EP3360628B1 - Procédé de préparation de nanofils d'argent à rapport d'aspect uniforme - Google Patents
Procédé de préparation de nanofils d'argent à rapport d'aspect uniforme Download PDFInfo
- Publication number
- EP3360628B1 EP3360628B1 EP16852969.1A EP16852969A EP3360628B1 EP 3360628 B1 EP3360628 B1 EP 3360628B1 EP 16852969 A EP16852969 A EP 16852969A EP 3360628 B1 EP3360628 B1 EP 3360628B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- solution
- silver nanowires
- reaction
- reaction kettle
- aspect ratio
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Not-in-force
Links
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 title claims description 43
- 239000002042 Silver nanowire Substances 0.000 title claims description 42
- 238000002360 preparation method Methods 0.000 title claims description 14
- 239000000243 solution Substances 0.000 claims description 51
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 claims description 45
- SQGYOTSLMSWVJD-UHFFFAOYSA-N silver(1+) nitrate Chemical compound [Ag+].[O-]N(=O)=O SQGYOTSLMSWVJD-UHFFFAOYSA-N 0.000 claims description 16
- 229910001961 silver nitrate Inorganic materials 0.000 claims description 8
- 239000001267 polyvinylpyrrolidone Substances 0.000 claims description 7
- 235000013855 polyvinylpyrrolidone Nutrition 0.000 claims description 7
- 229920000036 polyvinylpyrrolidone Polymers 0.000 claims description 7
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims description 6
- 229910021642 ultra pure water Inorganic materials 0.000 claims description 6
- 239000012498 ultrapure water Substances 0.000 claims description 6
- 239000010413 mother solution Substances 0.000 claims description 4
- 230000035484 reaction time Effects 0.000 claims description 2
- 238000007865 diluting Methods 0.000 claims 1
- 238000004626 scanning electron microscopy Methods 0.000 claims 1
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 8
- 239000010408 film Substances 0.000 description 6
- 238000000034 method Methods 0.000 description 6
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 239000002070 nanowire Substances 0.000 description 3
- 238000002834 transmittance Methods 0.000 description 3
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 2
- 230000000052 comparative effect Effects 0.000 description 2
- 239000002131 composite material Substances 0.000 description 2
- 239000012535 impurity Substances 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 238000004917 polyol method Methods 0.000 description 2
- 239000000376 reactant Substances 0.000 description 2
- 239000002002 slurry Substances 0.000 description 2
- 229910021578 Iron(III) chloride Inorganic materials 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 150000001768 cations Chemical class 0.000 description 1
- 239000000084 colloidal system Substances 0.000 description 1
- 229920001940 conductive polymer Polymers 0.000 description 1
- ORTQZVOHEJQUHG-UHFFFAOYSA-L copper(II) chloride Chemical compound Cl[Cu]Cl ORTQZVOHEJQUHG-UHFFFAOYSA-L 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000001027 hydrothermal synthesis Methods 0.000 description 1
- 238000009776 industrial production Methods 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- RBTARNINKXHZNM-UHFFFAOYSA-K iron trichloride Chemical compound Cl[Fe](Cl)Cl RBTARNINKXHZNM-UHFFFAOYSA-K 0.000 description 1
- 229910001507 metal halide Inorganic materials 0.000 description 1
- 150000005309 metal halides Chemical class 0.000 description 1
- 229920005862 polyol Polymers 0.000 description 1
- 150000003077 polyols Chemical class 0.000 description 1
- 239000011780 sodium chloride Substances 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F9/00—Making metallic powder or suspensions thereof
- B22F9/16—Making metallic powder or suspensions thereof using chemical processes
- B22F9/18—Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds
- B22F9/24—Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds starting from liquid metal compounds, e.g. solutions
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F1/00—Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
- B22F1/05—Metallic powder characterised by the size or surface area of the particles
- B22F1/054—Nanosized particles
- B22F1/0547—Nanofibres or nanotubes
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F1/00—Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
- B22F1/07—Metallic powder characterised by particles having a nanoscale microstructure
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F2301/00—Metallic composition of the powder or its coating
- B22F2301/25—Noble metals, i.e. Ag Au, Ir, Os, Pd, Pt, Rh, Ru
- B22F2301/255—Silver or gold
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F2304/00—Physical aspects of the powder
- B22F2304/05—Submicron size particles
- B22F2304/054—Particle size between 1 and 100 nm
Definitions
- the present invention relates to a preparation method for silver nanowires, and more particularly, to a preparation method for silver nanowires with a uniform aspect ratio.
