EP3251773A1 - Semi-kontinuierliches stranggiessen eines stahlstrangs - Google Patents
Semi-kontinuierliches stranggiessen eines stahlstrangs Download PDFInfo
- Publication number
- EP3251773A1 EP3251773A1 EP17173954.3A EP17173954A EP3251773A1 EP 3251773 A1 EP3251773 A1 EP 3251773A1 EP 17173954 A EP17173954 A EP 17173954A EP 3251773 A1 EP3251773 A1 EP 3251773A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- strand
- continuous casting
- cooling
- casting machine
- continuous
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000009749 continuous casting Methods 0.000 title claims abstract description 118
- 229910000831 Steel Inorganic materials 0.000 title claims abstract description 37
- 239000010959 steel Substances 0.000 title claims abstract description 37
- 238000001816 cooling Methods 0.000 claims abstract description 157
- 238000005266 casting Methods 0.000 claims abstract description 41
- 238000000034 method Methods 0.000 claims abstract description 25
- 238000007711 solidification Methods 0.000 claims abstract description 23
- 230000008023 solidification Effects 0.000 claims abstract description 23
- 239000007788 liquid Substances 0.000 claims abstract description 20
- 238000000605 extraction Methods 0.000 claims abstract description 5
- 230000003247 decreasing effect Effects 0.000 claims abstract description 4
- 238000009413 insulation Methods 0.000 claims description 38
- 238000010438 heat treatment Methods 0.000 claims description 22
- 230000001105 regulatory effect Effects 0.000 claims description 8
- 239000007787 solid Substances 0.000 claims description 4
- 230000000694 effects Effects 0.000 claims description 3
- 238000007599 discharging Methods 0.000 claims description 2
- 230000003068 static effect Effects 0.000 claims description 2
- 238000005204 segregation Methods 0.000 abstract description 5
- 238000010583 slow cooling Methods 0.000 description 10
- 230000001939 inductive effect Effects 0.000 description 6
- 238000003756 stirring Methods 0.000 description 5
- 239000003570 air Substances 0.000 description 4
- 229910052804 chromium Inorganic materials 0.000 description 4
- 239000000155 melt Substances 0.000 description 4
- 229910052750 molybdenum Inorganic materials 0.000 description 4
- 229910052759 nickel Inorganic materials 0.000 description 4
- 230000015572 biosynthetic process Effects 0.000 description 3
- NJPPVKZQTLUDBO-UHFFFAOYSA-N novaluron Chemical compound C1=C(Cl)C(OC(F)(F)C(OC(F)(F)F)F)=CC=C1NC(=O)NC(=O)C1=C(F)C=CC=C1F NJPPVKZQTLUDBO-UHFFFAOYSA-N 0.000 description 3
- 238000005452 bending Methods 0.000 description 2
- 229910052797 bismuth Inorganic materials 0.000 description 2
- 210000001787 dendrite Anatomy 0.000 description 2
- 230000001419 dependent effect Effects 0.000 description 2
- 229910052745 lead Inorganic materials 0.000 description 2
- 230000005499 meniscus Effects 0.000 description 2
- 230000005855 radiation Effects 0.000 description 2
- 238000003303 reheating Methods 0.000 description 2
- 229910052717 sulfur Inorganic materials 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 229910000881 Cu alloy Inorganic materials 0.000 description 1
- 229910000915 Free machining steel Inorganic materials 0.000 description 1
- 241000446313 Lamella Species 0.000 description 1
- 238000005275 alloying Methods 0.000 description 1
- 239000012080 ambient air Substances 0.000 description 1
- 238000000137 annealing Methods 0.000 description 1
- 238000007664 blowing Methods 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000007872 degassing Methods 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 238000010891 electric arc Methods 0.000 description 1
- 238000005265 energy consumption Methods 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 238000007654 immersion Methods 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 238000011835 investigation Methods 0.000 description 1
- 238000002955 isolation Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 238000004382 potting Methods 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 239000007921 spray Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
- 238000011282 treatment Methods 0.000 description 1
- 238000009489 vacuum treatment Methods 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22D—CASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
- B22D11/00—Continuous casting of metals, i.e. casting in indefinite lengths
- B22D11/12—Accessories for subsequent treating or working cast stock in situ
- B22D11/128—Accessories for subsequent treating or working cast stock in situ for removing
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22D—CASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
- B22D11/00—Continuous casting of metals, i.e. casting in indefinite lengths
- B22D11/04—Continuous casting of metals, i.e. casting in indefinite lengths into open-ended moulds
- B22D11/041—Continuous casting of metals, i.e. casting in indefinite lengths into open-ended moulds for vertical casting
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22D—CASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
- B22D11/00—Continuous casting of metals, i.e. casting in indefinite lengths
- B22D11/04—Continuous casting of metals, i.e. casting in indefinite lengths into open-ended moulds
- B22D11/055—Cooling the moulds
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22D—CASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
- B22D11/00—Continuous casting of metals, i.e. casting in indefinite lengths
- B22D11/08—Accessories for starting the casting procedure
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22D—CASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
- B22D11/00—Continuous casting of metals, i.e. casting in indefinite lengths
- B22D11/12—Accessories for subsequent treating or working cast stock in situ
- B22D11/1213—Accessories for subsequent treating or working cast stock in situ for heating or insulating strands
