EP3301302B1 - Spiralverdichter und klimatisierungsvorrichtung - Google Patents

Spiralverdichter und klimatisierungsvorrichtung Download PDF

Info

Publication number
EP3301302B1
EP3301302B1 EP16859450.5A EP16859450A EP3301302B1 EP 3301302 B1 EP3301302 B1 EP 3301302B1 EP 16859450 A EP16859450 A EP 16859450A EP 3301302 B1 EP3301302 B1 EP 3301302B1
Authority
EP
European Patent Office
Prior art keywords
passage
scroll
scroll compressor
lubricant oil
oil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP16859450.5A
Other languages
English (en)
French (fr)
Other versions
EP3301302A1 (de
EP3301302A4 (de
Inventor
Hajime Sato
Yoshiyuki Kimata
Yogo Takasu
Kazuki Takahashi
Taichi Tateishi
Takuma YAMASHITA
Akihiro KANAI
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Thermal Systems Ltd
Original Assignee
Mitsubishi Heavy Industries Thermal Systems Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Thermal Systems Ltd filed Critical Mitsubishi Heavy Industries Thermal Systems Ltd
Publication of EP3301302A1 publication Critical patent/EP3301302A1/de
Publication of EP3301302A4 publication Critical patent/EP3301302A4/de
Application granted granted Critical
Publication of EP3301302B1 publication Critical patent/EP3301302B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/02Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C23/00Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids
    • F04C23/008Hermetic pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C15/00Component parts, details or accessories of machines, pumps or pumping installations, not provided for in groups F04C2/00 - F04C14/00
    • F04C15/0088Lubrication
    • F04C15/0092Control systems for the circulation of the lubricant
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/02Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents
    • F04C18/0207Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents both members having co-operating elements in spiral form
    • F04C18/0215Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents both members having co-operating elements in spiral form where only one member is moving
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C28/00Control of, monitoring of, or safety arrangements for, pumps or pumping installations specially adapted for elastic fluids
    • F04C28/08Control of, monitoring of, or safety arrangements for, pumps or pumping installations specially adapted for elastic fluids characterised by varying the rotational speed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/02Lubrication; Lubricant separation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/02Lubrication; Lubricant separation
    • F04C29/021Control systems for the circulation of the lubricant
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/02Lubrication; Lubricant separation
    • F04C29/028Means for improving or restricting lubricant flow

