EP3414362A1 - Vorrichtung und verfahren zur elektrochemischen nutzung von kohlenstoffdioxid - Google Patents

Vorrichtung und verfahren zur elektrochemischen nutzung von kohlenstoffdioxid

Info

Publication number
EP3414362A1
EP3414362A1 EP17724515.6A EP17724515A EP3414362A1 EP 3414362 A1 EP3414362 A1 EP 3414362A1 EP 17724515 A EP17724515 A EP 17724515A EP 3414362 A1 EP3414362 A1 EP 3414362A1
Authority
EP
European Patent Office
Prior art keywords
membrane
cathode
carbon dioxide
anode
electrolyzer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP17724515.6A
Other languages
English (en)
French (fr)
Other versions
EP3414362B1 (de
Inventor
Marc Hanebuth
Elvira María FERNÁNDEZ SANCHIS
Harald Landes
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens Energy Global GmbH and Co KG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Priority to PL17724515T priority Critical patent/PL3414362T3/pl
Publication of EP3414362A1 publication Critical patent/EP3414362A1/de
Application granted granted Critical
Publication of EP3414362B1 publication Critical patent/EP3414362B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B13/00Diaphragms; Spacing elements
    • C25B13/02Diaphragms; Spacing elements characterised by shape or form
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B15/00Operating or servicing cells
    • C25B15/08Supplying or removing reactants or electrolytes; Regeneration of electrolytes
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B3/00Electrolytic production of organic compounds
    • C25B3/20Processes
    • C25B3/25Reduction
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B9/00Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
    • C25B9/17Cells comprising dimensionally-stable non-movable electrodes; Assemblies of constructional parts thereof
    • C25B9/19Cells comprising dimensionally-stable non-movable electrodes; Assemblies of constructional parts thereof with diaphragms