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22D—CASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
- B22D11/00—Continuous casting of metals, i.e. casting in indefinite lengths
- B22D11/12—Accessories for subsequent treating or working cast stock in situ
- B22D11/124—Accessories for subsequent treating or working cast stock in situ for cooling
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22D—CASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
- B22D11/00—Continuous casting of metals, i.e. casting in indefinite lengths
- B22D11/12—Accessories for subsequent treating or working cast stock in situ
- B22D11/128—Accessories for subsequent treating or working cast stock in situ for removing
- B22D11/1281—Vertical removing
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22D—CASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
- B22D11/00—Continuous casting of metals, i.e. casting in indefinite lengths
- B22D11/16—Controlling or regulating processes or operations
- B22D11/20—Controlling or regulating processes or operations for removing cast stock
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22D—CASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
- B22D11/00—Continuous casting of metals, i.e. casting in indefinite lengths
- B22D11/16—Controlling or regulating processes or operations
- B22D11/22—Controlling or regulating processes or operations for cooling cast stock or mould
- B22D11/225—Controlling or regulating processes or operations for cooling cast stock or mould for secondary cooling
Definitions
- the present invention relates to a method for the semi-continuous continuous casting of a strand, preferably a billet, made of steel in a continuous casting machine and a suitable continuous casting machine.
- the continuous casting machine used is divided into three parts.
- the chilled continuous casting mold for primary cooling of the strand which is typically made of copper or a copper alloy, is followed by a strand guide for supporting and guiding the strand with a secondary cooling, typically comprising a plurality of single-material (mostly so-called water-only nozzles) and / or multi-substance nozzles (mostly so-called. airmist nozzles) to cool the partially solidified strand shell and a tertiary cooling zone to further cool the strand.
- a secondary cooling typically comprising a plurality of single-material (mostly so-called water-only nozzles) and / or multi-substance nozzles (mostly so-called. airmist nozzles) to cool the partially solidified strand shell and a tertiary cooling zone to further cool the strand.
- the continuous casting machine is designed as a vertical continuous casting machine with a vertical mold, a vertical strand guide and a vertical Tertiärkühlzone.
- liquid steel is produced (typically from a metallurgical vessel, such as a ladle or pouring spreader) into the cold-run through mold, the liquid steel having the cold strand forming a solidified strand and a semi-solid strand following it (ie, a solidified strand shell and a liquid core) formed.
- a metallurgical vessel such as a ladle or pouring spreader
- the flow from the metallurgical vessel into the continuous casting mold can be adjusted, for example, via a slide closure or a plug drive.
- the partially solidified strand is drawn out of the continuous casting mold, wherein the casting level in the mold, which is adjusted by the inflow of liquid steel into the mold and the extraction of the partially solidified strand by driven strand guide rollers, is kept approximately constant.
- the partially solidified strand is supported by the continuous casting mold in the strand guide, guided and further cooled by the secondary cooling.
- the secondary cooling has a plurality of cooling nozzles; at slow casting speeds, however, cooling by radiation may already be sufficient to form a viable strand shell.
- the cooling intensities in the primary and secondary cooling are adjusted depending on the pull-out speed so that the shell of the partially solidified strand can withstand the maximum occurring ferrostatic pressure in the continuous casting machine.
- the casting process is terminated, for example by closing the metallurgical vessel.
- a strand end of the strand which is typically not completely solidified, forms.
- the strand end is now at least as far removed from the continuous casting mold, that it comes to rest in the area of secondary cooling or tertiary cooling of the continuous casting machine.
- the secondary cooling is terminated.
- the partially solidified strand is now - compared to continuous casting - slow, controlled or regulated in the Tertiary cooling zone of the continuous casting machine cooled to complete solidification.
- the cooling takes place in a controlled manner - decreasing more in the foot area (ie in the area of the strand start) of the strand and towards the strand head, ie in the region of the strand end). This causes a bottom-up solidification front in the center area.
- a globular or dendritic microstructure appears with only extremely small segregations and porosities.
- dendritic solidification the dendrites in the strand center can not grow together, thus avoiding the thread porosity in the strand center.
- the solidified strand is discharged from the continuous casting machine.
- the cooling of the partially solidified strand in the tertiary cooling zone is either controlled or regulated.
- the setpoint value for the cooling may be the surface temperature of the strand, or preferably a microstructure composition in the center of the strand calculated in real time in a 2- or 3-dimensional model including the heat equation for the strand and optionally taking into account the processes during structural transformation be used.
- the cooling and the structure formation in the strand can be set very accurately.