Definitions

  • the present invention relates to a scroll compressor which compresses a fluid and an air-conditioning device.
  • JP H05-141201 A discloses a scroll compressor according to the preamble of claim 1.
  • a scroll compressor includes a fixed scroll and an orbiting scroll and the orbiting scroll orbits while being fitted to the fixed scroll to compress a fluid.
  • a scroll compressor in which a pressure in a housing in which the fixed scroll and the orbiting scroll are accommodated is lower than a discharge pressure, and in this scroll compressor, a force in a direction away from the fixed scroll is applied to the orbiting scroll by compressing a fluid.
  • a thrust bearing for supporting this force is installed. However, in the thrust bearing, a friction loss is caused when the orbiting scroll orbits, and there is a possibility that efficiency of the scroll compressor is decreased due to the friction loss.
  • An object of the present invention is to prevent an efficiency of a scroll compressor from decreasing.
  • a scroll compressor including: a housing; a partitioning member which divides an interior space of the housing into a first chamber and a second chamber; a scroll compression mechanism which includes a fixed scroll and an orbiting scroll disposed in the first chamber and compresses a refrigerant between the fixed scroll and the orbiting scroll to cause the compressed refrigerant to flow into the second chamber; a rotary shaft which is a rod-shaped member, includes an oil supply passage which extends in a longitudinal direction of the rod-shaped member and through which lubricant oil passes, and causes the orbiting scroll disposed on an outlet side of the oil supply passage to orbit; a back pressure chamber which is disposed on the rotary shaft side of the orbiting scroll and into which the lubricant oil flowing out from the oil supply passage flows; an oil drain passage through which the lubricant oil flowing into the back pressure chamber passes; and a flow control mechanism which changes a flow rate of the lubricant oil flowing through the oil drain passage.
  • the pressure in the back pressure chamber increases by changing the flow rate of the lubricant oil flowing out from the inside of the back pressure chamber through the oil drain passage, and a force from the orbiting scroll toward the fixed scroll is generated on a rear surface of the orbiting scroll.
  • a portion of a force which is applied to the orbiting scroll and is in a direction away from the fixed scroll is canceled out by the force generated on the rear surface of the orbiting scroll, and thus, a loss due to a friction generated when the orbiting scroll orbits in a thrust bearing is decreased.
  • the flow control mechanism changes, as described in the independent claim 1, the flow rate of the lubricant oil flowing through the oil drain passage based on an orbital speed of the orbiting scroll. In this way, the force from the orbiting scroll toward the fixed scroll can be adjusted according to the orbital speed.
  • the flow control mechanism increases the flow rate of the lubricant oil flowing through the oil drain passage when the orbital speed of the orbiting scroll is high compared to when the orbital speed of the orbiting scroll is low.
  • the scroll compressor includes an oil supply pump which supplies the lubricant oil to the back pressure chamber.
  • energy for driving the oil supply pump increases.
  • the flow rate of the lubricant oil flowing through the oil drain passage increases when the orbital speed of the orbiting scroll is high, and thus, energy for driving the oil supply pump is prevented from increasing.
  • the flow control mechanism increases the flow rate of the lubricant oil flowing through the oil drain passage in a case where the orbital speed of the orbiting scroll is larger than a threshold value compared to a case where the orbital speed of the orbiting scroll is equal to or smaller than the threshold value, and the threshold value is equal to or larger than an orbital speed equivalent to a case where the scroll compressor is operated with a capacity of 1/2 of a rated operation and may be equal to or smaller than an orbital speed equivalent to a case where the scroll compressor is operated with the capacity of the rated operation. Accordingly, it is possible to effectively prevent the efficiency of the scroll compressor from decreasing.
  • the flow control mechanism may change the flow rate of the lubricant oil flowing through the oil drain passage based on at least one of a pressure of the refrigerant and a temperature of the lubricant oil. Accordingly, a change in an environment where the scroll compressor is used can be considered when the force from the fixed scroll toward the orbiting scroll is decreased, and thus, it is possible to adjust the force which is applied to the orbiting scroll and is in the direction away from the fixed scroll according to the change in the environment.
  • a passage sectional area of the oil drain passage may be larger than a passage sectional area of the oil supply passage. According to this structure, a pressure loss of the oil drain passage can be smaller than a pressure loss of the oil supply passage, and thus, it is possible to increase the pressure in the back pressure chamber by the flow control mechanism.
  • the scroll compressor may further include a bypass passage through which the lubricant oil in the back pressure chamber flows to bypass the flow control mechanism, in which a passage sectional area of the bypass passage may be smaller than the passage sectional area of the oil supply passage. According to this structure, it is possible to adjust the pressure in the back pressure chamber when the oil drain passage is closed.
  • the scroll compressor may further include a bypass passage through which the lubricant oil in the back pressure chamber flows to bypass the flow control mechanism, in which the bypass passage may include a member provided with a passage having a passage sectional area which is smaller than the passage sectional area of the oil drain passage. According to this structure, it is possible to adjust the pressure in the back pressure chamber when the oil drain passage is closed.
  • the scroll compressor may further include a positive-displacement oil supply pump which supplies the lubricant oil to the back pressure chamber via the oil supply passage.
  • a positive-displacement oil supply pump which supplies the lubricant oil to the back pressure chamber via the oil supply passage.
  • the flow control mechanism may set the flow rate of the lubricant oil flowing through the oil drain passage to be larger than 0 while the orbiting scroll orbits.
  • the lubricant oil can be supplied to a sliding portion such as a slide bush or a thrust bearing during the operation of the scroll compressor, and thus, the sliding portion can be lubricated.
  • an air-conditioning device including: a condenser which condenses a refrigerant; an evaporator which evaporates the refrigerant condensed by the condenser; and a scroll compressor which compresses the refrigerant evaporated by the evaporator.
  • the air-conditioning device of the present invention includes the scroll compressor of the present invention, and thus, it is possible to prevent the efficiency from decreasing.
  • Fig. 1 is an overall sectional view showing a scroll compressor 1 according to a first embodiment.
  • Fig. 1 shows the scroll compressor 1 which compresses a sucked fluid, in the present embodiment, a refrigerant, and discharges the compressed refrigerant.
  • the scroll compressor 1 is provided in a refrigerant flow path through which the refrigerant which is the fluid circulates in an air-conditioning device or a refrigerator.
  • the scroll compressor 1 includes a motor 5 which is a drive device of the scroll compressor 1 and a scroll compression mechanism 7 which is driven by the motor 5 in an interior space of a housing 3.
  • the housing 3 includes a tubular housing main body 3a which vertically extends, a bottom portion 3b which closes a lower end of the housing main body 3a, and a cover portion 3c which closes an upper end of the housing main body 3a.
  • the housing 3 is a pressure container whose entirety is sealed.
  • a suction pipe 9 through which the refrigerant is introduced into the housing 3 is provided on the side portion of the housing main body 3a.
  • a discharge pipe 11 through which the refrigerant compressed by the scroll compression mechanism 7 is discharged is provided on the upper portion of the cover portion 3c.
  • a discharge cover 13 is provided between the housing main body 3a and the cover portion 3c, and the interior space of the housing 3 is divided into a low-pressure chamber 3A which is a first chamber positioned below the discharge cover 13 which is a partitioning member and a high-pressure chamber 3B which is a second chamber positioned above the discharge cover 13. Even in a case where the discharge cover 13 is not provided in the housing 3, the fixed scroll 33 and the upper bearing 21 function as the partitioning member.
  • the discharge cover 13 includes an opening hole 13a through which the low-pressure chamber 3A and the high-pressure chamber 3B communicate with each other.
  • a discharge reed valve 13b which opens and closes the opening hole 13a is provided in the discharge cover 13.
