EP3446800A1 - Installation et procédé de laminage à froid de bande métallique - Google Patents

Installation et procédé de laminage à froid de bande métallique Download PDF

Info

Publication number
EP3446800A1
EP3446800A1 EP17785958.4A EP17785958A EP3446800A1 EP 3446800 A1 EP3446800 A1 EP 3446800A1 EP 17785958 A EP17785958 A EP 17785958A EP 3446800 A1 EP3446800 A1 EP 3446800A1
Authority
EP
European Patent Office
Prior art keywords
rolling
concentration coolant
jetting
coolant
low concentration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP17785958.4A
Other languages
German (de)
English (en)
Other versions
EP3446800B1 (fr
EP3446800A4 (fr
Inventor
Masaki Hirai
Ichiro Tanokuchi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Publication of EP3446800A1 publication Critical patent/EP3446800A1/fr
Publication of EP3446800A4 publication Critical patent/EP3446800A4/fr
Application granted granted Critical
Publication of EP3446800B1 publication Critical patent/EP3446800B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B45/00Devices for surface or other treatment of work, specially combined with or arranged in, or specially adapted for use in connection with, metal-rolling mills
    • B21B45/02Devices for surface or other treatment of work, specially combined with or arranged in, or specially adapted for use in connection with, metal-rolling mills for lubricating, cooling, or cleaning
    • B21B45/0203Cooling
    • B21B45/0209Cooling devices, e.g. using gaseous coolants
    • B21B45/0215Cooling devices, e.g. using gaseous coolants using liquid coolants, e.g. for sections, for tubes
    • B21B45/0218Cooling devices, e.g. using gaseous coolants using liquid coolants, e.g. for sections, for tubes for strips, sheets, or plates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B27/00Rolls, roll alloys or roll fabrication; Lubricating, cooling or heating rolls while in use
    • B21B27/06Lubricating, cooling or heating rolls
    • B21B27/10Lubricating, cooling or heating rolls externally
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B45/00Devices for surface or other treatment of work, specially combined with or arranged in, or specially adapted for use in connection with, metal-rolling mills
    • B21B45/02Devices for surface or other treatment of work, specially combined with or arranged in, or specially adapted for use in connection with, metal-rolling mills for lubricating, cooling, or cleaning
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B45/00Devices for surface or other treatment of work, specially combined with or arranged in, or specially adapted for use in connection with, metal-rolling mills
    • B21B45/02Devices for surface or other treatment of work, specially combined with or arranged in, or specially adapted for use in connection with, metal-rolling mills for lubricating, cooling, or cleaning
    • B21B45/0203Cooling
    • B21B45/0209Cooling devices, e.g. using gaseous coolants
    • B21B45/0215Cooling devices, e.g. using gaseous coolants using liquid coolants, e.g. for sections, for tubes
    • B21B45/0233Spray nozzles, Nozzle headers; Spray systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B1/00Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations
    • B21B1/22Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling plates, strips, bands or sheets of indefinite length
    • B21B1/24Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling plates, strips, bands or sheets of indefinite length in a continuous or semi-continuous process
    • B21B1/28Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling plates, strips, bands or sheets of indefinite length in a continuous or semi-continuous process by cold-rolling, e.g. Steckel cold mill
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B1/00Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations
    • B21B1/22Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling plates, strips, bands or sheets of indefinite length
    • B21B2001/221Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling plates, strips, bands or sheets of indefinite length by cold-rolling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B27/00Rolls, roll alloys or roll fabrication; Lubricating, cooling or heating rolls while in use
    • B21B27/06Lubricating, cooling or heating rolls
    • B21B27/10Lubricating, cooling or heating rolls externally
    • B21B2027/103Lubricating, cooling or heating rolls externally cooling externally
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B2275/00Mill drive parameters
    • B21B2275/02Speed
    • B21B2275/04Roll speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B37/00Control devices or methods specially adapted for metal-rolling mills or the work produced thereby
    • B21B37/74Temperature control, e.g. by cooling or heating the rolls or the product
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B45/00Devices for surface or other treatment of work, specially combined with or arranged in, or specially adapted for use in connection with, metal-rolling mills
    • B21B45/02Devices for surface or other treatment of work, specially combined with or arranged in, or specially adapted for use in connection with, metal-rolling mills for lubricating, cooling, or cleaning
    • B21B45/0239Lubricating
    • B21B45/0245Lubricating devices
    • B21B45/0248Lubricating devices using liquid lubricants, e.g. for sections, for tubes
    • B21B45/0251Lubricating devices using liquid lubricants, e.g. for sections, for tubes for strips, sheets, or plates