- the strand is cooled primarily by thermal radiation and possibly by convection; spray cooling is typically not required.
- any necessary annealing treatments of the strand for the purpose of stress relief and further structural improvement can already be carried out in the tertiary cooling zone of the continuous casting machine.
- the cooling at the start of the strand can be set more strongly than at the end of the strand without additional energy. By targeted heating of the strand, this can be ensured with additional energy. Finally, a - possibly only locally - present - too slow cooling of the strand can be remedied by a surface cooling of the strand.
- the partially solidified strand preferably its lateral surface, in the tertiary cooling zone is heated by a, preferably inductive, heating device.
- the strand can also be heated by burners.
- a locally too slow cooling can be prevented when the partially solidified strand is cooled in the tertiary cooling zone by a, preferably movable, cooling device.
- the heating device can be moved in the extension direction of the continuous casting machine. As a result, the temperature of the strand can only be influenced by a single heating device without the need for distributed devices.
- the partially solidified strand is protected in the tertiary cooling zone by a thermal insulation against rapid cooling. It is advantageous if the heat insulation is preheated before the casting start.
- a particularly effective heat insulation which also promotes the degassing of the not yet solidified melt and also before Scaling protects, is to keep the strand in a vacuum or in an atmosphere of inert gas.
- the insulation effect is preset either statically or controlled or regulated during operation.
- the setting may e.g. done by swiveling insulation lamellae.
- the insulation lamellae can be adjusted over the length of the strand to different, but static, swivel angles.
- the swivel angle can also be adjusted dynamically depending on the production program during the cooling phase. For example. For example, the swivel angles at the bottom - i. in the area of the strand beginning - are set larger than above, whereby the strand area is cooled more slowly than the strand start area.
- the cooled continuous casting mold preferably the continuous casting mold and the secondary cooling zone
- the tertiary cooling zone for example lifted off
- the separated components transverse to the extension direction of the continuous casting machine to another casting station ie to a further Tertiärkühlzone
- another strand may be poured, during which time the previously produced strand in the tertiary cooling zone is slowly cooled.
- the strand end is heated by a heating device, in particular an inductive heating device, an electric arc furnace, a plasma heater or by the burning of exothermic covering powder.
- a heating device in particular an inductive heating device, an electric arc furnace, a plasma heater or by the burning of exothermic covering powder.
- a stirring device such as a stirring coil is advantageous. This is conveniently movable along the string axis.
- the semi-solidified strand in the tertiary cooling zone may be alternately rotated clockwise and counterclockwise about its own axis. By reversing the direction of a particularly intimate mixing is ensured inside the strand.
- the cast strand obtains a stable shell as quickly as possible and thereby the length of the secondary cooling can be kept as short as possible, it is advantageous if the strand has a round cross-section.
- a similar effect can also be achieved with a strand having a three-round, four-round, etc. cross section.
- the continuous casting machine according to the invention may also have a, preferably inductive, in particular movable in the extension direction, heater.
- the lateral surface of the strand can be heated, whereby the cooling (and thus the microstructure formation) in the center region of the partially solidified strand in the tertiary cooling zone of the continuous casting machine can be adjusted very accurately.
- the tertiary cooling zone has a, in particular statically adjustable or dynamically controlled or regulated adjustable, heat insulation.
- the continuous casting mold, the secondary and the tertiary cooling zone are arranged in one row (so-called in-line).
- the productivity of the semi-continuous continuous casting machine is substantially increased if the continuous casting machine has a plurality of transverse cooling zones offset transversely to the drawing machine direction, wherein the machine head of the continuous casting machine, comprising the continuous casting mold and preferably the secondary cooling zone, is connectable and separable with a tertiary cooling zone and at least the Machine head is movable transversely to the extension direction.
- a single machine head can serve multiple tertiary cooling zones so that high throughput is achieved despite the slow cooling of the partially solidified strands.
- the machine head is moved to another tertiary cooling zone during which the strand is stationary.
- the controlled or controlled, slow cooling in the center region of the strand is not disturbed.
- the strand possibly with the Tertiärksselung be moved away from the machine head.
- the adjustable heat insulation at least one - advantageously several - insulation panel (also called lamella), that in the extension direction of the continuous casting machine is displaced or pivotable to the extension direction.
- the cooling rate of the partially solidified strand can be passive, i. without additional input of energy.
- Multiple strands of small size can be created simultaneously if the machine head of the continuous casting machine has a plurality of cooled continuous molds and a plurality of strand guides with secondary cooling zones arranged behind them.
- a simple and robust continuous casting machine has a Strangabzugswagen to pull out the strand, the strand withdrawal carriage in the extension direction, for example by Spindle, rack or cylinder drives, is movable.
- the strand beginning is supported by the cold strand on the strand withdrawal trolley.
- the strand withdrawal carriage is connected to the machine head, wherein the strand withdrawal carriage with the machine head is movable transversely to the extension direction.
