EP3330240A1 - Procede pour la siliciuration surfacique de graphite - Google Patents

Procede pour la siliciuration surfacique de graphite Download PDF

Info

Publication number
EP3330240A1
EP3330240A1 EP17204501.5A EP17204501A EP3330240A1 EP 3330240 A1 EP3330240 A1 EP 3330240A1 EP 17204501 A EP17204501 A EP 17204501A EP 3330240 A1 EP3330240 A1 EP 3330240A1
Authority
EP
European Patent Office
Prior art keywords
silicon
sic
graphite
substrate
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP17204501.5A
Other languages
German (de)
English (en)
Other versions
EP3330240B1 (fr
Inventor
Béatrice Drevet
Denis Camel
Etienne CIERNIAK
Fabrice Coustier
Maxime VEILLY
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Commissariat a lEnergie Atomique et aux Energies Alternatives CEA
Original Assignee
Commissariat a lEnergie Atomique CEA
Commissariat a lEnergie Atomique et aux Energies Alternatives CEA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Commissariat a lEnergie Atomique CEA, Commissariat a lEnergie Atomique et aux Energies Alternatives CEA filed Critical Commissariat a lEnergie Atomique CEA
Publication of EP3330240A1 publication Critical patent/EP3330240A1/fr
Application granted granted Critical
Publication of EP3330240B1 publication Critical patent/EP3330240B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/56Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
    • C04B35/565Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on silicon carbide
    • C04B35/573Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on silicon carbide obtained by reaction sintering or recrystallisation
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/71Ceramic products containing macroscopic reinforcing agents
    • C04B35/78Ceramic products containing macroscopic reinforcing agents containing non-metallic materials
    • C04B35/80Fibres, filaments, whiskers, platelets, or the like
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/009After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone characterised by the material treated
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/50Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials
    • C04B41/5053Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials non-oxide ceramics
    • C04B41/5057Carbides
    • C04B41/5059Silicon carbide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/52Multiple coating or impregnating multiple coating or impregnating with the same composition or with compositions only differing in the concentration of the constituents, is classified as single coating or impregnation
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/80After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone of only ceramics
    • C04B41/81Coating or impregnation
    • C04B41/85Coating or impregnation with inorganic materials
    • C04B41/87Ceramics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/80After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone of only ceramics
    • C04B41/81Coating or impregnation
    • C04B41/89Coating or impregnation for obtaining at least two superposed coatings having different compositions
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B11/00Single-crystal growth by normal freezing or freezing under temperature gradient, e.g. Bridgman-Stockbarger method
    • C30B11/002Crucibles or containers for supporting the melt
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/02Elements
    • C30B29/06Silicon
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B35/00Apparatus not otherwise provided for, specially adapted for the growth, production or after-treatment of single crystals or of a homogeneous polycrystalline material with defined structure
    • C30B35/002Crucibles or containers
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00474Uses not provided for elsewhere in C04B2111/00
    • C04B2111/0087Uses not provided for elsewhere in C04B2111/00 for metallurgical applications
    • C04B2111/00879Non-ferrous metallurgy
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/42Non metallic elements added as constituents or additives, e.g. sulfur, phosphor, selenium or tellurium
    • C04B2235/422Carbon
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/42Non metallic elements added as constituents or additives, e.g. sulfur, phosphor, selenium or tellurium
    • C04B2235/422Carbon
    • C04B2235/425Graphite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5436Particle size related information expressed by the size of the particles or aggregates thereof micrometer sized, i.e. from 1 to 100 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6565Cooling rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/66Specific sintering techniques, e.g. centrifugal sintering
    • C04B2235/661Multi-step sintering
    • C04B2235/662Annealing after sintering
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/72Products characterised by the absence or the low content of specific components, e.g. alkali metal free alumina ceramics
    • C04B2235/728Silicon content
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/77Density
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/95Products characterised by their size, e.g. microceramics