Definitions

  • the invention relates to a method and an electrolyzer for the electrochemical use of carbon dioxide.
  • One of the currently envisaged solutions is the conversion of electrical energy into value products, which can serve, in particular, as platform chemicals or synthesis gas comprising carbon monoxide and hydrogen.
  • One possible technique for converting electrical energy into value products is electrolysis.
  • a further optimization of the electrolytic cell to Unterbin ⁇ tion of the formation of hydrogen may be the choice of a geeig ⁇ Neten cathode material, which must then demonstrate the highest possible overvoltage for the formation of hydrogen.
  • metals are disadvantageously often toxic or lead to negative environmental influences.
  • the metals in question include cadmium,
  • the object of the invention is therefore to provide an electrolysis cell and a method for operating an electrolysis cell, in which the hydrogen formation is suppressed and the
  • Electrolysis cell can be operated energy efficient.
  • An electrolyser according to the invention for the electrochemical use of carbon dioxide least comprises an electric ⁇ lysezelle, wherein the electrolytic cell comprises an anode compartment having an anode and a cathode chamber with a cathode. Between the anode compartment and the cathode compartment, a first cation-permeable membrane is arranged. The anode is directly adjacent to the first membrane in the anode compartment. Between the first th membrane and the cathode according to the invention a second anion-selective membrane is arranged and the second membrane is at least partially, but not completely immediacy immediacy ⁇ bar to the first membrane.
  • Electrolysers for the electrochemical use of carbon dioxide the following steps are performed. First, it ⁇ follows the provision of an electrolyzer with an anode space with an anode and a cathode space with a cathode.
  • a first cation-permeable membrane is arranged between the anode compartment and the cathode compartment.
  • the anode directly adjoins the first membrane and a second anode-selective membrane is disposed between the first membrane and the cathode.
  • the decomposing carbon dioxide to a product at the cathode in the cathode chamber takes place subsequent ⁇ chd.
  • Unreacted carbon dioxide is transported simultaneously as carbonate or hydrogen carbonate from the cathode, through the second membrane.
  • hydrogen ions are transported from the anode through the first membrane.
  • the hydrogen ions and the carbonate or bicarbonate react to form carbon dioxide and water.
  • the released carbon dioxide can then be released via Flusskanä ⁇ le or pores between the first and second membrane.
  • the anion-selective membrane advantageously reduces the evolution of hydrogen at the cathode.
  • the anion-selective membrane typically comprises covalently bonded quaternary amines (NR 4 + ) such that hydrogen ions can not traverse the anion-selective membrane.
  • the inventive method and the electrolyzer according to the invention advantageously allows the release of unreacted carbon dioxide and thus prevents the entry of the carbon dioxide into the anode space and thus also a mixing of the resulting oxygen in the anode space with the carbon dioxide.
  • the electrolyzer In the electrolyzer according to the invention only water and carbon dioxide is used.
  • the use of a conductive salt or a base can be advantageously avoided.
  • water is broken down into protons and oxygen.
  • the protons can migrate from the anode through the cation-selective membrane into the space between the first and the second membrane, in particular permeate via the cation-selective membrane.
  • the carbon dioxide is converted to a product at the cathode, in particular carbon monoxide, formic acid or ethylene.
  • Unreacted carbon dioxide with the hydroxide ions may migrate from the klassri- gen phase through the anion selective membrane as hydrogen carbonate or carbonate in the ⁇ or permeate.
  • the first and second membranes are saturated with water.
  • the hydrogen carbonate or carbonate and the hydrogen ions can react to form carbon dioxide and water.
  • the carbon dioxide is then advantageously passed through flow channels or porous structures from the gap from the electrolyzer.
  • further Ent ⁇ lastungsötechnischen between the flow channels and / or the interior of the porous structure and the outer surface of the cathode may be provided to ensure a return of the carbon dioxide and water.
  • anion-selective membranes commercially avai ⁇ che membranes can be used.
  • these include the Selemiom AMV from AGC Chemicals, the Neosepta from Tokuyama or the Fumasep FAß from Fuma GmbH.
  • positive charges in particular quaternary amines NR 4 + immobili ⁇ Siert.
  • the total charge of the membrane is counterbalanced by mobile counterions dissolved in the aqueous phase, in particular by hydroxide ions.
  • These anion-selective membrane advantageously prevents hydrogen ions are transported to the Ka ⁇ Thode.
  • the choice of Ka ⁇ method material can then be very flexible.
  • the cathode materials can then be selected depending on the desired product of value.
  • the second membrane is at least partially directly adjacent to the cathode.
  • the cathode is connected to the anion-selective membrane via macropores to utilize the inner surface of the cathode.
  • the macropores typically have a diameter of at least one micrometer.
  • the binding of the cathode to the anion-selective membrane laboration may take more advantageous before ⁇ manner over an anion-selective polymer.
  • Preferably carried out the connection by means of a solution of the same polymer which penetrates in the preparation in a portion of the diaphragm side cathode pores.
  • the surface of the cathode is wetted with a solution of the membrane ⁇ material and then pressed onto the second membrane.
  • the liquid phase includes ionic components, in particular hydroxide ions and hydrogen carbonate which are ge at the cathode forms ⁇ and are mobile in the anion-selective membrane so that the membrane sievorteilhaft can be trans- ported.
  • ionic components in particular hydroxide ions and hydrogen carbonate which are ge at the cathode forms ⁇ and are mobile in the anion-selective membrane so that the membrane sievorteilhaft can be trans- ported.
  • This allows the connection of the Ka ⁇ method with the anion-selective membrane and thus the reduction of the carbon dioxide. It is important that in the cathode the same ion as in the anion-selective membrane is mobile, in the case of the water in particular
  • the connection of the anion-conducting membrane to the cathode is typically carried out by impregnating the membrane side of the cathode with an anion-conducting polymer.
  • the anion-selective second membrane at least partially adjoins the cathode directly.
  • the applied polymer becomes part of the membrane due to the polymerization.
  • a common contact surface is arranged between the first and the second membrane, wherein the size of the contact surface is in the range of at least 80% to 98% of the membrane area of the first membrane.