Definitions

  • This invention relates to a facility and a method for cold rolling a metal strip and, more particularly, to a facility for cold rolling a metal strip by using a circulating system for supplying a lubricant and a method for cold rolling by using such a facility.
  • the invention is explained by taking a "steel sheet" as an example for the metal strip.
  • Facilities for cold rolling a metal strip are divided, based on a system of feeding a lubricant (rolling oil), into a direct oil-feeding system wherein the rolling oil is directly jetted and fed onto a surface of a steel sheet and at the same time a cooling water is jetted onto a surface of a roll to cool thereof, and a circulating oil-feeding system wherein a cooling water (coolant) containing an emulsified rolling oil is fed to surfaces of a steel sheet and a work roll to simultaneously perform lubrication and cooling of the work roll.
  • a lubricant rolling oil
  • the rolling oil can be circulatingly used in the latter circulating oil-feeding system, the cost of the rolling oil is low as compared with the direct oil-feeding system using the rolling oil only once, while since the concentration of the rolling oil is low, the rolling property tends to be deteriorated.
  • the concentration of the rolling oil contained in the coolant is usually controlled to about 2-4 mass%.
  • the hybrid rolling is a technique of jetting a coolant having a concentration of the rolling oil of about 2-4 mass% (hereinafter referred to as "a low concentration coolant”) at an inlet side of the work roll and jetting a coolant having a high concentration of the rolling oil of about 10-15 mass% (hereinafter referred to as "a high concentration coolant”) at an upstream side of the jetting position of the low concentration coolant.
  • a low concentration coolant a coolant having a concentration of the rolling oil of about 2-4 mass%
  • a high concentration coolant a coolant having a high concentration of the rolling oil of about 10-15 mass%
  • Patent Literature 1 JP-A-2007-144514 (Japanese Patent No. 4905056 )
  • the high concentration coolant is jetted toward the low concentration coolant accumulated on the sheet surface, so that the high concentration coolant is mixed with the low concentration coolant and diluted, and hence the oil content in the high concentration coolant cannot reach the sheet surface, and the effect by the hybrid rolling cannot be obtained.
  • the invention is made in view of the above problems inherent to the conventional technique, and an object thereof is to provide a facility for cold rolling a metal strip which is capable of rolling without damaging the plate-out property even if the rolling rate is decreased in a hybrid rolling of a circulating system and to propose a method for cold rolling a metal strip by using such a cold rolling facility.
  • the inventors have made various studies to solve the above task. As a result, they have found out that it is effective to provide the cold rolling facility with a function of varying the jetting amount of the low concentration coolant in accordance with the rolling rate and perform rolling while controlling the jetting amount of the low concentration coolant so that the tip of the liquid pool of the low concentration coolant formed on the sheet surface at an inlet side of the work roll does not reach the jetting position of the high concentration coolant, and the invention has been accomplished.
  • the invention is a facility for cold rolling a metal strip in a circulating oil-feeding system by jetting a low concentration coolant in a neighborhood of an inlet side of a work roll and jetting a high concentration coolant at an upstream side of a jetting position of the low concentration coolant to conduct rolling, characterized in that the facility is provided with a control equipment for varying a jetting amount of the low concentration coolant in accordance with a rolling rate so that a tip of a liquid pool of the low concentration coolant formed on a sheet surface at an inlet side of the work roll does not reach a jetting position of the high concentration coolant.
  • the facility for cold rolling a metal strip according to the invention is characterized by having a control equipment for varying a jetting amount of the high concentration coolant in accordance with the rolling rate.
  • the facility for cold rolling a metal strip according to the invention is characterized in that a concentration of a rolling oil in the low concentration coolant is 2-4 mass% and a concentration of a rolling oil in the high concentration coolant is 10-15 mass%.