- the cast strand after the pouring end e.g. parked on a pedestal on the hall floor and moved the machine head with the pullout trolley to another Tertiärksselung.
- the slow cooling of the parked strand may e.g. be ensured by a pulled over the strand thermal hood.
- the machine head is stationary and the cast strand is movable transversely to the extension direction.
- the cast strand is e.g. parked on a pedestal, wherein the pedestal can be moved together with the strand to another tertiary cooling zone.
- Fig. 1a is poured from a pan distributor not shown separately liquid steel via a dip tube in a cooled continuous casting mold 2, wherein the casting mold 2, the continuous casting mold 2 is closed fluid-tight by the cold strand 6 during casting start of the continuous casting machine, so that in the mold a casting M (also called meniscus) adjusts.
- a solidified strand beginning 1a is formed (see Fig. 1c ) out.
- the partially solidified strand 1b following the solidified strand beginning 1a is not solidified in the opposite direction to the drawing direction A, but has only a thin strand shell and a liquid core.
- the continuous casting machine on a strand withdrawal carriage 11, the the cold leg 6 itself, a threaded spindle 12, a threaded nut 13 and a motor 14 for moving the strand extractor carriage 11 in the extension direction A includes.
- the motor 14 is connected via a gear and the threaded spindle 12 with the threaded nut 13 and has a drive-through for the threaded spindle 12.
- In 1b was the strand 1 already pulled out of the continuous mold 2, wherein the strand 1 in the mold 2 subsequent strand guide 3 is supported by a plurality of strand guide rollers 3a, guided and cooled by a plurality of cooling nozzles 4a in the secondary cooling 4.
- the strand 1 forms a stable strand shell, which can withstand the ferrostatic pressure. Thus, a breakthrough of the strand 1 is prevented.
- Fig. 1c the strand beginning 1a has already passed the secondary cooling 3 of the continuous casting machine and has entered the tertiary cooling zone 5.
- the strand 1 is further controlled slowly or cooled controlled so that in the center of the partially solidified strand 1b, the solidification takes place with an upward direction.
- the tertiary cooling zone 5 has a thermal insulation 9 and an in Fig. 1f shown heater 7.
- Fig. 1f shown heater 7.
- FIG. 2a an example of a thermal insulation 9 is shown for a Tertiärksselung, wherein the atmosphere between the strand 1 and the heat hood 9 by a vacuum pump (here a jet pump 15) is evacuated.
- a vacuum pump here a jet pump 15
- a pressure connection of the jet pump 15 is connected to a compressed air network and the suction connection of the jet pump 15 to the space inside the thermal insulation 9.
- This measure also prevents oxidation, ie scaling, of the strand 1;
- the not yet solidified melt in the train is degassed by the vacuum treatment.
- the heat insulation 9 has several Isolation panels 9a, which are independently closed (opening angle 0 °), open (opening angle 90 °) or partially open (90 °> opening angle> 0 °) can be.
- Fig. 1d the casting in the continuous casting machine was finished so that a strand end 1c is formed.
- the casting mirror M is located below the pouring mirror shown in dashed lines according to the process steps 1a-1c.
- the Fig. 1e shows the situation after the strand end 1c of the strand 1 has passed the secondary cooling zone 3, the secondary cooling has ended and the strand end 1c is flush with the upper end of the tertiary cooling zone 5.
- the slow, controlled or controlled cooling of the partially solidified strand 1b is ensured by the heat insulation 9 and the heating of the strand by the movable in the extension direction A heater 7 (see Fig. 1f ).
- the strand end 1c is heated by an inductive head heater 10, so that too rapid cooling of the strand end 1c is prevented.
- FIGS. 1a ... 1f a round steel strand 1 with a diameter of 1200 mm and a length of 10 m was produced.
- the pull-out speed of the strand 1 from the continuous casting mold 2 is 0.25 m / min. Due to the thermal insulation 9 and the reheating of the strand 1 by the movable heater 7, the complete solidification of the strand 1 is reached only after 13 h.
- Fig. 2a is a first alternative embodiment of the tertiary cooling zone 5 of Fig. 1 shown.
- the space between the strand 1 and the thermal insulation 9 is evacuated by a jet pump 15, whereby a good thermal insulation and a slow cooling is achieved.
- the surface of the strand 1 is protected from scaling and degassed the residual melt.
- the jet pump is simple and wear-free; its pressure connection is connected to a compressed air connection P and its suction connection to the space to be evacuated within the tertiary cooling zone.
- the blowing off can take place against ambient pressure U.
- the inductive head heater 10 is advantageous over plasma heating, since the magnetic field also acts through the thermal insulation of the strand end 1c.
- the Fig. 2b shows a second alternative of the tertiary cooling zone 5 of Fig. 1 ,
- the insulation lamellae 9a of the thermal insulation 9 are pivotable relative to the extension direction, so that the air exchange between the ambient air and the strand 1 in the interior of the tertiary cooling zone 9 is adjustable.
