対する空気混入割合を示し、縦軸にスラッジ発生量を示す。図21よりスラッジの許容量を下回る信頼性上問題の無い混入空気量は、冷媒充填量に対して1ppm以下となった。この数値は、例えば、冷媒量1000gに対して1mgであり、大気圧での空気量とすると0.85cc以下となる。よって、弁6aと弁52の合いだの配管部13への空気混入量を冷媒充填量の1ppm以下、即ち配管部13の配管内容積を冷媒充填量の1ppm空気質量に対して大気圧空気密度に対応した値以下とすることにより,これら弁体の接続時に空気が混入しても、冷凍空調サイクル装置の能力やエネルギ効率、信頼性に影響を及ぼすことは無く、真空引きなどの手間が要らず簡易に冷媒回収を実施することができる。配管部13の配管内容積を小さくするためには、配管部13を極力短くする方法や,その配管内径を極力小さくする方法などを取れば良い。
【0058】
以上、本発明における冷凍空調サイクル装置の冷媒回収、移設の作業流れを図22に示す。開始後まず使用冷媒の特性、オゾン破壊係数、地球温暖化係数、燃焼性、燃焼下限限界濃度、毒性や人体への影響度などを把握するSt81,82。続いて、主たる冷媒回収方法を決定する。例えばポンプダウン運転によりまず室外機に冷媒回収するか、圧縮機故障のためまず最初に外部容器に冷媒回収するか、などであるSt83。なお図示していないが、圧縮機故障などによりポンプダウン運転ができない場合は、弁6aに真空ポンプ11、真空ポンプ11に続く冷媒回収容器12、冷媒回収装置31、冷媒回収装置31に続く冷媒回収容器32を接続し、冷媒回収装置31により容器32に冷媒回収後、残存冷媒を真空ポンプ11にて容器12に回収すればよい。ポンプダウン運転により室外機に冷媒を回収する場合には、ポンプダウンに用いる冷凍空調サイクル装置の圧縮機の種類により、ポンプダウンで可能な回収量やポンプダウン運転に必要な時間を判定し、ポンプダウン運転方法を決定するSt84。続いて、ポンプダウンにて回収できない残存冷媒量を予測しSt85、冷媒の種類に応じてこの残存冷媒の大気への放出管理が必要かどうかを判断するSt86。続いて、前述残存冷媒の大気放出許容量を地球温暖化防止(温暖化係数が高い冷媒の場合)ならび発火防止(可燃性冷媒の場合)などのの観点から決定しSt87、回収すべき冷媒量を決定する。続いてこの回収のレベルにより、再度冷媒回収方法(ポンプダウンだけ、ポンプダウン+真空ポンプによる回収、ポンプダウン+回収装置による冷凍空調サイクル装置外部への冷媒回収+真空ポンプによる回収、不燃冷媒を充填してから移設など)を選択するSt88。そして実際の冷媒回収、移設といった作業に移行するSt89。最終的には、回収した冷媒の処分法を考慮することまで含めてSt90、一連の作業手順が決定され作業が行われるSt91。
【0059】
図22にて説明したフローチャートはパソコンなど画面に表示させ、キーボードから入力して選択することで簡単に誰でも工事を行う前により良い方法を選択できる。例えば各冷媒の特性地はマイコン内にテーブルとして保有させどの冷媒を使うかで選択できる。ポンプダウン運転の方法、装置についても冷凍サイクルの室外機を使用するかどうかなどデーターを記録させておく。更に使用する圧縮機に関してもその種類と容量、回転数などを入力したり記憶テーブルから選択すれば自動的に残存冷媒量が演算されて、配管条件や設置条件を入力することにより残存冷媒量、大気放出量、許容値などが演算されて表示され、冷媒回収方法が画面上で提案されてくる。このため誰でも簡単に選択が行える。以上、本発明における冷凍空調サイクル装置は室内機と室外機が接続配管で接続されたルームエアコンなどを中心に説明してきたが、図22に示す作業流れは、冷蔵庫など室内機と室外機には分離していない一体型の冷凍空調サイクル装置にも適用することができる。すなわち冷蔵庫の冷媒を回収する際、冷媒回収装置を接続する必要があるが、この冷媒回収装置と冷蔵庫を結ぶ配管には最終的には冷媒が残留してしまうので、廃却処分する際などではこの残留冷媒まで真空ポンプを用いて回収し安全性を確保する必要がある。これに対して解体業者に図22に示すソフトウェアが提供されれば確実に地球環境保護に役立つ選択が行える。また不燃気体を充填してから冷媒を回収する手法についても、低コスト短時間にて安全性を確保しつつ、冷媒を回収できる利点がある。また圧縮機と同様に冷媒ポンプや他の冷媒順慣用句同期を使用した装置の取り扱いも同様に行えることは当然である。
【0060】
以上説明された本発明の冷凍空調サイクル装置の冷媒回収、移設方法などの取り扱い方法においては、冷媒回収装置により回収できなかった冷媒を真空ポンプを用いて回収する時、真空ポンプの排気口から排出された冷媒を閉容器内に回収するので、真空引きする空間に残留した冷媒を確実に回収することができ、着火防止による安全性確保や地球温暖化などの環境保護対策や生物への悪影響防止などをすることができる。
【0061】
本発明にかかる冷凍空調サイクル装置の冷媒回収、移設方法などの取り扱い方法においては、冷媒をポンプダウン運転にて室外機に回収した後、室内機または室内機と室外機を接続する配管に残存する冷媒を回収する時、室内機または室内機と室外機を接続する配管上に真空ポンプを接続し真空ポンプを用いて冷媒回収するとともに、真空ポンプの排気口から排出された冷媒を閉容器内に回収した後で、室内機または室内機と室外機を接続する配管を室外機から取り外すので、室内機や室内機と室外機を接続する配管内の真空引きする空間に残留した冷媒を確実に回収した後で移設することができ、着火防止による安全性確保や地球温暖化対策、あるいは生物への悪影響を防止することができる。
【0062】
本発明の冷凍空調サイクル装置の冷媒回収、移設方法など取り扱い方法においては、ポンプダウン運転にて室外機に回収された冷媒を、室外機の外に冷媒回収装置を用いて回収する時、室外機と前述冷媒回収装置を接続する配管上に真空ポンプを接続するとともに、冷媒回収装置を用いて室外機の外に冷媒を回収した後、室外機や冷媒回収装置および室外機と冷媒回収装置を接続する配管に残存する冷媒を真空ポンプを用いて冷媒回収するとともに、真空ポンプの排気口から排出された冷媒を閉容器内に回収するので、冷媒回収装置と被回収装置との接続配管内に残留した冷媒を確実に冷媒を回収した後で移設することができ、着火防止による安全性確保や地球温暖化対策、生物への悪影響を防止することができる。
【0063】
本発明の冷凍空調サイクル装置の冷媒回収、移設方法など取り扱い方法においては、冷凍空調サイクル装置の移設などに伴い冷媒を外部容器から冷凍空調サイクル装置に充填する際、冷媒が入った容器と冷凍空調サイクル装置を接続する配管上に真空ポンプを接続しておき、冷媒充填終了後、この接続配管上の冷媒を真空ポンプを用いて冷媒回収する時、真空ポンプの排気口から排出された冷媒を閉容器内に回収することを特徴としたので、配管内に残留した冷媒を確実に冷媒を回収することができ、着火防止による安全性確保や地球温暖化防止、生物への悪影響対策を図ることができる。
【0064】
本発明の冷凍空調サイクル装置の冷媒回収方法においては、可燃性冷媒が封入された場合において、冷媒回収装置と冷媒回収容器と凝縮圧力が冷媒より高い不燃気体(窒素、または二酸化炭素など)が封入された容器を冷凍空調サイクル装置にそれぞれ接続し、不燃気体容器から注入された不燃気体により冷凍空調サイクル装置内に封入されている冷媒を置換しながら、冷媒回収装置にて冷媒を液化させ冷媒回収容器内に冷媒を回収するので、冷凍空調サイクル装置内が不燃気体で満たされるため、機器の回収、運搬、廃棄、リサイクル時の安全性が確保されるとともに、これら一連の作業に要する費用が低減される利点がある。
【0065】
本発明の冷凍空調サイクル装置の冷媒回収、移設方法などにおいては、可燃性冷媒が封入された場合において、例えば移設後の室内側の部屋の空間容積が移設前のそれより小さくなる場合で、かつ既冷媒充填量が部屋の空間容積から決定される可燃性冷媒の許容充填量を上回る時、この上回った量を回収するので、装置から万が一冷媒が部屋に漏洩した場合でも燃焼限界濃度以下となり、着火を防止でき安全性を確保することができる。
【0066】
本発明の冷凍空調サイクル装置の冷媒回収、移設方法などにおいては、可燃性冷媒が封入された場合において、例えば移設後の室内側と室外側を接続する配管内容積が増加し冷媒追加充填が必要で、かつ追加充填後の合計冷媒量が移設後の部屋の空間容積から決定される可燃性冷媒の許容充填量を上回る時、混合して不燃となる冷媒を所定量充填するとともに、余剰となった冷媒を回収するので、装置から万が一冷媒が部屋に漏洩した場合でも燃焼限界濃度以下となり、着火を防止でき安全性を確保することができる。また余剰冷媒を回収したので、移設後も適正な冷媒量で冷凍空調サイクル装置を運転することができ、その性能を維持することができる。
【0067】
なお前述発明における不燃気体は、冷凍空調サイクル装置に充填されている冷媒と混合することにより不燃となり、かつ混合も冷凍サイクルの作動媒体として動作可能であることを特徴とし、例えば冷凍空調サイクル装置に充填されている冷媒がR32の時は、混合する冷媒としてR125、もしくはR134a、もしくはR125とR134aとしすることにより、より安全に冷媒回収を行うことができる。
【0068】
また以上の発明の冷凍空調サイクル装置の冷媒回収方法においては、回収装置や各種容器接続のための回路上に設けられた弁間の配管内容積が、冷媒充填量の1ppmに相当する大気圧空気の容積以下としたので、仮に空気を冷凍サイクル装置内や冷媒回収容器内に吸い込んだとしても、能力やエネルギ効率、信頼性に影響を及ぼすことはなく、真空引きなどの手間がいらず簡易に冷媒回収を実施することができる。
【0070】
【発明の効果】
本発明にかかる冷凍空調サイクル装置の取り扱い方法は、冷媒を外部容器から冷凍空調サイクル装置に充填する際、充填する冷媒が入った容器と冷凍空調サイクル装置を接続する配管上に真空ポンプを接続するステップと、冷媒充填終了後、この接続配管上に残存する冷媒を真空ポンプを用いて回収するステップと、真空ポンプで回収する際、この真空ポンプ排気口から排出される冷媒を閉容器内に回収するステップと、を備えたので、簡単な方法でどこで行われようと安全な作業が得られる。
【0071】
本発明にかかる冷凍空調サイクル装置の取り扱い方法は、可燃性冷媒が封入された冷凍空調サイクル装置の冷媒回路から冷媒を回収する際、前記冷媒を回収する冷媒回収装置および不燃気体を封入した不燃気体容器を前記冷媒回路にそれぞれ第1および第2の開閉弁を介して接続するステップと、前記冷媒より凝縮圧力が高い不燃気体を前記不燃気体容器から前記冷媒回路の一方に充填させるとともに、前記冷媒回収装置にて前記冷媒を前記冷媒回路の他方から回収するステップと、前記不燃気体充填を前記第2の開閉弁を閉じて終了させ、前記冷媒回路内に残存する冷媒を前記冷媒回収装置にて回収するステップと、前記冷媒回収装置の前記冷媒回収を前記第1の開閉弁を閉じて終了させるとともに、前記第2の開閉弁を開いて前記不燃気体を前記冷媒回路に再度充填するステップと、を備えたので、可燃性冷媒を確実に回収できる。
【0072】
本発明にかかる冷凍空調サイクル装置の取り扱い方法は、可燃性冷媒が封入される冷凍空調サイクル装置の既冷媒充填量が、前記冷凍サイクル装置の室内機を設置する室内側の部屋の空間容積などの前記冷凍サイクル装置の設置条件から、可燃性冷媒の燃焼限界から得られる許容充填量を上回るかどうかを判断するステップと、前記既冷媒充填量が前記許容充填量を上回る場合、前記可燃性冷媒の燃焼限界以下となるように追加する不燃性冷媒の量を求め、前記冷凍サイクル装置にこの不燃性冷媒量を追加充填するステップと、前記冷凍サイクル装置の過剰冷媒を冷媒回収装置に回収するもしくは前記冷凍サイクル装置に設けた液だめ容器に回収するステップと、を備えたので、何時何処でどの様に取り扱われようと安全で信頼性の高い装置とすることができる。
【0073】
本発明にかかる冷凍空調サイクル装置の取り扱い方法は、可燃性冷媒が封入される冷凍サイクル装置の設置条件である室内側と室外側を接続する配管の内容積が大きく冷媒追加充填を判断するステップと、追加充填後の合計冷媒量が部屋の空間容積から決定される可燃性冷媒の燃焼限界から得られる許容充填量を上回るかどうかを判断するステップと、前記前記可燃性冷媒の許容充填量を上回る場合に冷凍サイクル装置の室内機を設置する部屋にこの部屋の空気を換気する換気装置を設けるステップと、を備えたので、簡単に確実な装置を得ることができる。
【0074】
本発明に係わる冷凍空調サイクル装置の取り扱い方法は、冷凍空調サイクル装置の冷媒回路に封入された冷媒を冷媒回収装置又は室外機もしくは熱源装置にポンプダウン運転で回収するように、前記冷媒を回収する方法およびポンプダウンに使用される圧縮機を決定するステップと、前記圧縮機を使用するポンプダウン運転で回収できない残存冷媒量を予測し、使用冷媒の特性から残存冷媒の大気放出量の管理を判断するステップと、前記大気放出量の許容値により残存冷媒の回収方法を選択するステップと、を備え、冷凍空調サイクル装置の冷媒を充填、回収など取り扱う際に残存冷媒を回収するので、どの様な設備に対する取り扱いであろうと確実に地球環境保護に有用である。
【0076】
本発明に係わる冷凍空調サイクル装置の冷媒回収機構は、室内機を室内に設置し、この室内機と室外に設けた室外機を配管で接続させて少なくとも一部に可燃性冷媒を含む冷媒を循環させる冷凍サイクル装置と、前記室内機を設置する室内の空間容積や配管径・長さなど前記冷凍サイクル装置の設置条件から、封入されている可燃性冷媒が前記室内で燃焼限界以下となるように前記冷凍サイクル装置に追加する所定量の不燃性冷媒と、前記不燃性冷媒の追加により生ずる過剰冷媒を回収する前記冷凍サイクル装置に接続可能な回収手段と、を備えので、安全で確実に性能を維持できる装置が得られる。
【図面の簡単な説明】
【図1】 本発明の実施の形態1に係わる冷凍空調サイクル装置の構成および冷媒回収方法を示す図である。
【図2】 本発明の実施の形態1に係わる冷凍空調サイクル装置の構成および冷媒回収法を示す図である。
【図3】 本発明の実施の形態1に係わる冷凍空調サイクル装置の構成および冷媒回収方法を示す図である。
【図4】 本発明の実施の形態1に係わる冷凍空調サイクル装置の冷媒回収、移設方法の作業手順を示す図である。
【図5】 本発明の実施の形態1に係わる冷凍空調サイクル装置の構成および冷媒回収方法を示す図である。
【図6】 本発明の実施の形態1に係わる冷凍空調サイクル装置の構成および冷媒回収方法を示す図である。
【図7】 本発明の実施の形態1に係わる冷凍空調サイクル装置の構成および冷媒回収方法を示す図である。
【図8】 本発明の実施の形態1に係わる冷凍空調サイクル装置の冷媒回収、移設方法の作業手順を示す図である。
【図9】 本発明の実施の形態2に係わる冷凍空調サイクル装置の構成および冷媒回収方法を示す図である。
【図10】 本発明の実施の形態2に係わる冷凍空調サイクル装置の構成および冷媒充填方法を示す図である。
【図11】 本発明の実施の形態2に係わる冷凍空調サイクル装置の構成および冷媒回収方法を示す図である。
【図12】 本発明の実施の形態2に係わる冷凍空調サイクル装置の構成および冷媒充填回収方法を示す図である。
【図13】 本発明の実施の形態2に係わる冷凍空調サイクル装置の冷媒回収、移設方法の作業手順を示す図である。
【図14】 本発明の実施の形態3に係わる冷凍空調サイクル装置の構成および冷媒回収方法を示す図である。
【図15】 本発明の実施の形態3に係わる冷凍空調サイクル装置の冷媒回収、移設方法の作業手順を示す図である。
【図16】 本発明の実施の形態4に係わる冷凍空調サイクル装置の冷媒回収、移設方法を示す図である。
【図17】 本発明の実施の形態4に係わる冷凍空調サイクル装置の構成および冷媒充填方法を示す図である。
【図18】 本発明の実施の形態4に係わる冷凍空調サイクル装置の構成および冷媒回収方法を示す図である。
【図19】 本発明の実施の形態4に係わる冷凍空調サイクル装置の冷媒回収、移設方法の作業手順を示す図である。
【図20】 本発明の実施の形態4に係わる冷凍空調サイクル装置の構成を示す図である。
【図21】 本発明の実施の形態4に係わる冷凍空調サイクル装置の特性を説明する図である。
【図22】 本発明の実施の形態4に係わる冷凍空調サイクル装置の冷媒回収、移設方法の作業手順を示す図である。
【符号の説明】
1 圧縮機、 2 四方弁、 3 室外熱交換器、 4 流量制御弁、 5 室内熱交換器、 6 ガス管側3方弁、 7 液管側二方弁、 8 ガス接続配管、 9 液接続配管、 11 真空ポンプ、 12 冷媒回収容器、 13 接続部、 14 冷媒吸収剤、 15 冷却装置、 16 電気ヒータ、 21,22,23,24,25、 バルブ、 31 冷媒回収装置、 32 冷媒回収容器、 41,42、43 弁、 51 冷媒追加充填容器、 52 弁、 61不燃気体容器、 62,63 弁、 71 容器、 81,82 流量制御弁、
83,84 液だめ容器、 104 室内機、 105 室外機。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method and an apparatus related to refrigerant recovery and filling in a refrigerating and air-conditioning cycle apparatus that circulates refrigerant in a circuit such as an air conditioner and a refrigerator.
[0002]
[Prior art]
In recent years, from the viewpoint of prevention of ozone layer destruction and global warming, a fluorocarbon refrigerant with a high global warming potential (for example, R407C refrigerant with a global warming potential of 2300) used in a refrigeration air-conditioning cycle apparatus is used. The R32 refrigerant (warming coefficient 650) having a low global warming coefficient and propane (warming coefficient 3) and isobutane (warming coefficient 3) having a lower global warming coefficient are being accelerated. However, since these refrigerants are flammable refrigerants, not only are the safety measures to prevent ignition of the product itself for commercialization, but also the product is not released into the atmosphere during service, for example, when the refrigerant is recovered due to relocation or failure. It is necessary to prevent ignition.
[0003]
The handling of the apparatus using the refrigerant circuit such as the refrigerant recovery and transfer method in the conventional refrigeration air-conditioning cycle apparatus will be described. In the refrigerant circuit of the vapor compressor type, a refrigerant circuit is formed in which a compressor, a four-way valve, an outdoor heat exchanger, a flow control valve, an indoor heat exchanger, and a refrigerant circuit sequentially connected again to the compressor via the four-way valve are formed. A gas connection pipe and a liquid connection pipe are connected to the three-way valve and the liquid-side two-way valve, and the outdoor unit and the remote indoor unit are integrated so that the refrigerant can circulate. Also, when recovering refrigerant for maintenance, relocation, replacement, etc., a recovery device comprising a vacuum pump, a refrigerant recovery device, and a valve provided on a vacuum circuit on the vacuum pump is connected to the refrigerant circuit. The vacuum pump is connected to a three-way valve through the section. Next, the refrigerant recovery method will be described.
[0004]
Close the liquid side two-way valve, close the external refrigerant recovery device side connection part of the gas side three-way valve, and set the four-way valve of the refrigerant circuit to the direction of cooling operation, and connect it to the indoor heat exchanger, liquid connection pipe, gas connection pipe The refrigerant that is present is sucked by the compressor and stored in the outdoor heat exchanger, and the refrigerant is collected on the outdoor unit side. A series of these operations is called pump down operation. After this operation, the connection pipe for liquid and gas is removed from the valve of the outdoor unit, the indoor unit and the connection pipe are separated from the outdoor unit, and work such as relocation, disposal, and fault repair is performed. At this time, in the conventional pump-down operation in the refrigerant recovery method, the operation is stopped when the pressure in the refrigerant circuit reaches about 0.1 MPa of atmospheric pressure, and the indoor heat exchanger and the connection pipe of liquid or gas A small amount of refrigerant of about 0.1 MPa remains. In the conventional refrigerant recovery, since the amount of refrigerant remaining in the indoor heat exchanger and each connection pipe is very small, the residual refrigerant is released into the atmosphere.
[0005]
Also, for example, in R407C, which is a non-azeotropic refrigerant mixture, when refrigerant addition is required at the time of refrigerant leakage or transfer, in order to prevent composition change, after all the refrigerant is once collected outside the refrigeration air conditioning cycle device, Must be evacuated and filled with the required amount of refrigerant of the official composition. At this time, after the refrigerant is recovered, the inside of the refrigerant circuit is evacuated, but the refrigerant dissolved in the refrigerating machine oil in the compressor gradually precipitates in the circuit, is sucked and discharged by the vacuum pump, and is released to the atmosphere. Is done. This contains not only air but also residual refrigerant.
[0006]
Patent Document 1 describes a refrigerant recovery method in a refrigeration and air-conditioning cycle apparatus using a flammable refrigerant. However, the refrigerant recovered in a pipe connected to the refrigerant recovery apparatus or mixed in vacuum exhausted. As for the recovery method of the refrigerant, not only a special method is shown, but it is finally released to the atmosphere.
[0007]
[Patent Document 1]
JP 10-238909 A (Claim 1, pages 4 to 5)
[0008]
[Problems to be solved by the invention]
As described above, in the prior art, when a small amount of refrigerant remains in the indoor heat exchanger and each connection pipe, the vacuum pump exhausts the refrigerant until the pressure reaches about 100 mmHg. Exists. In the refrigerating and air-conditioning cycle apparatus using the above-described flammable refrigerant, if this residual refrigerant is released to the atmosphere, there is a risk of ignition and there is a problem in safety, and there is no concept of managing the amount of this residual refrigerant. . Furthermore, if the refrigerant is flammable, even if a small amount of refrigerant is concentrated and exceeds the combustion limit, there is a risk of ignition and there is a safety problem. In addition, the refrigerant is a chemical substance, and even if it is very small, there is a problem that if it affects the human body, it will have a long-term adverse effect. Even if there is no flammability or toxicity, if the refrigerant has a high global warming potential, the accumulation of a large number of refrigerants may adversely affect global warming.
[0009]
This invention is for solving the above problems, and it aims at ensuring the safety | security and reliability at the time of handling a refrigerating-cycle apparatus. In addition to maintaining the long-term performance of the refrigeration cycle system, it is also intended to provide a handling method that can ensure safety even during relocation and replacement, maintenance, and disposal. In addition, the present invention proposes a method and a structure that do not adversely affect the environment, human body, and organism.
[0011]
[Means for Solving the Problems]
In the method for handling a refrigerating and air-conditioning cycle apparatus according to the present invention, when filling refrigerant into the refrigerating and air-conditioning cycle apparatus from an external container, a vacuum pump is connected on a pipe connecting the container containing the refrigerant to be filled and the refrigerating and air-conditioning cycle apparatus. A step of recovering the refrigerant remaining on the connecting pipe after completion of the refrigerant filling using a vacuum pump, and recovering the refrigerant discharged from the exhaust port of the vacuum pump into the closed container when the vacuum pump collects the refrigerant. And a step of performing.
[0012]
The method of handling a refrigerating and air-conditioning cycle apparatus according to the present invention comprises: A step of connecting a container to the refrigerant circuit via first and second on-off valves, respectively, filling incombustible gas having a higher condensation pressure than the refrigerant from the incombustible gas container into one of the refrigerant circuits; A step of recovering the refrigerant from the other of the refrigerant circuit by a recovery device; and the non-combustible gas filling is terminated by closing the second on-off valve, and the refrigerant remaining in the refrigerant circuit is recovered by the refrigerant recovery device. Recovering the refrigerant, and recovering the refrigerant in the refrigerant recovery device by closing the first on-off valve and opening the second on-off valve to bring the incombustible gas into front. Filling the refrigerant circuit again.