- silver nanowires Based on the properties of high specific surface area, electrical conductivity and thermal conductivity, silver nanowires have a broad application prospect. Especially, the silver nanowires can be used as an alternative material of ITO in fields such as solar energy, OLED, and flexible and large-size touch screen displays, and used in fields such as conductive polymers, composite materials, and electrode printing ink additives. Therefore, the preparation of silver nanowires has become a focus of researchers. At present, there are many documents and patent reports on the preparation methods and applications of silver nanowires.
- Xia Younan the first one who prepares silver nanowires with a polyol method, proposed the preparation of silver nanowires with a high aspect ratio by using Pt as seeds and reducing silver nitrate by ethylene glycol (Advanced Materials (2002) 14,883).
- the polyol reduction method was combined with the hydrothermal method, and a small amount of sodium chloride, ferric chloride, copper chloride and other metal halide were introduced to function with Ag ions to form a colloid, which serves as seeds to prepare silver nanowires.
- the silver nanowires can be quickly prepared by the combination of the polyol method and the microwave method.
- the silver nanowires thus obtained have a relatively non-uniform aspect ratio, and have a large amount of impurities.
- Chinese Patent Application No. 200810019828.6 disclosed a batch preparation method for silver nanowires
- Chinese Patent Application No. 201010559335.9 disclosed a method for preparing silver nanowires with controlled diameter by using a cation-controlled microwave method.
- he prepared silver nanowires are less than 30 ⁇ m in length, and have a non-uniform aspect ratio.
- Chinese Patent No. CN 1843670A reported the use of a composite solvent of glycerol and water or ethanol or isopropanol for reduction to prepare silver nanowires.
- the obtained silver nanowires have a length of 5-200 ⁇ m and a diameter of 70-90 nm.
- Chinese Patent CN 104785794 A discloses a preparation method for silver nanowires even in length-diameter ratio, comprising the following steps: dissolving silver nitrate in glycerol to get a solution A; dissolving polyvinylpyrrolidone in glycerol to get a solution B; mixing uniformly the solution A and the solution B to form a solution C; and finally, transferring the resulting solution into a reaction kettle for reaction at 150°, and centrifuging the reactants to obtain silver nanowires.
- the present invention is directed to a preparation method of silver nanowires with a uniform aspect ratio, which is simple, easy to control, and cost-effective.
- the present invention is achieved through the following technical solution.
- a preparation method for silver nanowires includes the following steps:
- reaction time in the reaction kettle is 9-10 hours.
- step (1) 0.16 g silver nitrate is dissolved at room temperature in 20 ml of glycerol to get the solution A.
- step (2) 5 g polyvinylpyrrolidone is dissolved at room temperature in 80 ml of glycerol to get the solution B.
- step (4) 5 ml of the ultrapure water is added into the solution C and mixed uniformly to form the solution D.
- the centrifuging is performed twice.
- the preparation method of the present invention is simple to operate, easy to control, cost-effective, and very suitable for large-scale industrial production.
- the prepared silver nanowires have a uniform aspect ratio, and transparent conductive films based on the silver nanowires have a high transparency of 90-91%.
- the silver nanowires have a diameter of up to 30-40 nm and a length of 10-20 ⁇ m, and the silver nanowires with the aspect ratio have small resistance, which is beneficial to the improvement of electrical conductivity.
- the silver nanowires have no particles and feature high purity.
- 0.16 g silver nitrate was dissolved at room temperature in 20 ml of glycerol to get a solution A; 5 g polyvinylpyrrolidone was dissolved at room temperature in 80 ml of glycerol to get a solution B; the solution A and the solution B were mixed uniformly to form a solution C; then, 5 ml of ultrapure water was added into the solution C and mixed uniformly to form a solution D, finally, the solution D was transferred into a reaction kettle, the reaction kettle was put into an oven with a set temperature of 160°C, and the reaction ended after a certain time of reaction.