Definitions

  • the present invention relates to a siliciding process for carbonaceous material and more particularly in graphite, in particular by liquid route.
  • Photovoltaic cells are mainly made from mono- or multi-crystalline silicon, in dies that involve the solidification of ingots from a liquid bath contained in a crucible with square section.
  • the multi-crystalline silicon ingots are conventionally produced by melting a silicon charge followed by a directional solidification. This method is very effective for crystallizing large volumes of silicon and the size of the ingots is expandable by extending the size of the crucibles.
  • a porous non-stick coating based on a silicon nitride powder is systematically deposited on the inner walls of the crucible to ensure the demolding of the final ingot once solidified ( US 6165425 ).
  • the crucibles are made of sintered silica. They are disposable given the deformation of silica at high temperature and its recrystallization during the thermal cycle.
  • graphite proves to be a good candidate given its moderate manufacturing cost and the fact that it is easily machinable.
  • Some grades of graphite may have a coefficient of expansion relatively adapted to that of silicon so that the crucible can consist of a single piece (monolithic crucible). If necessary, or for crucibles of very large dimensions, the crucible can be made from plates forming the bottom and the side walls and assembled together mechanically as in the document WO / 2016/087549 .
  • Non-stick coatings better adapted to carbon-based crucibles for the solidification of silicon have therefore been proposed.
  • the crucible is a CC / SiC composite and the coating consists of a mixture of Si and Si 3 N 4 powders.
  • the crucible and its coating undergo a heat treatment at a temperature above 1200 ° C under nitrogen.
  • the silicon reacts with the carbon to form SiC at the interface.
  • this silicon is transformed into Si 3 N 4 (if the coating is thick, there is free Si).
  • the formation of SiC in contact with the graphite faces of the crucible ensures a strong bond between the coating and the crucible.
  • the final SiC / Si / Si 3 N 4 coating is resistant to friction and can be reusable.
  • silicon nitride on the surface of the particles by reaction with the nitrogen atmosphere prevents the molten silicon from spreading to a continuous liquid layer on the surface of the graphite. It follows that SiC, formed by reaction with carbon, does not constitute an impermeable layer, which is a source of contamination of silicon carbon. In addition, the reaction of silicon with nitrogen and carbon may be incomplete, depending on particle size and coating thickness. This incomplete reaction can lead to the presence of free silicon residues in the final coating, and thus adversely affect the stability of the microstructure of the coating during successive uses.
  • the present invention therefore aims to provide a new coating devoid of the aforementioned deficiencies namely a susceptibility to contamination and a prolonged lack of stability over time.
  • the present invention aims to provide a method for producing, on the surface of a carbonaceous material, in particular graphite, glassy carbon or graphite coated with a pyrolytic carbon layer, an impermeable SiC layer. , devoid of residual silicon and having good adhesion to the substrate in question.
  • the present invention aims to provide a method for developing on the surface of a conventional graphite material, that is to say generally having a porosity of less than 25% and a pore diameter of less than 25%. 2 ⁇ m, an impermeable SiC layer, devoid of residual silicon and having good adhesion to graphite.
  • the carbonaceous material is a graphite substrate and preferably has, at least at the level of the surface to be silicided, a volume porosity of less than 25% and a pore diameter of less than 2 ⁇ m.
  • the method of the invention may advantageously also comprise, at the end of the step of eliminating excess silicon, a step dedicated to the surface formation of the continuous and adherent layer of silicon carbide obtained according to the invention, a porous non-stick coating of silicon nitride.
  • the expression “in direct contact” means that the SiC surface layer is at least partly directly in contact with constitutive graphite of the substrate treated according to the invention.
  • the SiC surface layer obtained according to the invention can also be characterized as having, with the graphite constituting the substrate, an interface which is formed of the SiC filling the pores and the constituent graphite of the substrate, the volume fraction of SiC being lower than that of graphite in this interface.
  • the silicon particles are used in step a) in the form of a dispersion in a solvent medium, in particular an aqueous medium.
  • the contacting of the surface to be treated with an effective amount of silicon particles is carried out in the presence of a polymeric binder, in particular a crosslinkable binder, and for example polyvinyl alcohol (PVA), this binder constituting preferably a part of the solvent medium.
  • a polymeric binder in particular a crosslinkable binder, and for example polyvinyl alcohol (PVA), this binder constituting preferably a part of the solvent medium.
  • PVA polyvinyl alcohol
  • the process comprises, prior to step b) a step for initiating the crosslinking of this polymer.
  • a step for initiating the crosslinking of this polymer it is advantageous to directly heat the surface of the carbon substrate and in particular graphite in contact with the crosslinkable polymeric binder.
  • This particular embodiment has the advantage of effectively consolidating the deposition of the silicon particles at the surface before siliciding.
  • the surface layer of SiC formed according to the invention has a thickness ranging from 2 to 15 microns.
  • the SiC surface layer consists of more than 99% by weight, preferably more than 99.9% or even more than 99.99% by weight of SiC.
  • the inventors have found that subject to selecting an adjusted charge of silicon powder, moreover endowed with a particular particle size and a specific heat treatment, it proves possible to ensure in a single operation an effective siliciding of a carbon substrate and in particular graphite, leading to an impermeable layer of SiC, strongly adherent to graphite, and free of residual silicon.
  • siliciding of graphite is known to those skilled in the art. These conventional siliciding processes are carried out gaseously or by liquid route. However, they are essentially solely dedicated to confer, the graphite considered resistance to oxidation under air at high temperature (above 500 ° C typically).
  • CVD deposition Chemical Vapor Deposition
  • SiC silicon carbide
  • Such silicided graphite is for example marketed by the company TOYOTANSO under the trademark PERMA KOTE®.
  • the SiC CVD layer has little adhesion to the graphite because the deposit does not penetrate the porosity of the material, which gives a certain fragility to the coated parts.
  • the CVD process is only applicable to graphites having a coefficient of expansion greater than that of SiC, and indeed much greater than that of silicon. These graphites can not not be used as crucible materials for silicon.
  • a disadvantage of the CVD process is its very high cost.
  • the graphite must have a high volume porosity, ranging from 25 to 40%, preferably from 30 to 35%, and extending over a thickness of at least 1 mm. These latter characteristics have the disadvantage of departing from those of conventional graphites produced in large pieces.
  • the method according to the invention is clearly different from these prior technologies and is also significantly more interesting for several reasons.
  • the method according to the invention is also useful for protecting the graphite parts used in the hot zone of crucible-directed solidification devices and Czochraski drawers, such as counter-crucibles, crucible lids, resistors, heat shields. etc. These parts are corroded by the SiO vapors released by the silicon bath, which degrades and requires to renew them. In addition, the reaction between C and SiO generates CO that pollutes silicon in carbon.
  • the present invention also relates to a carbon substrate and preferably graphite of which at least one of the outer surfaces is silicided with the method according to the invention.
  • the present invention relates to a graphite substrate of which at least one of the outer surfaces is coated with a surface layer and impermeable SiC, said outer layer of SiC consisting of more than 99% by weight of SiC , having an average thickness of 2 to 15 ⁇ m, and an interface, with the graphite constituting said substrate, which is formed of SiC filling pores of the constituent graphite of the substrate, with a SiC volume fraction lower than that of graphite in this interface .
  • this substrate is a graphite crucible dedicated to a use for the melting and solidification of silicon and the outer surface of its inner cavity is coated on the surface of a SiC surface layer.
  • this crucible has, on the outer surface of the SiC layer formed according to the process of the invention, a non-stick coating made of silicon nitride.
  • a non-stick coating made of silicon nitride. The presence of this non-stick coating of silicon nitride is advantageous during the implementation of the crucible. It is intended to be in contact with the liquid silicon during the crystallization of silicon, and this to prevent the silicon remains attached to the crucible.
  • the process according to the invention brings a carbon-containing substrate into contact with silicon particles.
  • the process according to the invention is suitable for the silicidation of carbonaceous materials which may be graphite, glassy carbon or pyrolytic carbon, the latter two materials being devoid of open porosity as opposed to graphites.
  • it is a graphite.
  • the constituent graphite of the surface of the substrate to be treated has a certain open porosity.
  • this porosity must have a size compatible with infiltration of molten silicon. This phenomenon of infiltration contributes to significantly enhance the adhesion of the superficial layer of SiC formed elsewhere on the surface of the treated zone. This porosity must also remain low enough to prevent the formation, between the graphite of the substrate and the SiC surface layer, of an intermediate layer formed of SiC and carbon nodules.
  • the constituent graphite of the surface of the graphite substrate to be treated and generally the constituent graphite of the substrate to be treated have both a volume porosity of less than 25% and a pore diameter of less than 2 ⁇ m.
  • the constituent graphite of the surface of the graphite substrate to be treated and generally the constituent graphite of the substrate to be treated have a volume porosity of less than 20%.
  • the invention is of particular interest for the surface siliciding of fine-grained isostatic graphite substrates having a grain size of less than 30 ⁇ m.
  • this substrate is a crucible whose treated surface is its internal cavity.
  • the method according to the invention requires the surface deposition of the substrate area to be treated with a quantity of silicon.
  • the silicon particles, considered according to the process of the invention are intended to be melted to form a surface layer of SiC.
  • the SiC layer formed according to the invention consists essentially of SiC or even exclusively SiC.
  • This SiC layer is also advantageously integral with the infiltration of silicon into the original pores of the carbonaceous material if existing, as in the case of graphite, and therefore has a reinforced adhesion with the substrate.
  • the silicon considered according to the invention is in the form of a silicon powder advantageously having a mean diameter (in volume) ranging from 0.2 to 500 ⁇ m, preferably from 1 to 50 ⁇ m.
  • This particle size can in particular be characterized using a laser diffraction granulometer.
  • It further has a purity between 2N and 5N and an oxygen content of less than 10% by weight. This can be measured by melting the silicon powder in a graphite crucible under an inert gas and by measuring with an infra-red detector the CO released and converted into CO 2 .
  • it is a recycling silicon powder resulting from the cutting of silicon ingots with a diamond wire saw with a lubricant consisting of water and organic additives (such as surfactants and antioxidants for example).
  • the powder mixed with water and organic additives is collected in bins directly connected to the cutting machines.
  • a drying step is performed to evaporate the water and a portion of the organic additives.
  • the recycled silicon powder has a purity of between 2N and 4N and has an oxygen content of less than 10% by weight.
  • step a) The amount of silicon implemented in step a) is adjusted to allow filling of the pores if existing at the surface to be treated and the formation of a surface SiC surface layer especially of thickness of the order of 2 at 15 ⁇ m.
  • the amount of SiC to be infiltrated can be easily evaluated by those skilled in the art, knowing the open porosity of the graphite and the depth of silicon to infiltrate.
  • the open porosity is 11% and the infiltrable depth is of the order of 1 mm.
  • the quantity of silicon to be deposited per unit area of the graphite corresponds to the amount of silicon to be infiltrated into the porosity if existing of the carbonaceous material and converted into SiC, plus an excess of silicon, of the order of 10 to 20 mg / cm 2 .
  • This excess is advantageous for ensuring the formation of an impermeable surface layer of SiC without, however, leading to excessive excess of silicon to evaporate.
  • the evaporation step of the excess silicon may advantageously be carried out by reproducing a thermal cycle under vacuum.
  • this silicon powder may be used in dispersion in a generally aqueous solvent medium.
  • This silicon dispersion may advantageously have a concentration of at least 10% by weight of silicon.
  • the silicon powder may be used together with at least one crosslinkable polymeric binder.
  • this polymeric binder constitutes a part of this solvent medium.
  • the inventors have thus noted that the presence of such a binder is particularly advantageous for consolidating the deposition of the silicon particles before the siliciding thermal treatment.
  • a pretreatment is performed which is favorable for the initiation of the crosslinking of the polymeric binder.
  • it is a heat treatment.
  • This treatment may notably consist in heating the surface to be treated of said carbon substrate and preferably in graphite, and on which is deposited the mixture containing the silicon powder, the water and the polymeric binder to be crosslinked, at a temperature favorable to initiation of this crosslinking, preferably at a temperature ranging from 150 ° C to 300 ° C.
  • polymeric binders suitable for the process according to the invention may especially be mentioned polyvinyl alcohols (PVA).
  • PVA polyvinyl alcohols
  • polyvinyl alcohol can be dissolved in water in a weight ratio of 1 to 10 PVA: 100 H 2 O.
  • Such a polyvinyl alcohol (PVA) is preferably used in a weight ratio [Si: PVA] ranging from [1 Si: 0.2 PVA] to [1 Si: 0.02 PVA], and preferably from [1: Si: 0.15 PVA] to [1 Si: 0.04 PVA].
  • the joint use with the silicon particles of a crosslinkable polymeric binder is particularly advantageous insofar as the binder makes it possible, in its crosslinked form, to consolidate the deposition of the silicon particles on the surface of the carbon substrate and in particular of graphite before the treatment. thermal silicidation. The handling of the substrates and in particular their loading in the heat treatment furnace are further facilitated.
  • the subsequent heat treatment dedicated to silicidation, has the effect of eliminating all the organic compounds and therefore any trace of this crosslinked binder.
  • the surface layer of SiC formed at the end of this process embodiment therefore advantageously has no trace of this crosslinked polymer.
  • the silicon particles may also be used in combination with a refractory material M powder adjoining.
  • this material must be non-polluting vis-à-vis silicon. It is therefore advantageously silicon carbide, silicon nitride, carbon or a mixture thereof.
  • the particle size of the powder of refractory material M is generally between 0.1 and 20 microns, preferably between 1 and 5 microns.
  • the mass ratios [Si: M] can be between [1 Si: 0.7 M] and [1 Si: 0.1 M], preferably between [1 Si: 0.5 M] and [1 Si 0.3 M].
  • the particles of refractory material are found above the SiC surface layer, and if the refractory material is carbon initially, it is converted into SiC by reaction with the excess liquid silicon. .
  • the SiC layer formed according to the invention is a SiC layer formed according to the invention.
  • this thermal cycle is not carried out under a nitrogen atmosphere.
  • the heat treatment advantageously comprises at least one cycle carried out under vacuum and preferably under a pressure of less than 0.1 Pa.
  • This cycle can be unique.
  • This cycle can also be combined with one or more additional cycles carried out in contrast under a neutral but non-nitrogenous atmosphere.
  • the cycle is unique, at least the evaporation step of the excess silicon is made under vacuum, and the step of forming the continuous layer of SiC can be made in a neutral atmosphere, in particular a non-nitrogen atmosphere.
  • the rise in temperature is carried out at a speed ranging from 300 to 600 ° C./h until the temperature chosen is favorable for the melting of the silicon.
  • the speed of rise is variable according to the dimensions of the graphite pieces and is adapted to obtain a homogeneous heating of the pieces. For example, a rise at 300 ° C / h is suitable for rooms with dimensions 36x26x2 cm 3 , and a rise at 600 ° C / h is suitable for rooms of dimensions 5x5x0.5 cm 3 .
  • the temperature conducive to the melting of said silicon is greater than 1415 ° C. and in particular varies from 1430 ° C. to 1500 ° C. This is the temperature at which the temperature plateau is maintained.
  • the maintenance of this temperature is achieved the time required for the formation of the continuous SiC layer in contact with graphite and liquid silicon (which is of the order of 20 minutes) and the evaporation of the excess silicon (6 at 15 hours depending on the amount of silicon to be evaporated).
  • the temperature cooling is then performed at a speed ranging from 100 to 600 ° C / h to limit the thermomechanical stresses, if necessary under an inert atmosphere.
  • heat treatment according to the invention may require a single cycle as described above or several cycles.
  • This embodiment in several cycles will be advantageous to develop the parameters for treating parts in a single cycle, in a given configuration and in a given oven.
  • the expression “consisting exclusively of SiC” means that the surface layer of SiC consists of more than 99% by weight, preferably more than 99.9% or more than 99.99% by weight. by weight of SiC.
  • the purity of the SiC layer can be characterized by glow discharge mass spectrometry.
  • the average value of the thickness of the SiC surface layer advantageously varies from 2 to 15 ⁇ m.
  • the thickness of the surface layer of SiC can be measured by conventional characterization techniques (optical microscopy, scanning electron microscopy) on cross sections.
  • the surface layer of SiC is impermeable to gases and in particular to air.
  • SiC has a high air resistance, up to a temperature substantially equal to 1550 ° C. Accordingly, one way of knowing whether the formed surface layer is impervious to air is to subject the SiC-coated graphite part to an oxidation treatment under air.
  • a layer is considered to comply with the requirements of the invention in terms of imperviousness, and will be said to be “impermeable” if its weight loss is less than 10 -2 g / cm 2 of covered surface, preferably less than at 3x10 -3 g / cm 2 of surface covered after a heat treatment of 2 hours at 900 ° C. in air and even more preferably less than 10 -3 g / cm 2 of surface covered after a heat treatment of 4 hours at 1100 ° C. in air.
  • the silicided carbon substrates according to the invention are advantageously graphite crucibles whose outer surface of their internal cavity is coated on the surface of said SiC surface layer.
  • the silicide surface of these crucibles is advantageously itself covered on the surface by a non-stick coating based on silicon nitride powder.
  • These crucibles are dedicated to use for melting and directed solidification of silicon. This directed solidification process is used to crystallize silicon photovoltaic ingots or for a segregation operation of metallurgical grade silicon.
  • the surface layer of SiC formed on the inner surface of the graphite crucible has the great advantage of avoiding carburizing silicon and saturating it with carbon, and thus improving the quality of silicon for PV, PV applications. . It also effectively acts as a diffusion barrier against the impurities contained in the graphite, which makes it possible to manufacture purer silicon ingots, thus exhibiting better PV properties. Indeed, as can be seen from the examples below, and more particularly from the examination of the maps presented in Figures 2.e and 2.f , the maximum life of the charge carriers in the heart of the ingot is much higher for the ingot developed in the silicide crucible (7 ⁇ s against 3 ⁇ s). Silicidation thus also makes it possible to reduce contamination of metallic impurities.
  • the SiC surface layer formed according to the invention makes it possible to protect them from corrosion by SiO 2 vapors and to reduce the generation of CO 2.
  • the siliciding of a monoblock graphite crucible (MERSEN grade 2020 of standard purity) of internal dimensions 18 ⁇ 18 ⁇ 18 cm 3 is carried out according to the following protocol.
  • This dispersion is deposited with the air pistol on the inner walls of the crucible heated to a temperature of 200 ° C. at a rate of 52 mg of silicon / cm 2 of treated surface.
  • the crucible thus treated has on the surface of its internal cavity a surface layer of SiC whose average thickness is about 6 ⁇ m ( Fig. 1a ).
  • This intermediate layer reflects the infiltration of liquid silicon into the open porosity of graphite and its transformation into SiC. It can be noted that the volume fraction of SiC is lower than that of graphite.
  • This intermediate layer is therefore different from that of the patent WO 2010/026344 which is formed of an SiC matrix containing at least one carbon nodule.
  • silicided graphite crucible according to the method of the invention for the melting of a silicon ingot in comparison with a crucible my silicide
  • Two 10 kg multi-crystalline silicon ingots are crystallized in monobloc graphite crucibles (MERSEN grade 2020 of standard purity) of internal dimensions 18 ⁇ 18 ⁇ 18 cm 3 , respectively non-silicided and silicided according to Example 1, on the internal walls. These inner walls are further covered with a non-stick coating based on silicon nitride powder for demolding the ingots.
  • the crucible was charged with silicon of electronic quality doped with 0.08 ppm by weight of boron, and an identical thermal crystallization cycle was applied.
  • the crystallization furnace used comprises two resistive heating elements located above and below the crucible.
  • the thermal cycle comprises a rise in temperature to 85 ° C / h, followed by a 2 hr melting step during which the temperatures of the bottom and top resistors are 1460 ° C and 1490 ° C respectively.
  • Directed solidification is then carried out by adjusting the temperature ramps of the two resistors so that the velocity of the solid / liquid front, controlled by probing this front with the help of a quartz rod, remains close to 2 cm / h.
  • a step of 1 hour at 1300 ° C is performed, followed by a cooling of 100 ° C / h to 600 ° C and a natural cooling to the ambient temperature.
  • the dissolved carbon content profile along the height of each ingot was also determined by Fourier transform infrared spectrometry.
  • Dissolved carbon analyzes show lower ingot contents, well below the solubility limit of C in Si, segregation of C following then Scheil's law (in contrast to the case of the non-silicided crucible where the Si is saturated in C and contains precipitates of SiC).
  • the silicidation of the graphite thus made it possible to avoid the total carburation of the silicon ingot and to lower the dissolved carbon concentration in the silicon.
  • the resistivity of the ingot developed in the silicided crucible is very close to the target resistivity, demonstrating the absence of diffusion (or a very small diffusion) of doping impurities from the crucible to the silicon thanks to the presence of the superficial layer. SiC.
  • Each silicidation treatment was carried out by depositing a silicon quantity of 47 mg / cm 2 (at the holes and cavities, a larger mass was deposited).
  • the silicided part was then cut and samples were prepared for observation of the SiC layer in cross-section.