[0013]
The handling method of the refrigeration air-conditioning cycle apparatus according to the present invention is such that the refrigerant filling amount of the refrigeration air-conditioning cycle apparatus in which the flammable refrigerant is sealed is such as the space volume of the room on the indoor side where the indoor unit of the refrigeration cycle apparatus is installed. Judging from the installation conditions of the refrigeration cycle device whether or not the allowable filling amount obtained from the combustion limit of the flammable refrigerant is exceeded, and if the existing refrigerant filling amount exceeds the allowable filling amount, Determining the amount of incombustible refrigerant to be added so as to be below the combustion limit, and additionally charging the amount of incombustible refrigerant in the refrigeration cycle device, and collecting the excess refrigerant of the refrigeration cycle device in a refrigerant recovery device or And a step of collecting in a liquid reservoir provided in the refrigeration cycle apparatus.
[0014]
The method of handling the refrigeration air-conditioning cycle apparatus according to the present invention includes the step of determining the refrigerant additional charging with a large internal volume of the pipe connecting the indoor side and the outdoor side, which is an installation condition of the refrigeration cycle apparatus in which the flammable refrigerant is enclosed. Determining whether the total refrigerant amount after additional charging exceeds an allowable charging amount obtained from a combustion limit of the combustible refrigerant determined from the space volume of the room; and exceeding the allowable charging amount of the combustible refrigerant And a step of providing a ventilator for ventilating the air in the room in the room where the indoor unit of the refrigeration cycle apparatus is installed.
[0015]
The method for handling a refrigerating and air-conditioning cycle apparatus according to the present invention recovers the refrigerant so that the refrigerant enclosed in the refrigerant circuit of the refrigerating and air-conditioning cycle apparatus is recovered by a pump-down operation in a refrigerant recovery device, an outdoor unit, or a heat source device. Determining the method and the compressor to be used for pumping down, predicting the amount of remaining refrigerant that cannot be recovered in the pump-down operation using the compressor, and determining the management of the amount of residual refrigerant released into the atmosphere from the characteristics of the refrigerant used And a step of selecting a recovery method of the remaining refrigerant according to the allowable value of the atmospheric discharge amount, and recovering the remaining refrigerant when the refrigerant of the refrigeration air conditioning cycle device is charged and recovered.
[0017]
The refrigerant recovery mechanism of the refrigerating and air-conditioning cycle apparatus according to the present invention circulates a refrigerant containing a combustible refrigerant in at least a part by installing an indoor unit in a room and connecting the indoor unit to an outdoor unit provided outside. Refrigeration cycle apparatus to be installed, and from the installation conditions of the refrigeration cycle apparatus, such as the indoor volume of the room where the indoor unit is installed and the pipe diameter / length, so that the combustible refrigerant enclosed is below the combustion limit in the room A predetermined amount of incombustible refrigerant added to the refrigeration cycle apparatus, and recovery means connectable to the refrigeration cycle apparatus for recovering excess refrigerant generated by the addition of the incombustible refrigerant.
[0018]
DETAILED DESCRIPTION OF THE INVENTION
Embodiment 1 FIG.
1, 2 and 3 are diagrams showing the configuration of the refrigerating and air-conditioning cycle apparatus according to Embodiment 1 of the present invention. FIG. 4 shows a series of work procedures in this embodiment. FIG. 1 shows a vapor compressor type refrigerant circuit, in which a compressor 1, a four-way valve 2, an outdoor heat exchanger 3, a flow control valve 4, and an indoor heat exchanger 5 are connected in order, and an indoor unit 104 and an outdoor unit 105 are Each connection pipe can be arranged far away, and the gas side three-way valve 6 connected to the gas side connection pipe 8 to the outdoor unit 105 is connected to the liquid side connection pipe 9. Is provided. Further, as a structure for recovering the refrigerant, a vacuum pump 11, a refrigerant recovery container 12, and valves 21, 22, 23, 24, and 25 provided on a evacuation circuit on the vacuum pump are provided. The vacuum pump 11 is connected to the three-way valve 6 at the connection part 13 between the valve 6 and the valve 21. In FIG. 1, the closed valve is black and the open valve is white. As the refrigerant, a flammable refrigerant such as R32, propane or isobutane is used. The refrigerant recovery method and transfer in this figure will be described below.
[0019]
In FIG. 1, first, the refrigerant is circulated in the direction of the cooling operation of the four-way valve 6, the valve 7 is closed, the connection part 13 side of the valve 6 with the external connection device is closed, and the pump down operation is performed. And collect the refrigerant in the outdoor unit. At this time, in order to collect all the refrigerant that could not be collected in the indoor heat exchanger 5 and the connection pipes 8 and 9, the valve 6b at the connection portion with the inside of the outdoor unit 105 is closed, and the connection with the outside is performed. The valve 6a, 6c side of the part is opened, and the trace amount refrigerant remaining in the indoor heat exchanger 5, the gas connection pipe 8, and the liquid connection pipe 9 is exhausted by the vacuum pump 11 connected to the valve 6a. At this time, the exhaust port 22 is not opened to the atmosphere, but remains in the circuit by exhausting and recovering to the refrigerant recovery container 12 connected through the valve 23 (previously evacuated from the valve 25). It is possible to reliably collect the small amount of refrigerant.
[0020]
Here, the management value of the remaining refrigerant in the heat exchanger 5 and the connecting pipes 8 and 9 to be recovered by the vacuum pump 11 will be described. When a flammable refrigerant is present in the air, there is a risk of ignition if there is a refrigerant having a concentration equal to or higher than the lower limit combustion limit (amount of refrigerant present per unit volume, unit kg / m3). Incidentally, this value is about 0.283 kg / m3 for R32 refrigerant, 0.038 kg / m3 for propane, and about 0.043 kg / m3 for isobutane. If the residual refrigerant in the indoor heat exchanger 5 and the connection pipes 8 and 9 is rapidly released into the air, there is a possibility that the lower limit concentration of combustion will be lowered. However, after the pump-down operation, the indoor heat exchanger 5 and the connection pipes Assuming that 8 and 9 are removed, the pressure of the refrigerant remaining in the indoor heat exchanger 5 and the connecting pipes 8 and 9 is about atmospheric pressure, and is not always released rapidly into the atmosphere. Therefore, on the basis of the space volume of the closed space in the indoor heat exchanger 5 and the connection pipes 8 and 9, and assuming that all the spaces are air, the indoor heat exchanger 5 and the connection pipes 8 and 9 It is necessary to recover the refrigerant remaining in the gas until it reaches the lower combustion limit concentration or less.
[0021]
For example, the vapor density of the refrigerant R32 at atmospheric pressure and normal temperature of 20 ° C. is 2.2 kg / m 3. If the indoor heat exchanger 5 and the connecting pipes 8 and 9 are removed as they are after the refrigerant is recovered, The concentration may be significantly higher than 0.283 kg / m3. Therefore, in the case of R32 refrigerant, it is necessary to reduce the pressure with a vacuum pump up to about 95 mmHg where the vapor density is 0.283 kg / m 3 or less (up to about 15 mmHg for propane or isobutane). In order to further ensure the recovery of the refrigerant, the refrigerant adsorbent 14 may be built in the container. For example, activated carbon is used as the adsorbent. The refrigerant absorbed in the adsorbent is sent to the refrigerant recovery / regeneration / destruction process together with the container, and the refrigerant is separated from the adsorbent by heating or the like. Then, the refrigerant is burned and destroyed at a higher temperature, or is used for regeneration of the refrigerant.
[0022]
FIG. 2 is another configuration diagram. As shown in the figure, in order to further ensure the recovery of the refrigerant, the container 12 is cooled by a cooling device 15 (or a cooling tank) so that the refrigerant can be condensed and liquefied. This facilitates the rapid recovery of the refrigerant. In the above description, the relocation is taken as an example, but it is natural that it is good for environmental measures to surely collect the refrigerant even when it is necessary to collect the refrigerant, for example, when it is discarded after using the product such as an air conditioner. It is.
[0023]
FIG. 3 is another configuration diagram. As shown in the figure, when the vacuum pump cannot be used, the container 12 is directly connected to the valve 6a. The container is filled with the refrigerant adsorbent 14 and promoted to condense and liquefy the refrigerant by the apparatus 15 for cooling the container, thereby remaining in the indoor heat exchanger 5 and the connecting pipes 8 and 9. A small amount of refrigerant can be recovered. At this time, if it is cooled with a cryogenic cooling medium such as liquid nitrogen as a cooling method, the recovery of the refrigerant is accelerated and the global environment is not adversely affected.
[0024]
FIG. 4 is a flowchart showing a work procedure in the configuration of FIGS. 1, 2 and 3, and is a procedure for recovering the refrigerant for transferring the refrigeration air-conditioning cycle apparatus. First, the transfer start St1, the refrigerant recovery container 12 is set to the valve 25. The vacuum pump 11 and the refrigerant recovery container 12 are connected to the connection part 13 of the valve 6a of the refrigerant circuit through the valves 21, 21, and 23 as a refrigerant recovery device in advance, and St2. Next, the valve 7 is closed, the compressor 1 is operated with the refrigerant flow direction of the four-way valve 2 as cooling, and the refrigerant is recovered in the outdoor unit by pump down operation St3. After collecting the refrigerant in the outdoor unit, the valve 6b is closed and the refrigerant is held in the outdoor unit. Then, the valves 6a and 6c are opened and the vacuum pump is operated to vacuum the remaining refrigerant in the indoor heat exchanger 5 and the connection pipes 8 and 9. St4 is discharged from the exhaust port 22 of the pump and recovered in the refrigerant recovery container 12 connected to the discharge port 22. After recovering the refrigerant, the valve 23 is closed, the recovery container 12 is removed St5, the connection pipe is disconnected from the valves 6 and 7, and the transfer St6 is performed. When the pipes 8 and 9 are to be used again after moving, the connection pipes 8 and 9 are attached to the valves 6 and 7, St7 and the valve 6b is closed, the vacuum pump 11 is connected to the connection part 13 of the valve 6a, and the connection pipes 8 and 9 St8 for evacuating the exchanger 5 and preparing for the next operation. After this, the valve 6a is closed and the vacuum pump 11 is removed, then the valves 6b and 7 are opened, st9, and the relocation is completed so that the refrigerant sealed in the outdoor unit can be circulated to the circuit.
[0025]
5, 6, and 7 are diagrams showing a configuration for further recovering the refrigerant recovered in the outdoor unit in the refrigeration air-conditioning cycle apparatus according to Embodiment 1 of the present invention. The same parts as those shown in FIGS. FIG. 8 shows a series of work procedures in this embodiment. In the second embodiment, the refrigerant is collected in the outdoor unit by the pump-down operation in the first embodiment, and after the refrigerant collection in the indoor heat exchanger 5 and the connection pipes 8 and 9 is completed, the refrigerant collected in the outdoor unit is removed from the outdoor unit. It relates to a method of collecting out of the machine. At this time, the valve 6b is in a closed state. Hereinafter, the refrigerant recovery method in this figure will be described.
[0026]
First, as shown in FIG. 5, the refrigerant recovery device 31 and the refrigerant recovery container 32 are connected to the valve 6c. The valves 41 and 42 are valves provided on this circuit. Here, as an example of the refrigerant recovery device 31, a compressor and a condenser used in the refrigeration and air-conditioning cycle device are provided, and the refrigerant recovered by the pump-down operation in the outdoor unit is supplied from the valve 6c via the pen 14 to the refrigerant. Directly sucked with a compressor provided in the recovery device 31, and after pressurization, it is liquefied with a condenser of the refrigerant recovery device 31 (at this time, the air blower, cooling with water, etc. may be taken). There are some which fill the collection container 32 via the valves 42 and 43. A vacuum pump 11 is connected to the valve 6a. Then, the vacuum pump 11 evacuates the pipes and containers of the refrigerant recovery device 31 and the refrigerant recovery container 32, and discharges the exhaust from the valve 24 to the atmosphere. In addition, when the refrigerant | coolant collect | recovered previously is contained in the refrigerant | coolant collection container 32, the valve 43 is closed and it evacuates.
[0027]
Next, as shown in FIG. 6, after the valves 6 a and 24 are closed, the valve 6 b is opened, and the refrigerant retained in the outdoor unit in the refrigerant collection container 32 is collected by the refrigerant collection device 31. At this time, a pressure measuring device or the like is connected on the refrigerant circuit of the outdoor unit, and the refrigerant is recovered until the pressure becomes low.
[0028]
The next operation is shown in FIG. After recovery, the valve 43 is closed. At this time, a very small amount of unrecovered refrigerant exists on the refrigerant circuit including the refrigerant recovery device 31. In the conventional method, this residual refrigerant has been released to the atmosphere. However, in FIG. 7, after the refrigerant is recovered, the vacuum pump 11 connected to the valve 6a is operated to recover the extremely small amount of unrecovered refrigerant in the refrigerant recovery container 12. By the operation shown in FIG. 7, it is not necessary to release the unrecovered refrigerant to the atmosphere, so that prevention of global warming can be prevented. Further, when the refrigerant used is flammable, the risk of ignition can be minimized. Also, even if chemical substances that adversely affect the human body are contained, it is possible to take complete environmental measures unlike the conventional case by reliably collecting them and not releasing them into the atmosphere.