  • An oil reservoir in which the lubricant oil is stored is formed on the bottom in the housing 3.
  • the motor 5 includes a stator 15 and a rotor 17.
  • the stator 15 is fixed to an inner wall surface at an approximately intermediate portion in a vertical direction of the housing main body 3a.
  • the rotor 17 is rotatably provided to the stator 15.
  • a rotary shaft 19 is disposed above and below the rotor 17 in the longitudinal direction. Power is supplied to the motor 5 from the outside of the housing 3 to rotate the rotor 17, and thus, the rotor 17 and the rotary shaft 19 are rotated.
  • the rotary shaft 19 is a rod-shaped member which causes an orbiting scroll 35 of the scroll compression mechanism 7 to orbit.
  • the rotary shaft 19 is provided such that end portions protrude upward and downward from the rotor 17, and an upper end portion of the rotary shaft 19 is rotatably supported on the housing main body 3a by an upper bearing 21 and a lower end portion thereof is rotatably supported on the housing main body 3a by a lower bearing 23 about an axis CE extending in the vertical direction.
  • the axis CE is a longitudinal direction of the rotary shaft 19 which is a rod-shaped member.
  • an eccentric pin 25 which protrudes upward along an eccentricity LE eccentric to the axis CE is formed on an upper end of the rotary shaft 19.
  • the scroll compression mechanism 7 is connected to the upper end of the rotary shaft 19 having the eccentric pin 25.
  • the rotary shaft 19 and the eccentric pin 25 has an oil supply passage 27 which extends up and down, that is, in the longitudinal direction of the rotary shaft 19 on the insides of the rotary shaft 19 and the eccentric pin 25.
  • the oil supply passage 27 penetrates the rotary shaft 19 from one end toward the other end.
  • the oil supply passage 27 and the rotary shaft 19 are provided such that lower ends thereof reach the oil reservoir, and an oil supply pump 29 is provided on the lower end of the rotary shaft 19.
  • the oil supply pump 29 is driven by the rotary shaft 19.
  • the oil supply pump 29 feeds the lubricant oil stored in the oil reservoir to the oil supply passage 27 of the rotary shaft 19 according to the rotation of the rotary shaft 19.
  • the lubricant oil fed by the oil supply pump 29 passes through the oil supply passage 27 and flows out from an outlet 27H which is provided on the end portion on the scroll compression mechanism 7 side.
  • the oil supply pump 29 increases a flow rate of the discharged lubricant oil according to an increase in a rotational speed of the rotary shaft 19, that is, a rotational speed of the motor 5.
  • the oil supply pump 29 is a positive-displacement pump and a centrifugal pump.
  • the present invention is not limited to this.
  • the positive-displacement pump as the oil supply pump 29, it is possible to relatively easily increase the pressure of the lubricant oil in the back pressure chamber 50 even in a case where an oil drain passage 21c is narrowed.
  • the upper end portion of the rotary shaft 19 penetrates the upper bearing 21, and thus, the upper bearing rotatably supports the rotary shaft 19.
  • a recessed portion 21a is formed on an upper surface of the upper bearing 21 to surround an upper end portion of the rotary shaft 19 penetrating the upper bearing 21.
  • a slide bush 37 described later is accommodated in the recessed portion 21a, and the lubricant oil fed via the oil supply passage 27 by the oil supply pump 29 is stored in the recessed portion 21a.
  • a notch 21b is formed on a portion of an outer periphery to have a gap between an inner wall surface of the housing main body 3a of the housing 3 and the upper bearing 21, and the oil drain passage 21c which communicates with the notch 21b and the recessed portion 21a is formed.
  • a cover plate 31 is provided below the notch 21b of the upper bearing 21.
  • the cover plate 31 is provided to extend in the vertical direction.
  • the cover plate 31 is formed such that both side ends are curved toward the inner wall surface of the housing main body 3a so as to cover the vicinity of the notch 21b, and is formed such that a lower end of the cover plate 31 is gradually bent toward the inner wall surface of the housing main body 3a.
  • the lubricant oil excessively stored in the recessed portion 21a flows to the recovery passage 51 through the oil drain passage 21c.
  • the lubricant oil flowing through the recovery passage 51 is returned to a bottom oil reservoir in the housing 3.
  • the scroll compression mechanism 7 is disposed above the upper bearing 21 in the low-pressure chamber 3A below the discharge cover 13, and includes a fixed scroll 33, an orbiting scroll 35, and a slide bush 37.
  • a spiral fixed wrap 33b is formed on an inner surface (lower surface in Fig. 1 ) of the fixed end plate 33a fixed to the interior space of the housing 3.
  • a discharge hole 33c is formed at the center portion of the fixed end plate 33a.
  • a spiral movable wrap 35b is formed on an inner surface (upper surface in Fig. 1 ) of a movable end plate 35a facing the inner surface of the fixed end plate 33a in the fixed scroll 33.
  • the movable wrap 35b of the orbiting scroll 35 and the fixed wrap 33b of the fixed scroll 33 mesh with each other with their phases shifted from each other, and thus, a compression chamber which is portioned by the fixed end plate 33a, the movable end plate 35a, the fixed wrap 33b, and the movable wrap 35b is formed.
  • a cylindrical boss 35c to which the eccentric pin 25 of the rotary shaft 19 is connected and an eccentric rotation of the eccentric pin 25 is transmitted is formed on the outer surface (lower surface in Fig. 1 ) of the movable end plate 35a.
  • the boss 35c is disposed on the outlet 27H side of the oil supply passage 27 included in the rotary shaft 19.
  • the outlet 27H of the oil supply passage 27 faces the movable end plate 35a of the orbiting scroll 35.
  • the orbiting scroll 35 is revolved while being prevented from rotating on the basis of the eccentric rotation of the eccentric pin 25 by a rotation prevention mechanism 39 such as an Oldham link disposed between the outer surface of the movable end plate 35a and the upper bearing 21.
  • the slide bush 37 is accommodated in the recessed portion 21a of the above-described upper bearing 21, is interposed between the eccentric pin 25 of the rotary shaft 19 and the boss 35c of the orbiting scroll 35, and transmits the rotation of the eccentric pin 25 to the orbiting scroll 35.
  • the recessed portion 21a in which the slide bush 37 is accommodated is appropriately referred to as a bush chamber 21a.
  • the slide bush 37 is provided to be slidable in a radial direction of the eccentric pin 25 to maintain meshing between the movable wrap 35b of the orbiting scroll 35 and the fixed wrap 33b of the fixed scroll 33.
  • a space formed by a rear surface 35ab of the orbiting scroll 35 that is, a surface facing the upper bearing 21 of the movable end plate 35a, the bush chamber 21a, and the upper bearing 21 is referred to as a back pressure chamber 50.
  • the back pressure chamber 50 is disposed between the orbiting scroll 35 and the upper bearing 21 which rotatably supports the rotary shaft 19 on the orbiting scroll 35 side.
  • the lubricant oil passing through the oil supply passage 27 from the outlet 27H of the oil supply passage 27 included in the rotary shaft 19 flows into the bush chamber 21a forming the back pressure chamber 50. That is, the lubricant oil flowing out from the oil supply passage 27 flows into the back pressure chamber 50.
  • the lubricant oil flowing into the back pressure chamber 50 passes through the above-described oil drain passage 21c and is discharged from the back pressure chamber 50.
  • a pressure in the low-pressure chamber 3A is the same as a suction pressure which is a pressure by which the scroll compression mechanism 7 sucks the refrigerant
  • the orbiting scroll 35 of the scroll compression mechanism 7 receives a force in a direction away from the fixed scroll 33 by the refrigerant during compression of the refrigerant.
  • this force is appropriately referred to as a thrust force.
  • This force is supported by a thrust bearing 40 installed on the upper surface of the upper bearing 21.
  • This thrust force is applied to the thrust bearing 40, and thus, when the orbiting scroll 35 orbits, a loss is caused by a friction between the rear surface 35ab of the orbiting scroll 35 and the thrust bearing 40.
  • the loss caused by the friction is appropriately referred to as a thrust loss.
  • the scroll compressor 1 causes the lubricant oil passing through the oil supply passage 27 of the rotary shaft 19 to flow into the back pressure chamber 50, and restrains a flow rate of the lubricant oil flowing out from the back pressure chamber 50 through the oil drain passage 21c, that is, a flow rate of the lubricant oil passing through the oil drain passage 21c.
  • the pressure of the lubricant oil in the back pressure chamber 50 is larger than the suction pressure of the scroll compression mechanism 7, that is, the pressure in the low-pressure chamber 3A, and thus, the thrust force applied to the scroll compression mechanism 7 is decreased by the lubricant oil in the back pressure chamber 50.
  • the thrust loss decreases.