Abstract

La présente invention concerne un procédé utile pour la siliciuration surfacique d'un matériau carboné comprenant au moins les étapes consistant à mettre en contact ladite surface à traiter avec une quantité efficace de particules de silicium ; imposer, au moins à ladite surface revêtue desdites particules de silicium, un traitement thermique propice à la fusion du silicium et à son interaction à l'état fondu avec le carbone de ladite surface pour former du SiC en quantité suffisante pour former, en surface, une couche superficielle de SiC imperméable et en contact direct avec le carbone de ladite surface externe et éliminer le silicium libre en excès notamment par évaporation sous vide.

Description

  • La présente invention concerne un procédé de siliciuration de matériau carboné et plus particulièrement en graphite, en particulier par voie liquide.
  • Les cellules photovoltaïques (PV) sont majoritairement fabriquées à partir de silicium mono- ou multi-cristallin, dans des filières qui mettent en jeu la solidification de lingots à partir d'un bain liquide contenu dans un creuset à section carrée. Les lingots de silicium multi-cristallin sont classiquement réalisés par fusion d'une charge de silicium suivie d'une solidification directionnelle. Ce procédé est très efficace pour cristalliser de grands volumes de silicium et la taille des lingots est extensible par extension de la dimension des creusets. Un revêtement anti-adhérent poreux à base d'une poudre de nitrure de silicium est déposé systématiquement sur les parois internes du creuset pour assurer le démoulage du lingot final une fois solidifié ( US 00 6165425 ). Dans l'industrie photovoltaïque, les creusets sont en silice frittée. Ils sont à usage unique compte tenu de la déformation de la silice à haute température et de sa recristallisation au cours du cycle thermique.
  • Dans un souci de diminution des coûts de fabrication, il serait avantageux de disposer de creusets en matériaux réfractaires réutilisables, présentant une bonne tenue mécanique à haute température et dont la formulation chimique ne contient pas d'éléments métalliques susceptibles de contaminer le silicium et de dégrader ses performances photovoltaïques.
  • Parmi ces matériaux réfractaires, le graphite s'avère être un bon candidat compte tenu de son coût de fabrication modéré et du fait qu'il soit facilement usinable. Certaines nuances de graphite (par exemple celle de grade 2020 de MERSEN) peuvent présenter un coefficient de dilatation relativement adapté à celui du silicium de telle façon que le creuset peut être constitué d'une seule pièce (creuset monolithique). Le cas échéant, ou pour des creusets de très grandes dimensions, le creuset peut être réalisé à partir de plaques constituant le fond et les parois latérales et assemblées entre elles de façon mécanique comme dans le document WO/2016/087549 .
  • Toutefois, il a été constaté que dans de tels creusets, recouverts des revêtements anti-adhérents constitués d'une poudre de nitrure de silicium, qui sont conventionnellement utilisés pour éviter le collage du silicium, des réactions chimiques se produisent à haute température entre le silicium, la silice contenue dans le nitrure de silicium et le graphite et sont à l'origine d'une production de monoxyde de carbone (CO). L'espèce gazeuse CO réagit alors avec le silicium en fusion pour former une couche de carbure de silicium (SiC) encapsulant le bain et saturer le silicium en carbone (la concentration en carbone correspondant à la composition eutectique du diagramme de phases Si-C). Lors de la solidification, le carbone précipite sous forme de SiC. Or, ces précipités de SiC sont néfastes à plusieurs titres. Ils sont préjudiciables à la découpe des lingots en raison de leur dureté. D'un point de vue électrique, ils peuvent créer des court-circuits parasites dans les cellules solaires correspondantes.
  • Des revêtements anti-adhérents mieux adaptés à des creusets à base de carbone pour la solidification du silicium ont donc été proposés.
  • Ainsi, dans les demandes de brevet GB2479165A , WO2011/120598A1 , le creuset est un composite C-C/SiC et le revêtement est constitué d'un mélange de poudres de Si et de Si3N4. Le creuset et son revêtement subissent un traitement thermique à une température supérieure à 1200°C sous azote. Au contact de la surface du creuset, le silicium réagit avec le carbone pour former du SiC à l'interface. Au contact de l'azote, ce silicium se transforme en revanche en Si3N4 (si le revêtement est épais, il reste du Si libre). La formation de SiC en contact des faces en graphite du creuset garantit une liaison forte entre le revêtement et le creuset. Le revêtement final SiC/Si/Si3N4 est résistant au frottement et peut être réutilisable. Toutefois, la formation de nitrure de silicium à la surface des particules par réaction avec l'atmosphère d'azote empêche que le silicium fondu s'étale en une couche liquide continue à la surface du graphite. Il s'ensuit que le SiC, formé par réaction avec le carbone, ne constitue pas une couche imperméable, ce qui est une source de contamination du silicium en carbone. De plus, la réaction du silicium avec l'azote et le carbone risque d'être incomplète, selon la taille des particules et l'épaisseur du revêtement. Cette réaction incomplète peut conduire à la présence de résidus de silicium libre dans le revêtement final, et donc nuire à la stabilité de la microstructure du revêtement lors d'utilisations successives. Ces mêmes inconvénients sont observés pour les revêtements décrits dans les documents JP2005046866 et JP4081413 et qui consistent en un revêtement en deux couches, une couche formée d'un mélange de poudres de Si, Si3N4 et SiO2 côté creuset, et une couche de surface formée d'un mélange de poudres de Si3N4 et SiO2.
  • La présente invention a donc pour objet de proposer un nouveau revêtement dénué des insuffisances précitées à savoir une susceptibilité à la contamination et un défaut de stabilité prolongé dans le temps.
  • Plus généralement, la présente invention vise à proposer un procédé permettant d'élaborer en surface d'un matériau carboné, à l'image en particulier du graphite, carbone vitreux ou graphite recouvert d'une couche de carbone pyrolytique, une couche de SiC imperméable, dénuée de silicium résiduel et présentant une bonne adhérence au substrat considéré.
  • Plus particulièrement, la présente invention vise à proposer un procédé permettant d'élaborer en surface d'un matériau graphite conventionnel, c'est-à-dire généralement doté d'une porosité inférieure à 25 % et d'un diamètre de pores inférieur à 2 µm, une couche de SiC imperméable, dénuée de silicium résiduel et présentant une bonne adhérence sur le graphite.
  • Ainsi selon l'un de ses aspects, la présente invention concerne un procédé utile pour la siliciuration surfacique d'un matériau carboné, notamment choisi parmi le graphite, le carbone vitreux et le carbone pyrolytique, comprenant au moins les étapes consistant à :
    1. a) mettre en contact ladite surface à traiter avec une quantité efficace de particules de silicium de taille granulométrique variant de 0,2 à 500 µm, de pureté entre 2N et 5N, et dont la teneur en oxygène est inférieure à 10 % en poids.
    2. b) imposer au moins à ladite surface revêtue desdites particules de silicium un traitement thermique propice à la fusion du silicium et à son interaction à l'état fondu avec le carbone de ladite surface pour former du SiC en quantité suffisante pour former, en surface, une couche superficielle de SiC imperméable et en contact direct avec le carbone de ladite surface externe et combler, si existantes, les porosités de ladite surface et
    3. c) éliminer le silicium libre en excès notamment par évaporation sous vide,
    les étapes b) et c) étant réalisées au moyen d'un traitement thermique comprenant au moins un cycle de 3 étapes successives correspondant à une montée en température, notamment à une vitesse comprise entre 300 et 600°C/h, jusqu'à une température propice à la fusion dudit silicium, notamment supérieure à 1415°C, le maintien d'un palier de température, notamment d'au moins 20 minutes, à ladite température propice à la fusion du silicium et un refroidissement en température notamment à une vitesse comprise entre 100 et 600°C/h.
  • Selon une variante de réalisation, la siliciuration peut être réalisée comme suit :
    • Réalisation d'un ou plusieurs cycles thermiques pour former la couche imperméable de SiC. A l'issue de cette étape, il est possible de contrôler visuellement la présence de silicium résiduel sur toute la surface de la pièce devant recevoir une couche de SiC et
    • Réalisation d'un deuxième cycle thermique pour évaporer le silicium en excès.
  • Selon une variante préférée de l'invention, le matériau carboné est un substrat en graphite et de préférence possédant, au moins au niveau de la surface à siliciurer, une porosité volumique inférieure à 25% et un diamètre de pores inférieur à 2 µm.
  • Ainsi selon cette variante, le procédé de l'invention comprend au moins les étapes consistant à :
    1. i) disposer d'un substrat en graphite possédant, au moins au niveau de la surface à siliciurer, une porosité volumique inférieure à 25 % et un diamètre de pores inférieur à 2 µm.
      • a) mettre en contact ladite surface à traiter avec une quantité efficace de particules de silicium de taille granulométrique variant de 0,2 à 500 µm, de pureté entre 2N et 5N, et dont la teneur en oxygène est inférieure à 10 % en poids,
      • b') imposer au moins à ladite surface revêtue desdites particules de silicium un traitement thermique propice à la fusion du silicium et à son interaction à l'état fondu avec le graphite de ladite surface pour former du SiC en quantité suffisante pour combler les porosités de ladite surface et former, en surface, une couche superficielle de SiC imperméable et en contact direct avec du graphite de ladite surface externe dudit substrat, et
      • c) éliminer le silicium libre en excès notamment par évaporation sous vide,
    les étapes b') et c) étant réalisées au moyen d'un traitement thermique comprenant au moins un cycle de 3 étapes successives correspondant à une montée en température, notamment à une vitesse comprise entre 300 et 600°C/h, jusqu'à une température propice à la fusion dudit silicium, notamment supérieure à 1415°C, le maintien d'un palier de température, notamment d'au moins 20 minutes, à ladite température propice à la fusion du silicium et un refroidissement en température notamment à une vitesse comprise entre 100 et 600°C/h.
  • Dans cette variante de réalisation, le procédé de l'invention peut avantageusement comprendre en outre à l'issue de l'étape d'élimination de l'excès de silicium, une étape dédiée à la formation en surface de la couche continue et adhérente de carbure de silicium obtenue selon l'invention, d'un revêtement anti-adhérent poreux de nitrure de silicium.
  • La formation d'un tel revêtement de nitrure de silicium relève clairement des compétences de l'homme de l'art.
  • Au sens de l'invention, l'expression « en contact direct » signifie que la couche superficielle de SiC est au moins en partie directement en contact avec du graphite constitutif du substrat traitée selon l'invention.