[0029]
FIG. 8 is a flowchart showing a work procedure in the configuration of FIGS. 5, 6 and 7, and is a procedure for recovering the refrigerant for transferring the refrigeration air-conditioning cycle apparatus. First, the transfer start St11, the refrigerant recovery container 12 is set to the valve 25. The vacuum pump 11 and the refrigerant recovery container 12 are connected to the connection part 13 of the valve 6a of the refrigerant circuit via the valves 21, 21, and 23 as a refrigerant recovery device in advance. Next, the valve 7 is closed, the compressor 1 is operated with the refrigerant flow direction of the four-way valve 2 as cooling, and the refrigerant is collected in the outdoor unit by pump down operation St13. After collecting the refrigerant in the outdoor unit, the valve 6b is closed and the refrigerant is held in the outdoor unit. Then, the valves 6a and 6c are opened and the vacuum pump is operated to vacuum the remaining refrigerant in the indoor heat exchanger 5 and the connection pipes 8 and 9. St14 is discharged from the exhaust port 22 of the pump and recovered in the refrigerant recovery container 12 connected to the discharge port 22. After recovering the refrigerant, the valve 23 is closed, the recovery container 12 is removed, St15, and the connection pipe is disconnected from the valves 6 and St16. The refrigerant recovery device 31 and the refrigerant recovery container 32 are connected to the valve 6c via the valves 41, 42, and 43, and the refrigerant recovery device 31 and the like are evacuated by the vacuum pump 11 via the valves 6c and 6a, St17. The valve 6a is closed, and the refrigerant recovery device 31 recovers the refrigerant from the outdoor unit to the container 32 (St18). After closing the valve 43, the valve 6a is opened, and the remaining refrigerant is recovered in the container 12 by the vacuum pump 11 St19. The valve 23 is closed to remove the collection container 12 and also remove the collection container 32. Then, St22 is completed so that it can be processed as an apparatus having no refrigerant by St21, such as moving or discarding both the indoor unit and the outdoor unit from which the refrigerant has been collected.
[0030]
Note that the refrigerant dissolved in the refrigeration oil existing in the refrigerant circuit does not readily precipitate even when the refrigerant is recovered, and even after the refrigerant recovery device 31 is separated from the refrigerant circuit, the refrigerant is precipitated in small amounts. In particular, when the solubility of the gas refrigerant in the refrigerating machine oil is low, for example, a combination of R134a, R407C, R410A refrigerant and alkylbenzene oil, or a combination of R32 refrigerant and alkylbenzene oil, ester oil, ether oil, or the like. At this time, after operation of the refrigerant recovery device 31, if the container 12 containing the refrigerant adsorbent 14 or the container 12 is connected to this circuit while being cooled and allowed to stand for a certain period of time, a small amount of precipitate deposited from the refrigerating machine oil. The refrigerant can be recovered, and the recovery operation can be ensured and speeded up. Further, as shown in FIG. 6, most of the refrigeration oil is present in the compressor, and therefore, the compressor 1 is heated to evaporate the refrigerant from the refrigeration oil so as to accelerate the precipitation of the refrigerant. FIG. 6 shows an example in which heating is performed by the electric heater 16 from the outside of the compressor. For example, the electric motor built in the compressor shell has a low pressure and high electric power so that the connection does not melt and the compressor does not rotate. The compressor motor may be used as an electric resistor and heated.
[0031]
The compressor used for the pump-down operation and the refrigerant recovery device 31 includes a reciprocating method, a rotary method, a scroll method, etc. due to the difference in structure, and a high-pressure shell method as a difference in the pressure state in the compressor storage container. There is a difference in the ability to suck the refrigerant to the lowest possible pressure. In particular, the low-pressure shell type scroll compressor may be destroyed if the suction pressure is extremely reduced due to its structure, so when recovering the refrigerant after pump down operation or pump down operation, depending on the choice of the compressor, It is necessary to select a method for recovering the refrigerant in an appropriate and short time from FIGS. 1-3, 5-7 and the above description.
[0032]
Embodiment 2. FIG.
9, 10, 11, and 12 show a configuration diagram of a refrigerating and air-conditioning cycle apparatus according to Embodiment 2 of the present invention. The same parts as those in the first and second embodiments are denoted by the same reference numerals, and the constituent operations of the same parts are the same. FIG. 13 shows a series of work procedures in this embodiment. The second embodiment relates to a refrigerant additional charging method associated with relocation and a refrigerant recovery method at the time of additional charging. At this time, the valve 6a is in a closed state. Hereinafter, the refrigerant recovery method in this figure will be described.
[0033]
When it is determined that the refrigerant is insufficient, such as during initial installation or when the capacity of the refrigeration / air-conditioning cycle device is found to be insufficient after long-term operation, additional refrigerant charging work occurs. At this time, as shown in FIG. 9, the vacuum pump 11 and the refrigerant recovery container 12 are connected to the valve 6 a via the valves 21, 22, and 23, and the refrigerant additional charging container 51 (charging cylinder) is connected via the valve 52. To do. The valves 21, 22, 23, 24, 25, 52 are valves that open and close when each device attached to this circuit is operated. First, this circuit is evacuated by the vacuum pump 11 in a state where the valve 52 in FIG. Exhaust gas is discharged from the valve 24 to the atmosphere. Subsequently, as shown in FIG. 10, the valves 21 and 24 are closed, the valves 6 a and 52 are opened, and the circuit is additionally filled with refrigerant from the container 51. At this time, after the pressure in the container 51 and the pressure in the refrigerant circuit of the refrigeration air-conditioning cycle apparatus are balanced, the compressor 1 is operated (in FIG. 10, the operation is performed in the refrigerant circuit during cooling), and the refrigeration cycle low pressure is operated. The refrigerant is additionally filled from the container 51 connected to the side. At this time, the pressure in the container 51 needs to be higher than the refrigeration cycle low-pressure side pressure. When the necessary amount is filled while measuring the weight of the container 51, the valves 6a and 52 are closed as shown in FIG. 11, and the compressor operation is stopped. At this time, in the conventional method, a very small amount of refrigerant remains in the connection portion 13 between the valves 6a, 52, and 21 and the like, and this refrigerant is released to the atmosphere as it is. Therefore, in FIG. 11, the refrigerant in the circuit is exhausted by the vacuum pump 11 that is still connected to the valve 6a, and recovered by the container 12 connected to the vacuum pump. This operation eliminates the need to release unrecovered refrigerant to the atmosphere, thereby preventing global warming and effects on the human body. Further, when the refrigerant used is flammable, the risk of ignition can be minimized.
[0034]
FIG. 12 shows an example of another embodiment. Each of the containers 51 is prepared in several sizes 51a, 51b, and 51c according to the additional filling amount (for example, every 10 g), and at the time of additional filling, all the refrigerant in the container 51 is sucked into the compressor. . By such an operation, the residual refrigerant in the container 51 is reduced as compared with the case of FIG. 9. Therefore, after the refrigerant is additionally charged, the amount of leakage when the refrigerant leaks from the container 51 is reduced, thereby preventing global warming and flammability. It is possible to prevent ignition with a refrigerant.
[0035]
FIG. 13 is a flowchart showing a work procedure in the configuration of FIGS. 9, 10, 11 and 12, which is a procedure for charging the refrigerant and recovering the remaining refrigerant in order to maintain the performance of the refrigeration air-conditioning cycle apparatus. Stuffing start St31, the refrigerant recovery container 12 is evacuated in advance from the valve 25, and the vacuum pump 11 and the refrigerant recovery container are connected to the connection part 13 of the valve 6a of the refrigerant circuit via the valves 21, 21, 23 as a refrigerant recovery device. 12 to connect 12. Next, the refrigerant circuit after the 13th part downstream of the valve 6a is evacuated while the valve 52 is closed. At this time, the exhaust does not exist in the refrigerant and may be discharged from the valve St33. The valves 21 and 24 are closed, the valves 6a and 52 are opened, and the refrigerant is additionally filled from the container 51 while measuring the filling amount St34. When the pressure in the container 51 and the refrigerant circuit is balanced, but the additional filling amount is still insufficient, the compressor 1 is operated with the flow path of the four-way valve as the cooling direction, and the refrigerant is sucked from the container 51 St35. St36 which stops the compressor 1 after filling required quantity. The valve 6a, 52 is closed, the vacuum pump 11 is operated, and the remaining refrigerant is recovered in the container 12 St37. St38 to close the valves 22 and 23 and remove the collection container 12. This completes additional refrigerant charging St39, such as with the relocation of the refrigeration cycle apparatus.
[0036]
Embodiment 3 FIG.
In FIG. 14, the block diagram of the refrigerating air-conditioning cycle apparatus used as Embodiment 3 of this invention is shown. The same parts as those of the first and second embodiments are denoted by the same reference numerals, and the configuration and operation of the same parts are the same. FIG. 15 shows a series of work procedures in this embodiment. In the third embodiment, the refrigerant is collected in the outdoor unit by the pump-down operation in the first embodiment, and after the refrigerant collection in the indoor heat exchanger 5 and the connection pipes 8 and 9 is completed, the refrigerant collected in the outdoor unit is removed from the outdoor unit. It relates to a method of collecting out of the machine. Hereinafter, the refrigerant recovery method in this figure will be described.
[0037]
In FIG. 14, the refrigerant recovery device 31 and the recovery container 32 are connected with the valves 6b and 7 closed, the vacuum pump 11 is also connected to the valve 6a, the circuit is evacuated, and the valve 6a is closed. In this example, the non-combustible gas container 61 is connected to the valve 7 after removing the vacuum pump. 62 is a valve attached to the incombustible gas container 61. At this time, the pressure in the incombustible gas container 61 is maintained at a pressure higher than the pressure in the outdoor unit refrigerant circuit. When the valves 7 and 61 are opened and the valve 6b is opened, incombustible gas is ejected from the high-pressure incombustible gas container 61 into the outdoor unit refrigerant circuit, the refrigerant in the refrigerant circuit is pushed out, and flows into the low-pressure side container 32. . Thereafter, the valve 7 or the valve 62 is closed, the recovery device 31 is operated, and the residual gas in the refrigerant circuit is recovered in the container 32. After the pressure in the circuit is sufficiently reduced, the recovery device is stopped, the valve 6c or the valve 41 is closed, and the valve 7 or the valve 52 closed in the previous step is opened, so that noncombustible gas is injected into the circuit. Then, the valve 7 or the valve 62 is closed, the valve 6c or the valve 41 closed in the previous step is opened, the recovery device 31 is operated, and this operation of recovering the residual gas in the refrigerant circuit to the container 32 is repeated, thereby The residual refrigerant inside is collected in the container 32, and the outdoor unit refrigerant circuit is filled with non-combustible gas.
[0038]
The determination of the end of recovery is made when the amount of enclosed refrigerant is known, when the amount approaches the amount, when the amount of enclosed refrigerant is unknown, when there is no increase in the amount of recovery measured with a scale, or with the valve 6 When it is judged that the liquid refrigerant has stopped flowing by observing with a glass window (not shown) for monitoring the flow state provided between the four-way valves 2, or by analyzing the fluid circulating in the refrigerant circuit, the refrigerant When the component becomes less than or equal to a predetermined value, it may be set as such.
[0039]
FIG. 15 is a flowchart showing a work procedure in the configuration of FIG. 14, which is a procedure for recovering the refrigerant in order to transfer the refrigeration air-conditioning cycle apparatus. First, the transfer start St41 and the refrigerant recovery container 12 are evacuated from the valve 25 in advance. As a refrigerant recovery device, St42 connects the vacuum pump 11 and the refrigerant recovery container 12 to the connection part 13 of the valve 6a of the refrigerant circuit via the valves 21, 21, and 23. Next, the valve 7 is closed, the compressor 1 is operated with the refrigerant flow direction of the four-way valve 2 as cooling, and the refrigerant is collected in the outdoor unit by pump down operation St43. After collecting the refrigerant in the outdoor unit, the valve 6b is closed and the refrigerant is held in the outdoor unit. Then, the valves 6a and 6c are opened and the vacuum pump is operated to vacuum the remaining refrigerant in the indoor heat exchanger 5 and the connection pipes 8 and 9. St44 is discharged from the exhaust port 22 of the pump and recovered in the refrigerant recovery container 12 connected to the discharge port 22. After collecting the refrigerant, the connection pipe is removed from the valves 6 and 7 St45. A container 61 is connected to the valve 7, a refrigerant recovery device 31 and a refrigerant recovery container 32 are connected to the valve 6 c through valves 41, 42, 43, the valve 6 b is closed and the valves 6 a, 6 c are opened. St46 for evacuating the device 31 and the like. While opening the valve 7 and adjusting the pressure with the valve 62, injecting the incombustible gas in the incombustible gas container 61 into the outdoor unit of the refrigeration cycle apparatus, operating the compressor in the refrigerant recovery apparatus 31, etc., the refrigerant is stored in the container 32. To liquefy and absorb st47. St48 which closes valve 43 and removes container 32. St49 which closes valve 23 and removes collection container 12 is removed. Thereafter, St51 completes refrigerant recovery and relocation of the refrigeration cycle apparatus by St50 such as relocating or discarding both the indoor unit and outdoor unit from which the refrigerant has been collected.