- FIG. 1 is a scanning electron microscope (SEM) diagram of a silver nanowire synthesized in Example 1.
- the silver nanowires prepared in Example 1 above were formulated into 1g/L silver nanowire slurry, and 500 ⁇ L of slurry was uniformly coated on an A4-size transparent film to prepare a transparent conductive film.
- the sheet resistance of the transparent conductive film was 42 ohm/sq.
- the transmittance of the transparent conductive film was measured with a UV-Vis spectrophotometer. As shown in FIG. 2 , at the visible light wavelength of 550 nm, the transmittance of the transparent conductive film was 90.8%.
- 0.16 g silver nitrate was dissolved at room temperature in 20 ml of glycerol to get a solution A; 5 g polyvinylpyrrolidone was dissolved at room temperature in 80 ml of glycerol to get a solution B; the solution A and the solution B were mixed uniformly to form a solution C; then, 2.5 ml of ultrapure water was added into the solution C and mixed uniformly to form a solution D, finally, the solution D was transferred into a reaction kettle, the reaction kettle was put into an oven with a set temperature of 160°C, and the reaction ended after a certain time of reaction.
- the Ag nanowire mother solution in the reaction kettle was diluted with alcohol and centrifuged twice to obtain precipitated silver nanowires having a diameter of 30-40 nm and a length of 10-20 ⁇ m, which was dispersed in isopropanol.
- 0.32 g silver nitrate was dissolved at room temperature in 20 ml of glycerol to get a solution A; 7 g polyvinylpyrrolidone was dissolved at room temperature in 80 ml of glycerol to get a solution B; the solution A and the solution B were mixed uniformly to form a solution C; then, 10 ml of ultrapure water was added into the solution C and mixed uniformly to form a solution D, finally, the solution D was transferred into a reaction kettle, the reaction kettle was put into an oven with a set temperature of 160°C, and the reaction ended after a certain time of reaction.
- the Ag nanowire mother solution in the reaction kettle was diluted with alcohol and centrifuged twice to obtain precipitated silver nanowires having a diameter of 30-40 nm and a length of 10-20 ⁇ m, which was dispersed in isopropanol.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Nanotechnology (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Inorganic Chemistry (AREA)
- Crystallography & Structural Chemistry (AREA)
- Manufacture Of Metal Powder And Suspensions Thereof (AREA)
- Non-Insulated Conductors (AREA)
- Conductive Materials (AREA)
Claims (2)
- Procédé de préparation de nanofils d'argent avec un rapport d'aspect uniforme comprenant les étapes suivantes consistant à :(1) dissoudre 0,16 g de nitrate d'argent à température ambiante dans 20 mL de glycérol pour obtenir une solution A ;(2) dissoudre 5 g de polyvinylpyrrolidone à température ambiante dans 80 mL de glycérol pour obtenir une solution B ;(3) mélanger de manière uniforme la solution A et la solution B afin de former une solution C ; et(4) ajouter 5 mL d'eau ultra pure dans la solution C et mélanger de manière uniforme afin de former une solution D, finalement, transférer la solution D dans une bouilloire à réaction, mettre la bouilloire à réaction à une température définie de 160 °C, et mettre fin à la réaction après un certain temps de réaction ; diluer une solution mère de nanofils d'argent dans la bouilloire à réaction avec de l'alcool et centrifuger deux fois pour obtenir des nanofils d'argent précipités ayant un diamètre compris entre 30 et 40 nm et une longueur comprise entre 10 et 20 µm, telle que déterminée en utilisant la microscopie électronique à balayage.