  • the invention is a method for cold rolling a metal strip in a cold rolling facility of a circulating oil-feeding system by jetting a low concentration coolant in a neighborhood of an inlet side of a work roll and jetting a high concentration coolant at an upstream side of a jetting position of the low concentration coolant to conduct rolling, characterized in that a jetting amount of the low concentration coolant is varied in accordance with a rolling rate so that a tip of a liquid pool of the low concentration coolant formed on a sheet surface at an inlet side of the work roll does not reach a jetting position of the high concentration coolant.
  • the method for cold rolling a metal strip according to the invention is characterized in that a jetting amount of the high concentration coolant is varied in accordance with the rolling rate.
  • the method for cold rolling a metal strip according to the invention is characterized in that a concentration of a rolling oil in the low concentration coolant is 2-4 mass% and a concentration of a rolling oil in the high concentration coolant is 10-15 mass%.
  • the tip of the liquid pool of the low concentration coolant formed on the sheet surface at an inlet side of the work roll is controlled so as not to reach the jetting position of the high concentration coolant, so that it is possible to sufficiently obtain an effect by the hybrid rolling.
  • FIG. 1 is a view illustrating a feeding system of a coolant when a hybrid rolling technique is adopted in a conventional cold rolling facility of a circulating oil-feeding system.
  • a steel sheet 1 is rolled by a work roll 2 to a predetermined sheet thickness.
  • a low concentration coolant is jetted to a steel sheet surface from a spray header 3 by a spray pump 8 to enhance lubricity between the steel sheet 1 and the work roll 2 and conduct cooling of the work roll 2 simultaneously.
  • the low concentration coolant used for jetting to the steel sheet surface is thereafter collected in a return tank 4 disposed in an oil cellar through an oil pan 11, returned to a clean tank 7 through a filter 6 disposed above ground by a return pump 5 and circulatingly used.
  • the low concentration coolant jetted to the steel sheet surface from the spray header 3 forms a liquid pool 10 of a length X on the sheet surface toward an upstream side.
  • a high concentration coolant is prepared in a high concentration coolant tank 12 and jetted to the steel sheet surface from a spray header 9 by a spray pump 13.
  • the high concentration coolant used for jetting is collected through the above oil pan 11, mixed with the low concentration coolant and circulatingly used as a low concentration coolant.
  • the spray header 9 for the high concentration coolant is disposed in a position located at an upstream side from the jetting position of the low concentration coolant and separated from the work roll at a distance of L toward an upstream side in order to sufficiently ensure a time required for the adhesion of oil content to the sheet surface to enhance a plate-out property.
  • numeral 14 represents a draining roll having a function of removing the coolant adhered to the steel sheet surface in the rolling at the previous stand.
  • FIG. 2 schematically illustrates a relation between a rolling rate V and a length X of a liquid pool of the low concentration coolant formed on the steel sheet surface at an inlet side of the work roll. Since the amount of the rolling oil drawn into a roll bite is varied in accordance with the rolling rate V, the length X of the liquid pool becomes long when the rolling rate is low and becomes short when the rolling rate is high.
  • FIG. 3 schematically illustrates a relation between the length X of the liquid pool of the low concentration coolant and a position of a spray header for the high concentration coolant disposed at a distance of L from the work roll toward an upstream side when the rolling rate is decreased.
  • the rolling rate V is low, the length X of the liquid pool of the low concentration coolant becomes longer than the distance L between the work roll 2 and the position of the spray header 9 disposed for the high concentration coolant and sometimes reaches to a position of the draining roll 14.
  • FIG. 4 schematically illustrates a relation between the jetting amount Q of the low concentration coolant and the length X of the liquid pool of the low concentration coolant.
  • the length X of the liquid pool is varied in accordance with the jetting amount Q of the low concentration coolant.
  • the length X of the liquid pool becomes shorter as the jetting amount Q becomes smaller, while the length X of the liquid pool becomes longer as the jetting amount Q becomes larger.