  • Dans le cas d'un comblement conjoint de porosités par du SiC, le SiC de la couche superficielle et le SiC des porosités sont continus, ce qui renforce l'adhérence de la couche superficielle sur le matériau carboné, en l'occurrence le graphite. En conséquence, la couche superficielle de SiC obtenue selon l'invention, peut être également caractérisée comme possédant, avec le graphite constituant le substrat, une interface qui est formée du SiC comblant les pores et de graphite constitutif du substrat, la fraction volumique de SiC étant inférieure à celle du graphite dans cette interface.
  • Selon une variante de réalisation particulière, les particules de silicium sont mises en oeuvre dans l'étape a) sous la forme d'une dispersion dans un milieu solvant, notamment aqueux.
  • Selon une autre variante de réalisation, la mise en contact de la surface à traiter avec une quantité efficace de particules de silicium est réalisée en présence d'un liant polymérique notamment réticulable et par exemple l'alcool polyvinylique (PVA), ce liant constituant de préférence une partie du milieu solvant.
  • Dans cette variante, le procédé comprend, préalablement à l'étape b) une étape visant à amorcer la réticulation de ce polymère. Pour ce faire, il est avantageux de chauffer directement la surface du substrat carboné et notamment de graphite en contact avec le liant polymérique réticulable.
  • Ainsi selon une variante de réalisation, le procédé selon l'invention comprend préalablement à l'étape b) au moins les étapes consistant à
    • disposer d'une dispersion en milieu solvant de particules de silicium selon l'invention et comprenant en outre un liant polymérique réticulable et
    • mettre en contact ladite dispersion avec la surface à traiter dudit substrat carboné, de préférence en graphite, ladite surface étant chauffée à une température propice à l'initiation de la réticulation dudit liant.
  • Ce mode de réalisation particulier a pour avantage de consolider efficacement le dépôt des particules de silicium au niveau de la surface avant la siliciuration.
  • Selon un mode de réalisation préféré, la couche superficielle de SiC formée selon l'invention possède une épaisseur variant de 2 à 15 µm.
  • Avantageusement, la couche superficielle de SiC est constituée à plus de 99% en poids de préférence à plus de 99,9 % voire à plus de 99,99% en poids de SiC.
  • Ainsi, les inventeurs ont constaté que sous réserve de sélectionner une charge ajustée en poudre de silicium, par ailleurs dotée d'une granulométrie particulière et un traitement thermique spécifique, il s'avère possible d'assurer en une unique opération une siliciuration efficace d'un substrat carboné et en particulier en graphite, conduisant à une couche imperméable de SiC, fortement adhérente au graphite, et exempte de silicium résiduel.
  • Certes, la siliciuration du graphite est connue de l'homme de l'art. Ces procédés de siliciuration conventionnels sont réalisés par voie gazeuse ou par voie liquide. Toutefois, ils sont pour l'essentiel uniquement dédiés à conférer, au graphite considéré, une résistance à l'oxydation sous air à haute température (supérieure à 500°C typiquement).
  • Parmi les procédés par voie gazeuse, on trouve la technique de dépôt CVD (Chemical Vapor Déposition) permettant de déposer des couches épaisses de SiC (de l'ordre de 100 µm). Un tel graphite siliciuré est par exemple commercialisé par la société TOYOTANSO sous la marque PERMA KOTE®. Cependant, la couche de SiC CVD présente peu d'adhérence sur le graphite car le dépôt ne pénètre pas dans la porosité du matériau, ce qui confère une certaine fragilité aux pièces revêtues. Par ailleurs, le procédé CVD n'est applicable qu'aux graphites présentant un coefficient de dilation supérieur à celui du SiC, et de fait bien supérieur à celui du silicium. Ces graphites ne peuvent donc pas être utilisés en tant que matériaux de creuset pour le silicium. D'autre part, un inconvénient du procédé CVD est son coût très élevé.
  • Parmi les procédés par voie gazeuse, on trouve également le procédé RGI (Reactive Gaseous Infiltration) mettant en jeu l'espèce gazeuse SiO. Ce procédé a été utilisé par la société MERSEN et permet de former une couche de surface de SiC d'une épaisseur comprise entre 20 et 100 µm [Israel et al., J. Eur. Ceram. Soc. 31 (2011) 2167]. A titre d'exemples, on peut citer les brevets JP05146843 et JP06000578 dans lesquels des mélanges de poudres (SiC + SiO2) ou (C + SiO2) sont utilisés pour générer l'espèce SiO. Ces procédés de dépôt par voie gazeuse sont longs et coûteux. D'autre part, ils peuvent s'avérer difficiles de mise en oeuvre en termes de circulation des gaz réactifs et d'homogénéité du dépôt pour des géométries de pièces telles que des creusets.
  • Pour ce qui est de la siliciuration du graphite par voie liquide par réaction entre le graphite et le silicium liquide, une des méthodes connues consiste à immerger la pièce de graphite dans un bain de silicium liquide [Chunhe et al., J. Nucl. Mater. 224 (1995) 103]. Pour des raisons évidentes, elle est difficilement applicable à des pièces de grandes dimensions telles que les creusets de cristallisation du silicium PV. Pour sa part, le document WO 2010/026344 met en contact une surface en graphite d'un substrat considéré avec du silicium liquide (sans plus de précision sur la manière de réaliser ce contact) pour former une couche de surface en SiC et une couche intermédiaire intercalée entre la couche de surface en SiC et le support en graphite, ladite couche intermédiaire étant formée d'une matrice de SiC contenant au moins un nodule de carbone. Pour obtenir de telles caractéristiques de la couche intermédiaire, le graphite doit posséder une porosité volumique élevée, variant de 25 à 40 %, préférentiellement de 30 à 35%, et s'étendant sur une épaisseur d'au moins 1 mm. Ces dernières caractéristiques ont l'inconvénient de s'écarter de celles des graphites conventionnels élaborés en pièces de grandes dimensions.
  • Le procédé selon l'invention est clairement différent de ces technologies antérieures et s'avère par ailleurs significativement plus intéressant à plusieurs titres.
  • Il est significativement simplifié en termes de mise en oeuvre. Il est de coût amoindri notamment par rapport à des procédés tels que le dépôt CVD. Il peut être réalisé sur des objets de taille importante et de forme complexe. Enfin, il permet la réalisation d'une couche de SiC imperméable et dénuée de silicium résiduel, et de conduire à une bonne adhérence du SiC sur du graphite grâce à l'infiltration du silicium dans la porosité du substrat graphite.
  • Il est ainsi tout particulièrement intéressant pour siliciurer des creusets en graphite dédiés à un usage pour la fonte et la solidification de silicium.
  • Le procédé selon l'invention est également utile pour protéger les pièces en graphite utilisées dans la zone chaude des dispositifs de solidification dirigée en creuset et de tirage Czochraski, telles que les contre-creusets, les couvercles de creuset, les résistors, les boucliers thermiques, etc. Ces pièces subissent une corrosion par les vapeurs de SiO dégagées par le bain de silicium, ce qui les dégradent et nécessite de les renouveler. Par ailleurs, la réaction entre C et SiO génère du CO qui pollue le silicium en carbone.
  • La présente invention vise également un substrat carboné et de préférence en graphite dont au moins une des surfaces externes est siliciurée avec le procédé selon l'invention.
  • Selon un autre de ses aspects, la présente invention concerne un substrat en graphite dont au moins une des surfaces externes est revêtue d'une couche superficielle et imperméable de SiC, ladite couche externe de SiC étant constituée à plus de 99 % en poids de SiC, possédant une épaisseur moyenne de 2 à 15 µm, et une interface, avec le graphite constituant ledit substrat, qui est formée de SiC comblant des pores du graphite constitutif du substrat, avec une fraction volumique de SiC inférieure à celle du graphite dans cette interface.
  • Selon une variante préférée de l'invention, ce substrat est un creuset de graphite dédié à un usage pour la fonte et la solidification de silicium et dont la surface externe de sa cavité intérieure est revêtue en surface d'une couche superficielle de SiC.
  • Selon une variante préférée, de l'invention ce creuset possède en surface externe de la couche de SiC formée selon le procédé de l'invention, un revêtement anti-adhérent en nitrure de silicium. La présence de ce revêtement anti-adhérent en nitrure de silicium est avantageuse lors de la mise en oeuvre du creuset. Il est destiné à être en contact avec le silicium liquide lors de la cristallisation du silicium, et ce afin d'éviter que le silicium reste accroché au creuset.
  • I- PROCEDE SELON L'INVENTION
  • Comme énoncé ci-dessus, le procédé selon l'invention met en contact un substrat carboné avec des particules de silicium.
  • a) Substrat carboné
  • Comme exposé précédemment, le procédé selon l'invention convient à la siliciuration de matériaux carbonés pouvant être du graphite, du carbone vitreux ou encore du carbone pyrolytique, ces deux derniers matériaux étant dénués de porosité ouverte par opposition aux graphites.
  • Avantageusement, il s'agit d'un graphite.
  • Le graphite constitutif de la surface du substrat à traiter possède une certaine porosité ouverte.
  • Dans le cadre du procédé de l'invention, cette porosité doit posséder une taille compatible avec une infiltration de silicium fondu. Ce phénomène d'infiltration contribue à renforcer significativement l'adhérence de la couche surperficielle de SiC formée par ailleurs en surface de la zone traitée. Cette porosité doit par ailleurs rester suffisamment faible pour éviter la formation, entre le graphite du substrat et la couche superficielle de SiC, d'une couche intermédiaire formée de SiC et de nodules de carbone.
  • Ainsi, selon une variante avantageuse, le graphite constitutif de la surface du substrat de graphite à traiter et généralement le graphite constitutif du substrat à traiter possèdent à la fois une porosité volumique inférieure à 25% et un diamètre de pores inférieur à 2 µm.
  • Selon une variante de réalisation préférée, le graphite constitutif de la surface du substrat de graphite à traiter et généralement le graphite constitutif du substrat à traiter possèdent une porosité volumique inférieure à 20%.
  • Ces deux quantités peuvent être évaluées par porosimétrie mercure.
  • L'invention s'avère tout particulièrement intéressante pour la siliciuration surfacique de substrats en graphite isostatique à grains fins présentant une taille de grains inférieure à 30 µm.
  • Selon une variante de réalisation préférée, ce substrat est un creuset dont la surface traitée est sa cavité interne.
  • Le procédé selon l'invention requiert le dépôt en surface de la zone de substrat à traiter d'une quantité de silicium.
  • b) Particules de silicium
  • Les particules de silicium, considérées selon le procédé de l'invention sont destinées à être fondues pour former une couche superficielle de SiC.
  • La couche de SiC formée selon l'invention est constituée pour l'essentiel de SiC voire exclusivement de SiC.
  • Cette couche de SiC est en outre avantageusement solidaire des infiltrations de silicium dans les pores d'origine du matériau carboné si existantes comme dans le cas du graphite, et de ce fait possède une adhérence renforcée avec le substrat.