- Procédé de préparation selon la revendication 1, dans lequel le temps de réaction dans la bouilloire à réaction est compris entre 9 et 10 heures.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201510645800.3A CN105081351B (zh) | 2015-10-09 | 2015-10-09 | 一种均匀的高长径比银纳米线的制备方法 |
PCT/CN2016/076284 WO2017059658A1 (fr) | 2015-10-09 | 2016-03-14 | Procédé de préparation de nanofils d'argent à rapport d'aspect uniforme |
Publications (3)
Publication Number | Publication Date |
---|---|
EP3360628A1 EP3360628A1 (fr) | 2018-08-15 |
EP3360628A4 EP3360628A4 (fr) | 2019-07-24 |
EP3360628B1 true EP3360628B1 (fr) | 2022-02-09 |
Family
ID=54563189
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP16852969.1A Not-in-force EP3360628B1 (fr) | 2015-10-09 | 2016-03-14 | Procédé de préparation de nanofils d'argent à rapport d'aspect uniforme |
Country Status (6)
Country | Link |
---|---|
US (1) | US20190054540A1 (fr) |
EP (1) | EP3360628B1 (fr) |
JP (1) | JP6732897B2 (fr) |
KR (1) | KR102071814B1 (fr) |
CN (1) | CN105081351B (fr) |
WO (1) | WO2017059658A1 (fr) |
Families Citing this family (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105081351B (zh) * | 2015-10-09 | 2017-09-26 | 重庆文理学院 | 一种均匀的高长径比银纳米线的制备方法 |
EP3360268B1 (fr) | 2015-10-09 | 2020-05-06 | Intel IP Corporation | Architecture pour accès réseau sans fil |
CN105537613B (zh) * | 2015-12-25 | 2017-10-31 | 蚌埠玻璃工业设计研究院 | 一种微波辅助水热制备长银纳米线的方法 |
CN105921766A (zh) * | 2016-06-14 | 2016-09-07 | 吕振瑞 | 一种宏量制备单分散银纳米线的方法 |
CN107645829B (zh) * | 2017-10-16 | 2020-07-10 | 广东天承科技有限公司 | 一种电路板导电液及其制备方法和应用 |
CN108687358B (zh) * | 2018-05-24 | 2021-03-19 | 首都师范大学 | 一种制备复合型银纳米线的方法 |
CN108436105B (zh) * | 2018-06-07 | 2023-06-20 | 乐凯华光印刷科技有限公司 | 一种超长纳米银线分散液及其制备方法 |
CN109622984A (zh) * | 2018-12-07 | 2019-04-16 | 陕西煤业化工技术研究院有限责任公司 | 一种超纯超细银纳米线的制备方法 |
CN110280781B (zh) * | 2019-08-07 | 2022-10-25 | 上海渝芝实业有限公司 | 一种高性能的大长径比纳米银线,及其制备方法 |
CN113953524A (zh) * | 2021-10-12 | 2022-01-21 | 浙江工业大学 | 一种新型多元醇溶剂热法纳米银胶的合成 |
CN114433865A (zh) * | 2022-01-27 | 2022-05-06 | 昆明贵研新材料科技有限公司 | 一种高纯度银纳米线的合成方法 |
CN114734049A (zh) * | 2022-03-14 | 2022-07-12 | 上海大学 | 一种利用硼氢化钠制备超小尺寸纳米银的方法 |
CN115870510A (zh) * | 2022-11-29 | 2023-03-31 | 德清县浙工大莫干山研究院 | 一种水分辅助制备超细银纳米线的方法 |
Family Cites Families (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006040650A (ja) * | 2004-07-26 | 2006-02-09 | Mitsui Mining & Smelting Co Ltd | 銀ペースト及びその銀ペーストの製造方法 |
CN100379511C (zh) * | 2006-04-26 | 2008-04-09 | 云南大学 | 用复合溶剂还原制备银纳米线的方法 |
EP2470610A1 (fr) * | 2009-08-24 | 2012-07-04 | Cambrios Technologies Corporation | Purification de nanostructures métalliques pour voile amélioré dans des conducteurs transparents fabriqués avec celles-ci |
KR20110071526A (ko) * | 2009-12-21 | 2011-06-29 | (주)켐스 | 은 나노와이어 및 그 제조방법 및 이를 이용한 투명도전막 |
US9080255B2 (en) * | 2011-03-31 | 2015-07-14 | The Hong Kong University Of Science And Technology | Method of producing silver nanowires in large quantities |
CN102211205A (zh) * | 2011-05-18 | 2011-10-12 | 山东大学 | 一种制备系列高纯度银纳米材料的方法 |
CN102259190A (zh) * | 2011-06-16 | 2011-11-30 | 浙江科创新材料科技有限公司 | 一种快速大批量制备高长径比纳米银线的方法 |
CN103100724B (zh) * | 2013-02-21 | 2015-04-08 | 中国科学院深圳先进技术研究院 | 银纳米线的制备方法 |
US20140251087A1 (en) * | 2013-03-08 | 2014-09-11 | Innova Dynamics, Inc. | Production of nanostructures |
CN103170645B (zh) * | 2013-03-27 | 2015-10-21 | 中国科学院深圳先进技术研究院 | 银纳米线的制备方法 |
JP2015034279A (ja) * | 2013-04-10 | 2015-02-19 | デクセリアルズ株式会社 | 透明導電膜形成用インク組成物、透明導電膜、透明電極の製造方法、及び画像表示装置 |
KR102147841B1 (ko) * | 2013-08-14 | 2020-08-26 | 삼성디스플레이 주식회사 | 은 나노와이어 제조방법 |
US9854670B2 (en) * | 2013-08-22 | 2017-12-26 | Showa Denko K.K. | Transparent electrode and method for producing same |
JP6466070B2 (ja) * | 2014-03-05 | 2019-02-06 | 株式会社東芝 | 透明導電体およびこれを用いたデバイス |
CN104607653B (zh) * | 2015-02-09 | 2016-09-07 | 济宁利特纳米技术有限责任公司 | 一种通过双氧水在多元醇还原法中调控银纳米棒长度的方法 |