  • first and the second diaphragm touch a large area in order to maintain a high conductivity as possible within the electrolytic cell, and thus the energy requirement of the electrolytic cell as possible nied ⁇ rig, that is, to improve its efficiency.
  • the cathode and / or the second membrane comprises relief openings in order to guide the carbon dioxide and the water from the spacer device into the gas-side cathode space.
  • the gas-side cathode compartment is located on the anode side facing away from the cathode. From this gas-side cathode space, the starting material carbon dioxide is supplied. Guiding the resulting in the spacer device water and carbon dioxide in the gas-side cathode space advantageously allows a higher conversion of carbon dioxide ⁇ and thus a higher efficiency.
  • a spacer device is arranged between the first and second membrane. This spacer ⁇ holding device may comprise mesh, grid or a porous structure.
  • the cathode comprises at least one of the elements silver, copper, lead, indium, tin or zinc.
  • the choice of the cathode material depends especially on the ge ⁇ desired value of the product Kohlenstoffdioxidzerlegung.
  • the use of a silver cathode produces carbon monoxide.
  • ethylene is produced and with the use of a lead cathode, formic acid is produced.
  • Electrolysis cell the free choice of the cathode material suc ⁇ conditions and simultaneously the production of unwanted hydrogen are prevented at the cathode.
  • the cathode is then ⁇ at typically as a gas diffusion electrode trained det.
  • a gas diffusion electrode is understood as meaning a well-electronically conductive, porous catalyst structure which is partially wetted by the adjacent membrane material, remaining pore spaces being open towards the gas side.
  • the unreacted and therefore released again ⁇ carbon dioxide is fed as educt back into the electroly- se.
  • the efficiency of the electrolysis is increased because as much carbon dioxide is reacted.
  • the electrolyzer is operated with pure water.
  • pure water in this case water is called, which has a conductivity of less than 1 mS / cm. , Is avoided by advantageous that salts, in particular hydrogen carbonates, precipitated in the electrolytic cell and so ⁇ with a shortened lifetime of the electrolysis cell administrat ⁇ ren.
  • Fig. 1 is an electrolytic cell with an anion-selective
  • Fig. 2 shows a spacer for the electrolysis cell with an anion-selective membrane.
  • the electrolytic cell 1 comprises a cathode chamber 14 and egg ⁇ nen anode compartment 13.
  • the cathode compartment 14 is separated from the anode compartment 13 via a spacer device 11.
  • a cation-selective membrane 3 is arranged in the anode compartment 13 .
  • An anode 4 directly adjoins this.
  • An anion-selective membrane 2 is arranged in the cathode space 14.
  • the cathode 5 adjoins.
  • the cathode 5 is connected to the on ⁇ ion-selective membrane 2 through an anion-selective polymer.
  • a spacer 11 is arranged between the anion-selective membrane 2 and the cation-selective membrane.
  • the membranes touch 90% over the contact surfaces.
  • the electrolytic cell 1 is supplied with voltage, so that electrolysis can take place.
  • carbon dioxide is reduced to carbon monoxide. This typically happens at a silver cathode ⁇ .
  • the anion-selective membrane 2 and in the cation-selective membrane 3 water is present.
  • positive charge in particular a proton, can move. This is due to the concentration profile of the hydrogen ion 7 in the anode compartment 13 shown.
  • Quaternary amines NR 4 + are typically immobilized on the anion-selective membrane 2 on the other hand, resulting in egg ⁇ ner surface charge with a positive charge.
  • negatively charged hydroxide ions in particular can move through this membrane. This is illustrated by the concentration profile of the hydroxide 6.
  • Negative charges may be present within the Anio ⁇ NEN-selective membrane 2 in the form of bicarbonate or carbonate and transported (in concentration profile not shown).
  • the carbon dioxide is reduced to carbon monoxide at the cathode 5, which comprises silver.
  • water is decomposed into protons and oxygen in the anode compartment 13.
  • the oxygen can leave the anode compartment.
  • the protons can migrate via the cation-selective membrane 3 into the gap between bars 8 of the grid of the spacer 11. Unreacted carbon dioxide can with
  • Hydroxide ions react to carbonate or bicarbonate and migrate through the anion-selective membrane.
  • the bicarbonate or carbonate and the hydrogen ions may then react in the space within the lattice structure 8 to carbon dioxide and water.
  • the carbon dioxide can thus be released from the electrolytic cell again, currency ⁇ rend the water can diffuse back into the two membranes.
  • the formation of hydrogen at the cathode is advantageously avoided, since the proton can not cross the anion-selective membrane due to its positive charge.
  • anion-selective membranes that are commercially available are used.
  • the anion-selec tive membrane ⁇ 2 fixedly connected to the cathode 5 the anion-selective membrane 2 and the cathode 5 are fixedly connected to each other through an anion-selective polymer 12th This anion-selective polymer 12 not completely wetted the cathode 5, so that the gas space through openings or pores remain through which the carbon dioxide can dif ⁇ substantiate. From the cathode 5 are using the inner surface of the cathode 5 through the macropores
  • the cathode 5 is typically designed as a gas diffusion electrode.
  • the spacer device 10 is shown in sections as a lattice structure 8.
  • the hatched spots on describe the contact surfaces of the anion-selective membrane 2 and the cation selective membrane 3.
  • the white area between the contact surface and the grating structural ⁇ tur 8 denotes flow channels 10 through which the resulting in the intermediate ⁇ space carbon dioxide, the electrolytic cell ver - can let. It is advantageously possible by means of the spacer holder 11 to separate the carbon dioxide and the carbon monoxide from the anode gas oxygen. Furthermore, it is mög ⁇ Lich to use only water to operate the electrolysis cell.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Inorganic Chemistry (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)
  • Electrodes For Compound Or Non-Metal Manufacture (AREA)

Abstract

Die Erfindung betrifft ein Verfahren und einen Elektrolyseur zur elektrochemischen Nutzung von Kohlenstoffdioxid. Der Elektrolyseur zur elektrochemischen Nutzung von Kohlenstoff- dioxid umfassend wenigstens eine Elektrolysezelle, wobei die Elektrolysezelle einen Anodenraum mit einer Anode und einen Kathodenraum mit einer Kathode umfasst, zwischen dem Anoden- raum und dem Kathodenraum eine erste Kationen-permeable Membran angeordnet ist und die Anode direkt an die erste Membran im Anodenraum grenzt und zwischen der ersten Membran und der Kathode eine zweite Anionen-selektive Membran im Kathodenraum angeordnet ist und die zweite Membran wenigstens teilweise aber nicht vollständig unmittelbar an die erste Membran grenzt.