  • the length X of the liquid pool of the low concentration coolant is made shorter than the length L between the work roll 2 and the position of the spray header 9 disposed for the high concentration coolant by decreasing the jetting amount Q of the low concentration coolant. That is, the tip at the upstream side of the liquid pool is prevented from reaching the position of the spray header disposed for the high concentration coolant, whereby the high concentration coolant can be directly sprayed to the steel sheet surface all the time.
  • the invention is characterized in that the jetting amount Q of the low concentration coolant is controlled in accordance with the rolling rate V to achieve cold rolling having an excellent plate-out property.
  • FIG. 5 illustrates an example of a coolant feeding system in the cold rolling facility according to the invention which controls the jetting amount of the low concentration coolant in accordance with a rolling rate.
  • a flow regulating valve 17 is installed in the feeding system of the low concentration coolant.
  • the jetting amount Q of the low concentration coolant is calculated by a distributed control system (DCS) 15 based on a command for the rolling rate from a driving motor 16 of the work roll so as to make the length X of the liquid pool of the low concentration coolant shorter than the distance L to the jetting position of the high concentration coolant, and the calculated result is given to the flow regulating valve 17 disposed in the feeding system of the low concentration coolant as an opening command.
  • DCS distributed control system
  • a flow regulating valve is disposed in the feeding system of the high concentration coolant similarly in the case of the low concentration coolant, whereby the jetting amount of the high concentration coolant may be adjusted within a proper range based on the command for the rolling rate.
  • the rolling rate becomes higher, a rolling load is increased, so that it is necessary to increase the jetting amount of the rolling oil fed.
  • the jetting amount of high concentration coolant is controlled in accordance with the rolling rate as above, it is possible to jet a proper amount of the rolling oil in accordance with the rolling rate.
  • FIG. 6 shows a relation between the jetting amount Q of a low concentration coolant and the length X of a liquid pool of the low concentration coolant formed on the sheet surface when the rolling rate is varied in three stages of 200 m/min, 400 m/min, and 1000 m/min.
  • a point A shows the length X of the liquid pool when rolling is performed at a rolling rate V of 1000 mpm in a maximum jetting amount Q max of the low concentration coolant.
  • the rolling rate is high and a working heat generation amount per unit time is large, the work roll is cooled by jetting the low concentration coolant in a jetting amount of the maximum value Q max .
  • the length X of the liquid pool is shorter than the distance L between the work roll and the position of the spray header disposed for the high concentration coolant.
  • the length of the liquid pool is increased as shown in FIG. 2 .
  • the rolling rate V is decreased from 1000 mpm to 400 mpm
  • the length X of the liquid pool is transferred from the point A to a point B, and hence the length of the liquid pool becomes longer than the distance L between the work roll and the position of the spray header disposed for the high concentration coolant.
  • the jetting amount of the low concentration coolant is decreased from Q max to Q 1 , the length X of the liquid pool is transferred to a point C and hence the length X of the liquid pool becomes shorter than the distance L between the work roll and the position of the spray header disposed for the high concentration coolant.
  • cooling power of the roll is also decreased due to the decrease of the jetting amount of the low concentration coolant, but the working heat generation amount per unit time is also decreased by the decrease of the rolling rate, so that no problem is caused.
  • the length X of the liquid pool is transferred from the point C to a point D by decreasing the jetting amount of the low concentration coolant to Q 2 , so that the length X of the liquid pool becomes shorter than the distance L between the work roll and the position of the spray header disposed for the high concentration coolant.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Metal Rolling (AREA)
EP17785958.4A 2016-04-21 2017-04-18 Installation et procédé de laminage à froid de bande métallique Active EP3446800B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016084993A JP6455683B2 (ja) 2016-04-21 2016-04-21 金属帯の冷間圧延設備および冷間圧延方法
PCT/JP2017/015523 WO2017183620A1 (fr) 2016-04-21 2017-04-18 Installation et procédé de laminage à froid de bande métallique