[0040]
According to this method, since the refrigerant circuit inside the outdoor unit can be filled with non-combustible gas, the danger (global warming, ignition) due to residual refrigerant leakage when transporting the outdoor unit for disposal or recycling is avoided. Can do. In the second embodiment, after the refrigerant is recovered, the refrigerant is not left in the outdoor unit refrigerant circuit, but is in a vacuum state. However, according to the third embodiment, the refrigerant circuit is filled with non-combustible gas at atmospheric pressure or higher. Can do. High sealing accuracy is required for the valves 6 and 7 in order to transport while keeping the vacuum state and to perform disposal and recycling. If the sealing accuracy of the valves 6 and 7 is poor, air may flow into the refrigerant circuit. If left for a long time, the components in the refrigerant circuit deteriorate due to moisture, oxygen, etc. in the air. , Recyclability may be adversely affected. Therefore, even if the sealing accuracy of the valves 6 and 7 is poor, air can flow into the outdoor unit refrigerant circuit by replacing the incombustible gas with an inert gas while maintaining a pressure higher than atmospheric pressure. And there is little risk of component deterioration in the refrigerant circuit, and recyclability can be improved.
[0041]
In addition, when recovering the refrigerant in the refrigerant circuit that communicates with the recovery device 31, the vacuum pump 11 is used to store the refrigerant in the container 12 as shown in the first embodiment following the method described in the third embodiment. Can be recovered.
[0042]
As an example of the non-combustible gas, a gas having an ozone destruction coefficient of 0 and an extremely low global warming coefficient, for example, nitrogen (global warming coefficient 0), carbon dioxide (global warming coefficient 1), or the like is used. It is even better if these are inert to the metal.
[0043]
Moreover, when the refrigerant | coolant with which R32 is filled is mixed with R32, you may fill with the HFC refrigerant | coolant of the ozone layer destruction coefficient 0 which becomes nonflammable. At this time, the amount of R32 may be filled more than 1 times the amount of R32 in R125, and 2.3 times the amount of R32 in R134a. Also, both R32 and R134a may be mixed to make it nonflammable.
[0044]
Embodiment 4 FIG.
16, 17, and 18 show a configuration diagram of a refrigerating and air-conditioning cycle apparatus according to Embodiment 4 of the present invention. The same parts as those in the first, second and third embodiments are denoted by the same reference numerals, and the same parts have the same configuration and operation. FIG. 19 shows a series of work procedures in this embodiment. In the fourth embodiment, as shown in the explanatory diagram of FIG. 16, when the refrigerating and air-conditioning cycle apparatus installed in a large room is moved to a small room, or the moved indoor unit and the outdoor unit are connected. It shows about the refrigerant | coolant collection | recovery method in the case where the internal volume of connecting piping 8 and 9 to make becomes smaller than before transfer. Hereinafter, the refrigerant recovery and transfer method in these drawings will be described.
[0045]
In the use of flammable refrigerant, even if the entire amount of refrigerant leaks into the room, there is a risk of ignition if the concentration is below the lower limit of combustion concentration (refrigerant amount per unit volume, kg / mm3). It can be avoided. Therefore, when the air-conditioned room space is a closed space, for example, if there is no ventilation device, or if the entire charge refrigerant leaks into the room space where there is no exchange of air with the outside, this space volume will be large enough to burn Since the risk of ignition can be avoided if the amount is equal to or less than the lower limit concentration, the upper limit value of the refrigerant charging amount can be determined according to the size of the room. Therefore, in order to avoid the risk of ignition in the flammable refrigerant, the upper limit value of the priority amount of the flammable refrigerant can be determined depending on the size of the room. However, in reality, the refrigerant used as the flammable refrigerant generally has a specific gravity greater than that of air, so that when it leaks into the room, a concentration distribution is generated in the ceiling height direction in the room, and it tends to stay on the floor surface. Therefore, it is rare that the total amount of leakage is uniformly distributed in the indoor space. Considering the concentration distribution in the space due to the ceiling height of the space, the height of the leakage port, the diffusion driving force of the refrigerant, etc., the high concentration area on the floor surface In order to avoid the risk of ignition in consideration of the safety factor and the like, it is possible to determine the upper limit value of the refrigerant charging amount depending on the size of the room. Even if it is leaked, there is a danger of ignition if it is discharged outside the room with a ventilation device that operates normally (including natural ventilation) or a ventilator that quickly detects and operates the leak, and the concentration falls below the lower combustion limit concentration. The nature becomes low. Therefore, the upper limit value of the refrigerant amount in the room can be determined also by the presence or absence of the ventilation device and the ventilation amount.
[0046]
As shown in FIG. 16, when the refrigeration / air-conditioning cycle apparatus, the indoor unit, and the outdoor unit are relocated from a room with a large indoor space volume to a room with a small indoor space volume, the upper limit of the refrigerant amount may be exceeded as it is. There is. Also, when moving from a room with a ventilator to a room without a ventilator, there is a risk of exceeding the refrigerant amount upper limit. In addition, when the pipe is increased in volume due to the length of the connecting pipes 8 and 9 connecting the indoor unit and the outdoor unit being increased at the time of relocation, the refrigerant becomes insufficient, and additional charging of the refrigerant occurs. At this time, there is a risk of exceeding the above-described upper limit.
[0047]
At the time of relocation, the amount of refrigerant after relocation is first determined from the installation conditions of the refrigeration air conditioner such as the length of the connecting pipe. First, it is determined whether or not this amount exceeds the upper limit value of the refrigerant amount determined from the size of the room after the relocation and the ventilation conditions (such as continuous ventilation and leakage detection ventilation). If it does not exceed, recover the refrigerant by the method already described and move it. If it exceeds, relocation is performed by collecting only the amount exceeding the above-mentioned method.
[0048]
FIG. 17 shows a block diagram of the present invention, and the operation when filling with a nonflammable refrigerant will be described. A container 71 filled with a refrigerant that becomes incombustible when mixed with refrigerant present in the refrigerant circuit is connected to the valve 6a via a valve 72. At this time, the refrigerant filled in the container 71 is preliminarily calculated to be non-combustible by mixing with the amount of refrigerant after the transfer, and is filled in an amount corresponding to the amount. Thereafter, an operation of additionally filling the refrigerant in the container 71 is performed. This method may be the method shown in the third embodiment. By this operation, the refrigerant present in the refrigerant circuit in the refrigeration air-conditioning cycle apparatus becomes non-combustible. Due to the filling of the non-flammable refrigerant, the refrigerant becomes excessive in the entire system. Excessive refrigerant may cause a liquid back operation of the compressor, and there is a concern about the reliability of the system, so it is necessary to recover the excess. The refrigerant recovery method after additional filling with nonflammable refrigerant will be described with reference to FIG. As shown in FIG. 18, the refrigerant recovery device 31 and the refrigerant recovery container 32 are connected to the valve 6a via valves 41, 42, and 43. The valves 44 and 45 are used when the refrigerant recovery device 31 and the refrigerant recovery container 32 are evacuated. As the individual refrigerant recovery device, for example, a compressor and a condenser used in a refrigeration air-conditioning cycle device are provided inside, and the refrigerant is sucked directly by the compressor, liquefied by the condenser after pressurization, and collected in the recovery container 32. To fill. The recovery device is operated to recover the refrigerant that has become excessive due to the incombustible refrigerant filling in the refrigeration cycle.
[0049]
The collection method at this time is based on the method already described. A flowchart summarizing these series of procedures is shown in FIG. FIG. 19 illustrates the procedure for relocation of the refrigeration cycle apparatus. When the relocation start St61, first, after the relocation, it is determined based on the installation conditions such as the connection pipe length before the relocation and the connection pipe length after the relocation, and the load conditions of the room to be installed. St62 for determining the amount of refrigerant. Although it is described individually before and after the transfer, it is a wide range such as a standard refrigeration cycle apparatus, that is, a method for adapting to an environment in which a product having a refrigerant amount already charged with respect to a preset load is installed for the first time after sale. This is a method of handling a refrigeration cycle apparatus applicable to the application, and is not particularly limited to relocation. Then, if it is before and after the relocation, it is determined whether the refrigerant is insufficient or excessive from the comparison with the amount of refrigerant charged before relocation, and St63 is determined. Subsequently, the amount of refrigerant after relocation is predicted based on the size of the room after relocation, ventilation conditions such as constant ventilation, etc., and the amount of flammable refrigerant is determined. St64, whether or not the flammable refrigerant amount upper limit is exceeded. St65 to judge.
[0050]
If the value exceeds the upper limit value, the refrigerant quantity after the relocation is mixed with the refrigerant quantity to determine the refrigerant quantity of the non-flammable refrigerant regardless of the size of the room, St66, and this quantity of nonflammable refrigerant is added St67. If the amount of refrigerant after relocation does not exceed the allowable upper limit, if the refrigerant is insufficient, the refrigerant is additionally charged, but if it is excessive, the refrigerant is not charged. As described above after charging the refrigerant, the refrigerant is recovered to the outdoor unit by the pump-down operation, St69, the connection pipe and the indoor unit are evacuated, St70, and if there is an excessive refrigerant, it is recovered and St71. Remove the outdoor unit, connection pipe, and indoor unit and move to St72, install the outdoor unit, connection pipe, and indoor unit at the transfer destination, evacuate the connection pipe and indoor unit, and install St73, refrigerant recovery device, etc. Remove the device and allow the refrigerant to circulate in the cycle to complete the transfer of the refrigeration cycle. In addition, as already described, for example, the factory is shipped with a standard wing refrigerant amount filled, and the refrigerant amount is reviewed based on the installation conditions at the installation site of the refrigeration cycle apparatus, St62, the refrigerant excess / deficiency is judged St64, the installation conditions Of course, the upper limit value of the allowable refrigerant amount for the flammable refrigerant is estimated, St65, the amount of the nonflammable refrigerant is determined and added, St66, 67, and the operation may be started. By adopting such a procedure, even if the installation conditions and installation location are not known in advance, or even when the installation conditions change significantly during the process, a handling method capable of providing a safe, high-performance and highly reliable apparatus can be obtained.
[0051]
Yet another configuration example is shown in FIG. The excess refrigerant due to the incombustible refrigerant filling may be recovered. However, as shown in FIG. 20, even if the incombustible refrigerant is filled and the refrigerant becomes excessive, the flow control valve 81 is previously provided in the refrigerant circuit. , 82 is provided with a liquid reservoir 83 at a position sandwiched between them, or by providing a liquid reservoir (accumulator) 84 or the like for suctioning the compressor, these containers serve as a liquid reservoir when the refrigerant is excessive, and a refrigeration cycle Can be operated in an appropriate state without causing a system failure such as liquid back and circulating a sufficient amount of refrigerant necessary for maintaining performance. For example, the operation when the surplus refrigerant is stored in the container 83 after filling with the non-combustible refrigerant and there is no container 84 will be described. Before adding refrigerant, flow control of the refrigeration cycle is performed by the flow control valve 81 during cooling and by the flow control valve 82 during heating. For example, evaporator outlet superheat control, compressor suction superheat control, compression Such as compressor superheat control, compressor discharge temperature control, compressor suction temperature control, condenser outlet subcool control, flow control valve inlet subcool control, etc., the cooling flow control valve 82 is fully opened, and the heating flow control valve 81 is fully opened. To do. On the other hand, after the refrigerant is additionally charged, during cooling, the subcool control is performed by the flow valve 81, for example, the condenser outlet, the flow control valve inlet, and the superheat control by the flow control valve 82, for example, the evaporator outlet, the compressor suction, the compressor discharge, Compressor discharge temperature control, compressor suction temperature control, and the like are performed so that the heat exchangers that serve as a condenser and an evaporator are brought into a high heat transfer state, and surplus refrigerant can be stored in the container 83.