Description

Beschreibung
Vorrichtung und Verfahren zur elektrochemischen Nutzung von Kohlenstoffdioxid
Die Erfindung betrifft ein Verfahren und einen Elektrolyseur zur elektrochemischen Nutzung von Kohlenstoffdioxid .
Die Nachfrage nach Strom schwankt im tagezeitlichen Verlauf stark. Auch die Stromerzeugung schwankt mit zunehmendem Anteil an Strom aus erneuerbaren Energien während des Tagesverlaufs. Um ein Überangebot an Strom in Zeiten mit viel Sonne und starkem Wind bei niedriger Nachfrage nach Strom ausglei¬ chen zu können, benötigt man regelbare Kraftwerke oder Spei- eher, um diese Energie zu speichern.
Eine der derzeitig angedachten Lösungen ist das Umwandeln von elektrischer Energie in Wertprodukte, die insbesondere als Plattformchemikalien oder Synthesegas, welches Kohlenstoffmo- noxid und Wasserstoff umfasst, dienen können. Eine mögliche Technik zur Umwandlung der elektrischen Energie in Wertprodukte stellt die Elektrolyse dar.
Die Elektrolyse von Wasser zu Wasserstoff und Sauerstoff stellt eine im Stand der Technik bekannte Methode dar. Aber auch die Elektrolyse von Kohlenstoffdioxid zu Wertprodukten, wie insbesondere Kohlenstoffmonoxid, Ethylen oder Ameisensäu¬ re wird seit einigen Jahren erforscht und es gibt Bemühungen, ein elektrochemisches System zu entwickeln, das einen Kohlen- stoffdioxidstrom entsprechend des wirtschaftlichen Interesses umwandeln kann.
Eine vorteilhafte Bauform einer Elektrolyseeinheit ist ein Niedertemperatur-Elektrolyseur bei dem als Eduktgas Kohlen- stoffdioxid mit Hilfe einer Gasdiffusionselektrode in einen
Kathodenraum umgesetzt wird. An einer Kathode der elektroche¬ mischen Zelle wird das Kohlenstoffdioxid zu Wertprodukten re¬ duziert und an einer Anode wird Wasser zu Sauerstoff oxi- diert. Aufgrund von Diffusionslimitierungen an der Kathode kann es beim Einsatz eines wässrigen Elektrolyten neben der Bildung von Kohlenstoffmonoxid auch nachteilig zur Bildung von Wasserstoff kommen, da das Wasser des wässrigen Elektro- lyten ebenfalls elektrolysiert wird.
Verfahren oder Vorrichtung, die diese unerwünschte Bildung von Wasserstoff an der Kathode unterdrücken, führen oft zu weiteren Beschränkungen. Insbesondere sollte nachteiliger- weise bei der Verwendung einer Protonen-leitenden Membran die Kathode nicht direkt an die Protonen-leitende Membran anlie¬ gen, da wegen der relativ hohen Protonenkonzentration an der Kathode in diesem Fall die Bildung von Wasserstoff begünstigt ist. Um dies zu verhindern, ist daher ein mit einem Elektro- lyten gefüllter Spalt zwischen Protonen-leitender Membran und der Kathode vorhanden. Als Elektrolyt kann jedoch nachteiligerweise kein reines Wasser verwendet werden, da die Leitfähigkeit des reinen Wassers zu gering wäre und ein dra¬ matischer Spannungsabfall im Spalt resultieren würde. Das Verwenden einer Mineralsäure als Elektrolyt, insbesondere verdünnte Schwefelsäure, würde eine unerwünschte Wasserstoff¬ bildung begünstigen, da dies die Protonenkonzentration an der Kathode erhöhen würde. Im Stand der Technik wird daher die Leitfähigkeit innerhalb des Spaltes zwischen der Kathode und der Protonen-leitenden Membran erhöht, indem man eine Base oder ein Leitsalz zum Wasser hinzugibt. Nachteiligerweise werden in nicht saurem Milieu allerdings Hydroxidionen bei der Reduktion von Kohlen- stoffdioxid an der Kathode gebildet. Diese bilden wiederum mit weiterem Kohlestoffdioxid Hydrogencarbonat oder Carbonat. Zusammen mit den Kationen der Base oder den Kationen des Leitsalzes führt dies häufig zu schwer löslichen Substanzen, die als Feststoff innerhalb der Elektrolysezelle ausfallen können und daher den Betrieb der Elektrolysezelle nachteilig stören . Die Verwendung eines Spalts im Kathodenraum führt bei Kohlenstoffdioxid-Elektrolyseuren zu weiteren Nachteilen: Insbesondere der Spannungsabfall über den Spalt erhöht den Energiebe¬ darf der Elektrolysezelle deutlich, so dass die Effizienz der Elektrolysezelle abnimmt.
Eine weitere Optimierung der Elektrolysezelle zur Unterbin¬ dung der Bildung von Wasserstoff, kann die Wahl eines geeig¬ neten Kathodenmaterials sein, welches dann eine möglichst ho- he Überspannung für die Bildung von Wasserstoff vorweisen muss. Solche Metalle sind allerdings nachteiligerweise häufig toxisch oder führen zu negativen Umwelteinflüssen. Insbesondere zählen zu den in Frage kommenden Metallen Cadmium,
Quecksilber und Thallium. Der Einsatz dieser Metalle als Ka- thodenmaterialien führt dabei häufig zu einer Einschränkung der Produkte, die in der Elektrolysezelle hergestellt werden können, da das Produkt maßgeblich vom Reaktionsmechanismus an der Kathode abhängt. Nachteilig sind die genannten Metalle allerdings nicht für die Produktion der gewünschten Wertmate- rialien, insbesondere Kohlenstoffmonoxid, Ameisensäure oder Ethylen geeignet.
Aufgabe der Erfindung ist es daher, eine Elektrolysezelle und ein Verfahren zum Betrieb einer Elektrolysezelle anzugeben, bei der die Wasserstoffbildung unterdrückt wird und die
Elektrolysezelle energieeffizient betrieben werden kann.
Die Aufgabe wird mit einen Elektrolyseur gemäß Anspruch 1 und einem Verfahren zum Betreiben eines Elektrolyseurs gemäß An- spruch 10 gelöst.
Ein erfindungsgemäßer Elektrolyseur zur elektrochemischen Nutzung von Kohlenstoffdioxid umfasst wenigsten eine Elektro¬ lysezelle, wobei die Elektrolysezelle einen Anodenraum mit einer Anode und einen Kathodenraum mit einer Kathode umfasst. Zwischen dem Anodenraum und dem Kathodenraum ist eine erste Kationen-permeable Membran angeordnet. Die Anode grenzt dabei direkt an die erste Membran im Anodenraum. Zwischen der ers- ten Membran und der Kathode ist erfindungsgemäß eine zweite Anionen-selektive Membran angeordnet und die zweite Membran grenzt wenigsten teilweise, aber nicht vollständig unmittel¬ bar an die erste Membran.
Bei dem erfindungsgemäßen Verfahren zum Betreiben eines
Elektrolyseurs zur elektrochemischen Nutzung von Kohlenstoffdioxid werden folgende Schritte durchgeführt. Zunächst er¬ folgt das Bereitstellen eines Elektrolyseurs mit einem Ano- denraum mit einer Anode und einem Kathodenraum mit einer Kathode. Dabei ist zwischen dem Anodenraum und dem Kathodenraum eine erste Kationen-permeable Membran angeordnet. Die Anode grenzt direkt an die erste Membran und zwischen der ersten Membran und der Kathode ist eine zweite Anoden-selektive Membran angeordnet. Die zweite Membran grenzt dabei wenigs¬ tens teilweise, aber nicht vollständig unmittelbar an die erste Membran an. In der Elektrolysezelle erfolgt anschlie¬ ßend das Zerlegen von Kohlenstoffdioxid zu einem Produkt an der Kathode in dem Kathodenraum. Nicht umgesetztes Kohlen- stoffdioxid wird zeitgleich als Carbonat oder Hydrogencarbo- nat von der Kathode weg, durch die zweite Membran, transportiert. Zeitgleich werden Wasserstoffionen von der Anode durch die erste Membran transportiert. Zwischen der ersten und der zweiten Membran reagieren die Wasserstoffionen und das Carbo- nat oder Hydrogencarbonat zu Kohlenstoffdioxid und Wasser.