Publications (3)

Publication Number Publication Date
EP3446800A1 true EP3446800A1 (fr) 2019-02-27
EP3446800A4 EP3446800A4 (fr) 2019-04-03
EP3446800B1 EP3446800B1 (fr) 2020-09-09

Family

ID=60116084

Family Applications (1)

Application Number Title Priority Date Filing Date
EP17785958.4A Active EP3446800B1 (fr) 2016-04-21 2017-04-18 Installation et procédé de laminage à froid de bande métallique

Country Status (8)

Country Link
US (1) US20200324327A1 (fr)
EP (1) EP3446800B1 (fr)
JP (1) JP6455683B2 (fr)
KR (1) KR102110068B1 (fr)
CN (1) CN108883451B (fr)
RU (1) RU2704050C1 (fr)
TW (1) TWI651138B (fr)
WO (1) WO2017183620A1 (fr)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3238843A1 (fr) * 2016-04-29 2017-11-01 Primetals Technologies Austria GmbH Procede de laminage d'un produit de laminage

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE894339A (fr) * 1982-09-08 1983-01-03 Sumitomo Metal Ind Procede de fabrication d'un feuillard lamine a froid propre
SU1176990A1 (ru) * 1983-12-20 1985-09-07 Институт черной металлургии Устройство дл нагнетани смазки к очагу деформации при прокатке
JPH01309705A (ja) * 1988-06-09 1989-12-14 Kawasaki Steel Corp 連続冷間圧延設備
JP2910604B2 (ja) * 1995-02-13 1999-06-23 住友金属工業株式会社 ステンレス鋼帯の調質圧延方法
JPH10216811A (ja) * 1997-02-05 1998-08-18 Kawasaki Steel Corp ロール摩耗の少ない圧延方法
JP4309501B2 (ja) * 1999-01-13 2009-08-05 新日本製鐵株式会社 冷間タンデム圧延機の圧延方法
DE60030288T2 (de) * 2000-03-09 2007-10-31 Jfe Steel Corp. Walzölversorgungsverfahren zum kaltwalzen
KR100476807B1 (ko) * 2000-06-28 2005-03-16 주식회사 포스코 냉간압연 저속부 형상 제어방법
DE10143407A1 (de) * 2001-09-05 2003-03-20 Sms Demag Ag Kombinierte Verwendung von Öl und Emulsionen beim Kaltwalzen von Bändern
DE102004025058A1 (de) * 2004-05-18 2005-12-08 Sms Demag Ag Verfahren und Vorrichtung zur Kühlung und/oder Schmierung von Walzen und/oder Walzgut
JP4355279B2 (ja) * 2004-11-22 2009-10-28 新日本製鐵株式会社 冷間圧延における潤滑油供給方法
JP4905056B2 (ja) * 2005-10-31 2012-03-28 Jfeスチール株式会社 金属板の冷間圧延方法及び冷間タンデム圧延機
JP4935207B2 (ja) * 2006-06-30 2012-05-23 Jfeスチール株式会社 金属板の冷間圧延方法
JP2009007510A (ja) * 2007-06-29 2009-01-15 Jfe Steel Kk 冷間圧延油および冷間圧延方法
CN101829693B (zh) * 2010-04-27 2011-11-09 中冶南方工程技术有限公司 无吹扫乳化液残留清除方法
JP2012055955A (ja) * 2010-09-13 2012-03-22 Nippon Steel Corp 冷間圧延における圧延潤滑方法およびその装置
CN102248012B (zh) * 2011-07-26 2013-05-08 杨海西 用于线材热轧过程的冷却装置和冷却方法
JP5723727B2 (ja) * 2011-08-31 2015-05-27 株式会社日立製作所 圧延機の制御装置および圧延機の制御方法
JP5850247B2 (ja) * 2012-04-18 2016-02-03 日本パーカライジング株式会社 ハイブリッド供給システムに適した冷間圧延油及び冷間圧延方法
CN103878185B (zh) * 2012-12-21 2016-01-27 宝山钢铁股份有限公司 一种用于热轧层流冷却的动态段冷却控制方法
CN105080977B (zh) * 2015-08-12 2017-07-04 莱芜钢铁集团电子有限公司 一种平整液流量控制方法