  • the recovery passage 51 is a passage which is connected to the oil drain passage 21c and the oil supply pump 29 side of the housing main body 3a. In the present embodiment, the recovery passage 51 is disposed outside the housing 3. However, the recovery passage 51 may be disposed inside the housing 3.
  • the oil reservoir 3bt is disposed on the side to which gravity is applied.
  • a lower portion of the scroll compressor 1 is the oil reservoir 3bt side, that is, the bottom portion 3b side, and an upper portion of the scroll compressor 1 is the cover portion 3c side. This is similarly applied to the following embodiments.
  • a flow control mechanism is provided in the recovery passage 51.
  • the flow control mechanism is a mechanism which changes the flow rate of the lubricant oil flowing through the oil drain passage 21c, and in the present embodiment, is a valve 52.
  • the valve 52 has a mechanism which changes an area of a portion through which the lubricant oil passes.
  • there is an on/off valve or a flow regulating valve. Opening, closing, and an opening degree of the valve 52 are controlled by a control device 53.
  • an electromagnetic valve is used as the valve 52.
  • the control device 53 is a computer having a processor and a memory.
  • the control device 53 may be a control device of the air-conditioning device on which the scroll compressor 1 is mounted or may be a dedicated device for controlling the operation of the valve 52.
  • the flow rate of the lubricant oil flowing through the recovery passage 51 is changed by opening or closing the valve 52 or adjusting the opening degree thereof, and thus, it is possible to change the flow rate of the lubricant oil flowing through the oil drain passage 21c connected to an upstream side in a flow direction of the lubricant oil flowing through the recovery passage 51.
  • the valve 52 is provided in the recovery passage 51.
  • the valve 52 may be provided in the oil drain passage 21c.
  • the valve 52 may be provided between an inlet of the oil drain passage 21c and an inlet of the oil supply pump 29.
  • the valve 52 may be provided between the inlet of the oil drain passage 21c and an outlet of the recovery passage 51.
  • the flow rate of the lubricant oil flowing through the oil drain passage 21c also becomes smaller than that of the current state. Accordingly, the lubricant oil in the back pressure chamber 50 increases, and the inside of the back pressure chamber 50 is filled with the lubricant oil. Therefore, the pressure in the back pressure chamber 50 increases, the orbiting scroll 35 receives a force in a direction away from the upper bearing 21, that is, a force from the orbiting scroll 35 toward the fixed scroll 33, by the pressure from the back pressure chamber 5.
  • this force is appropriately referred to as an anti-thrust force.
  • This anti-thrust force is applied in a direction opposite to that of the thrust force, and thus, decreases the thrust force. That is, in a case where the flow rate of the lubricant oil flowing through the oil drain passage 21c is smaller than that of the current state, the thrust force decreases, and thus, a thrust loss decreases. As a result, the efficiency of the scroll compressor 1 is prevented from decreasing.
  • the surplus of the lubricant oil flows to a portion between the upper bearing 21 and the orbiting scroll 35.
  • the lubricant oil flows into the compression chamber along with the refrigerant, an oil film is formed inside the scroll compression mechanism 7 to improve sealing performance, and thus, it is possible to suppress a decrease in efficiency of the scroll compressor 1. That is, the lubricant oil flowing to the portion between the upper bearing 21 and the orbiting scroll 35 from the back pressure chamber 50 improves the sealing performance of the refrigerant in the scroll compression mechanism 7.
  • the thrust loss is decreased, and performance of sealing the refrigerant in the scroll compression mechanism 7 is improved.
  • the efficiency of the scroll compressor 1 is further prevented from decreasing.
  • the anti-thrust force is generated by changing the flow rate of the lubricant oil flowing through the oil drain passage 21c, that is, the flow rate of the lubricant oil flowing out from the back pressure chamber 50, and thus, the thrust force is decreased and the thrust loss is decreased.
  • the anti-thrust force is increased by decreasing the flow rate of the lubricant oil flowing through the oil drain passage 21c.
  • the anti-thrust force is generated by setting the flow rate of the lubricant oil flowing through the oil drain passage 21c to 0, that is, by completely closing the valve 52.
  • the flow rate of the lubricant oil flowing through the oil drain passage 21c may not be set to 0.
  • the valve 52 may increase the flow rate of the lubricant oil flowing through the oil drain passage 21c to be greater than 0.
  • the lubricant oil can be reliably supplied to a sliding portion such as a bearing, and thus, it is possible to reliably lubricate the sliding portion.
  • a passage sectional area of the oil drain passage 21c is not limited.
  • the passage sectional area may be equal to or larger than a passage sectional area of the oil supply passage 27 included in the rotary shaft 19.
  • a pressure loss of the oil drain passage 21c can be smaller than a pressure loss of the oil supply passage 27, and thus, it is possible to reliably increase the pressure in the back pressure chamber 50 by the valve 52.
  • the valve 52 is fully open, it is possible to reliably discharge the lubricant oil in the back pressure chamber 50 from the oil drain passage 21c.
  • the valve 52 changes the flow rate of the lubricant oil flowing through the oil drain passage 21c based on the orbital speed of the orbiting scroll 35, that is, the rotational speed of the motor 5. For example, in a case where the orbital speed of the orbiting scroll 35 is larger than a threshold value, the valve 52 increases the flow rate of the lubricant oil flowing through the oil drain passage 21c compared to a case where the orbital speed is equal to or smaller than the threshold value.
  • the valve 52 decreases the flow rate of the lubricant oil flowing through the oil drain passage 21c compared to the case where the orbital speed of the orbiting scroll 35 is larger than the threshold value.
  • the flow rate of the lubricant oil flowing through the oil drain passage 21c becomes 0. In this way, in the case where the orbital speed of the orbiting scroll 35 is larger than the threshold value, the flow rate of the lubricant oil flowing through the oil drain passage 21c increases, and thus, drive power of the oil supply pump 29 is prevented from increasing.
  • the threshold value of the orbital speed is set to 1/2 of the maximum orbital speed of the orbiting scroll 35.
  • the threshold value may be 1/3 or 1/4 thereof.
  • the threshold value may be an orbital speed which is most frequently used in the scroll compressor 1.
  • the threshold value of the orbital speed may be equal to or larger than an orbital speed equivalent to a case where the scroll compressor 1 is operated with capacity of 1/2 of a rated operation or may be equal to or smaller than an orbital speed equivalent to a case where the scroll compressor 1 is operated with capacity of the rated operation. In a case where the threshold value is set to this range, the efficiency of the scroll compressor 1 is effectively prevented from decreasing.
  • the sealing performance of the scroll compression mechanism 7 decreases.
  • the amount of the lubricant oil flowing to the portion between the upper bearing 21 and the orbiting scroll 35 from the inside of the back pressure chamber 50 increases, and thus, the sealing performance of the scroll compression mechanism 7 is improved. As a result, the efficiency of the scroll compression mechanism 7 is prevented from decreasing.
  • the scroll compressor 1 is used in an air-conditioning device.
  • the air-conditioning device a period in which the air-conditioning device is operated under a condition of a lower output than the rated operation is longer than the period of the rated operation, preventing efficiency under such conditions from decreasing leads to preventing the efficiency from decreasing throughout the year.
  • the orbital speed of the orbiting scroll 35 of the scroll compressor 1 is lower than the orbital speed of the orbiting scroll 35 when the rated operation is performed.
  • the valve 52 is closed to decrease the flow rate of the lubricant oil flowing through the oil drain passage 21c.
  • the scroll compressor 1 prevents the efficiency of the air-conditioning device from decreasing in a period in which the air-conditioning device is operated under a condition of a lower output than the output of the rated operation, and thus, it is possible to prevent the efficiency from decreasing throughout the year.
  • valve 52 decreases the flow rate of the lubricant oil flowing through the oil drain passage 21c compared to when the rotational speed of the orbiting scroll 35 is high, and thus, it is possible to prevent the efficiency of the scroll compressor 1 from decreasing.
  • Fig. 2 is a diagram showing a relationship between the opening degree of the valve 52 included in the scroll compressor 1 according to the first embodiment and the orbital speed of the orbiting scroll 35 included in the scroll compressor 1.