Das frei werdende Kohlenstoffdioxid kann dann über Flusskanä¬ le oder Poren zwischen der ersten und zweiten Membran frei gesetzt werden. Mit dem erfindungsgemäßen Verfahren und dem erfindungsgemäßen Elektrolyseur ist es möglich, eine Elektrolysezelle ohne ei¬ nen Spalt und ohne ein Leitsalz darin einzusetzen. Durch die Anionen-selektive Membran wird die Wasserstoffentwicklung an der Kathode vorteilhaft vermindert. Die Anionen-selektive Membran umfasst typischerweise kovalent gebundene quartäre Amine (NR4 +) , so dass Wasserstoffionen die Anionen-selektive Membran nicht durchqueren können. Weiterhin ermöglicht das erfindungsgemäße Verfahren und der erfindungsgemäße Elektrolyseur vorteilhaft das Freisetzen von nicht umgesetztem Kohlenstoffdioxid und verhindert so den Eintritt des Kohlenstoffdioxids in den Anodenraum und somit auch eine Vermischung des im Anodenraum entstehenden Sauerstoffs mit dem Kohlenstoffdioxid .
In dem erfindungsgemäßen Elektrolyseur wird ausschließlich Wasser und Kohlenstoffdioxid verwendet. Der Einsatz eines Leitsalzes oder einer Base kann vorteilhaft vermieden werden. An der Anode wird Wasser zu Protonen und Sauerstoff zerlegt. Die Protonen können von der Anode durch die Kationen-selektive Membran in den Zwischenraum zwischen der ersten und der zweiten Membran migrieren, insbesondere über die Kationenselektive Membran permeieren. Das Kohlenstoffdioxid wird an der Kathode zu einem Produkt, insbesondere Kohlenstoffmono- xid, Ameisensäure oder Ethylen umgewandelt. Nicht umgesetztes Kohlenstoffdioxid kann mit den Hydroxidionen aus der wässri- gen Phase durch die Anionen-selektive Membran als Hydrogen¬ carbonat oder Carbonat in den migrieren, bzw. permeieren. Die erste und die zweite Membran sind mit Wasser gesättigt. In dem Zwischenraum können das Hydrogencarbonat oder Carbonat und die Wasserstoffionen zu Kohlenstoffdioxid und Wasser rea¬ gieren. Das Kohlenstoffdioxid wird dann vorteilhaft über Flusskanäle oder poröse Strukturen aus dem Zwischenraum aus dem Elektrolyseur geführt. Insbesondere können weitere Ent¬ lastungsöffnungen zwischen den Flusskanälen und/oder dem Innenraum der porösen Struktur und der äußeren Oberfläche der Kathode vorhanden sein, um eine Rückführung des Kohlendioxids und des Wassers zu gewährleisten.
Als Anionen-selektive Membranen können kommerziell erhältli¬ che Membranen verwendet werden. Insbesondere zählen dazu die Selemiom AMV von AGC Chemicals, die Neosepta von Tokuyama oder die Fumasep FAß der Fuma GmbH. In diesen Membranen sind positive Ladungen, insbesondere quartäre Amine NR4 + immobili¬ siert. Die Gesamtladung der Membran wird durch mobile Gegenionen ausgeglichen, die in der wässrigen Phase gelöst sind, insbesondere durch Hydroxidionen. Diese Anionen-selektive Membran verhindert vorteilhaft, dass Wasserstoffionen zur Ka¬ thode transportiert werden. Vorteilhaft kann die Wahl des Ka¬ thodenmaterials dann sehr flexibel erfolgen. Die Kathodenma- terialien können dann also in Abhängigkeit des gewünschten Wertproduktes ausgewählt werden.
Die zweite Membran grenzt wenigstens teilweise unmittelbar an die Kathode. Die Kathode wird zur Nutzung der inneren Ober- fläche der Kathode an die Anionen-selektive Membran über Mak- roporen angebunden. Die Makroporen haben dabei typischerweise einen Durchmesser von wenigsten einem Mikrometer. Das Anbinden der Kathode an die Anionen-selektive Membran kann in vor¬ teilhafter Weise über ein Anionen-selektives Polymer erfol- gen. Bevorzugt erfolgt die Anbindung mittels einer Lösung desselben Polymers, das bei der Präparation in einen Teil der membranseitigen Kathodenporen eindringt. Insbesondere die Oberfläche der Kathode wird mit einer Lösung des Membran¬ materials benetzt und dann auf die zweite Membran gepresst.
Die Flüssigphase umfasst ionische Komponenten, insbesondere Hydroxidionen und Hydrogencarbonat , welche an der Kathode ge¬ bildet werden und auch in der Anionen-selektiven Membran mobil sind, so dass sievorteilhaft durch die Membran transpor- tiert werden können. Dies ermöglicht die Verbindung der Ka¬ thode mit der Anionen-selektiven Membran und somit auch die Reduzierung des Kohlenstoffdioxids . Wichtig ist dabei, dass in der Kathode dasselbe Ion wie in der Anionen-selektiven Membran mobil ist, im Falle des Wassers insbesondere
Hydroxidionen. Die Anbindung der Anionen leitenden Membran an die Kathode erfolgt dabei typischerweise durch Imprägnieren der Membranseite der Kathode mit einem Anionen-leitenden Polymer. Dabei grenzt die Anionen-selektive zweite Membran wenigsten teilweise unmittelbar an die Kathode an. Das aufge- brachte Polymer wird durch die Polymerisation zu einem Teil der Membran. In einer weiteren vorteilhaften Ausgestaltung und Weiterbildung der Erfindung ist zwischen der ersten und der zweiten Membran eine gemeinsame Kontaktfläche angeordnet, wobei die Größe der Kontaktfläche in dem Bereich von wenigstens 80% bis zu 98 % der Membranfläche der ersten Membran liegt. Die Memb¬ ranen berühren sich in der Elektrolysezelle, allerdings be¬ rühren sie sich nicht vollständig. Zum einen ist es von Vor¬ teil, wenn sie sich nicht vollständig berühren, da dann
Flusskanäle oder Poren geöffnet bleiben, um nicht umgesetztes Kohlenstoffdioxid und gebildetes Wasser aus dem Kontaktbe¬ reich der beiden Membranen herausführen zu können. Andererseits ist es von Vorteil, wenn sich die erste und die zweite Membran großflächig berühren, um eine möglichst hohe Leitfähigkeit innerhalb der Elektrolysezelle aufrechtzuerhalten und somit den Energiebedarf der Elektrolysezelle möglichst nied¬ rig, das heißt effizient, zu gestalten.
In einer weiteren Ausgestaltung und Weiterbildung der Erfindung umfasst die Kathode und/oder die zweite Membran Entlas- tungsöffnungen, um das Kohlenstoffdioxid und das Wasser aus der Abstandshaltevorrichtung in den gasseitigen Kathodenraum zu führen. Der gasseitige Kathodenraum befindet sich auf der anodenabgewandten Seite der Kathode. Aus diesem gasseitigen Kathodenraum wird das Edukt Kohlenstoffdioxid zugeführt. Ein Führen des in der Abstandshaltevorrichtung entstehenden Wassers und Kohlenstoffdioxids in den gasseitigen Kathodenraum ermöglicht vorteilhaft einen höheren Umsatz des Kohlenstoff¬ dioxids und somit auch eine höhere Effizienz. In einer weiteren vorteilhaften Ausgestaltung und Weiterbildung der Erfindung ist zwischen der ersten und zweiten Membran eine Abstandshaltevorrichtung angeordnet. Diese Abstands¬ haltevorrichtung kann Maschen, Gitter oder eine poröse Struktur umfassen. Vorteilhafterweise lässt sich so die Kontakt- fläche zwischen der ersten und zweiten Membran definiert vorgeben, sodass einerseits für ausreichend Flusskanäle für frei werdendes Kohlenstoffdioxid, und andererseits für eine aus¬ reichende Leitfähigkeit der Elektrolysezelle gesorgt ist. In einer weiteren vorteilhaften Ausgestaltung und Weiterbildung der Erfindung umfasst die Kathode wenigstens eines der Elemente Silber, Kupfer, Blei, Indium, Zinn oder Zink. Die Auswahl des Kathodenmaterials hängt insbesondere von dem ge¬ wünschten Wertprodukt der Kohlenstoffdioxidzerlegung ab. Insbesondere wird mit dem Einsatz einer Silberkathode Kohlen- stoffmonoxid hergestellt. Mit dem Einsatz einer Kupferkathode wird Ethylen und mit dem Einsatz einer Bleikathode wird Amei- sensäure produziert. Vorteilhaft kann mit dem Aufbau der