[0052]
When excess refrigerant is stored in the container 84 and the flow control valve 82 and the container 83 are not provided, the flow control of the refrigeration cycle apparatus is performed by the valve 81. For example, evaporator outlet superheat control, compressor suction superheat control, compressor discharge superheat control, compressor discharge temperature control, compressor suction temperature control, condenser outlet subcool control, flow rate control valve inlet subcool control, etc. . After additional filling, the flow rate control valve 81 controls the evaporator wetness, compressor suction wetness control, compressor discharge superheat control, compressor discharge temperature control, compressor suction temperature control, condenser outlet subcool control, flow rate By controlling the flow rate control valve 81 so that the compressor suction is in a wet state by the control valve inlet subcool control or the like, the two-phase refrigerant flows into the container 84, so that the refrigerant can be stored in the container 84.
[0053]
As an example of the non-combustible refrigerant to be filled, for example, when the filled refrigerant is R32, an HFC refrigerant having an ozone layer depletion coefficient of 0 that becomes non-combustible when mixed with R32 may be filled. At this time, it is sufficient to fill the amount of R32 with 1 or more times the amount of R32 (R410A refrigerant) when R125, and 2.3 times or more of the amount of R32 with R134a. Alternatively, both R32 and R134a may be mixed (R407C conversion) and non-combustible. In particular, even if R125 is additionally charged with respect to R32, the operating pressure is not substantially changed, and the capacity and efficiency of the refrigeration and air-conditioning cycle device are not substantially changed, so that reliable operation can be performed while ensuring reliability. .
[0054]
The refrigerant in each embodiment has been described above. Examples of the refrigerant used include R32, R41, R143, R152a, and R245ca (the refrigerant is an HFC system), and flammable refrigerants such as isobutane, propane, and ammonia (ammonia is also a toxic refrigerant). Release and leakage can be prevented, and safety and reliability can be improved. Moreover, the effect is exhibited even when these flammable or toxic refrigerants are mixed with other HFC refrigerants. From the viewpoint of preventing atmospheric emission and leakage, refrigerants that are nonflammable but have a large global warming potential, for example, HFC refrigerants (including single and mixed) such as R134a, R410A, R407C, and R404A, HE refrigerants, Emissions to the atmosphere can be avoided even with FC refrigerants (single and mixed), non-flammable refrigerants that do not have an ozone destruction factor of 0 (for example, HCFC refrigerants such as R22 and R12), and mixed refrigerants of these refrigerants. It can suppress the adverse effect on global warming with a trace amount.
[0055]
Here, the warming potential of each refrigerant will be described. Nitrogen, air = 0, carbon dioxide, ammonia = 1, propane = 3, isobutane = 3, R134a = 1300, R407C = 1500-2300, R410A = 1700-1900, R22 = 1700, R32 = 650, R404A = 3300 are common Value.
[0056]
In addition to the above-mentioned various refrigerants, the refrigeration oil is sufficiently reliable even if alkylbenzene oil, ester oil, ether oil, fluorine oil, mineral oil, polyvinyl ether oil, etc. are used, and the refrigerant leakage prevention effect is exhibited. The Refrigerating machine oils that are incompatible or hardly soluble with refrigerants (for example, H410 refrigerant R410A and alkylbenzene oil, R134a and alkylbenzene oil, R407C and alkylbenzene oil, R32 and alkylbenzene oil, R32 and ester oil, R32 and ether oil, etc. In this combination, the refrigerant in which the refrigerant is dissolved in the refrigerating machine oil is compatible with the refrigerating machine oil (for example, R410A of HFC type refrigerant and ester oil of 1% or more by mass fraction solubility of the refrigerating machine oil in the liquid refrigerant). (E.g., combination of H410 refrigerant R410A and ether oil). The reason for this is that the absolute amount of the refrigerating machine oil is small, and there are cases where measures such as increasing the recovery time or heating are used in order to cause complete precipitation. On the other hand, the present embodiment that can realize complete refrigerant recovery in the refrigerant circuit is an effective means.
[0057]
In addition, the volume of piping between valves in each embodiment described above will be described. Here, for example, attention is paid to the piping portion 13 between the valve 6a and the valve 52 in FIG. When connecting the container 51 to the valve 6a, it is necessary to evacuate the pipe 13 part. However, the volume of the pipe is extremely small and the amount of air sealed when the valves are connected is very small. If there is no problem in capacity, energy efficiency, and reliability even if this minute amount of air is mixed in, additional refrigerant filling can be performed by a simple operation without evacuation. At this time, in order to ascertain the amount of air that would not cause a problem in reliability even if mixed, an experiment was conducted in which a small amount of air was mixed into the refrigeration and air-conditioning cycle apparatus to grasp the amount of sludge generated after long-time operation. The result is shown in FIG. In FIG. 21, the horizontal axis indicates the air mixing ratio with respect to the refrigerant charging amount, and the vertical axis indicates the sludge generation amount. According to FIG. 21, the amount of mixed air having no reliability problem below the allowable amount of sludge was 1 ppm or less with respect to the refrigerant charging amount. This numerical value is, for example, 1 mg per 1000 g of refrigerant, and is 0.85 cc or less when the amount of air at atmospheric pressure. Therefore, the amount of air mixed into the pipe portion 13 between the valve 6a and the valve 52 is 1 ppm or less of the refrigerant filling amount, that is, the pipe internal volume is set to the atmospheric pressure air density with respect to 1 ppm air mass of the refrigerant filling amount. Therefore, even if air is mixed in when these valve bodies are connected, the capacity, energy efficiency, and reliability of the refrigeration / air-conditioning cycle system will not be affected, and there is no need for evacuation. Therefore, the refrigerant can be easily recovered. In order to reduce the pipe internal volume of the pipe part 13, a method of shortening the pipe part 13 as much as possible, a method of reducing the pipe inner diameter as much as possible, or the like may be taken.
[0058]
The work flow of refrigerant recovery and transfer in the refrigeration / air conditioning cycle apparatus according to the present invention is shown in FIG. After starting, St81, 82 to grasp the characteristics of refrigerant used, ozone depletion coefficient, global warming coefficient, flammability, lower limit concentration of combustion, toxicity and degree of influence on human body. Subsequently, the main refrigerant recovery method is determined. For example, whether the refrigerant is first recovered in the outdoor unit by the pump-down operation, or whether the refrigerant is first recovered in the external container due to a compressor failure, St83. Although not shown, when the pump down operation cannot be performed due to a compressor failure or the like, the valve 6a is connected to the vacuum pump 11, the refrigerant recovery container 12 following the vacuum pump 11, the refrigerant recovery device 31, and the refrigerant recovery following the refrigerant recovery device 31. The container 32 may be connected, and after the refrigerant is recovered in the container 32 by the refrigerant recovery device 31, the remaining refrigerant may be recovered in the container 12 by the vacuum pump 11. When recovering refrigerant to the outdoor unit by pump-down operation, the recovery amount that can be pump-down and the time required for pump-down operation are determined according to the type of compressor of the refrigerating and air-conditioning cycle device used for pump-down. St84 for determining the down operation method. Subsequently, the amount of remaining refrigerant that cannot be recovered by pumping down is predicted at St85, and it is determined whether it is necessary to manage the release of the remaining refrigerant to the atmosphere according to the type of refrigerant. Subsequently, the allowable release amount of the remaining refrigerant into the atmosphere is determined from the viewpoints of prevention of global warming (in the case of a refrigerant with a high global warming factor) and prevention of ignition (in the case of a flammable refrigerant), St87, the amount of refrigerant to be recovered To decide. Subsequently, depending on the level of this recovery, the refrigerant recovery method (pump down only, pump down + vacuum pump recovery, pump down + recovery system to recover refrigeration and air-conditioning cycle equipment outside recovery + vacuum pump recovery, filling with non-combustible refrigerant) St88 to select relocation and so on. And St89 which transfers to work, such as actual refrigerant | coolant collection | recovery and transfer. Eventually, St90, including taking into account the disposal method of the recovered refrigerant, St91, a series of work procedures are determined and work is performed.
[0059]
The flowchart described with reference to FIG. 22 is displayed on a screen of a personal computer or the like, and can be selected by inputting from a keyboard and selecting a better method before anyone can perform construction. For example, the characteristic location of each refrigerant can be selected as to which refrigerant is used as a table in the microcomputer. For the pump down operation method and device, data such as whether to use the outdoor unit of the refrigeration cycle is recorded. Furthermore, regarding the compressor to be used, if the type, capacity, rotation speed, etc. are input or selected from the storage table, the remaining refrigerant amount is automatically calculated, and the remaining refrigerant amount, The amount of atmospheric discharge, allowable values, etc. are calculated and displayed, and a refrigerant recovery method is proposed on the screen. This makes it easy for anyone to select. As mentioned above, although the refrigerating and air-conditioning cycle apparatus in the present invention has been described mainly with respect to a room air conditioner in which an indoor unit and an outdoor unit are connected by a connection pipe, the work flow shown in FIG. The present invention can also be applied to an integrated refrigeration air conditioning cycle apparatus that is not separated. That is, when recovering the refrigerant in the refrigerator, it is necessary to connect a refrigerant recovery device, but since the refrigerant will eventually remain in the piping connecting the refrigerant recovery device and the refrigerator, It is necessary to recover the residual refrigerant using a vacuum pump to ensure safety. On the other hand, if the software shown in FIG. 22 is provided to the dismantling contractor, it is possible to surely make a choice useful for protecting the global environment. Further, the method of recovering the refrigerant after filling with non-combustible gas also has an advantage that the refrigerant can be recovered while ensuring safety at a low cost in a short time. In addition, as with the compressor, it is a matter of course that the handling of the apparatus using the refrigerant pump and other refrigerant forward idiom synchronization can be similarly performed.
[0060]
In the handling method such as the refrigerant recovery and transfer method of the refrigeration and air-conditioning cycle apparatus of the present invention described above, when the refrigerant that could not be recovered by the refrigerant recovery apparatus is recovered using the vacuum pump, it is discharged from the exhaust port of the vacuum pump. Since the collected refrigerant is collected in a closed container, the refrigerant remaining in the space to be evacuated can be reliably collected, ensuring safety by preventing ignition, protecting the environment such as global warming, and preventing adverse effects on living organisms And so on.
[0061]
In the handling method such as the refrigerant recovery and transfer method of the refrigeration and air-conditioning cycle apparatus according to the present invention, after the refrigerant is collected in the outdoor unit by the pump down operation, it remains in the indoor unit or the pipe connecting the indoor unit and the outdoor unit. When collecting the refrigerant, connect the vacuum pump to the indoor unit or the pipe connecting the indoor unit and the outdoor unit, collect the refrigerant using the vacuum pump, and put the refrigerant discharged from the exhaust port of the vacuum pump into the closed container. After the recovery, the indoor unit or the pipe that connects the indoor unit and the outdoor unit is removed from the outdoor unit, so the refrigerant remaining in the space to be evacuated in the pipe that connects the indoor unit and the indoor unit to the outdoor unit is reliably recovered. It is possible to relocate it later, preventing safety and preventing global warming by preventing ignition, or preventing adverse effects on living organisms.
[0062]
In the handling method such as the refrigerant recovery and transfer method of the refrigerating and air-conditioning cycle apparatus of the present invention, when the refrigerant recovered in the outdoor unit in the pump down operation is recovered outside the outdoor unit using the refrigerant recovery unit, the outdoor unit And a vacuum pump on the pipe connecting the refrigerant recovery device, and after collecting the refrigerant outside the outdoor unit using the refrigerant recovery device, connect the outdoor unit, the refrigerant recovery device, and the outdoor unit and the refrigerant recovery device. The refrigerant remaining in the pipe to be recovered is recovered using a vacuum pump, and the refrigerant discharged from the exhaust port of the vacuum pump is recovered in the closed container, so that it remains in the connection pipe between the refrigerant recovery apparatus and the apparatus to be recovered. Thus, it is possible to move the refrigerant after it has been reliably recovered, thereby ensuring safety by preventing ignition, preventing global warming, and preventing adverse effects on living organisms.
[0063]