  • the opening degree is changed as the orbital speed of the orbiting scroll 35 increases, and in the present embodiment, the opening degree may increase. That is, the flow rate of the lubricant oil flowing through the oil drain passage 21c may increase as the orbital speed of the orbiting scroll 35 increases.
  • the opening degree of the valve 52 increases in a range of the orbital speed from N1 to N2. In this way, the flow rate of the lubricant oil flowing through the oil drain passage 21c can be optimally adjusted in the entire operation region of the scroll compressor 1, and thus, it is possible to further prevent the efficiency of the scroll compressor 1 from decreasing.
  • the flow rate of the lubricant oil flowing through the oil drain passage 21c may be changed based on at least one of the pressure of the refrigerant and the temperature of the lubricant oil in addition to the orbital speed of the orbiting scroll 35.
  • the pressure of the refrigerant a pressure difference between the discharge pressure of the refrigerant discharged from the scroll compressor 1 and the suction pressure of the refrigerant sucked into the scroll compressor 1 can be used.
  • the pressure difference of the refrigerant increases as the rotational speed of the orbiting scroll 35 increases. Accordingly, for example, it is possible to increase the opening degree of the valve 52, that is, it is possible to increase the flow rate of the lubricant oil flowing through the oil drain passage 21c as the pressure difference of the refrigerant increases.
  • the temperature of the lubricant oil is the temperature of the lubricant oil in the oil reservoir 3bt.
  • the valve 52 can change the flow rate of the lubricant oil flowing through the oil drain passage 21c based on at least one of the rotational speed of the orbiting scroll 35, the pressure of the refrigerant, and the temperature of the lubricant oil.
  • the flow rate of the lubricant oil flowing through the oil drain passage 21c is changed based on the rotational speed of the orbiting scroll 35, and the flow rate of the lubricant oil flowing through the oil drain passage 21c is changed based on at least one of the pressure of the refrigerant and the temperature of the lubricant oil.
  • one oil drain passage 21c may be provided, and the number of the oil drain passages 21c may not be limited.
  • the valve 52 is provided in each of the oil drain passages 21c, and the opening, the closing, or the opening degree of the valve 52 may be adjusted based on at least one of an operation conditions and an environment condition of the scroll compressor 1. Accordingly, the thrust force can be decreased in the entire operation region of the scroll compressor 1, a change in the environment where the scroll compressor 1 is used can be considered in the decrease of the thrust force, and thus, it is possible to further prevent the efficiency of the scroll compressor 1 from decreasing.
  • the flow rate of the lubricant oil flowing through the oil drain passage 21c may be adjusted based on the pressure of the lubricant oil in the back pressure chamber 50.
  • the opening degree of the valve 52 may be changed such that the pressure of the lubricant oil in the back pressure chamber 50 becomes a predetermined value.
  • the anti-thrust force having a constant magnitude is generated, and thus, it is possible to decrease the thrust loss.
  • a value which is detected by a pressure sensor provided in the oil drain passage 21c can be used as the pressure in the back pressure chamber 50.
  • the recovery passage 51 is disposed outside the housing 3. According to this configuration, the valve 52 is easily provided in the recovery passage 51. In addition, preferably, a degree of freedom in the disposition of the valve 52 is improved.
  • the recovery passage 51 and the valve 52 may be disposed inside the housing 3.
  • the pressure in the back pressure chamber 50 increases, and thus, the anti-thrust force is generated.
  • a portion of the thrust force is canceled out by the anti-thrust force generated, and thus, the thrust loss decreases, and the efficiency of the scroll compressor 1 is prevented from decreasing.
  • Fig. 3 is a partial sectional view of the scroll compressor 1a according to a second embodiment.
  • the scroll compressor 1a includes a bypass passage 21d through which the lubricant oil in the back pressure chamber 50 flows to bypass the valve 52 which is the flow control mechanism.
  • the bypass passage 21d is a passage branching off from the oil drain passage 21c, and the lubricant oil flowing out from the oil drain passage 21c bypasses the valve 52 and flows through the bypass passage 21d.
  • Other structures are similar to those of the scroll compressor 1 of the first embodiment.
  • the oil drain passage 21c and the bypass passage 21d are provided in the upper bearing 21.
  • the bypass passage 21d is provided inside the housing 3.
  • the valve 52 which is the flow control mechanism is not provided in the bypass passage 21d.
  • the recovery passage 51 in which the valve 52 is provided is disposed outside the housing 3.
  • the recovery passage 51 penetrates the housing 3 and is connected to the oil drain passage 21c.
  • a sectional shape of the bypass passage 21d is not limited, and for example, may be any one of a circular shape, an elliptical shape, or a polygonal shape. This is similarly applied to the following.
  • the lubricant oil flowing out from the bypass passage 21d passes through a passage 54 between the cover plate 31 and the inside of the housing main body 3a, and thereafter, flows into the oil reservoir 3bt shown in Fig. 1 .
  • the lubricant oil passing through the recovery passage 51 and the valve 52 flows into the housing main body 3a, and thereafter, flows into the oil reservoir 3bt shown in Fig. 1 .
  • a passage sectional area of the bypass passage 21d is smaller than a passage sectional area of the oil supply passage 27 included in the rotary shaft 19 and a passage sectional area of the oil drain passage 21c.
  • the bypass passage 21d is provided in the oil drain passage 21c, and thus, the lubricant oil in the oil drain passage 21c flows through the bypass passage 21d when the valve 52 is closed. Accordingly, compared to a case where the bypass passage 21d is not provided, it is possible to decrease the pressure in the back pressure chamber 50.
  • Fig. 4 is a diagram showing a relationship between efficiency ⁇ of the scroll compressor 1a and a magnitude ⁇ P of increasing the pressure in the back pressure chamber 50. It is possible to adjust the pressure in the back pressure chamber 50 when the valve 52 is closed by changing the passage sectional area of the bypass passage 21d. As shown in Fig. 4 , as an example, the passage sectional area of the bypass passage 21d is adjusted such that the magnitude ⁇ P of increasing the pressure in the back pressure chamber 50 by the lubricant oil supplied into the back pressure chamber 50 from the oil supply pump 29 is from 0.02 MPa to 0.5 MPa or from 0.05 MPa to 0.3 MPa. The pressure in the back pressure chamber 50 is adjusted by adjusting the passage sectional area of the bypass passage 21d, and thus, it is possible to maximize the efficiency ⁇ of the scroll compressor 1a.
  • bypass passage 21d penetrates the upper bearing 21 from the motor 5 side toward the oil drain passage 21c.
  • the bypass passage 21d may be an orifice or a capillary.
  • Fig. 5 is a partial sectional view of a scroll compressor 1b according to a first modification example of the second embodiment.
  • the scroll compressor 1b has a structure similar to that of the scroll compressor 1a according to the second embodiment except that the bypass passage 21e has a first bypass passage 21e1 and a second bypass passage 21e2.
  • Other structures are similar to those of the scroll compressor 1a according to the second embodiment.
  • the first bypass passage 21e1 extends in a direction parallel to the axis CE of the rotary shaft 19 from the oil drain passage 21c.
  • the second bypass passage 21e2 extends through the inside of the upper bearing 21 toward the outside of the rotary shaft 19 in the radial direction and is open to the surface of the upper bearing 21.
  • the first bypass passage 21e1 is connected to the second bypass passage 21e2. According to this structure, a portion of the lubricant oil flowing through the inside of the oil drain passage 21c branches off to flow through the bypass passage 21e and flows into the housing main body 3a of the housing 3. The flow of the lubricant oil thereafter is similar to that of the scroll compressor 1a according to the second embodiment.
  • Fig. 6 is a partial sectional view of a scroll compressor 1c according to a second modification example of the second embodiment.
  • the scroll compressor 1c has a structure similar to that of the scroll compressor 1a according to the second embodiment except that the bypass passage 21f is provided in a pipe 55 which connects the upper bearing 21 and the outside of the housing main body 3a of the housing 3 to each other.
  • Other structures are similar to those of the scroll compressor 1a according to the second embodiment.
  • the pipe 55 is disposed between the recovery passage 51 and the oil drain passage 21c.
  • the pipe 55 connects the recovery passage 51 and the oil drain passage 21c to each other.