Elektrolysezelle die freie Wahl des Kathodenmaterials erfol¬ gen und gleichzeitig die Produktion von unerwünschtem Wasserstoff an der Kathode unterbunden werden. Die Kathode ist da¬ bei typischerweise als eine Gasdiffusionselektrode ausgebil- det. Unter einer Gasdiffusionselektrode versteht man eine gut elektronisch leitfähige, poröse Katalysatorstruktur, die teilweise mit dem angrenzenden Membranmaterial benetzt ist, wobei verbleibende Porenräume zur Gasseite hin geöffnet sind. In einer vorteilhaften Ausgestaltung und Weiterbildung der
Erfindung wird das nicht umgesetzte und daher wieder freige¬ setzte Kohlenstoffdioxid als Edukt zurück in den Elektroly- seur geführt. Vorteilhaft wird dadurch die Effizienz der Elektrolyse gesteigert, da möglichst viel Kohlenstoffdioxid umgesetzt wird.
In einer weiteren vorteilhaften Ausgestaltung und Weiterbildung der Erfindung wird der Elektrolyseur mit reinem Wasser betrieben. Als reines Wasser wird hierbei Wasser bezeichnet, welches eine Leitfähigkeit von weniger als 1 mS/cm aufweist. Vorteilhaft wird dadurch vermieden, dass Salze, insbesondere Hydrogencarbonate, in der Elektrolysezelle ausfallen und so¬ mit zu einer verkürzten Lebenszeit der Elektrolysezelle füh¬ ren .
Weitere Ausgestaltungsform und weitere Merkmale der Erfindung werden anhand der folgenden Figuren näher erläutert. Dabei handelt es sich um rein beispielhafte Ausgestaltungsformen und Merkmalskombinationen, die keine Einschränkung des
Schutzbereiches bedeutet. Merkmale mit derselben Wirkungswei¬ se und derselben Bezeichnung, aber in unterschiedlichen Ausgestaltungsformen werden dabei mit denselben Bezugszeichen versehen.
Dabei zeigen:
Fig. 1 eine Elektrolysezelle mit einer Anionen-selektiven
Membran,
Fig. 2 eine Abstandshalterung für die Elektrolysezelle mit einer Anionen-selektiven Membran. Die Elektrolysezelle 1 umfasst einen Kathodenraum 14 und ei¬ nen Anodenraum 13. Der Kathodenraum 14 wird vom Anodenraum 13 über eine Abstandshaltevorrichtung 11 getrennt. In dem Anodenraum 13 ist eine Kationen-selektive Membran 3 angeordnet. An diese grenzt direkt eine Anode 4 an . In dem Kathoden- räum 14 ist eine Anionen-selektive Membran 2 angeordnet. An diese grenzt die Kathode 5 an. Die Kathode 5 ist mit der An¬ ionen-selektiven Membran 2 über ein Anionen-selektives Polymer verbunden. Zwischen der Anionen-selektiven Membran 2 und der Kationen-selektiven Membran ist eine Abstandshalterung 11 angeordnet. Die Membranen berühren sich zu 90 % über die Kontaktflächen 9.
Zweckmäßigerweise wird die Elektrolysezelle 1 mit Spannung versorgt, sodass eine Elektrolyse stattfinden kann. In der Elektrolysezelle 1 wird Kohlenstoffdioxid zu Kohlenstoffmono- xid reduziert. Dies geschieht typischerweise an einer Silber¬ kathode. Sowohl in der Anionen-selektiven Membran 2 als auch in der Kationen-selektiven Membran 3 liegt Wasser vor. In der Kationen-selektiven Membran 3, an welche bevorzugt immobili- sierte negative Ladungen, insbesondere deprotonierte Sulfon- säuregruppen, angebunden sind, kann sich positive Ladung, insbesondere ein Proton, bewegen. Dies wird durch das Konzentrationsprofil des Wasserstoffions 7 in dem Anodenraum 13 gezeigt. An der Anionen-selektiven Membran 2 hingegen sind typischerweise quartäre Amine NR4 + immobilisiert, was zu ei¬ ner Ladungsoberfläche mit einer positiven Ladung führt. Durch diese positiv geladene Oberfläche können sich insbesondere negativ geladene Hydroxidionen durch diese Membran bewegen. Dies wird verdeutlicht durch das Konzentrationsprofil des Hydroxidions 6. Negative Ladungen können innerhalb der Anio¬ nen-selektiven Membran 2 in Form von Hydrogencarbonat oder Carbonat vorliegen und transportiert werden (In Konzentrati- onsprofil nicht gezeigt) .
Liegt nun eine Spannung an der Elektrolysezelle 1 an, so wird an der Kathode 5, welche Silber umfasst, das Kohlenstoffdio- xid zu Kohlenstoffmonoxid reduziert. Zeitgleich wird in dem Anodenraum 13 Wasser zu Protonen und Sauerstoff zerlegt. Der Sauerstoff kann den Anodenraum verlassen. Die Protonen können über die Kationen-selektive Membran 3 in den Zwischenraum zwischen Gitterstäben 8 des Gitters des Abstandshalters 11 migrieren. Nicht-umgesetztes Kohlenstoffdioxid kann mit
Hydroxidionen zu Carbonat oder Hydrogencarbonat reagieren und durch die Anionen-selektive Membran migrieren. Das Hydrogencarbonat oder Carbonat und die Wasserstoffionen können dann in dem Zwischenraum innerhalb der Gitterstruktur 8 zu Kohlenstoffdioxid und Wasser reagieren. Das Kohlenstoffdioxid kann so aus der Elektrolysezelle wieder freigesetzt werden, wäh¬ rend das Wasser zurück in die beiden Membranen diffundieren kann. Weiterhin wird vorteilhaft die Bildung von Wasserstoff an der Kathode vermieden, da das Proton aufgrund seiner positiven Ladung die Anionen-selektive Membran nicht durchqueren kann.
Typischerweise werden Anionen-selektive Membranen, welche kommerziell erhältlich sind, verwendet. Um die Anionen-selek¬ tive Membran 2 fest mit der Kathode 5 zu verbinden, werden die Anionen-selektive Membran 2 und die Kathode 5 über ein Anionen-selektives Polymer 12 fest miteinander verbunden. Dieses Anionen-selektive Polymer 12 benetzt die Kathode 5 nicht vollständig, sodass zum Gasraum durchgehende Öffnungen bzw. Poren bleiben, durch welche das Kohlenstoffdioxid dif¬ fundieren kann. Aus der Kathode 5 werden unter Nutzung der inneren Oberfläche der Kathode 5 durch die Makroporen
Hydroxidionen ausgeleitet. Dies stellt sicher, dass der Io¬ nentransport von der Kathode 5 zur Anionen-selektiven Membran 2 erfolgt. Die Kathode 5 ist typischerweise als Gasdiffusionselektrode ausgestaltet .
In Figur 2 ist abschnittsweise die Abstandshaltevorrich- tung 10 als Gitterstruktur 8 gezeigt. Die schraffierten Flä- chen beschreiben hier die Kontaktflächen der Anionen-selektiven Membran 2 und der Kationen-selektiven Membran 3. Die weiße Fläche zwischen der Kontaktfläche und der Gitterstruk¬ tur 8 bezeichnet Flusskanäle 10 durch welche das im Zwischen¬ raum entstehende Kohlenstoffdioxid die Elektrolysezelle ver- lassen kann. Es ist vorteilhaft möglich durch die Abstands- halterung 11 das Kohlenstoffdioxid und das Kohlenstoffmonoxid vom Anodengas Sauerstoff zu trennen. Weiterhin ist es mög¬ lich, lediglich Wasser zum Betreiben der Elektrolysezelle 1 einzusetzen. Dies ist dadurch möglich, dass die Anode und die Kathode derart zueinander angeordnet sind, dass die Leitfä¬ higkeit über die Anionen-selektive Membran 2 und die Katio¬ nen-selektive Membran 3 ausreichend hoch ist. Es wird also vorteilhaft vermieden, ein Leitsalz oder einen Puffer zu verwenden. Vorteilhafterweise kann es dadurch nicht zu einem Ausfallen von insbesondere Hydrogencarbonaten als Feststoff kommen. Die Lebensdauer der Elektrolysezelle wird so vorteil¬ haft erhöht. Weiterhin steigert das vorteilhaft die Effizienz der Elektrolysezelle.