In the handling method such as the refrigerant recovery and transfer method of the refrigerating and air-conditioning cycle apparatus of the present invention, when the refrigerant is charged from the external container to the refrigerating and air-conditioning cycle apparatus in accordance with the transfer of the refrigerating and air-conditioning cycle apparatus, the container containing the refrigerant and the refrigerating and air-conditioning When a vacuum pump is connected to the pipe to which the cycle device is connected and the refrigerant on the connection pipe is recovered using the vacuum pump after the refrigerant has been charged, the refrigerant discharged from the exhaust port of the vacuum pump is closed. Since it is collected in the container, the refrigerant remaining in the pipe can be reliably recovered, ensuring safety by preventing ignition, preventing global warming, and taking measures against adverse effects on living organisms. it can.
[0064]
In the refrigerant recovery method of the refrigerating and air-conditioning cycle apparatus of the present invention, when a flammable refrigerant is sealed, the refrigerant recovery apparatus, the refrigerant recovery container, and an incombustible gas (such as nitrogen or carbon dioxide) whose condensation pressure is higher than that of the refrigerant are enclosed. Each of these containers is connected to a refrigeration / air conditioning cycle device, and the refrigerant is liquefied by the refrigerant recovery device while replacing the refrigerant sealed in the refrigeration / air conditioning cycle device with the non-combustible gas injected from the non-combustible gas container. Since the refrigerant is collected in the container, the refrigeration and air-conditioning cycle system is filled with incombustible gas, ensuring safety during equipment collection, transportation, disposal, and recycling, and reducing the cost of these series of operations. There are advantages to being.
[0065]
In the refrigerant recovery and transfer method of the refrigerating and air-conditioning cycle apparatus of the present invention, when a flammable refrigerant is enclosed, for example, when the space volume of the room on the indoor side after the transfer is smaller than that before the transfer, and When the amount of the existing refrigerant exceeds the allowable filling amount of the flammable refrigerant determined from the space volume of the room, the amount exceeding this is recovered, so even if the refrigerant leaks into the room, it will be below the combustion limit concentration, Ignition can be prevented and safety can be ensured.
[0066]
In the refrigerant recovery and transfer method of the refrigerating and air-conditioning cycle apparatus of the present invention, when a flammable refrigerant is enclosed, for example, the volume of the pipe connecting the indoor side and the outdoor side after the transfer is increased, and additional refrigerant charging is necessary. In addition, when the total amount of refrigerant after the additional filling exceeds the allowable filling amount of the combustible refrigerant determined from the space volume of the room after the relocation, the refrigerant is mixed with a predetermined amount of the non-combustible refrigerant and becomes surplus. Therefore, even if the refrigerant leaks from the apparatus into the room, it becomes below the combustion limit concentration, and ignition can be prevented and safety can be ensured. In addition, since the surplus refrigerant is recovered, the refrigeration / air-conditioning cycle apparatus can be operated with an appropriate amount of refrigerant even after the relocation, and its performance can be maintained.
[0067]
The incombustible gas in the above-described invention becomes incombustible when mixed with the refrigerant filled in the refrigeration air-conditioning cycle apparatus, and the mixing can also operate as a working medium of the refrigeration cycle. When the filled refrigerant is R32, the refrigerant can be collected more safely by using R125, R134a, or R125 and R134a as the refrigerant to be mixed.
[0068]
In the refrigerant recovery method for the refrigerating and air-conditioning cycle apparatus of the above invention, the atmospheric pressure air in which the volume of the pipe between the valves provided on the circuit for connecting the recovery apparatus and various containers corresponds to 1 ppm of the refrigerant charge amount. Therefore, even if air is sucked into the refrigeration cycle device or the refrigerant recovery container, it does not affect the capacity, energy efficiency, and reliability, and it does not require the trouble of vacuuming. Refrigerant recovery can be performed.
[0070]
【The invention's effect】
In the method for handling a refrigerating and air-conditioning cycle apparatus according to the present invention, when filling refrigerant into the refrigerating and air-conditioning cycle apparatus from an external container, a vacuum pump is connected on a pipe connecting the container containing the refrigerant to be filled and the refrigerating and air-conditioning cycle apparatus. A step of recovering the refrigerant remaining on the connecting pipe after completion of the refrigerant filling using a vacuum pump, and recovering the refrigerant discharged from the exhaust port of the vacuum pump into the closed container when the vacuum pump collects the refrigerant. A safe work wherever it is done in a simple way.
[0071]
The method for handling a refrigerating and air-conditioning cycle apparatus according to the present invention includes: a refrigerant recovery apparatus that collects the refrigerant when the refrigerant is recovered from the refrigerant circuit of the refrigerating and air-conditioning cycle apparatus in which a flammable refrigerant is enclosed; A step of connecting a container to the refrigerant circuit via first and second on-off valves, respectively, filling incombustible gas having a higher condensing pressure than the refrigerant into one of the refrigerant circuits from the incombustible gas container; A step of recovering the refrigerant from the other of the refrigerant circuit by a recovery device; and the non-combustible gas filling is terminated by closing the second on-off valve, and the refrigerant remaining in the refrigerant circuit is recovered by the refrigerant recovery device. And collecting the refrigerant, and recovering the refrigerant of the refrigerant recovery device by closing the first on-off valve and opening the second on-off valve to incombustible gas. The step of refilling the refrigerant circuit is provided, so that the combustible refrigerant can be reliably recovered.
[0072]
The handling method of the refrigeration air-conditioning cycle apparatus according to the present invention is such that the refrigerant filling amount of the refrigeration air-conditioning cycle apparatus in which the flammable refrigerant is sealed is such as the space volume of the room on the indoor side where the indoor unit of the refrigeration cycle apparatus is installed. Judging from the installation conditions of the refrigeration cycle device whether or not the allowable filling amount obtained from the combustion limit of the flammable refrigerant is exceeded, and if the existing refrigerant filling amount exceeds the allowable filling amount, Determining the amount of incombustible refrigerant to be added so as to be below the combustion limit, and additionally charging the amount of incombustible refrigerant in the refrigeration cycle device, and collecting the excess refrigerant of the refrigeration cycle device in a refrigerant recovery device or It is equipped with a step for collecting in a liquid reservoir provided in the refrigeration cycle device, so that it is safe and reliable regardless of when and where it is handled. It can be.
[0073]
The method of handling the refrigeration air-conditioning cycle apparatus according to the present invention includes the step of determining the refrigerant additional charging with a large internal volume of the pipe connecting the indoor side and the outdoor side, which is an installation condition of the refrigeration cycle apparatus in which the flammable refrigerant is enclosed. Determining whether the total refrigerant amount after additional charging exceeds an allowable charging amount obtained from a combustion limit of the combustible refrigerant determined from the space volume of the room; and exceeding the allowable charging amount of the combustible refrigerant In some cases, a room for installing the indoor unit of the refrigeration cycle apparatus is provided with a step of providing a ventilation device for ventilating the air in the room, so that a reliable device can be easily obtained.
[0074]
The method for handling a refrigerating and air-conditioning cycle apparatus according to the present invention recovers the refrigerant so that the refrigerant enclosed in the refrigerant circuit of the refrigerating and air-conditioning cycle apparatus is recovered by a pump-down operation in a refrigerant recovery device, an outdoor unit, or a heat source device. Determining the method and the compressor to be used for pumping down, predicting the amount of remaining refrigerant that cannot be recovered in the pump-down operation using the compressor, and determining the management of the amount of residual refrigerant released into the atmosphere from the characteristics of the refrigerant used And a step of selecting a recovery method of the remaining refrigerant according to the allowable value of the atmospheric emission amount, and the remaining refrigerant is recovered when handling the refrigerant of the refrigeration air-conditioning cycle device, such as charging and recovery. Regardless of the handling of equipment, it is definitely useful for protecting the global environment.
[0076]
The refrigerant recovery mechanism of the refrigerating and air-conditioning cycle apparatus according to the present invention circulates a refrigerant containing a combustible refrigerant in at least a part by installing an indoor unit in a room and connecting the indoor unit to an outdoor unit provided outside. Refrigeration cycle apparatus to be installed, and from the installation conditions of the refrigeration cycle apparatus, such as the indoor volume of the room where the indoor unit is installed and the pipe diameter / length, so that the combustible refrigerant enclosed is below the combustion limit in the room Since it has a predetermined amount of non-flammable refrigerant added to the refrigeration cycle apparatus, and recovery means connectable to the refrigeration cycle apparatus for recovering excess refrigerant generated by the addition of the non-flammable refrigerant, the performance is safe and reliable. A device that can be maintained is obtained.
[Brief description of the drawings]
FIG. 1 is a diagram showing a configuration of a refrigeration air-conditioning cycle apparatus and a refrigerant recovery method according to Embodiment 1 of the present invention.
FIG. 2 is a diagram showing a configuration of a refrigeration / air conditioning cycle apparatus and a refrigerant recovery method according to Embodiment 1 of the present invention.
FIG. 3 is a diagram showing a configuration of a refrigeration air conditioning cycle apparatus and a refrigerant recovery method according to Embodiment 1 of the present invention.
FIG. 4 is a diagram showing a work procedure of a refrigerant recovery and transfer method for the refrigeration air-conditioning cycle apparatus according to Embodiment 1 of the present invention.
FIG. 5 is a diagram showing a configuration of a refrigeration air-conditioning cycle apparatus and a refrigerant recovery method according to Embodiment 1 of the present invention.
FIG. 6 is a diagram showing a configuration of a refrigeration air-conditioning cycle device and a refrigerant recovery method according to Embodiment 1 of the present invention.
FIG. 7 is a diagram showing a configuration of a refrigeration air-conditioning cycle apparatus and a refrigerant recovery method according to Embodiment 1 of the present invention.
FIG. 8 is a diagram showing a work procedure of a refrigerant recovery and transfer method for the refrigeration air-conditioning cycle apparatus according to Embodiment 1 of the present invention.
FIG. 9 is a diagram showing a configuration of a refrigeration air-conditioning cycle apparatus and a refrigerant recovery method according to Embodiment 2 of the present invention.
FIG. 10 is a diagram showing a configuration of a refrigerating and air-conditioning cycle apparatus and a refrigerant charging method according to Embodiment 2 of the present invention.
FIG. 11 is a diagram showing a configuration of a refrigeration air conditioning cycle apparatus and a refrigerant recovery method according to Embodiment 2 of the present invention.
FIG. 12 is a diagram showing a configuration of a refrigeration air-conditioning cycle apparatus and a refrigerant charging / recovering method according to Embodiment 2 of the present invention.
FIG. 13 is a diagram showing a work procedure of a refrigerant recovery and transfer method for the refrigeration air-conditioning cycle apparatus according to Embodiment 2 of the present invention.
FIG. 14 is a diagram showing a configuration of a refrigeration air-conditioning cycle apparatus and a refrigerant recovery method according to Embodiment 3 of the present invention.
FIG. 15 is a diagram showing a work procedure of a refrigerant recovery and transfer method for the refrigeration air-conditioning cycle apparatus according to Embodiment 3 of the present invention.
FIG. 16 is a diagram showing a refrigerant recovery and transfer method of the refrigeration air-conditioning cycle apparatus according to Embodiment 4 of the present invention.
FIG. 17 is a diagram showing a configuration of a refrigeration air conditioning cycle apparatus and a refrigerant charging method according to Embodiment 4 of the present invention.
FIG. 18 is a diagram showing a configuration of a refrigeration air conditioning cycle apparatus and a refrigerant recovery method according to Embodiment 4 of the present invention.
FIG. 19 is a diagram showing a work procedure of a refrigerant recovery and transfer method for the refrigeration air-conditioning cycle apparatus according to Embodiment 4 of the present invention.
FIG. 20 is a diagram showing a configuration of a refrigeration air-conditioning cycle apparatus according to Embodiment 4 of the present invention.
FIG. 21 is a diagram for explaining the characteristics of the refrigeration air-conditioning cycle apparatus according to Embodiment 4 of the present invention.
FIG. 22 is a diagram showing a work procedure of a refrigerant recovery and transfer method for the refrigeration air-conditioning cycle apparatus according to Embodiment 4 of the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Compressor, 2 Four-way valve, 3 Outdoor heat exchanger, 4 Flow control valve, 5 Indoor heat exchanger, 6 Gas pipe side three way valve, 7 Liquid pipe side two way valve, 8 Gas connection pipe, 9 Liquid connection pipe , 11 Vacuum pump, 12 Refrigerant recovery container, 13 Connection part, 14 Refrigerant absorbent, 15 Cooling device, 16 Electric heater, 21, 22, 23, 24, 25, Valve, 31 Refrigerant recovery apparatus, 32 Refrigerant recovery container, 41 , 42, 43 valve, 51 refrigerant additional filling container, 52 valve, 61 non-combustible gas container, 62, 63 valve, 71 container, 81, 82 flow control valve,
83,84 Liquid reservoir, 104 indoor unit, 105 outdoor unit.