- the insulation lamellae 9a on the right side of the strand 1 were closed and shown open on the left side by 10 ° to the extension direction A.
- the adjustment of the slats 9a can be done either manually or by actuators.
- the Fig. 3 schematically shows the time course of the travel s of the inductive heating device 7 for reheating the lateral surface of the strand 1.
- the heater 7 is pulled through in the upper part of the strand 1 and shown in dashed lines in the lower area. Since the solidification front shifts during the cooling from bottom to top (ie, from strand start 1a to strand end 1c), also the travel s of the heating device 7 decreases over time.
- a plurality of heating devices eg burners
- a plurality of heating devices eg burners
- the Fig. 4 shows the temperatures in ° C of the according to Fig. 1 produced strand 1 in a sectional view 3h after casting start (part 1), 8.3h after casting start (part 2) and solidification of the strand 1, about 13h after casting start (part 3).
- the time course of the temperatures of the strand 1 at different positions on the surface and in the center of the strand are in Fig. 5 shown. It follows that the casting of the strand and thus also the primary and the secondary cooling is terminated 46 minutes after the casting start and then the strand 1 is cooled controlled only by the Tertiärkühlung 5.
- FIGS. 6a . 6b a vertical strand casting machine according to the invention is shown in two views.
- the liquid steel is poured from a pan 30 via a shadow tube in the casting manifold 31, then the melt flows through a not shown immersion tube ( SEN ) in the continuous casting mold 2 a. Due to the primary cooling in the mold 2, a partially solid strand 1 forms with a stable strand shell.
- the melt is further influenced by an optional stirring device 32.
- the strand 1 is supported in the strand guide 3, guided and further cooled in the secondary cooling zone 4.
- At least the continuous mold 2, the stirring coil 32, the strand guide 3 with the secondary cooling zone 4, and optionally also the tertiary cooling zone 5, are movable on a casting trolley 33 on the casting platform G.
- the strand 1 with the cold strand 6 is pulled out of the continuous casting mold 2 via the strand withdrawal carriage 11.
- the Strangabzugswagen 11 is driven by four threaded spindles 12 and guided by additional guide rails 34, wherein a motor via a gear and the threaded spindle 12 is connected to the threaded nut 13.
- the casting trolley 33 can be moved transversely to the extension direction A to a further casting station, since the casting of the partially solidified strand, ie without the Tertiärkühlung the strand 1, much less time needed as the tertiary cooling of strand 1 until its solidification.
- the strand 1 is slowly cooled by the thermal insulation 9 and possibly by a heater, not shown here, so that the solidification takes place in the center of the strand with an upwardly oriented solidification front.
- FIG. 7 A more detailed representation of the machine head of the continuous casting machine from the Fig. 6a . 6b is in Fig. 7 shown.
- the 8a, 8b schematically show an embodiment for discharging the solidified strand 1 from the Tertiärksselzone.
- the strand 1 is laterally supported by two brackets 38, so that on the continuous casting machine also very different diameters (see plan of Fig. 8a ) can be shed.
- Fig. 8a the strand 1 has already been swung out with respect to the vertical and rests against the brackets 38.
- Fig. 8b the strand 1 is placed over the pivot drive 39 on a roller table 37, where it can be removed in the direction of the arrow.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Continuous Casting (AREA)
- Moulds For Moulding Plastics Or The Like (AREA)
Abstract
Description
- Die vorliegende Erfindung betrifft ein Verfahren zum semi-kontinuierlichen Stranggießen eines Strangs, vorzugsweise eines Vorblocks, aus Stahl in einer Stranggießmaschine und eine dazu geeignete Stranggießmaschine.
- Der überwiegende Teil der heute produzierten Gesamtstahlmenge wird in kontinuierlich betriebenen Stranggießmaschinen mit hohem Durchsatz zu Strängen vergossen. Nur ca. 5% der Gesamtstahlmenge wird zu Vorblöcken (engl. ingots) vergossen. Das Vorblockgießen ist bspw. beschrieben im ASM Handbook, Volume 15: Casting, Kapitel "Steel Ingot Casting", Seiten 911-917, DOI: 10.1361/asmhba0005295. Obwohl der Anteil von flüssigem Stahl der über die sog. Ingotroute zu Vorblöcken vergossen wird klein ist, ist die Ingotroute aber wegen der Eignung für spezielle Stahlsorten und -formate sehr profitabel.
- Vorteile des Vorblockgießens sind:
- Hohe Flexibilität in den Produktabmessungen, günstig bei kleinen Losgrößen, einzigartig bei großen Formaten;
- Eignung für spezielle Stahlsorten (z.B. für Kaltformstähle CHQ; HSLA Stähle; hochlegierte Stähle mit ca. 5% Legierungsanteilen, wie Cr, Ni, Mo; Kettenstähle; Automatenstähle mit einem hohen Anteil von S, Pb, Bi; Lagerstähle mit ca. 1% C, 1,2% Cr, 0,25% Ni, 0,25% Mo; etc.); und
- höhere Qualität in punkto Vermeidung von Zentrumsseigerung und Porosität, insbesondere von Fadenporosität im Zentrum des Strangs.