Claims

Patentansprüche
1. Elektrolyseur zur elektrochemischen Nutzung von Kohlenstoffdioxid umfassend wenigstens eine Elektrolysezelle (1), wobei die Elektrolysezelle (1)
- einen Anodenraum (13) mit einer Anode (4) und einen Kathodenraum (14) mit einer Kathode (5) umfasst ,
- zwischen dem Anodenraum (13) und dem Kathodenraum (14) eine erste Kationen-permeable Membran (3) angeordnet ist und
- die Anode (4) direkt an die erste Membran (3) im Anodenraum (13) grenzt, dadurch gekennzeichnet, dass zwischen der ersten Membran (3) und der Kathode (5) eine zweite Anionen-selektive Membran (2) angeordnet ist und die zweite Membran (2) wenigs- tens teilweise aber nicht vollständig unmittelbar an die ers¬ te Membran (3) grenzt und wobei die zweite Membran (2) we¬ nigstens teilweise unmittelbar an die Kathode (5) grenzt.
2. Elektrolyseur nach Anspruch 1, wobei zwischen der ersten (3) und zweiten Membran (2) eine gemeinsame Kontaktfläche
(9) angeordnet ist, wobei die Größe der Kontaktflächen (9) in einem Bereich von wenigstens 80% bis zu 98 % der Membranfläche der ersten und/oder zweiten Membran liegt.
3. Elektrolyseur nach einem der vorhergehenden Ansprüche, wobei zwischen der ersten (3) und zweiten (2) Membran eine Ab- standshaltevorrichtung (11) angeordnet ist.
4. Elektrolyseur nach einem der vorhergehenden Ansprüche, wo- bei die Kathode (5) und/oder die zweite Membran (2) Entlas¬ tungsöffnungen zum Führen von Kohlenstoffdioxid und Wasser aus der Abstandshaltevorrichtung (11) in den gasseiteigen Kathodenraum umfassen.
5. Elektrolyseur nach Anspruch 3 oder 4, wobei die Abstandshaltevorrichtung (11) Maschen, Gitter (8) oder eine poröse Struktur umfasst.
6. Elektrolyseur nach einem der vorhergehenden Ansprüche, wobei zwischen der Kathode (5) und der zweiten Membran (2) wenigstens teilweise ein Anionen-leitendes Polymer (12) ange¬ ordnet ist.
7. Elektrolyseur nach einem der vorhergehenden Ansprüche, wobei die Kathode (5) wenigstens eines der Elemente Silber, Kupfer, Blei, Indium, Zinn oder Zink umfasst.
8. Elektrolyseur nach einem der vorhergehenden Ansprüche, wobei die Kathode (5) eine Gasdiffusionselektrode umfasst.
9. Verfahren zum Betreiben eines Elektrolyseurs zur elektro¬ chemischen Nutzung von Kohlenstoffdioxid mit folgenden
Schritten:
- Bereitstellen eines Elektrolyseurs mit einer Elektrolyse¬ zelle (1) mit einem Anodenraum (13) mit einer Anode (4) und einem Kathodenraum (14) mit einer Kathode (5), wobei zwischen dem Anodenraum (13) und dem Kathodenraum (14) eine erste Ka- tionen-permeable Membran (3) angeordnet ist und die Anode (4) direkt an die erste Membran (3) grenzt, und zwischen der ers¬ ten Membran (3) und der Kathode (5) eine zweite Anionen- selektive Membran (2) angeordnet ist und die zweite Membran (2) wenigstens teilweise aber nicht vollständig unmittelbar an die erste Membran (3) grenzt,
- Zerlegen von Kohlenstoffdioxid zu einem Produkt an der Ka¬ thode (5) in dem Kathodenraum (14),
- Transportieren von nicht umgesetztem Kohlenstoffdioxid als Carbonat oder Hydrogencarbonat von der Kathode (5) durch die zweite Membran (2), - Transportieren von Wasserstoffionen von der Anode (4) durch die erste Membran (3) , - Reagieren der Wasserstoffionen und des Carbonats oder
Hydrogencarbonats zu Kohlenstoffdioxid und Wasser zwischen der ersten (3) und der zweiten Membran (2), - Freisetzen des Kohlenstoffdioxids über Flusskanäle oder Po¬ ren zwischen der ersten (3) und der zweiten Membran (2) .
10. Verfahren nach Anspruch 9, wobei das freigesetzte Kohlenstoffdioxid als Edukt zurück in den Elektrolyseur geführt wird.
11. Verfahren nach einem der Ansprüche 9 oder 10, wobei der Elektrolyseur mit reinem Wasser betrieben wird.
12. Verfahren nach einem der Ansprüche 9 bis 11, wobei die
Flusskanäle oder Poren mittels einer Abstandshaltevorrichtung (11) ausgebildet werden.
13. Verfahren nach einem der Ansprüche 9 bis 12, wobei we- nigstens eins der Produkte Kohlenstoffmonoxid, Ethylen oder Ameisensäure hergestellt werden.
EP17724515.6A 2016-05-31 2017-05-08 Vorrichtung und verfahren zur elektrochemischen nutzung von kohlenstoffdioxid Active EP3414362B1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PL17724515T PL3414362T3 (pl) 2016-05-31 2017-05-08 Urządzenie i sposób do elektrochemicznego wykorzystania dwutlenku węgla

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102016209451.3A DE102016209451A1 (de) 2016-05-31 2016-05-31 Vorrichtung und Verfahren zur elektrochemischen Nutzung von Kohlenstoffdioxid
PCT/EP2017/060885 WO2017207220A1 (de) 2016-05-31 2017-05-08 Vorrichtung und verfahren zur elektrochemischen nutzung von kohlenstoffdioxid

Publications (2)

Publication Number Publication Date
EP3414362A1 true EP3414362A1 (de) 2018-12-19
EP3414362B1 EP3414362B1 (de) 2020-03-25

Family

ID=58739016

Family Applications (1)

Application Number Title Priority Date Filing Date
EP17724515.6A Active EP3414362B1 (de) 2016-05-31 2017-05-08 Vorrichtung und verfahren zur elektrochemischen nutzung von kohlenstoffdioxid

Country Status (10)

Country Link
US (1) US11193213B2 (de)
EP (1) EP3414362B1 (de)
CN (1) CN109219674B (de)
AU (1) AU2017273604B2 (de)
DE (1) DE102016209451A1 (de)
DK (1) DK3414362T3 (de)
ES (1) ES2795037T3 (de)
PL (1) PL3414362T3 (de)
SA (1) SA518400459B1 (de)
WO (1) WO2017207220A1 (de)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3453065B1 (de) 2016-05-03 2021-03-03 Opus 12 Incorporated Reaktor mit erweiterter architektur zur elektrochemischen reduktion von cox
DE102016209451A1 (de) 2016-05-31 2017-11-30 Siemens Aktiengesellschaft Vorrichtung und Verfahren zur elektrochemischen Nutzung von Kohlenstoffdioxid
EP3966364A1 (de) * 2019-05-05 2022-03-16 The Governing Council of the University of Toronto Umwandlung von carbonat in syngas oder -produkte in einer elektrolysezelle
WO2021108446A1 (en) 2019-11-25 2021-06-03 Opus 12 Incorporated Membrane electrode assembly for cox reduction

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ATE179765T1 (de) 1993-02-26 1999-05-15 Permelec Electrode Ltd Elektrolysezelle und verfahren zur herstellung von alkalimetall-hydroxid und wasserstoff-peroxyd
JP2006219746A (ja) * 2005-02-14 2006-08-24 Nippon Telegr & Teleph Corp <Ntt> 水素製造方法及び装置
JP5373079B2 (ja) 2008-07-16 2013-12-18 カレラ コーポレイション 電気化学システム中でのco2の利用
CN101649464A (zh) * 2008-08-11 2010-02-17 浙江工业大学 二氧化碳分解制氧器
DE102009013207A1 (de) * 2009-03-17 2010-09-23 Rheinisch-Westfälische Technische Hochschule Aachen Bipolare Membran
US9370773B2 (en) * 2010-07-04 2016-06-21 Dioxide Materials, Inc. Ion-conducting membranes
US10047446B2 (en) * 2010-07-04 2018-08-14 Dioxide Materials, Inc. Method and system for electrochemical production of formic acid from carbon dioxide
US8529758B2 (en) * 2011-03-22 2013-09-10 Dionex Corporation CO2-removal device and method
ITMI20110500A1 (it) * 2011-03-29 2012-09-30 Industrie De Nora Spa Cella per l elettrodialisi depolarizzata di soluzioni saline
CN103160851B (zh) 2011-12-12 2015-11-25 清华大学 膜反应器
US8444844B1 (en) * 2012-07-26 2013-05-21 Liquid Light, Inc. Electrochemical co-production of a glycol and an alkene employing recycled halide
CN102912374B (zh) * 2012-10-24 2015-04-22 中国科学院大连化学物理研究所 一种以双极膜为隔膜的电化学还原co2电解池及其应用
CN103191633B (zh) 2013-04-09 2014-08-13 浙江大学 一种电动采集提纯二氧化碳的装置与方法
US10570524B2 (en) * 2014-09-08 2020-02-25 3M Innovative Properties Company Ionic polymer membrane for a carbon dioxide electrolyzer
US20160253461A1 (en) * 2014-10-01 2016-09-01 Xsolis, Llc System for management and documentation of health care decisions
CN105297067B (zh) 2015-11-16 2018-02-09 昆明理工大学 一种将二氧化碳电还原为一氧化碳的多室隔膜电解方法和装置
DE102016209451A1 (de) 2016-05-31 2017-11-30 Siemens Aktiengesellschaft Vorrichtung und Verfahren zur elektrochemischen Nutzung von Kohlenstoffdioxid
DE102016209447A1 (de) * 2016-05-31 2017-11-30 Siemens Aktiengesellschaft Verfahren und Vorrichtung zur elektrochemischen Nutzung von Kohlenstoffdioxid