  • the bypass passage 21f is a hole which penetrates a side portion 55S of the pipe 55. According to this structure, a portion of the lubricant oil flowing through the inside of the oil drain passage 21c branches off to flow through the bypass passage 21f and flows into the housing main body 3a of the housing 3. The flow of the lubricant oil thereafter is similar to that of the scroll compressor 1a according to the second embodiment.
  • the bypass passage 21f of the scroll compressor 1c can be formed by only drilling the side portion 55S of the pipe 55, and thus, the bypass passage 21f is easily manufactured.
  • Fig. 7 is a partial sectional view of a scroll compressor 1d according to a third modification example of the second embodiment.
  • the scroll compressor 1d has a structure similar to that of the scroll compressor 1a according to the second embodiment.
  • a member 56 having a through-hole 56H is attached to the bypass passage 21g.
  • the bypass passage 21g of the third modification example penetrates the upper bearing 21 from the back pressure chamber 50 to the surface on the outside of the upper bearing 21 in the radial direction.
  • the bypass passage 21g is open to a portion of the notch 21b which is formed on a portion of the outer periphery of the upper bearing 21.
  • the member 56 is a rod-shaped member, and for example, is a bolt.
  • the member 56 is screwed to a female screw formed on a side of the bypass passage 21g opposite to the back pressure chamber 50 and is attached to the bypass passage 21g.
  • the through-hole 56H included in the member 56 penetrates the member 56 in a longitudinal direction of the member 56.
  • a sectional shape of the through-hole 56H is not limited to a circular shape and may be an elliptical shape or a polygonal shape.
  • the lubricant oil passing through the bypass passage 21g flows through the through-hole 56H.
  • the through-hole 56H is a passage through which a liquid, in the present modification example, the lubricant oil flows.
  • the member 56 includes a passage through which the lubricant oil flows.
  • the lubricant oil flowing out from the bypass passage 21g passes through the through-hole 56H of the member 56 and flows from the portion of the notch 21b of the upper bearing 21 into the housing main body 3a of the housing 3 without passing through the valve 52. In this way, the lubricant oil flowing out from the bypass passage 21g bypasses the valve 52 and flows into the housing main body 3a of the housing 3.
  • a passage sectional area of the through-hole 56H is smaller than a passage sectional area of the bypass passage 21g. Accordingly, a pressure loss of the through-hole 56H is larger than a pressure loss of the bypass passage 21g, and thus, the pressure in the back pressure chamber 50 can be increased when the valve 52 is closed, compared with only the bypass passage 21g.
  • By exchanging members 56 with different passage sectional areas of the through-hole 56H it is possible to change the pressure in the back pressure chamber 50 when the valve 52 is closed, and thus, the anti-thrust force is easily adjusted.
  • bypass passages 21d, 21e, and 21f of the second embodiment, the first modification example, and the second modification example branch off from the oil drain passage 21c.
  • the oil drain passage 21c and the bypass passage 21g are provided at positions of the upper bearing 21 different from each other in the circumferential direction. In this way, the bypass passage 21g may not branch off from the oil drain passage 21c as long as the bypass passage 21g can cause the lubricant oil in the back pressure chamber 50 to flow through the bypass passage 21g to bypass the valve 52.
  • degrees of freedom in the depositions of the recovery passage 51 and the valve 52 are improved.
  • Fig. 8 is a partial sectional view of a scroll compressor 1e according to a fourth modification example of the second embodiment.
  • the scroll compressor 1e has a structure similar to that of the scroll compressor 1d according to the third modification example except that a member 57 having grooves 57S is attached to a bypass passage 21h branching off from the oil drain passage 21c.
  • the bypass passage 21h of the third modification example penetrates the upper bearing 21 from the back pressure chamber 50 to the surface on the outside of the upper bearing 21 in the radial direction.
  • the bypass passage 21h is open to the portion of the notch 21b formed on a portion of the outer periphery of the upper bearing 21.
  • the member 57 is a rod-shaped member and includes the grooves 57S on the side surface.
  • the grooves 57S are spirally formed on the surface of the member 57.
  • the member 57 is inserted into the bypass passage 21h from an opening portion of the bypass passage 21h on the notch 21b side.
  • the grooves 57S of the member 57 spirally extend from a first end portion of the member 57 to a second end portion thereof.
  • the number of grooves 57S is not limited.
  • the lubricant oil that has passed flows to a portion between the grooves 57S and the bypass passage 21h and flows out from the opening portion of the bypass passage 21h on the notch 21b side.
  • the grooves 57S are a passage through which a liquid, in the present modification example, the lubricant oil flows.
  • the member 57 is a passage through which the lubricant oil flows.
  • the lubricant oil flowing out from the bypass passage 21h passes through the grooves 57S of the member 57 and flows from the portion of the notch 21b of the upper bearing 21 into the housing main body 3a of the housing 3 without passing through the valve 52. In this way, the lubricant oil flowing out from the bypass passage 21h bypasses the valve 52 and flows into the housing main body 3a of the housing 3.
  • a passage sectional area of the groove 57S is smaller than a passage sectional area of the bypass passage 21h. Accordingly, a pressure loss of the groove 57S is larger than a pressure loss of the bypass passage 21h, and thus, the pressure in the back pressure chamber 50 can be increased when the valve 52 is closed, compared with only the bypass passage 21h.
  • the bypass passages 21d, 21e, 21f, 21g, and 21h are provided, through which the lubricant oil in the back pressure chamber 50 flows to bypass the valve 52 which is an example of the flow control mechanism.
  • the pressure in the back pressure chamber 50 can decrease compared to when the valve 52 is closed, and thus, the anti-thrust force is easily adjusted.
  • Fig. 9 is a view showing an example of an air-conditioning device 100 according to a third embodiment.
  • the air-conditioning device 100 includes an outdoor unit 101 and an indoor unit 102.
  • the outdoor unit 101 includes the scroll compressor 1 which is driven by a motor 111 and compresses a refrigerant and a condenser 104 which condenses the refrigerant compressed by the scroll compressor 1.
  • the scroll compressor 1 is the scroll compressor of the first embodiment. However, the scroll compressor 1 may be those of the second embodiment and the modification examples thereof.
  • the outdoor unit 101 further includes a blower 108 which blows air to the condenser 104.
  • the blower 108 includes a motor 108M and an impeller 108B which is driven by the motor 108M.
  • the scroll compressor 1 and the condenser 104 are connected to each other via a pipe 107A through which the refrigerant passes.
  • the indoor unit 102 includes an evaporator 105 which expands the refrigerant condensed by the condenser 104.
  • the indoor unit 102 further includes a blower 109 which blows air to the evaporator 105 and an expansion valve 106 which evaporates a liquid refrigerant condensed by the condenser 104 and causes the refrigerant to flow into the evaporator 105.
  • the blower 109 includes a motor 109M and an impeller 109B driven by the motor 109M.
  • the condenser 104 and the evaporator 105 are connected to each other via a pipe 107B through which the refrigerant passes.
  • the expansion valve 106 is installed in the middle of the pipe 107B.
  • the evaporator 105 and the scroll compressor 1 are connected to each other via a pipe 107C through which the refrigerant passes.
  • the air-conditioning device 100 includes any one of the scroll compressors 1, 1a, 1b, 1c, 1d, and 1e of the first embodiment, the second embodiment, and the modification examples of the second embodiment.
  • the scroll compressors 1, 1a, 1b, 1c, 1d, and 1e have high efficiency, and thus, the air-conditioning device 100 having any one thereof also has high efficiency.
  • the efficiency is prevented from decreasing when operating at a low rotational speed. Accordingly, it is possible to increase efficiency when the air-conditioning device 100 having any one thereof is operated at an intermediate period, for example, spring or autumn.
  • the embodiments are described. However, the embodiments are not limited by the contents described above.
  • the above-described constituent elements include those which can be easily assumed by a person skilled in the art, substantially the same one, and so-called equivalents.
  • the above-described constituent elements can be appropriately combined. It is possible to perform at least one of various omission, substitution, and change of constituent elements within a range which does not depart from the scope of the invention, which is defined by the claims.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Rotary Pumps (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)