- Nachteile des Vorblockgießens sind:
- langsame aber nur unzureichend kontrollierbare Abkühlgeschwindigkeiten in der Vorblockkokille;
- höhere Ausbringverluste durch das Abtrennen des Kopf- und Fußteils des Vorblocks;
- höhere Betriebskosten; und
- geringere Gefügesymmetrie und Reinheit.
- Untersuchungen der Anmelderin haben ergeben, dass die höhere Qualität des Vorblockgießens in Bezug auf Zentrumsseigerung und Porosität hauptsächlich durch die langsame Erstarrungsgeschwindigkeit und die vom Stranganfang zum Strangende hin gerichtete Erstarrung im Zentrumsbereich des Vorblocks bewirkt wird. Die Erstarrung im Zentrum erfolgt globular bzw. mit einer axial ausgerichteten Erstarrungsfront, sodass eventuell auftretende Dendriten vermieden werden, welche im Zentrum Brücken bilden und das Nachsaugen der Schmelze behindern. Eine Fadenporosität im Zentrum ist somit weitgehend ausgeschlossen. Im Gegensatz dazu sind die Eigenschaften beim kontinuierlichen Stranggießen genau umgekehrt. Extrem niedrige Abkühlraten wie beim Vorblockgießen sind bei kontinuierlich betriebenen Stranggießmaschinen nicht realisierbar, da die Maschinenlänge aus wirtschaftlichen Gründen beschränkt ist. Durch die höhere Abkühlgeschwindigkeit verbunden mit der eher radial von außen nach Innen gerichteten Erstarrung beim kontinuierlichen Stranggießen wird eine dendritische Erstarrung und damit Zentrumsseigerung und Porosität verursacht. Daher werden nach dem Stand der Technik große Formate, die im Wesentlichen frei von Zentrumsseigerungen und Porositäten, insbesondere von Fadenporositäten, sein sollen, über die Ingotroute hergestellt. Die höheren Betriebskosten, geringere Ausbringung und Nachteile in der Gefügesymmetrie und Reinheit des Vorblocks werden dabei in Kauf genommen.
- Die Aufgabe der Erfindung ist es, die Nachteile des Stands der Technik zu überwinden und ein Verfahren zum semi-kontinuierlichen Stranggießen eines Strangs, vorzugsweise eines Vorblocks, aus Stahl darzustellen, bei dem der Strang
- eine geringe Zentrumsseigerung und Porosität aufweist, und
- dennoch rasch, d.h. mit hohem Durchsatz, vergossen werden kann. Dadurch soll der semi-kontinuierlich vergossene Strang einerseits ähnliche bzw. sogar bessere metallurgische Eigenschaften wie ein durch die klassische Ingotroute hergestellter Vorblock haben; andererseits soll der Strang aber mit einem ähnlich hohen Durchsatz produziert werden können wie in einer kontinuierlich betriebenen Stranggießmaschine.
- Schließlich soll eine dafür geeignete Stranggießmaschine angegeben werden.
- Diese Aufgabe wird durch ein Verfahren nach Anspruch 1 gelöst, vorteilhafte Ausführungsformen sind Gegenstand der abhängigen Ansprüche.
- Erfindungsgemäß werden beim Verfahren zum semi-kontinuierlichen Stranggießen eines Strangs, vorzugsweise eines Vorblocks, aus Stahl in einer Stranggießmaschine, wobei die Stranggießmaschine eine gekühlte Durchlaufkokille zur Primärkühlung des Strangs, nachfolgend eine Strangführung zum Stützen und Führen des Strangs mit einer - typischerweise mehrere Kühldüsen umfassenden - Sekundärkühlung zum Abkühlen des Strangs, und wiederum nachfolgend eine Tertiärkühlung zum weiteren Abkühlen des Strangs aufweist, folgende Verfahrensschritte durchgeführt:
- Gießstart der Stranggießmaschine, wobei flüssiger Stahl in die durch einen Kaltstrang verschlossene Durchlaufkokille gegossen wird und der flüssige Stahl mit dem Kaltstrang einen durcherstarrten Stranganfang und nachfolgend einen teilerstarrten Strang ausbildet;
- Ausziehen des teilerstarrten Strangs aus der Durchlaufkokille;
- Stützen und Führen des teilerstarrten Strangs in der Strangführung, wobei der teilerstarrte Strang durch die Sekundärkühlung abgekühlt wird;
- Gießende der Stranggießmaschine, wobei das Vergießen von flüssigem Stahl in die Durchlaufkokille beendet wird und sich ein Strangende ausbildet;
- Ausziehen des Strangendes aus der Durchlaufkokille;
- Beenden des Ausziehens, sodass das Strangende außerhalb der Durchlaufkokille (d.h. im Bereich der Sekundärkühlzone oder der Tertiärkühlzone der Stranggießmaschine) liegt;
- Beenden der Sekundärkühlung;
- gesteuertes oder geregeltes Abkühlen des teilerstarrten Strangs bis zur Durcherstarrung des Strangs in der Tertiärkühlzone der Stranggießmaschine, wobei das Abkühlen am Stranganfang stärker und zum Strangende hin abnehmend eingestellt wird;
- Ausfördern des Strangs aus der Stranggießmaschine.