Also Published As

Publication number Publication date
EP3446800B1 (fr) 2020-09-09
JP2017192966A (ja) 2017-10-26
US20200324327A1 (en) 2020-10-15
TWI651138B (zh) 2019-02-21
WO2017183620A1 (fr) 2017-10-26
CN108883451A (zh) 2018-11-23
JP6455683B2 (ja) 2019-01-23
KR20180117665A (ko) 2018-10-29
BR112018071470A2 (pt) 2019-02-19
KR102110068B1 (ko) 2020-05-12
EP3446800A4 (fr) 2019-04-03
CN108883451B (zh) 2019-11-22
TW201825207A (zh) 2018-07-16
RU2704050C1 (ru) 2019-10-23

Similar Documents

Publication Publication Date Title
KR100889018B1 (ko) 냉간 압연에 있어서의 윤활유 공급 방법
JP4905056B2 (ja) 金属板の冷間圧延方法及び冷間タンデム圧延機
EP3446800B1 (fr) Installation et procédé de laminage à froid de bande métallique
JP4654719B2 (ja) 冷間圧延における圧延油の供給方法および装置
JP4797730B2 (ja) 冷間圧延方法
JP4910771B2 (ja) 金属板の冷間圧延方法
CN111148582A (zh) 轧制材料的轧制
JP5262889B2 (ja) エマルション圧延油を使用する冷間圧延方法、冷延金属板の製造方法および冷間タンデム圧延機
JP4924398B2 (ja) 冷間圧延における潤滑油供給方法
JP2000280002A (ja) 帯板の冷間タンデム圧延方法および冷間タンデム圧延機
JP5114677B2 (ja) 熱間圧延設備ならびに熱間圧延方法
JP6965993B2 (ja) 圧延方法、金属板の製造方法及び圧延装置
BR112018071470B1 (pt) Instalação e método para laminação a frio de tira de metal
JP4191838B2 (ja) 冷間タンデム圧延方法
JP4534833B2 (ja) 圧延機およびそれを用いたストリップの圧延方法
JP2002282926A (ja) 圧延制御方法
CA3221488A1 (fr) Dispositif et procede de laminage d'une bande d'acier
LAYOUTS LUBRICATION IN PRACTICE
JP2010023076A (ja) 耐ヒートスクラッチ性に優れた冷間圧延方法および冷間圧延装置、ならびに耐ヒートスクラッチ性に優れた冷延金属板の製造方法
Cook Metal Rolling Operations

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20181113

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

A4 Supplementary search report drawn up and despatched

Effective date: 20190306

RIC1 Information provided on ipc code assigned before grant

Ipc: B21B 27/10 20060101ALI20190227BHEP

Ipc: B21B 45/02 20060101AFI20190227BHEP

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20200311

GRAJ Information related to disapproval of communication of intention to grant by the applicant or resumption of examination proceedings by the epo deleted

Free format text: ORIGINAL CODE: EPIDOSDIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTC Intention to grant announced (deleted)
INTG Intention to grant announced

Effective date: 20200529

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1310916

Country of ref document: AT

Kind code of ref document: T

Effective date: 20200915

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602017023436

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200909

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201210

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200909

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200909

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201209

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200909

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201209

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 1310916

Country of ref document: AT

Kind code of ref document: T

Effective date: 20200909

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20200909

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200909

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200909

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200909

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200909

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210111

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200909

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200909

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200909

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210109

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200909

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200909

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200909

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602017023436

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200909

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20210610

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200909

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200909

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200909

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200909

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20210418

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210418

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20210430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210430

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210430

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210418

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210418

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210109

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200923

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200909

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20170418

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20230228

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200909

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20240308

Year of fee payment: 8