Claims (8)

  1. Scrollverdichter (1), der Folgendes umfasst:
    ein Gehäuse (3), bei dem ein Innenraum in eine erste Kammer (3A) und eine zweite Kammer (3B) geteilt ist;
    einen Scrollverdichtungsmechanismus (7), der eine feste Spirale (33) und eine umlaufende Spirale (35) beinhaltet, die in der ersten Kammer (3A) angeordnet sind, und zwischen der festen Spirale (33) und der umlaufenden Spirale (35) ein Kältemittel verdichtet, um zu bewirken, dass das verdichtete Kältemittel in die zweite Kammer (3B) fließt;
    eine Drehwelle (19), die ein stangenförmiges Element ist, einen Ölzufuhrkanal (27) beinhaltet, der sich in eine Längsrichtung des stangenförmigen Elements erstreckt und durch den Schmieröl geleitet wird, und bewirkt, dass die umlaufende Spirale (35), die auf einer Auslassseite des Ölzufuhrkanals (27) angeordnet ist, umläuft;
    eine Gegendruckkammer (50), die auf der Seite der Drehwelle (19) der umlaufenden Spirale (35) angeordnet ist und in die das Schmieröl fließt, das aus dem Ölzufuhrkanal (27) fließt;
    einen Ölablasskanal (21c), durch den das Schmieröl, das in die Gegendruckkammer (50) fließt, geleitet wird, um zur ersten Kammer (3A) ausgegeben zu werden;
    einen Flusssteuermechanismus (52) zum Ändern einer Durchflussrate des Schmieröls, das durch den Ölablasskanal (21c) fließt; und
    eine Ölzufuhrpumpe (29), die im Ölzufuhrkanal (27) installiert ist und das in der ersten Kammer (3A) gespeicherte Schmieröl der Gegendruckkammer (50) zuführt, dadurch
    gekennzeichnet, dass
    der Flusssteuermechanismus (52) in einem Fall, in dem eine Umlaufgeschwindigkeit der umlaufenden Spirale (35) größer ist als ein Schwellwert, gegenüber einem Fall, in dem die Umlaufgeschwindigkeit der umlaufenden Spirale (35) gleich oder kleiner als der Schwellwert ist, die Durchflussrate des Schmieröls, das durch den Ölablasskanal (21c) fließt, erhöht, und
    der Schwellwert gleich oder größer ist als eine gleichwertige Umlaufgeschwindigkeit in einem Fall, in dem der Scrollverdichter mit einer Kapazität von 1/2 eines Nennbetriebs betrieben wird und gleich oder kleiner ist als eine gleichwertige Umlaufgeschwindigkeit in einem Fall, in dem der Scrollverdichter mit der Kapazität des Nennbetriebs betrieben wird.
  2. Scrollverdichter nach Anspruch 1,
    wobei der Flusssteuermechanismus (52) die Durchflussrate des Schmieröls, das durch den Ölablasskanal (21c) fließt, auf Basis von mindestens einem von einem Druck des Kältemittels und einer Temperatur des Schmieröls ändert.
  3. Scrollverdichter nach einem der Ansprüche 1 bis 2,
    wobei ein Kanalquerschnitt des Ölablasskanals (21c) größer ist als ein Kanalquerschnitt des Ölzufuhrkanals (27).
  4. Scrollverdichter nach einem der Ansprüche 1 bis 3, der ferner Folgendes umfasst:
    einen Bypasskanal (21d), durch den das Schmieröl in die Gegendruckkammer (50) fließt, um den Flusssteuermechanismus (52) zu umgehen,
    wobei ein Kanalquerschnitt des Bypasskanals (21d) kleiner ist als der Kanalquerschnitt des Ölzufuhrkanals (27).
  5. Scrollverdichter nach Anspruch 3 oder 4, der ferner Folgendes umfasst:
    einen Bypasskanal, durch den das Schmieröl in die Gegendruckkammer (50) fließt, um den Flusssteuermechanismus (52) zu umgehen,
    wobei der Bypasskanal ein Element beinhaltet, das mit einem Kanal versehen ist, der einen Kanalquerschnitt aufweist, der kleiner ist als der Kanalquerschnitt des Ölablasskanals (21c).
  6. Scrollverdichter nach einem der Ansprüche 1 bis 5,
    wobei die Ölzufuhrpumpe (29) eine Verdrängerpumpe ist.
  7. Scrollverdichter nach einem der Ansprüche 1 bis 6,
    wobei der Flusssteuermechanismus (52) die Durchflussrate des Schmieröls, das durch den Ölablasskanal (21c) fließt, derart einstellt, dass sie größer ist als 0, während die umlaufende Spirale (35) umläuft.
  8. Klimaanlagenvorrichtung (100), die Folgendes umfasst:
    einen Verflüssiger (104), zum Verflüssigen eines Kältemittels;
    einen Verdampfer (105) zum Verdampfen des vom Verflüssiger (104) verflüssigten Kältemittels; und
    den Scrollverdichter nach einem der Ansprüche 1 bis 7 zum Verdichten des vom Verdampfer (105) verdampften Kältemittels.
EP16859450.5A 2015-10-30 2016-09-23 Spiralverdichter und klimatisierungsvorrichtung Active EP3301302B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015213691A JP6167417B2 (ja) 2015-10-30 2015-10-30 スクロール圧縮機及び空気調和装置
PCT/JP2016/078051 WO2017073213A1 (ja) 2015-10-30 2016-09-23 スクロール圧縮機及び空気調和装置