- Die dabei verwendete Stranggießmaschine ist dreiteilig gegliedert. An die typischerweise aus Kupfer bzw. einer Kupferlegierung bestehende gekühlte Durchlaufkokille zur Primärkühlung des Strangs folgt eine Strangführung zum Stützen und Führen des Strangs mit einer Sekundärkühlung, typischerweise umfassend mehrere Einstoff- (meistens sog. water only Düsen) und/oder Mehrstoffdüsen (meistens sog. airmist Düsen), zum Abkühlen der teilerstarrten Strangschale, und eine Tertiärkühlzone zum weiteren Abkühlen des Strangs nach.
- Um das Biegen bzw. das Rückbiegen des Strangs zu vermeiden, ist es vorteilhaft, wenn die Stranggießmaschine als eine Vertikalstranggießmaschine mit einer senkrechten Kokille, einer senkrechten Strangführung und einer senkrechten Tertiärkühlzone ausgebildet ist.
- Das erfindungsgemäße Verfahren läuft wie folgt ab: Beim Gießstart der Stranggießmaschine wird flüssiger Stahl (typischerweise von einem metallurgischen Gefäß, wie einer Pfanne oder einem Gießverteiler) in die durch einen Kaltstrang verschlossene Durchlaufkokille vergossen, wobei der flüssige Stahl mit dem Kaltstrang einen durcherstarrten Stranganfang und einen dem Stranganfang nachfolgenden teilerstarrten Strang (d.h. eine erstarrte Strangschale und einen flüssigen Kern) ausbildet. Der Durchfluss vom metallurgischen Gefäß in die Durchlaufkokille kann bspw. über einen Schieberverschluss oder einen Stopfenantrieb eingestellt werden. Anschließend wird der teilerstarrte Strang aus der Durchlaufkokille ausgezogen, wobei der Gießspiegel in der Kokille, der sich durch den Zufluss von flüssigem Stahl in die Kokille und das Ausziehen des teilerstarrten Strangs durch angetriebene Strangführungsrollen einstellt, in etwa konstant gehalten wird. Der teilerstarrte Strang wird nach der Durchlaufkokille in der Strangführung gestützt, geführt und durch die Sekundärkühlung weiter abgekühlt. Insbesondere bei höheren Gießgeschwindigkeiten ist es vorteilhaft, wenn die Sekundärkühlung mehrere Kühldüsen aufweist; bei langsamen Gießgeschwindigkeiten kann jedoch die Kühlung durch Strahlung bereits ausreichen, eine tragfähige Strangschale zu bilden. Die Kühlintensitäten in der Primär- und Sekundärkühlung werden je nach Auszugsgeschwindigkeit so eingestellt, dass die Schale des teilerstarrten Strangs dem maximal auftretenden ferrostatischen Druck in der Stranggießmaschine standhält. Wenn der Strang die gewünschte Länge bzw. das gewünschte Gewicht erreicht hat, wird der Gießvorgang beendet, bspw. durch das Verschließen des metallurgischen Gefäßes. Dadurch bildet sich ein typischerweise nicht völlig durcherstarrtes Strangende des Strangs aus. Das Strangende wird nun zumindest soweit aus der Durchlaufkokille ausgezogen, dass es im Bereich der Sekundärkühlung oder der Tertiärkühlung der Stranggießmaschine zu liegen kommt. Spätestens wenn das Strangende die Sekundärkühlzone passiert hat, wird die Sekundärkühlung beendet. Der teilerstarrte Strang wird nun - im Vergleich zum kontinuierlichen Stranggießen - langsam, gesteuert oder geregelt in der Tertiärkühlzone der Stranggießmaschine bis zur völligen Durcherstarrung abgekühlt. Dabei erfolgt die Abkühlung kontrolliert - stärker im Fußbereich (d.h. im Bereich des Stranganfangs) des Stranges und zum Strangkopf d.h. im Bereich des Strangendes) hin abnehmend. Damit wird im Zentrumsbereich eine von unten nach oben gerichtete Erstarrungsfront bewirkt. Im Zentrum des teilerstarrten Strangs stellt sich so entweder ein globulares oder dendritisches Gefüge mit nur äußerst geringen Seigerungen und Porositäten ein. Bei dendritischer Erstarrung können die Dendriten im Strangzentrum nicht zusammenwachsen, wodurch die Fadenporosität im Strangzentrum vermieden wird. Schließlich wird der durcherstarrte Strang aus der Stranggießmaschine ausgefördert.