Also Published As

Publication number Publication date
DE102016209451A1 (de) 2017-11-30
US11193213B2 (en) 2021-12-07
PL3414362T3 (pl) 2020-08-24
ES2795037T3 (es) 2020-11-20
CN109219674B (zh) 2021-04-23
AU2017273604A1 (en) 2018-10-25
SA518400459B1 (ar) 2022-05-08
DK3414362T3 (da) 2020-06-15
AU2017273604B2 (en) 2020-01-02
EP3414362B1 (de) 2020-03-25
US20200325587A1 (en) 2020-10-15
WO2017207220A1 (de) 2017-12-07
CN109219674A (zh) 2019-01-15

Similar Documents

Publication Publication Date Title
EP3607111B1 (de) Zwei-membran-aufbau zur elektrochemischen reduktion von co2
EP3583245B1 (de) Herstellung von gasdiffusionselektroden mit ionentransport-harzen zur elektrochemischen reduktion von co2 zu chemischen wertstoffen
WO2019011577A1 (de) Membran gekoppelte kathode zur reduktion von kohlendioxid in säurebasierten elektrolyten ohne mobile kationen
EP3414362B1 (de) Vorrichtung und verfahren zur elektrochemischen nutzung von kohlenstoffdioxid
DE102015209509A1 (de) Elektrolysesystem zur elektrochemischen Kohlenstoffdioxid-Verwertung mit Protonenspender-Einheit und Reduktionsverfahren
WO2016134952A1 (de) Abscheidung eines kupferhaltigen, kohlenwasserstoffe entwickelnden elektrokatalysators auf nicht-kupfer-substraten
EP3414363B1 (de) Verfahren und vorrichtung zur elektrochemischen nutzung von kohlenstoffdioxid
EP2697410B1 (de) Alternativer einbau einer gas-diffusions-elektrode in eine elektrochemische zelle mit percolatortechnologie
WO2019120812A1 (de) Durchströmbare anionentauscher-füllungen für elektrolytspalte in der co2-elektrolyse zur besseren räumlichen verteilung der gasentwicklung
WO2020212139A1 (de) Verfahren und vorrichtung zur elektrochemischen nutzung von kohlenstoffdioxid
EP3714083A1 (de) Separatorlose doppel-gde-zelle zur elektrochemischen umsetzung
WO2020001851A1 (de) Elektrochemische niedertemperatur reverse-watergas-shift reaktion
EP3577256A1 (de) Elektroden umfassend in festkörperelektrolyten eingebrachtes metall
DE102015213947A1 (de) Reduktionsverfahren zur elektrochemischen Kohlenstoffdioxid-Verwertung und Elektrolysesystem mit Anionentauschermembran
DE102020207186A1 (de) CO2 Elektrolyse mit Gasdiffusionselektrode und Salzbildungsvermeidung durch Elektrolytwahl
DE102020207192A1 (de) CO2-Elektrolyse mit sauerstofffreier Anode
DE102019201153A1 (de) Verfahren zur energieeffizienten Herstellung von CO
DE102018201287A1 (de) Poröse Elektrode zur elektrochemischen Umsetzung organischer Verbindungen in zwei nicht mischbaren Phasen in einem elektrochemischen Flussreaktor
DE102019117440B4 (de) Elektrochemische Zelle, Batterieanordnung mit einer elektrochemischen Zelle und Verfahren zum Betreiben einer elektrochemischen Zelle
DE102021214631A1 (de) Zellkonzept zur Nutzung nicht-ionisch leitfähiger Extraktionsmedien
AT519418A1 (de) Verfahren und Vorrichtung zur Herstellung zumindest eines flüssigen Reaktionsproduktes

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20180910

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20191127

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1248659

Country of ref document: AT

Kind code of ref document: T

Effective date: 20200415

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502017004391

Country of ref document: DE

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: SIEMENS SCHWEIZ AG, CH

REG Reference to a national code

Ref country code: DK

Ref legal event code: T3

Effective date: 20200610

REG Reference to a national code

Ref country code: NL

Ref legal event code: FP

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200325

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200325

REG Reference to a national code

Ref country code: NO

Ref legal event code: T2

Effective date: 20200325

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200626

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200625

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200325

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200325

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200325

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200325

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200325

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200325

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200325

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200325

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200325

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200725

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200818

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2795037

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20201120

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 502017004391

Country of ref document: DE

Owner name: SIEMENS ENERGY GLOBAL GMBH & CO. KG, DE

Free format text: FORMER OWNER: SIEMENS AKTIENGESELLSCHAFT, 80333 MUENCHEN, DE

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502017004391

Country of ref document: DE

RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: SIEMENS ENERGY GLOBAL GMBH & CO. KG

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200325

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20210112

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20200531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200508

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200525

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200508

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200325

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200531

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

Free format text: REGISTERED BETWEEN 20211202 AND 20211209

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200325

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200325

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200325

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200325

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200325

REG Reference to a national code

Ref country code: NO

Ref legal event code: CREP

Representative=s name: ONSAGERS AS, POSTBOKS 1813, VIKA, 0123 OSLO, NORGE

Ref country code: NO

Ref legal event code: CHAD

Owner name: SIEMENS ENERGY GLOBAL GMBH & CO. KG, DE

REG Reference to a national code

Ref country code: AT

Ref legal event code: PC

Ref document number: 1248659

Country of ref document: AT

Kind code of ref document: T

Owner name: SIEMENS ENERGY GLOBAL GMBH & CO. KG, DE

Effective date: 20221018

REG Reference to a national code

Ref country code: NL

Ref legal event code: PD

Owner name: SIEMENS ENERGY GLOBAL GMBH & CO. KG; DE

Free format text: DETAILS ASSIGNMENT: CHANGE OF OWNER(S), ASSIGNMENT; FORMER OWNER NAME: SIEMENS AKTIENGESELLSCHAFT

Effective date: 20221220

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NO

Payment date: 20230519

Year of fee payment: 7

Ref country code: NL

Payment date: 20230525

Year of fee payment: 7

Ref country code: IT

Payment date: 20230525

Year of fee payment: 7

Ref country code: ES

Payment date: 20230613

Year of fee payment: 7

Ref country code: DK

Payment date: 20230524

Year of fee payment: 7

Ref country code: DE

Payment date: 20220617

Year of fee payment: 7

Ref country code: CH

Payment date: 20230602

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: PL

Payment date: 20230413

Year of fee payment: 7

Ref country code: AT

Payment date: 20230519

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20230523

Year of fee payment: 7