  • Ces résultats tout particulièrement intéressants sont notamment obtenus via les spécificités considérées pour les particules de silicium utilisées selon l'invention et leur quantité mise en oeuvre pour la réalisation du procédé de l'invention.
  • Ainsi, le silicium considéré selon l'invention se présente sous la forme d'une poudre de silicium possédant avantageusement un diamètre moyen (en volume) variant de 0,2 à 500 µm de préférence de 1 à 50 µm.
  • Cette granulométrie peut notamment être caractérisée en utilisant un granulomètre à diffraction laser.
  • Il possède en outre une pureté entre 2N et 5N et une teneur en oxygène inférieure à 10% en poids. Celle-ci peut être mesurée en fondant la poudre de silicium dans un creuset en graphite sous gaz inerte et en mesurant par un détecteur infra-rouge le CO libéré et transformé en CO2.
  • Selon une variante de l'invention, il s'agit d'une poudre de silicium de recyclage issue de la découpe des lingots de silicium à la scie à fil diamant avec un lubrifiant constitué d'eau et d'additifs organiques (tels que des surfactants et des antioxydants par exemple). La poudre mélangée à l'eau et aux additifs organiques est récupérée dans des bacs directement reliés aux machines de découpe. Une étape de séchage est effectuée pour évaporer l'eau et une partie des additifs organiques. La poudre de silicium recyclée a une pureté comprise entre 2N et 4N et présente une teneur en oxygène inférieure à 10 % en poids.
  • La quantité de silicium mise en oeuvre en étape a) est ajustée pour permettre un comblement des pores si existants au niveau de la surface à traiter et la formation d'une couche superficielle de SiC en surface notamment d'épaisseur de l'ordre de 2 à 15 µm.
  • La détermination de cette quantité est clairement à la portée de l'homme du métier.
  • Ainsi, la quantité en SiC devant être infiltrée peut être facilement évaluée par l'homme de l'art, connaissant la porosité ouverte du graphite et la profondeur de silicium à infiltrer. Par exemple, dans le cas de la nuance de graphite 2020 de MERSEN, la porosité ouverte est de 11% et la profondeur infiltrable est de l'ordre de 1 mm.
  • Avantageusement, la quantité de silicium à déposer par unité de surface du graphite correspond à la quantité de silicium à infiltrer dans la porosité si existante du matériau carboné et transformée en SiC, majorée d'un excès de silicium, de l'ordre de 10 à 20 mg/cm2. Cet excès est avantageux pour assurer la formation d'une couche superficielle imperméable de SiC sans toutefois conduire à des excès de silicium à évaporer trop importants.
  • L'étape d'évaporation de l'excès de silicium peut avantageusement être réalisée par reproduction d'un cycle thermique sous vide.
  • Comme évoqué précédemment, cette poudre de silicium peut être mise en oeuvre en dispersion dans un milieu solvant généralement aqueux. Cette dispersion de silicium peut posséder avantageusement une concentration d'au moins 10 % en poids de silicium.
  • Selon une autre variante de réalisation, la poudre de silicium peut être mise en oeuvre conjointement à au moins un liant polymérique réticulable.
  • En particulier, dans le cas d'espèce où la poudre de silicium est mise en oeuvre en dispersion dans un milieu solvant, il est envisageable que ce liant polymérique constitue une partie de ce milieu solvant.
  • En effet, les inventeurs ont ainsi noté que la présence d'un tel liant s'avère particulièrement intéressante pour consolider le dépôt des particules de silicium avant le traitement thermique de siliciuration.
  • Selon cette variante de réalisation, il est réalisé, préalablement au traitement thermique dédié à promouvoir la siliciuration surfacique, un pré-traitement propice à l'initiation de la réticulation du liant polymérique. De préférence, il s'agit d'un traitement thermique.
  • Ce traitement peut notamment consister en un chauffage de la surface à traiter dudit substrat carboné et de préférence en graphite, et sur laquelle est déposé le mélange contenant la poudre de silicium, l'eau et le liant polymérique à réticuler, à une température propice à l'initiation de cette réticulation, de préférence à une température variant de 150°C à 300°C.
  • L'ajustement de cette température est bien entendu fonction de la nature du liant polymérique et relève clairement des compétences de l'homme de l'art.
  • A titre représentatif et non limitatif des liants polymériques convenant au procédé selon l'invention peuvent notamment être cités les alcools polyvinyliques (PVA).
  • Par exemple, l'alcool polyvinylique (PVA) peut être dissous dans de l'eau dans un rapport massique 1 à 10 PVA : 100 H2O.
  • Un tel alcool polyvinylique (PVA) est de préférence mis en oeuvre dans un rapport massique [Si : PVA] variant de [1 Si : 0,2 PVA] à [1 Si : 0,02 PVA], et de préférence de [1 Si : 0,15 PVA] à [1 Si : 0,04 PVA].
  • L'utilisation conjointe aux particules de silicium d'un liant polymérique réticulable est particulièrement intéressante dans la mesure où le liant permet, sous sa forme réticulée, de consolider le dépôt des particules de silicium en surface du substrat carboné et notamment de graphite avant le traitement thermique de siliciuration. La manipulation des substrats et notamment leur chargement dans le four de traitement thermique s'en trouvent en outre facilités.
  • Le traitement thermique consécutif, dédié à réaliser la siliciuration a d'ailleurs pour effet d'éliminer tous les composés organiques et donc toute trace de ce liant réticulé. La couche superficielle de SiC formée à l'issue de cette variante de réalisation de procédé ne possède donc avantageusement plus de trace de ce polymère réticulé.
  • Selon une variante de réalisation, les particules de silicium peuvent en outre être mises en oeuvre en association avec un matériau réfractaire M pulvérulent annexe. Bien entendu ce matériau doit être non polluant vis-à-vis du silicium. Il s'agit donc avantageusement de carbure de silicium, de nitrure de silicium, de carbone ou d'un de leurs mélanges. La granulométrie de la poudre de matériau réfractaire M est généralement comprise entre 0,1 et 20 µm, préférentiellement entre 1 et 5 µm. En particulier, les rapports massiques [Si: M] peuvent être compris entre [1 Si: 0,7 M] et [1 Si: 0,1 M], préférentiellement entre [1 Si : 0,5 M] et [1 Si : 0,3 M]. A l'issue du traitement de siliciuration, les particules de matériau réfractaire se retrouvent au-dessus de la couche superficielle de SiC, et si le matériau réfractaire est du carbone au départ, il est transformé en SiC par réaction avec le silicium liquide en excès.
  • c) Cycle thermique pour la siliciuration
  • Comme énoncé précédemment, la couche de SiC formée selon l'invention est
  • constituée exclusivement de SiC, possède une faible épaisseur, est avantageusement imperméable et manifeste une adhérence renforcée avec le substrat carboné et notamment de graphite. Ces propriétés sont également conditionnées par le cycle thermique requis selon l'invention.
  • Avantageusement, ce cycle thermique n'est pas réalisé sous atmosphère azotée.
  • Comme il ressort de ce qui suit le traitement thermique comprend avantageusement au moins un cycle réalisé sous vide et de préférence sous une pression inférieure à 0,1 Pa.
  • Ce cycle peut être unique.
  • Ce cycle peut également être combiné à un ou plusieurs cycles annexes réalisés en revanche sous atmosphère neutre mais non azotée.
  • Dans le cas où le cycle est unique, au moins l'étape d'évaporation du silicium en excès est faite sous vide, et l'étape de formation de la couche continue de SiC peut être faite sous atmosphère neutre, en particulier non azotée.
  • Un cycle thermique comprend au moins
    • une montée en température jusqu'à une température propice à la fusion dudit silicium,
    • le maintien d'un palier de température à cette température adaptée à la fusion du silicium et
    • un refroidissement en température.
  • Selon une variante préférée, la montée en température est réalisée à une vitesse variant de 300 à 600°C/h jusqu'à atteindre la température retenue comme étant propice à la fusion du silicium. La vitesse de montée est variable selon les dimensions des pièces de graphite et est adaptée pour obtenir un chauffage homogène des pièces. Par exemple, une montée à 300°C/h convient à des pièces de dimensions 36x26x2 cm3, et une montée à 600°C/h convient à des pièces de dimensions 5x5x0,5 cm3.
  • Avantageusement, la température propice à la fusion dudit silicium est supérieure à 1415°C et notamment varie de 1430°C à 1500°C. Il s'agit donc de la température à laquelle le palier de température est maintenu. Le maintien de cette température est réalisé le temps nécessaire à la formation de la couche continue de SiC au contact du graphite et du silicium liquide (qui est de l'ordre de 20 minutes) et à l'évaporation du silicium en excès (de 6 à 15 heures selon la quantité de silicium à évaporer).
  • Le refroidissement en température est ensuite réalisé à une vitesse variant de 100 à 600°C/h pour limiter les contraintes thermomécaniques, le cas échéant sous atmosphère inerte.
  • Il est généralement réalisé sous rampe jusqu'à une température variant de 500 à 700°C et ensuite poursuivi naturellement jusqu'à température ambiante.
  • Selon un mode de réalisation préféré, un cycle thermique conforme à l'invention comprend
    • une montée en température à une vitesse variant de 300 à 600°C/h jusqu'à une température supérieure à 1415°C,
    • un maintien à cette température pendant une durée de 20 min à 15 h,
    • un refroidissement en température à une vitesse variant de 100 à 600°C/h sous atmosphère inerte jusqu'à une température de 500 à 700°C, et un refroidissement naturel jusqu'à la température ambiante.
  • Il est à noter que le traitement thermique selon l'invention peut requérir un unique cycle tel que décrit ci-dessus ou plusieurs cycles.
  • Ainsi, dans une variante du procédé, la siliciuration peut être réalisée comme suit :
    • Réalisation d'un ou plusieurs cycles thermiques sous gaz ou sous vide pour former la couche imperméable de SiC. A l'issue de cette étape, il est possible de contrôler visuellement la présence de silicium résiduel sur toute la surface de la pièce devant recevoir une couche de SiC et
    • Réalisation d'un deuxième cycle thermique sous vide pour évaporer le silicium en excès.
  • Ce mode de réalisation en plusieurs cycles sera avantageux pour mettre au point les paramètres permettant de traiter des pièces en un cycle unique, dans une configuration donnée et dans un four donné.
  • d) Couche superficielle de SiC selon l'invention
  • Au sens de l'invention, l'expression « constituée exclusivement de SiC » entend signifier que la couche superficielle de SiC est constituée à plus de 99% en poids de préférence à plus de 99,9 % voire à plus de 99,99% en poids de SiC. La pureté de la couche de SiC peut être caractérisée par spectrométrie de masse à décharge luminescente.
  • La valeur moyenne de l'épaisseur de la couche superficielle de SiC varie avantageusement de 2 à 15 µm.
  • L'épaisseur de la couche superficielle de SiC peut être mesurée par les techniques classiques de caractérisation (microscopie optique, microscopie électronique à balayage) sur des coupes transverses.