CN104607655B (zh) * | 2015-03-06 | 2016-08-24 | 苏州大学 | 一种银纳米线的制备方法 |
CN104785794B (zh) * | 2015-05-12 | 2017-10-17 | 重庆文理学院 | 一种长径比均匀的银纳米线制备方法 |
CN105081350B (zh) * | 2015-10-09 | 2017-08-29 | 重庆文理学院 | 一种新型长径比均匀的有节点银纳米线的制备方法 |
CN105081348B (zh) * | 2015-10-09 | 2017-08-08 | 重庆文理学院 | 一种常压一锅法制备无颗粒高纯度银纳米线的方法 |
CN105081351B (zh) * | 2015-10-09 | 2017-09-26 | 重庆文理学院 | 一种均匀的高长径比银纳米线的制备方法 |
-
2015
- 2015-10-09 CN CN201510645800.3A patent/CN105081351B/zh not_active Expired - Fee Related
-
2016
- 2016-03-14 JP JP2018516800A patent/JP6732897B2/ja active Active
- 2016-03-14 WO PCT/CN2016/076284 patent/WO2017059658A1/fr active Application Filing
- 2016-03-14 KR KR1020187009450A patent/KR102071814B1/ko active IP Right Grant
- 2016-03-14 US US15/763,119 patent/US20190054540A1/en not_active Abandoned
- 2016-03-14 EP EP16852969.1A patent/EP3360628B1/fr not_active Not-in-force
Also Published As
Publication number | Publication date |
---|---|
KR102071814B1 (ko) | 2020-01-30 |
WO2017059658A1 (fr) | 2017-04-13 |
EP3360628A1 (fr) | 2018-08-15 |
CN105081351B (zh) | 2017-09-26 |
EP3360628A4 (fr) | 2019-07-24 |
US20190054540A1 (en) | 2019-02-21 |
JP2018532048A (ja) | 2018-11-01 |
KR20180049011A (ko) | 2018-05-10 |
CN105081351A (zh) | 2015-11-25 |
JP6732897B2 (ja) | 2020-07-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP3360628B1 (fr) | Procédé de préparation de nanofils d'argent à rapport d'aspect uniforme | |
Li et al. | Large-scale synthesis of well-dispersed copper nanowires in an electric pressure cooker and their application in transparent and conductive networks | |
CN103658675B (zh) | 纳米铜线及其制备方法 | |
CN104607655B (zh) | 一种银纳米线的制备方法 | |
EP3360629B1 (fr) | Procédé de préparation de nouveaux nanofils d'argent à rapport d'aspect et à nuds uniformes | |
CN104785794B (zh) | 一种长径比均匀的银纳米线制备方法 | |
CN105081348B (zh) | 一种常压一锅法制备无颗粒高纯度银纳米线的方法 | |
CN101246759B (zh) | 一种用于透明导电材料的纳米均相复合金属氧化物导电粉末及其制造方法 | |
CN112820440B (zh) | 一种高导电性导电银浆及其制备方法 | |
CN107716944A (zh) | 化学法制备纳米级片状银粉的方法 | |
CN111014719A (zh) | 一种高纯度银纳米线及其制备方法和银纳米线导电薄膜 | |
CN109509574A (zh) | 一种高均匀性纳米银线柔性透明导电电极的制备方法 | |
WO2019109711A1 (fr) | Électrode conductrice transparente souple | |
KR101319259B1 (ko) | 투명 전극 형성용 은 나노와이어 수용성 잉크 조성물 및 이를 이용한 투명 전극 형성방법 | |
Li et al. | Facile fabrication of large-scale silver nanowire transparent conductive films by screen printing | |
Mohamadbeigi et al. | Improving the multi-step fabrication approach of copper nanofiber networks based transparent electrode for achieving superb conductivity and transparency | |
CN109246870B (zh) | 一种全印制低压柔性的高性能图案化加热器件的制备方法 | |
Li et al. | Solvothermal synthesis of ultra-fine silver nanowires with a diameter about 20 nm and an aspect ratio approximately 2000 for highly conductive flexible transparent film | |
CN105583409A (zh) | 一种复合纳米铜线的制备方法 | |
TWI500048B (zh) | 透明導電膜組合物及透明導電膜 | |
Xu et al. | Synthesis of visible-light-responsive Fe (III)-doped TiO 2 films using graphene oxide-based composite sheets as sacrificial building blocks | |
Li et al. | Heterogeneous nucleation optimization from AgCl and reduction control in ethylene glycol for fast and reproducible synthesis of silver nanowires | |
CN116453737B (zh) | 基于铜包覆洋葱富勒烯导电相的太阳能电池用导电浆料 | |
CN111995781A (zh) | 一种用于除冰窗的pvb复合膜及其制备方法 | |
Xiang et al. | Factors influencing the preparation of silver-coated glass frit with polyvinyl-pyrrolidone |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE |
|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE |
|
17P | Request for examination filed |
Effective date: 20180327 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME |
|
DAV | Request for validation of the european patent (deleted) | ||
DAX | Request for extension of the european patent (deleted) | ||