Claims (12)

冷媒を外部容器から冷凍空調サイクル装置に充填する際、充填する冷媒が入った容器と冷凍空調サイクル装置を接続する配管上に真空ポンプを接続するステップと、冷媒充填終了後、この接続配管上に残存する冷媒を前記真空ポンプを用いて回収するステップと、前記真空ポンプで回収する際、この真空ポンプ排気口から排出される前記冷媒を閉容器内に回収するステップと、を備えたことを特徴とする冷凍空調サイクル装置の取り扱い方法。 When the refrigerant is charged into the refrigeration air-conditioning cycle apparatus from the external container, a step of connecting a vacuum pump on the pipe connecting the container containing the refrigerant to be filled and the refrigeration air-conditioning cycle apparatus, and after completion of the refrigerant filling, on the connection pipe A step of recovering the remaining refrigerant using the vacuum pump; and a step of recovering the refrigerant discharged from the exhaust port of the vacuum pump into a closed container when recovered by the vacuum pump. How to handle refrigeration and air conditioning cycle equipment. 前記冷凍空調サイクル装置の冷媒回路に充填されている冷媒が、可燃性冷媒であることを特徴とする請求項1記載の冷凍空調サイクル装置の取り扱い方法。 The method for handling a refrigerating and air-conditioning cycle apparatus according to claim 1, wherein the refrigerant filled in the refrigerant circuit of the refrigerating and air-conditioning cycle apparatus is a combustible refrigerant . 可燃性冷媒が封入された冷凍空調サイクル装置の冷媒回路から冷媒を回収する際、前記冷媒を回収する冷媒回収装置及び不燃気体を封入した不燃気体容器を前記冷媒回路にそれぞれ第1及び第2の開閉弁を介して接続するステップと、前記冷媒より凝縮圧力が高い不燃気体を前記不燃気体容器から前記冷媒回路の一方に充填させるとともに、前記冷媒回収装置にて前記冷媒を前記冷媒回路の他方から回収するステップと、前記不燃気体充填を前記第2の開閉弁を閉じて終了させ、前記冷媒回路内に残存する冷媒を前記冷媒回収装置にて回収するステップと、前記冷媒回収装置の前記冷媒回収を前記第1の開閉弁を閉じて終了させるとともに、前記第2の開閉弁を開いて前記不燃気体を前記冷媒回路に再度充填するステップと、を備えたことを特徴とする冷凍空調サイクル装置の取り扱い方法。 When the refrigerant is recovered from the refrigerant circuit of the refrigerating and air-conditioning cycle apparatus in which the combustible refrigerant is enclosed, the refrigerant recovery apparatus for recovering the refrigerant and the incombustible gas container enclosing the incombustible gas are respectively provided in the refrigerant circuit. A step of connecting via an on-off valve; and filling one of the refrigerant circuits from the non-flammable gas container with an incombustible gas having a higher condensing pressure than the refrigerant; Collecting the non-combustible gas by closing the second on-off valve, collecting the refrigerant remaining in the refrigerant circuit by the refrigerant collecting device, and collecting the refrigerant of the refrigerant collecting device. Closing the first on-off valve and opening the second on-off valve to refill the refrigerant circuit with the incombustible gas. Handling method of the refrigerating and air-conditioning cycle apparatus according to symptoms. 前記不燃気体容器から注入された不燃気体により冷凍空調サイクル装置内に封入されている前記冷媒と置換しながら、前記冷媒回収装置にて前記冷媒を液化させ冷媒回収容器内に回収することを特徴とする請求項3記載の冷凍空調サイクル装置の取り扱い方法。 The refrigerant is liquefied by the refrigerant recovery device and recovered in the refrigerant recovery container while replacing the refrigerant sealed in the refrigerating and air-conditioning cycle apparatus by the non-combustible gas injected from the non-combustible gas container. The handling method of the refrigerating and air-conditioning cycle apparatus according to claim 3 . 不燃気体は窒素又は二酸化炭素であることを特徴とする請求項3又は4記載の冷凍空調サイクル装置の取り扱い方法。 The method for handling a refrigerating and air-conditioning cycle apparatus according to claim 3 or 4, wherein the incombustible gas is nitrogen or carbon dioxide . 可燃性冷媒が封入される冷凍空調サイクル装置の既冷媒充填量が、前記冷凍空調サイクル装置の室内機を設置する室内側の部屋の空間容積などの前記冷凍サイクル装置の設置条件から、可燃性冷媒の燃焼限界から得られる許容充填量を上回るかどうかを判断するステップと、前記既冷媒充填量が前記許容充填量を上回る場合、前記可燃性冷媒の燃焼限界以下となるように追加する不燃性冷媒の量を求め、前記冷凍空調サイクル装置にこの不燃性冷媒量を追加充填するステップと、前記冷凍サイクル装置の過剰冷媒を冷媒回収装置に回収するもしくは前記冷凍サイクル装置に設けた液だめ容器に回収するステップと、を備えたことを特徴とする冷凍空調サイクル装置の取り扱い方法。 The refrigerating and air-conditioning cycle device in which the combustible refrigerant is sealed has an already-filled refrigerant amount from the installation conditions of the refrigeration cycle device, such as the space volume of the room on the indoor side where the indoor unit of the refrigeration air-conditioning cycle device is installed. A step of determining whether or not the allowable filling amount obtained from the combustion limit of the non-combustible refrigerant is exceeded, and if the existing refrigerant filling amount exceeds the allowable filling amount, the non-combustible refrigerant is added so as to be below the combustion limit of the combustible refrigerant A step of additionally filling the refrigeration air-conditioning cycle apparatus with the amount of the non-combustible refrigerant, and recovering excess refrigerant of the refrigeration cycle apparatus in a refrigerant recovery apparatus or in a liquid reservoir provided in the refrigeration cycle apparatus And a step of handling the refrigeration and air-conditioning cycle apparatus. 可燃性冷媒が封入される冷凍空調サイクル装置の設置条件である室内側と室外側を接続する配管の内容積が大きく冷媒追加充填を判断するステップと、追加充填後の合計冷媒量が部屋の空間容積から決定される可燃性冷媒の燃焼限界から得られる許容充填量を上回るかどうかを判断するステップと、前記可燃性冷媒の許容充填量を上回る場合に冷凍空調サイクル装置の室内機を設置する部屋にこの部屋の空気を換気する換気装置を設けるステップと、を備えたことを特徴とする冷凍空調サイクル装置の取り扱い方法。 The step of judging the refrigerant additional charging with the large volume of the pipe connecting the indoor side and the outdoor side, which is the installation condition of the refrigeration and air conditioning cycle device in which the flammable refrigerant is enclosed, and the total refrigerant amount after the additional charging is the room space A step of determining whether or not the allowable filling amount obtained from the combustion limit of the combustible refrigerant determined from the volume is exceeded, and a room in which the indoor unit of the refrigerating and air-conditioning cycle apparatus is installed when the allowable filling amount of the combustible refrigerant is exceeded And a step of providing a ventilator for ventilating the air in the room . 追加充填後の合計冷媒量が可燃性冷媒の許容充填量を上回る時、混合して不燃となる冷媒を所定量充填するとともに、余剰となった冷媒を回収するステップと、を備えたことを特徴とする請求項7記載の冷凍空調サイクル装置の取り扱い方法。 A step of charging a predetermined amount of refrigerant that becomes non-combustible when mixed and the amount of refrigerant after additional charging exceeds the allowable filling amount of the flammable refrigerant, and recovering excess refrigerant. The handling method of the refrigerating and air-conditioning cycle apparatus according to claim 7 . R32冷媒が充填されている前記冷凍空調サイクル装置に、混合して不燃となる量のR125冷媒またはR134a冷媒を充填してから、冷媒回収を行うことを特徴とする請求項7または8記載の冷凍空調サイクル装置の取り扱い方法。 9. The refrigeration according to claim 7 or 8, wherein the refrigeration / air-conditioning cycle device filled with the R32 refrigerant is charged with an amount of R125 refrigerant or R134a refrigerant which is mixed and incombustible, and then the refrigerant is recovered. Handling method of air conditioning cycle equipment. 冷凍空調サイクル装置の冷媒回路に封入された冷媒を冷媒回収装置又は室外機もしくは熱源装置にポンプダウン運転で回収するように、前記冷媒を回収する方法及びポンプダウンに使用される圧縮機を決定するステップと、前記圧縮機を使用するポンプダウン運転で回収できない残存冷媒量を予測し、使用冷媒の特性から残存冷媒の大気放出量の管理を判断するステップと、前記大気放出量の許容値により残存冷媒の回収方法を 選択するステップと、を備え、冷凍空調サイクル装置の冷媒を充填、回収など取り扱う際に残存冷媒を回収することを特徴とする冷凍空調サイクル装置の取り扱い方法。 The method of recovering the refrigerant and the compressor used for pumping down are determined so that the refrigerant sealed in the refrigerant circuit of the refrigeration and air-conditioning cycle apparatus is recovered in the refrigerant recovery apparatus, the outdoor unit, or the heat source apparatus by the pump down operation. Predicting the amount of remaining refrigerant that cannot be recovered by pump-down operation using the compressor, determining management of the amount of released refrigerant from the atmosphere from the characteristics of the refrigerant used, comprising the steps of selecting a method for recovering a refrigerant, and filling the refrigerant in the refrigerating and air-conditioning cycle apparatus, handling of the refrigerating and air-conditioning cycle apparatus characterized by recovering the remaining refrigerant upon handling and collection. 前記冷媒回収装置や前記冷媒回収容器を接続する回路上に設けられた弁間の配管内容積が、冷媒充填量の 1 ppmに相当する大気圧空気の容積以下とすることを特徴とする請求項1ないし10のいずれかに記載の冷凍空調サイクル装置の取り扱い方法。 The internal volume of a pipe between valves provided on a circuit connecting the refrigerant recovery device and the refrigerant recovery container is equal to or less than the volume of atmospheric air corresponding to 1 ppm of the refrigerant charge amount. The handling method of the refrigerating air-conditioning cycle apparatus in any one of 1 thru | or 10 . 室内機を室内に設置し、この室内機と室外に設けた室外機を配管で接続させて少なくとも一部に可燃性冷媒を含む冷媒を循環させる冷凍空調サイクル装置と、前記室内機を設置する室内の空間容積や配管径・長さなど前記冷凍空調サイクル装置の設置条件から、封入されている可燃性冷媒が前記室内で燃焼限界以下となるように前記冷凍空調サイクル装置に追加する所定量の不燃性冷媒と、前記不燃性冷媒量の追加により生ずる過剰冷媒を回収する前記冷凍サイクル装置に接続可能な回収手段と、を備えたことを特徴とする冷凍空調サイクル装置の冷媒回収機構。A refrigerating and air-conditioning cycle apparatus that installs the indoor unit in a room, connects the indoor unit to the outdoor unit provided outside by a pipe and circulates a refrigerant containing a combustible refrigerant at least in part, and a room in which the indoor unit is installed Based on the installation conditions of the refrigerating and air conditioning cycle device, such as the space volume and pipe diameter / length, a predetermined amount of non-combustible added to the refrigerating and air conditioning cycle device so that the combustible refrigerant sealed is below the combustion limit in the room. A refrigerant recovery mechanism for a refrigerating and air-conditioning cycle apparatus, comprising: a refrigerating refrigerant; and recovery means connectable to the refrigerating cycle apparatus that recovers excess refrigerant generated by adding the amount of the non-combustible refrigerant.
JP2002280502A 2002-09-26 2002-09-26 Refrigeration and air-conditioning cycle device handling method, refrigeration and air-conditioning cycle device refrigerant recovery mechanism Expired - Lifetime JP3855901B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002280502A JP3855901B2 (en) 2002-09-26 2002-09-26 Refrigeration and air-conditioning cycle device handling method, refrigeration and air-conditioning cycle device refrigerant recovery mechanism