  • Comme précisé ci-dessus, la couche superficielle de SiC est imperméable aux gaz et notamment à l'air.
  • Cette spécificité peut également être caractérisée. Il est connu que le SiC présente, contrairement au graphite, une tenue sous air importante, jusqu'à une température sensiblement égale à 1550°C. En conséquence, une manière de savoir si la couche superficielle formée est imperméable à l'air, est de soumettre la pièce en graphite recouverte de SiC à un traitement d'oxydation sous air.
  • Ainsi, une couche est considérée comme conforme en termes d'imperméabilité aux exigences de l'invention, et elle sera alors dite « imperméable », si sa perte de poids est inférieure à 10-2 g/cm2 de surface recouverte, préférentiellement inférieure à 3x10-3 g/cm2 de surface recouverte après un traitement thermique de 2 heures à 900°C sous air et encore plus préférentiellement inférieure à 10-3 g/cm2 de surface recouverte après un traitement thermique de 4 heures à 1100°C sous air.
  • Pour une couche superficielle non conforme à cette exigence, du graphite est brûlé en trop grande quantité lors d'un tel traitement thermique et ceci se traduit à terme par la perte d'adhérence de la couche de SiC.
  • II- SUBSTRATS CARBONES SILICIURES SELON L'INVENTION
  • Les substrats carbonés siliciurés selon l'invention sont avantageusement des creusets de graphite dont la surface externe de leur cavité intérieure est revêtue en surface de ladite couche superficielle de SiC.
  • Comme précisé précédemment, la surface siliciurée de ces creusets est avantageusement elle-même recouverte en surface par un revêtement anti-adhérent à base de poudre de nitrure de silicium. Ces creusets sont dédiés à un usage pour la fonte et la solidification dirigée de silicium. Ce procédé de solidification dirigée est utilisé pour cristalliser des lingots de silicium photovoltaïque ou encore pour une opération de ségrégation du silicium de grade métallurgique.
  • Il peut également s'agir de pièces en graphite dédiées à un usage dans un four de cristallisation de silicium.
  • La couche superficielle de SiC formée sur la surface interne du creuset en graphite présente le grand intérêt de permettre d'éviter de carburer le silicium et de le saturer en carbone, et ainsi d'améliorer la qualité du silicium pour les applications en photovoltaïque, PV. Elle joue en outre efficacement un rôle de barrière de diffusion vis-à-vis des impuretés contenues dans le graphite, ce qui permet de fabriquer des lingots de silicium plus purs, présentant ainsi de meilleures propriétés PV. En effet, comme il ressort des exemples ci-après, et plus particulièrement de l'examen des cartographies présentées en figures 2.e et 2.f, la durée de vie maximale des porteurs de charge au coeur du lingot est bien plus élevée pour le lingot élaboré dans le creuset siliciuré (7 µs contre 3 µs). La siliciuration permet donc également d'entraîner une réduction de la contamination en impuretés métalliques.
  • Pour ce qui est des pièces en graphite des fours de cristallisation, la couche superficielle de SiC formée selon l'invention permet de les protéger de la corrosion par les vapeurs de SiO et de réduire la génération de CO.
  • Les exemples et figures qui suivent sont présentés à titre illustratif et non limitatif du domaine de l'invention.
    • Figure 1 : Vue en coupe du graphite siliciuré formé en exemple 1. a) Détail de la couche superficielle de SiC. b) Vue de la couche intermédiaire graphite/SiC.
    • Figure 2 : Caractéristiques des lingots de silicium PV élaborés dans des creusets en graphite non siliciuré et siliciuré (exemple 2). a) et b) : Vues de la surface libre des lingots. c) et d) Profil des teneurs en carbone dissous le long de la hauteur des lingots. e) et f) Cartographies de durée de vie des porteurs de charge. g) et h) Profil de résistivité visé par le contrôle du dopage de la charge de silicium (pointillés) et profil de résistivité mesuré dans le lingot (traits pleins).
    • Figure 3 : Vue en coupe de la plaque en graphite siliciurée (exemple 3).
    EXEMPLE 1 Siliciuration d'un creuset de graphite selon le procédé de l'invention
  • La siliciuration d'un creuset monobloc en graphite (nuance 2020 de MERSEN de pureté standard) de dimensions intérieures 18x18x18 cm3 est effectuée selon le protocole suivant.
  • 111 g de poudre de silicium de granulométrie de 40 µm et 6 g de PVA sont mélangés à 800 ml d'eau.
  • Cette dispersion est déposée au pistolet à air comprimé sur les parois internes du creuset chauffé à une température de 200°C à raison de 52 mg de silicium /cm2 de surface traitée.
  • Le creuset ainsi traité subit un cycle thermique dans un four sous vide (pression résiduelle de 0,1 Pa) comme suit
    • une montée en température jusqu'à 1450°C avec une rampe de chauffage de 300°C/h,
    • un maintien du creuset à cette température de 1450°C pendant 10 h,
    • un refroidissement avec une rampe de 300°C/h jusqu'à 1100°C, et un refroidissement naturel jusqu'à la température ambiante.
  • Le creuset ainsi traité possède en surface de sa cavité interne une couche superficielle de SiC dont l'épaisseur moyenne est environ 6 µm (Fig. 1a).
  • Sous la couche superficielle existe une couche intermédiaire constituée de graphite et de SiC (Fig. 1b). Cette couche intermédiaire traduit l'infiltration du silicium liquide dans la porosité ouverte du graphite et à sa transformation en SiC. Il peut être noté que la fraction volumique de SiC est inférieure à celle du graphite. Cette couche intermédiaire est donc différente de celle du brevet WO 2010/026344 qui est formée d'une matrice de SiC contenant au moins un nodule de carbone.
  • EXEMPLE 2 Utilisation d'un creuset de graphite siliciuré selon le procédé de l'invention pour la fonte d'un lingot de silicium en comparaison d'un creuset mon siliciuré
  • Deux lingots de silicium multi-cristallin de 10 kg sont cristallisés dans des creusets monoblocs en graphite (nuance 2020 de MERSEN de pureté standard) de dimensions intérieures 18x18x18 cm3, respectivement non siliciuré et siliciuré selon l'exemple 1, sur les parois internes. Ces parois internes sont en outre recouvertes d'un revêtement anti-adhérent à base de poudre de nitrure de silicium permettant le démoulage des lingots.
  • Dans chaque cas, le creuset a été chargé avec du silicium de qualité électronique dopé à 0,08 ppm en poids de bore, et un cycle thermique de cristallisation identique a été appliqué.
  • Le four de cristallisation utilisé comprend deux éléments chauffants résistifs situés au-dessus et au-dessous du creuset. Le cycle thermique comprend une montée en température à 85°C/h, suivie d'un palier de fusion de 2 h durant lequel les températures des résistors du bas et du haut sont de 1460°C et 1490°C respectivement. La solidification dirigée est ensuite réalisée en ajustant les rampes de descente en température des deux résistors de façon à ce que la vitesse du front solide/liquide, contrôlée par palpage de ce front à l'aide d'une canne de quartz, reste voisine de 2 cm/h. A l'issue de l'étape de solidification, un palier de 1 h à 1300°C est réalisé, suivi d'un refroidissement de 100°C/h jusqu'à 600°C puis d'un refroidissement naturel jusqu'à la température ambiante.
  • Les lingots ainsi obtenus ont été caractérisés.
  • L'examen des photographies en figures 2.a et 2.b montrent que dans le cas du creuset non siliciuré, le lingot est recouvert d'une croûte de SiC sur l'ensemble de ses faces. En revanche dans le cas du creuset siliciuré obtenu selon l'invention, les parois du lingot sont brillantes et exemptes de film de SiC.
  • Le profil de teneur en carbone dissous le long de la hauteur de chaque lingot a été également déterminé par spectrométrie infra-rouge à transformée de Fourier.
  • Les résultats sont présentés en figures 2.c et 2.d.
  • Les analyses de carbone dissous montrent des teneurs en bas de lingot, bien inférieures à la limite de solubilité de C dans Si, la ségrégation de C suivant ensuite une loi de Scheil (contrairement au cas du creuset non siliciuré où le Si est saturé en C et contient des précipités de SiC). La siliciuration du graphite a donc permis d'éviter la carburation totale du lingot de silicium et de baisser la concentration en carbone dissous dans le silicium.
  • Il a également été procédé à une cartographie de durée de vie des porteurs de charge. Les résultats sont présentés en figures 2.e et 2.f.
  • Les mesures de durée de vie des porteurs de charge, caractéristiques de la qualité électrique du silicium, ont été réalisées sur des tranches verticales au centre des deux lingots. D'après les cartographies, la durée de vie maximale au coeur du lingot est bien plus élevée pour le lingot élaboré dans le creuset siliciuré (7 µs contre 3 µs).
  • La siliciuration semble donc également entraîner une réduction de la contamination en impuretés métalliques.
  • Il a également été déterminé le profil de résistivité visé par le contrôle du dopage de la charge de silicium (pointillés) et le profil de résistivité mesuré dans chaque lingot (traits pleins). Ces résultats sont reportés en figures 2.g et 2.h.
  • Les profils de résistivité mesurés le long de la hauteur des lingots, y sont reportés par comparaison au profil théorique correspondant au dopage à 0,08 ppm poids de bore.
  • Il en ressort que la résistivité du lingot élaboré dans le creuset non siliciuré est bien plus faible que la résistivité visée, indiquant une contamination du lingot en éléments dopants présents en tant qu'impuretés dans le graphite.
  • Par contre, la résistivité du lingot élaboré dans le creuset siliciuré est très proche de la résistivité visée, démontrant l'absence de diffusion (ou une diffusion très réduite) d'impuretés dopantes du creuset vers le silicium grâce à la présence de la couche superficielle de SiC.
  • L'ensemble de ces observations démontre que la couche de SiC en surface du graphite est une barrière efficace à la diffusion du carbone et des impuretés dopantes (voire métalliques) présentes dans le graphite.
  • EXEMPLE 3 Siliciuration d'une plaque de graphite selon le procédé de l'invention
  • Une plaque en graphite (2020 de Mersen) de forme complexe, de dimensions 36x26x2 cm3 présentant des trous et des cavités a été siliciurée sur la totalité de sa surface.
  • La nature de poudre de silicium et les conditions de sa mise en oeuvre décrites en exemple 1, ont été reproduites à l'identique dans cet exemple 3.
  • La siliciuration a été effectuée en deux temps :
    • sur la première face (cavités et trous inclus) et sur la tranche,
    • sur la deuxième face (trous inclus) et sur la tranche à nouveau.
  • Chaque traitement de siliciuration a été effectué en déposant une quantité de silicium de 47 mg/cm2 (au niveau des trous et des cavités, une masse plus importante a été déposée).
  • Pour chaque siliciuration, le cycle thermique a été réalisé dans un four sous vide (pression résiduelle de l'ordre de 0,1 Pa) et a consisté en :
    • une montée en température à 300°C/h jusqu'à 1450°C
    • un palier de 10h à 1450°C
    • un refroidissement à 300°C/h.
  • La pièce siliciurée a ensuite été découpée et des prélèvements ont été préparés pour une observation de la couche de SiC en coupe transversale.
  • Les observations des prélèvements montrent que la couche de SiC est continue (Fig. 3), y compris dans les zones (trous et cavités).