Publications (3)

Publication Number Publication Date
EP3301302A1 EP3301302A1 (de) 2018-04-04
EP3301302A4 EP3301302A4 (de) 2018-04-04
EP3301302B1 true EP3301302B1 (de) 2023-04-05

Family

ID=58630322

Family Applications (1)

Application Number Title Priority Date Filing Date
EP16859450.5A Active EP3301302B1 (de) 2015-10-30 2016-09-23 Spiralverdichter und klimatisierungsvorrichtung

Country Status (4)

Country Link
EP (1) EP3301302B1 (de)
JP (1) JP6167417B2 (de)
CN (1) CN107709784B (de)
WO (1) WO2017073213A1 (de)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6896569B2 (ja) * 2017-08-29 2021-06-30 三菱重工サーマルシステムズ株式会社 スクロール圧縮機及びその制御方法並びに空気調和装置
JP7389319B2 (ja) * 2019-07-29 2023-11-30 ダイキン工業株式会社 圧縮機

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03138473A (ja) * 1989-10-25 1991-06-12 Hitachi Ltd 可変速スクロール圧縮機
JP3367109B2 (ja) * 1991-11-21 2003-01-14 ダイキン工業株式会社 スクロール形流体機械
JP4064325B2 (ja) * 2003-09-22 2008-03-19 日立アプライアンス株式会社 スクロ−ル圧縮機
WO2009155094A2 (en) * 2008-05-30 2009-12-23 Emerson Climate Technologies, Inc. Compressor having capacity modulation system
JP5444128B2 (ja) * 2010-06-07 2014-03-19 株式会社東芝 冷蔵庫
JP5588801B2 (ja) * 2010-09-06 2014-09-10 ホーチキ株式会社 流水検知装置
CN204140424U (zh) * 2014-09-05 2015-02-04 广东美芝制冷设备有限公司 低背压旋转式压缩机组件

Also Published As

Publication number Publication date
EP3301302A1 (de) 2018-04-04
JP6167417B2 (ja) 2017-07-26
EP3301302A4 (de) 2018-04-04
CN107709784A (zh) 2018-02-16
CN107709784B (zh) 2019-06-11
WO2017073213A1 (ja) 2017-05-04
JP2017082718A (ja) 2017-05-18

Similar Documents

Publication Publication Date Title
US8109116B2 (en) Dual compressor air conditioning system with oil level regulation
KR100942629B1 (ko) 스크롤 압축기 및 그것을 이용한 냉동 사이클
EP2913531B1 (de) Spiralverdichter mit ausgleichsgewicht
CN109983230B (zh) 具有注入功能的压缩机
EP2115302B1 (de) Verdichter und ölsperrvorrichtung dafür
EP3382205B1 (de) Verdichter
KR101971819B1 (ko) 스크롤 압축기
JP2007138868A (ja) スクロール圧縮機
JP4067497B2 (ja) スクロール型圧縮機
WO2018025569A1 (ja) スクロール圧縮機
EP3301302B1 (de) Spiralverdichter und klimatisierungsvorrichtung
EP1666728B1 (de) Gefriervorrichtung
AU2004259945B2 (en) Scroll type fluid machinery
JP6180630B2 (ja) 圧縮機
EP2524142A1 (de) Exzenterschneckenkompressor
EP3263901B1 (de) Spiralverdichter
JP4720649B2 (ja) 電動圧縮機
JP6143862B2 (ja) スクロール圧縮機及びこれを用いた空気調和機
JP3274900B2 (ja) 圧縮機における給油ポンプ装置
JP2014105692A (ja) スクロール圧縮機
EP3988786B1 (de) Verdichter
JP2009062858A (ja) 横形圧縮機
JP5701112B2 (ja) 密閉型圧縮機
JP2022147381A (ja) 密閉型ロータリ圧縮機及びこれを用いた冷蔵庫
JP2022148052A (ja) 密閉型ロータリ圧縮機及びこれを用いた冷蔵庫

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20171229

A4 Supplementary search report drawn up and despatched

Effective date: 20180228

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20221107

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1558417

Country of ref document: AT

Kind code of ref document: T

Effective date: 20230415

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602016078705

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20230405

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 1558417

Country of ref document: AT

Kind code of ref document: T

Effective date: 20230405

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230405

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230405

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230807

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230705

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230405

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230405

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230405

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230405

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230405

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230405

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230805

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230405

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230706

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230405

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230405

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602016078705

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230405

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230405

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230405

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230405

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230405

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230405

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230405

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20240108

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230405

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230923

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20230930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230405

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230923

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230405

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230405

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230923

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230923

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230930

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240730

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20240801

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20240808

Year of fee payment: 9