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002280502A JP3855901B2 (en) 2002-09-26 2002-09-26 Refrigeration and air-conditioning cycle device handling method, refrigeration and air-conditioning cycle device refrigerant recovery mechanism

Publications (2)

Publication Number Publication Date
JP2004116885A JP2004116885A (en) 2004-04-15
JP3855901B2 true JP3855901B2 (en) 2006-12-13

Family

ID=32275195

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002280502A Expired - Lifetime JP3855901B2 (en) 2002-09-26 2002-09-26 Refrigeration and air-conditioning cycle device handling method, refrigeration and air-conditioning cycle device refrigerant recovery mechanism

Country Status (1)

Country Link
JP (1) JP3855901B2 (en)

Families Citing this family (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4686403B2 (en) * 2006-05-12 2011-05-25 三菱電機ビルテクノサービス株式会社 Pressurizing device and gas replacement method for evaporator system path of refrigeration cycle
JP2008298335A (en) * 2007-05-30 2008-12-11 Fujitsu General Ltd Refrigerating device, additional refrigerant filling kit used in the same, and additional refrigerant filling method of refrigerating device
JP4474455B2 (en) * 2007-11-01 2010-06-02 三菱電機株式会社 Refrigerant filling apparatus for refrigeration air conditioner and refrigerant filling method for refrigeration air conditioner
JP5520450B2 (en) * 2008-03-31 2014-06-11 中部電力株式会社 Sulfur hexafluoride recovery machine
JP4906792B2 (en) * 2008-06-19 2012-03-28 三菱電機株式会社 Vapor compression heat pump equipment
JP4860668B2 (en) * 2008-06-19 2012-01-25 三菱電機株式会社 Refrigeration cycle apparatus, refrigerant charging method and refrigerant recovery method for refrigeration cycle apparatus
JP5253330B2 (en) * 2009-08-26 2013-07-31 三菱電機株式会社 Manufacturing method of air conditioner
CN103221764B (en) * 2010-12-03 2015-12-16 三菱电机株式会社 The part replacement method of refrigerating circulatory device
AU2010364874B2 (en) * 2010-12-03 2014-12-11 Mitsubishi Electric Corporation Part replacement method for refrigeration cycle device and refrigeration cycle device
WO2012137260A1 (en) * 2011-04-08 2012-10-11 三菱電機株式会社 Refrigerant recovery method for refrigeration cycle device and refrigeration cycle device
JP5761502B2 (en) * 2011-04-11 2015-08-12 株式会社富士通ゼネラル Refrigerant recovery method for air conditioner
WO2012160598A1 (en) * 2011-05-23 2012-11-29 三菱電機株式会社 Air conditioner
JP5241892B2 (en) * 2011-07-22 2013-07-17 三菱電機株式会社 Vapor compression heat pump equipment
JP5701175B2 (en) * 2011-08-01 2015-04-15 三菱電機株式会社 Refrigerant liquid pool preventing apparatus for refrigeration cycle and refrigerant recovery method using the apparatus
JP5506876B2 (en) * 2012-09-06 2014-05-28 三菱電機株式会社 Manufacturing method of air conditioner
JP5673696B2 (en) * 2013-01-24 2015-02-18 三菱電機株式会社 Air conditioner
US20160084556A1 (en) * 2013-06-06 2016-03-24 Mitsubishi Electric Corporation Refrigeration cycle apparatus and method of operating the same
JP2015105811A (en) * 2013-12-02 2015-06-08 ダイキン工業株式会社 Air conditioner
WO2015151238A1 (en) * 2014-04-02 2015-10-08 三菱電機株式会社 Air-conditioning device and installation method thereof
CN103940158B (en) * 2014-04-22 2017-01-11 珠海格力电器股份有限公司 Air conditioner outdoor unit, air conditioner system and operation method of air conditioner system
CN104075420B (en) * 2014-07-02 2017-05-17 珠海格力电器股份有限公司 Combustible refrigerant air conditioner fire prevention system and application method thereof, and air conditioner
WO2016079801A1 (en) * 2014-11-18 2016-05-26 三菱電機株式会社 Air conditioning device
JP2017067383A (en) * 2015-09-30 2017-04-06 ダイキン工業株式会社 Freezer and operation method of freezer
WO2017056214A1 (en) * 2015-09-30 2017-04-06 三菱電機株式会社 Air-conditioner
JP6899748B2 (en) * 2017-09-25 2021-07-07 株式会社前川製作所 Mobile cooling system
DE102017128702A1 (en) * 2017-12-04 2019-06-06 Vaillant Gmbh Safety container for working fluid
CN108344217A (en) * 2018-04-09 2018-07-31 奥克斯空调股份有限公司 A kind of refrigerant liquid amount adjusting apparatus, air conditioner test adjustment system and air-conditioning refrigerant method of adjustment
US11441820B2 (en) 2018-09-06 2022-09-13 Carrier Corporation Refrigerant leak detection system
AU2019347324B2 (en) * 2018-09-28 2022-07-21 Daikin Industries, Ltd. Refrigerant charging method, heat source unit, and renewed refrigeration cycle apparatus
JP7227506B2 (en) * 2018-09-28 2023-02-22 ダイキン工業株式会社 Refrigeration cycle device and its control method
DE102018129131A1 (en) * 2018-11-20 2020-06-04 Vaillant Gmbh Working fluid management
JP7334455B2 (en) * 2019-04-23 2023-08-29 三菱電機株式会社 Refrigerant recovery device
JP2021085644A (en) * 2019-11-29 2021-06-03 ダイキン工業株式会社 Air conditioning system
WO2021176625A1 (en) * 2020-03-04 2021-09-10 ダイキン工業株式会社 Refrigerant cycle apparatus and method for installing refrigerant cycle apparatus
JP7457244B2 (en) * 2020-04-27 2024-03-28 ダイキン工業株式会社 Air conditioning management system and refrigerant recovery management device
JPWO2023135705A1 (en) * 2022-01-13 2023-07-20
WO2024105738A1 (en) * 2022-11-14 2024-05-23 三菱電機株式会社 Air conditioner

Also Published As

Publication number Publication date
JP2004116885A (en) 2004-04-15

Similar Documents

Publication Publication Date Title
JP3855901B2 (en) Refrigeration and air-conditioning cycle device handling method, refrigeration and air-conditioning cycle device refrigerant recovery mechanism
CN102575888B (en) Air conditioner and method for installing air conditioner
WO2008018373A1 (en) Air conditioner and method for cleaning same
WO2008013121A1 (en) Air conditioning apparatus
JP3726541B2 (en) Refrigeration air conditioner
WO2012073294A1 (en) Part replacement method for refrigeration cycle device and refrigeration cycle device
JP3882841B2 (en) Air conditioner, heat source unit, and method of updating air conditioner
AU2010364872B2 (en) Part replacement method for refrigeration cycle device
JP7164823B2 (en) Refrigerant charging method
JPH09264641A (en) Refrigerating cycle device
JP4906792B2 (en) Vapor compression heat pump equipment
JP2000028237A (en) Separation type refrigerating cycle apparatus
CN204240628U (en) Refrigerating circulatory device
WO2008013093A1 (en) Air conditioner
JP4100904B2 (en) Two-stage compression refrigeration system, refrigerating machine oil and refrigerant charging method
WO2012137260A1 (en) Refrigerant recovery method for refrigeration cycle device and refrigeration cycle device
JPH08210736A (en) Non-azeotrope refrigerant filling system and filling method
JP6583288B2 (en) Working medium recovery device
JP2000028212A (en) Refrigerating cycle device
JP3680740B2 (en) How to use existing refrigerant piping, how to install air conditioner, air conditioner
JP3188121B2 (en) Non-azeotropic mixed refrigerant filling device
JPH0914782A (en) Air conditioner
CN104633976B (en) Refrigerating circulatory device and its manufacture method and method to set up
JP2005043025A (en) Refrigerating air-conditioner, and renewal method therefor
JP3837225B2 (en) Non-azeotropic refrigerant filling method

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20040707

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060227

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060530

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060721

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060822

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060904

R151 Written notification of patent or utility model registration

Ref document number: 3855901

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090922

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100922

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110922

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110922

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120922

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130922

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term