Claims (24)

  1. Procédé utile pour la siliciuration surfacique d'un matériau carboné, notamment choisi parmi le graphite, le carbone vitreux et le carbone pyrolytique, comprenant au moins les étapes consistant à :
    a) Mettre en contact ladite surface à traiter avec une quantité efficace de particules de silicium de taille granulométrique variant de 0,2 à 500 µm, de pureté entre 2N et 5N, et dont la teneur en oxygène est inférieure à 10 % en poids.
    b) Imposer, au moins à ladite surface revêtue desdites particules de silicium, un traitement thermique propice à la fusion du silicium et à son interaction à l'état fondu avec le carbone de ladite surface pour former du SiC en quantité suffisante pour former, en surface, une couche superficielle de SiC imperméable et en contact direct avec le carbone de ladite surface externe et combler, si existantes, les porosités de ladite surface, et
    c) Éliminer le silicium libre en excès notamment par évaporation sous vide.
    les étapes b) et c) étant réalisées au moyen d'un traitement thermique comprenant au moins un cycle de 3 étapes successives correspondant à une montée en température, notamment à une vitesse comprise entre 300 et 600°C/h, jusqu'à une température propice à la fusion dudit silicium, notamment supérieure à 1415°C, le maintien d'un palier de température, notamment d'au moins 20 minutes, à ladite température propice à la fusion du silicium et un refroidissement en température notamment à une vitesse comprise entre 100 et 600°C/h.
  2. Procédé selon la revendication précédente dans lequel le matériau carboné est un substrat en graphite, notamment possédant, au moins au niveau de la surface à siliciurer, une porosité volumique inférieure à 25 % et un diamètre de pores inférieur à 2 µm.
  3. Procédé selon la revendication précédente comprenant en outre une étape dédiée à la formation, en surface de la couche continue et adhérente de carbure de silicium obtenue, d'un revêtement anti-adhérent poreux de nitrure de silicium.
  4. Procédé selon l'une quelconque des revendications précédentes dans lequel le traitement thermique comprend un unique cycle réalisé intégralement sous vide et avantageusement à une pression inférieure à 0,1 Pa.
  5. Procédé selon l'une quelconque des revendications 1 à 3 dans lequel le traitement thermique comprend un cycle unique dont au moins l'étape d'évaporation du silicium en excès est faite sous vide, et l'étape de formation de la couche continue de SiC est faite sous atmosphère neutre, en particulier non azotée.
  6. Procédé selon l'une quelconque des revendications 1 à 3 dans lequel le traitement thermique comprend un cycle réalisé sous atmosphère neutre, en particulier non azotée, et un cycle réalisé sous vide.
  7. Procédé selon l'une quelconque des revendications précédentes dans lequel la température propice à la fusion dudit silicium est supérieure à 1415°C et notamment varie de 1430 à 1500°C.
  8. Procédé selon l'une quelconque des revendications précédentes dans lequel le palier de maintien à une température propice à la fusion du silicium dure au moins 20 minutes et de préférence de 6 à 15 heures.
  9. Procédé selon l'une quelconque des revendications précédentes dans lequel l'étape d'élimination de l'excès de silicium est réalisée par reproduction d'un cycle thermique sous vide.
  10. Procédé selon l'une quelconque des revendications précédentes dans lequel la surface à siliciurer possède une porosité volumique inférieure à 20 %.
  11. Procédé selon l'une quelconque des revendications précédentes dans lequel la quantité de silicium considérée correspond à la quantité de silicium nécessaire au comblement, sous la forme de SiC, des pores de la surface à siliciurer, majorée d'un excès de silicium, de l'ordre de 10 à 20 mg/cm2.
  12. Procédé selon l'une quelconque des revendications précédentes dans lequel les particules de silicium possèdent un diamètre moyen (en volume) variant de 0,2 à 500 µm, de préférence de 1 à 50 µm et de préférence est une poudre de silicium de recyclage issue de la découpe des lingots de silicium à la scie à fil diamant, présentant une pureté comprise entre 2N et 4N et une teneur en oxygène inférieure à 10 % en poids.
  13. Procédé selon l'une quelconque des revendications précédentes dans lequel les particules de silicium sont mises en oeuvre en étape a) sous la forme d'une dispersion dans un milieu solvant, notamment aqueux.
  14. Procédé selon l'une quelconque des revendications précédentes dans lequel la mise en contact de la surface à siliciurer avec une quantité efficace de particules de silicium est réalisée en présence d'un liant polymérique réticulable et en particulier un alcool polyvinylique (PVA) et de préférence mis en oeuvre dans un rapport massique [Si : PVA] variant de [1 Si : 0,2 PVA] à [1 Si : 0,02 PVA], et de préférence de [1 Si : 0,15 PVA] à [1 Si : 0,04 PVA].
  15. Procédé selon l'une quelconque des revendications précédentes comprenant préalablement à l'étape de traitement thermique au moins les étapes consistant à :
    - disposer d'une dispersion en milieu solvant d'au moins lesdites particules de silicium et comprenant en outre un liant polymérique réticulable et,
    - mettre en contact ladite dispersion avec la surface à traiter dudit substrat en graphite, ladite surface étant chauffée à une température propice à l'initiation de la réticulation dudit liant, de préférence à une température variant de 150°C à 300°C.
  16. Procédé selon l'une quelconque des revendications précédentes dans lequel les particules de silicium sont mises en oeuvre en association avec une poudre d'un matériau réfractaire choisi parmi les carbure de silicium, nitrure de silicium, carbone et un de leurs mélanges.
  17. Procédé selon l'une quelconque des revendications précédentes dans lequel la couche superficielle de SiC formée possède une épaisseur moyenne variant de 2 à 15 µm.
  18. Procédé selon l'une quelconque des revendications précédentes dans lequel la couche superficielle de SiC est constituée à plus de 99 % en poids de préférence à plus de 99,9 % voire à plus de 99,99 % en poids de SiC.
  19. Procédé selon l'une quelconque des revendications 1 à 18 dans lequel le substrat carboné est du graphite et la couche superficielle de SiC possède une interface, avec le graphite constituant le substrat, qui est formée du SiC comblant les pores et de graphite constitutif du substrat, la fraction volumique de SiC étant inférieure à celle du graphite dans cette interface.
  20. Procédé selon l'une quelconque des revendications 1 à 19 dans lequel le matériau carboné est un creuset en graphite dédié à la solidification et la surface traitée est celle de sa cavité interne.
  21. Substrat en matériau carboné dont au moins une des surfaces externes est siliciurée avec le procédé selon l'une quelconque des revendications précédentes.
  22. Substrat en graphite dont au moins une des surfaces externes est revêtue d'une couche superficielle et imperméable de SiC, ladite couche externe de SiC étant constituée à plus de 99% en poids de SiC, possédant une épaisseur moyenne de 2 à 15 µm, et dotée d'une interface, avec le graphite constituant ledit substrat, qui est formée de SiC comblant des pores de la surface siliciurée et de graphite constitutif du substrat, la fraction volumique de SiC étant inférieure à celle du graphite dans cette interface.
  23. Substrat en graphite selon la revendication précédente possédant en outre en surface de la couche de SiC formée selon l'une quelconque des revendications 1 à 20, un revêtement anti-adhérent en nitrure de silicium.
  24. Substrat selon la revendication 22 ou 23 caractérisé en ce qu'il s'agit d'un creuset de graphite dédié à un usage pour la fonte et la solidification de silicium et dont la surface externe de sa cavité intérieure est revêtue en surface de ladite couche superficielle de SiC ou d'une pièce en graphite dédiée à un usage dans un four de cristallisation de silicium.
EP17204501.5A 2016-12-01 2017-11-29 Procede pour la siliciuration surfacique de graphite Active EP3330240B1 (fr)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
FR1661788A FR3059663B1 (fr) 2016-12-01 2016-12-01 Procede pour la siliciuration surfacique de graphite

Publications (2)