A4 | Supplementary search report drawn up and despatched |
Effective date: 20190625 |
|
RIC1 | Information provided on ipc code assigned before grant |
Ipc: B22F 9/24 20060101AFI20190618BHEP Ipc: B22F 1/00 20060101ALI20190618BHEP |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: GRANT OF PATENT IS INTENDED |
|
INTG | Intention to grant announced |
Effective date: 20211019 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE PATENT HAS BEEN GRANTED |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP Ref country code: AT Ref legal event code: REF Ref document number: 1467194 Country of ref document: AT Kind code of ref document: T Effective date: 20220215 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 602016069040 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG9D |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: MP Effective date: 20220209 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MK05 Ref document number: 1467194 Country of ref document: AT Kind code of ref document: T Effective date: 20220209 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220209 Ref country code: RS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220209 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220609 Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220509 Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220209 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220209 Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220209 Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220209 Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220509 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220209 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220209 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220510 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220209 Ref country code: AT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220209 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220609 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R119 Ref document number: 602016069040 Country of ref document: DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220209 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220209 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220209 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220209 Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220209 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220209 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220209 Ref country code: AL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220209 |
|
REG | Reference to a national code |
Ref country code: BE Ref legal event code: MM Effective date: 20220331 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed |
Effective date: 20221110 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20220509 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20220314 Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20220331 Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20220314 Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20220409 Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20221001 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20220331 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220209 Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20220331 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20220509 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220209 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO Effective date: 20160314 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220209 Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220209 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220209 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220209 |