Publication Number Publication Date
EP3330240A1 true EP3330240A1 (fr) 2018-06-06
EP3330240B1 EP3330240B1 (fr) 2022-07-06

Family

ID=57755378

Family Applications (1)

Application Number Title Priority Date Filing Date
EP17204501.5A Active EP3330240B1 (fr) 2016-12-01 2017-11-29 Procede pour la siliciuration surfacique de graphite

Country Status (2)

Country Link
EP (1) EP3330240B1 (fr)
FR (1) FR3059663B1 (fr)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111410560A (zh) * 2020-04-02 2020-07-14 江苏嘉明碳素新材料有限公司 一种高致密SiC涂层的硅化石墨制备方法
CN111848201A (zh) * 2020-07-24 2020-10-30 西安超码科技有限公司 一种具有碳化硅/硅涂层的炭/炭坩埚及其制备方法
CN111848202A (zh) * 2020-07-24 2020-10-30 西安超码科技有限公司 一种具有碳化硅/硅涂层的炭/炭导流筒及其制备方法
CN114746380A (zh) * 2019-09-16 2022-07-12 派特欧赛拉米克斯股份公司 在碳纤维增强陶瓷基体复合材料上制备基于一种或多种硅化合物的钝化涂层的方法和具有这种涂层的碳纤维增强陶瓷基体复合材料
CN115974591A (zh) * 2023-03-22 2023-04-18 青禾晶元(天津)半导体材料有限公司 一种碳化硅石墨复合坩埚及其制备方法与应用
CN115974590A (zh) * 2023-03-22 2023-04-18 青禾晶元(天津)半导体材料有限公司 一种含碳化硅涂层的石墨复合坩埚及其制备方法与应用
CN115974587A (zh) * 2023-03-22 2023-04-18 青禾晶元(天津)半导体材料有限公司 一种改良石墨坩埚及其制备方法与应用
CN116102354A (zh) * 2022-11-07 2023-05-12 江苏核电有限公司 一种用于主泵轴瓦的组合物及其制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999005338A2 (fr) * 1997-07-24 1999-02-04 Toyo Tanso Usa, Inc. Composants en graphite a surface convertie et leurs procedes de fabrication
WO2010026344A2 (fr) * 2008-09-05 2010-03-11 Commissariat A L'energie Atomique Materiau a architecture multicouche, dedie a une mise en contact avec du silicium liquide
WO2016087549A1 (fr) * 2014-12-02 2016-06-09 Commissariat à l'Energie Atomique et aux Energies Alternatives Creuset réutilisable pour la fabrication de matériau cristallin

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE759565A (fr) * 1969-11-28 1971-04-30 Commissariat Energie Atomique Corps composite graphite-pyrocarbone-carbure de silicium ou carbure a base de silicium et son procede de fabrication

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999005338A2 (fr) * 1997-07-24 1999-02-04 Toyo Tanso Usa, Inc. Composants en graphite a surface convertie et leurs procedes de fabrication
WO2010026344A2 (fr) * 2008-09-05 2010-03-11 Commissariat A L'energie Atomique Materiau a architecture multicouche, dedie a une mise en contact avec du silicium liquide
WO2016087549A1 (fr) * 2014-12-02 2016-06-09 Commissariat à l'Energie Atomique et aux Energies Alternatives Creuset réutilisable pour la fabrication de matériau cristallin

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114746380A (zh) * 2019-09-16 2022-07-12 派特欧赛拉米克斯股份公司 在碳纤维增强陶瓷基体复合材料上制备基于一种或多种硅化合物的钝化涂层的方法和具有这种涂层的碳纤维增强陶瓷基体复合材料
CN114746380B (zh) * 2019-09-16 2024-02-09 派特欧赛拉米克斯股份公司 制备基于硅化合物的钝化涂层的方法和具有这种涂层的复合材料
CN111410560A (zh) * 2020-04-02 2020-07-14 江苏嘉明碳素新材料有限公司 一种高致密SiC涂层的硅化石墨制备方法
CN111848201A (zh) * 2020-07-24 2020-10-30 西安超码科技有限公司 一种具有碳化硅/硅涂层的炭/炭坩埚及其制备方法
CN111848202A (zh) * 2020-07-24 2020-10-30 西安超码科技有限公司 一种具有碳化硅/硅涂层的炭/炭导流筒及其制备方法
CN111848202B (zh) * 2020-07-24 2022-09-02 西安超码科技有限公司 一种具有碳化硅/硅涂层的炭/炭导流筒及其制备方法
CN111848201B (zh) * 2020-07-24 2022-09-02 西安超码科技有限公司 一种具有碳化硅/硅涂层的炭/炭坩埚及其制备方法
CN116102354A (zh) * 2022-11-07 2023-05-12 江苏核电有限公司 一种用于主泵轴瓦的组合物及其制备方法
CN116102354B (zh) * 2022-11-07 2024-04-09 江苏核电有限公司 一种用于主泵轴瓦的组合物及其制备方法
CN115974591A (zh) * 2023-03-22 2023-04-18 青禾晶元(天津)半导体材料有限公司 一种碳化硅石墨复合坩埚及其制备方法与应用
CN115974590A (zh) * 2023-03-22 2023-04-18 青禾晶元(天津)半导体材料有限公司 一种含碳化硅涂层的石墨复合坩埚及其制备方法与应用
CN115974587A (zh) * 2023-03-22 2023-04-18 青禾晶元(天津)半导体材料有限公司 一种改良石墨坩埚及其制备方法与应用

Also Published As

Publication number Publication date
EP3330240B1 (fr) 2022-07-06
FR3059663B1 (fr) 2019-01-25
FR3059663A1 (fr) 2018-06-08

Similar Documents

Publication Publication Date Title
EP3330240B1 (fr) Procede pour la siliciuration surfacique de graphite
EP2326607B1 (fr) Materiau a architecture multicouche, dedie a une mise en contact avec du silicium liquide
EP2632877B1 (fr) Procédé pour revêtir une pièce d'un revêtement de protection contre l'oxydation.
CA2586783C (fr) Bloc refractaire fritte a base de carbure de silicium a liaison nitrure de silicium
JP2018008870A (ja) 優れた硬度の窒化ケイ素含有剥離層
WO2014135700A1 (fr) Procede de preparation d'un revetement multicouche de ceramiques carbures sur, et eventuellement dans, une piece en un materiau carbone, par une technique d'infiltration reactive a l'etat fondu rmi
FR2935618A1 (fr) Procede pour former un revetement anti-adherent a base de carbure de silicium
EP1912917B1 (fr) Support de cuisson pour ceramiques et procede d'obtention
EP3046895A1 (fr) Substrat à revêtement peu perméable pour solidification de silicium
EP3227475B1 (fr) Creuset réutilisable pour la fabrication de matériau cristallin
WO2014068230A1 (fr) Creuset incorporant un revetement sialon
WO2015036975A1 (fr) Substrat pour la solidification de lingot de silicium
EP1391444B1 (fr) Procédé de fabrication d'un materiau réfractaire, revêtement protecteur susceptible d'être obtenu par ce procédé et leurs utilisations
FR2857009A1 (fr) Materiau ceramique a base de carbure de silicium pour utilisation dans des milieux agressifs
FR3122423A3 (fr) Materiau fritte dense de carbure de silicium a tres faible resistivite electrique
FR2690151A1 (fr) Carbone résistant à l'oxydation et procédé pour sa préparation.
WO2013175411A1 (fr) Procede de formation d'une couche de silicium epitaxiee
FR3003272A1 (fr) Creuset

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20181203

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20200428

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

RIC1 Information provided on ipc code assigned before grant

Ipc: C04B 41/89 20060101AFI20210519BHEP

Ipc: C04B 41/00 20060101ALI20210519BHEP

Ipc: C04B 41/52 20060101ALI20210519BHEP

Ipc: C30B 11/00 20060101ALI20210519BHEP

Ipc: C30B 35/00 20060101ALI20210519BHEP

Ipc: C04B 41/50 20060101ALI20210519BHEP

Ipc: C04B 35/573 20060101ALI20210519BHEP

Ipc: C04B 35/80 20060101ALI20210519BHEP

Ipc: C04B 41/87 20060101ALI20210519BHEP

Ipc: C30B 29/06 20060101ALI20210519BHEP

Ipc: C04B 111/00 20060101ALN20210519BHEP

RIC1 Information provided on ipc code assigned before grant

Ipc: C04B 41/89 20060101AFI20210607BHEP

Ipc: C04B 41/00 20060101ALI20210607BHEP

Ipc: C04B 41/52 20060101ALI20210607BHEP

Ipc: C30B 11/00 20060101ALI20210607BHEP

Ipc: C30B 35/00 20060101ALI20210607BHEP

Ipc: C04B 41/50 20060101ALI20210607BHEP

Ipc: C04B 35/573 20060101ALI20210607BHEP

Ipc: C04B 35/80 20060101ALI20210607BHEP

Ipc: C04B 41/87 20060101ALI20210607BHEP

Ipc: C30B 29/06 20060101ALI20210607BHEP

Ipc: C04B 111/00 20060101ALN20210607BHEP

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20210727

GRAJ Information related to disapproval of communication of intention to grant by the applicant or resumption of examination proceedings by the epo deleted

Free format text: ORIGINAL CODE: EPIDOSDIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

INTC Intention to grant announced (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

RIC1 Information provided on ipc code assigned before grant

Ipc: C04B 111/00 20060101ALN20211108BHEP

Ipc: C30B 29/06 20060101ALI20211108BHEP

Ipc: C04B 41/87 20060101ALI20211108BHEP

Ipc: C04B 35/80 20060101ALI20211108BHEP

Ipc: C04B 35/573 20060101ALI20211108BHEP

Ipc: C04B 41/50 20060101ALI20211108BHEP

Ipc: C30B 35/00 20060101ALI20211108BHEP

Ipc: C30B 11/00 20060101ALI20211108BHEP

Ipc: C04B 41/52 20060101ALI20211108BHEP

Ipc: C04B 41/00 20060101ALI20211108BHEP

Ipc: C04B 41/89 20060101AFI20211108BHEP

INTG Intention to grant announced

Effective date: 20211214

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1502784

Country of ref document: AT

Kind code of ref document: T

Effective date: 20220715

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602017059183

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: NO

Ref legal event code: T2

Effective date: 20220706

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20220706

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220706

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220706

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221107

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220706

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220706

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220706

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220706

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220706

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 1502784

Country of ref document: AT

Kind code of ref document: T

Effective date: 20220706

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220706

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221106

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220706

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221007

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602017059183

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220706

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220706

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220706

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220706

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220706

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220706

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220706

26N No opposition filed

Effective date: 20230411

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220706

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220706

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20221129

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20221130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20221130

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20221130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220706

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20221129

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20221129

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20221129

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20221130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220706

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NO

Payment date: 20231121

Year of fee payment: 7

Ref country code: FR

Payment date: 20231121

Year of fee payment: 7

Ref country code: DE

Payment date: 20231120

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20171129

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220706