- Das Abkühlen des teilerstarrten Strangs in der Tertiärkühlzone erfolgt entweder gesteuert oder geregelt. Als Soll-Wert für die Abkühlung kann die Oberflächentemperatur des Strangs, oder bevorzugt eine - in einem 2- oder 3-dimensionalen Modell beinhaltend die Wärmeleitungsgleichung für den Strang und gegebenenfalls unter Berücksichtigung der Vorgänge bei der Gefügeumwandlung - in Echtzeit berechnete Gefügezusammensetzung im Zentrum des Strangs herangezogen werden. Dadurch kann die Abkühlung und die Gefügeausbildung im Strang sehr genau eingestellt werden. In der Tertiärkühlung wird der Strang primär durch Wärmestrahlung und ggf. durch Konvektion abgekühlt; eine Spritzkühlung ist typischerweise nicht erforderlich.
- Durch die langsame Abkühlung des Strangs können eventuell notwendige Glühbehandlungen des Strangs zwecks Spannungsabbau und weiterer Strukturverbesserung bereits in der Tertiärkühlzone der Stranggießmaschine durchgeführt werden.
- Vorteilhafterweise wird das langsame, geregelte oder gesteuerte, Abkühlen des Strangs durch zumindest eine der folgenden Maßnahmen beeinflusst:
- a) Beeinflussung der Wärmeisolation des Strangs,
- b) Heizung des Strangs,
- c) Oberflächenkühlung des Strangs.
- Durch die gezielte Beeinflussung der Wärmeisolation kann ohne zusätzliche Energie die Abkühlung am Stranganfang stärker als am Strangende eingestellt werden. Durch eine gezielte Heizung des Strangs kann dies mit zusätzlicher Energie sichergestellt werden. Schließlich kann eine - ggf. nur lokal - vorliegende - zu langsame Abkühlung des Strangs durch eine Oberflächenkühlung des Strangs behoben werden.
- Um ein zu rasches Abkühlen des teilerstarrten Strangs in der Tertiärkühlzone zu verhindern, ist es vorteilhaft, wenn der teilerstarrte Strang, vorzugsweise dessen Mantelfläche, in der Tertiärkühlzone durch eine, bevorzugt induktive, Heizvorrichtung aufgeheizt wird. Alternativ kann der Strang aber auch durch Brenner aufgeheizt werden.
- Obwohl ein zu langsames Abkühlen des teilerstarrten Strangs gemäß der Erfindung nicht auftreten sollte, kann ein lokal zu langsames Abkühlen verhindert werden, wenn der teilerstarrte Strang in der Tertiärkühlzone durch eine, bevorzugt verfahrbare, Kühlvorrichtung abgekühlt wird.
- Besonders vorteilhaft ist es, wenn die Heizvorrichtung in Auszugsrichtung der Stranggießmaschine verfahrbar ist. Dadurch kann die Temperatur des Strangs nur durch eine einzige Heizvorrichtung beeinflusst werden, ohne dass hierzu verteilt angeordnete Vorrichtungen benötigt werden.
- Für die Einstellung der Erstarrung ist es besonders vorteilhaft, wenn der teilerstarrte Strang in der Tertiärkühlzone durch eine Wärmeisolation vor zu rascher Abkühlung geschützt wird. Vorteilhaft ist es, wenn die Wärmeisolation vor dem Gießstart vorgeheizt wird. Eine besonders effektive Wärmeisolation die zudem die Entgasung der noch nicht erstarrten Schmelze fördert und außerdem vor Verzunderung schützt, besteht darin, den Strang in einem Vakuum oder in einer Atmosphäre aus Schutzgas zu halten.
- Bei der Wärmeisolation ist es vorteilhaft, wenn die Isolationswirkung entweder statisch voreingestellt wird oder während des Betriebs gesteuert oder geregelt eingestellt wird ist. Die Einstellung kann z.B. durch schwenkbare Isolationslamellen erfolgen. Die Isolationslamellen können während der Tertiärkühlphase über die Stranglänge auf verschiedene, jedoch statisch gleichbleibende, Schwenkwinkel eingestellt werden. Die Schwenkwinkel können aber auch je nach Produktionsprogramm während der Abkühlphase dynamisch verstellt werden. Bspw. können die Schwenkwinkel unten - d.h. im Bereich des Stranganfangs - größer als oben eingestellt werden, wodurch der Strangendbereich langsamer als der Stranganfangsbereich abgekühlt wird.
- Um den Durchsatz im semi-kontinuierlichen Gießbetrieb zu erhöhen, ist es äußerst vorteilhaft, wenn nachdem das Strangende die Sekundärkühlung passiert hat, die gekühlte Durchlaufkokille, bevorzugt die Durchlaufkokille und die Sekundärkühlzone, von der Tertiärkühlzone getrennt (bspw. abgehoben) werden und die abgetrennten Bauteile quer zur Auszugsrichtung der Stranggießmaschine zu einer anderen Gießstation, d.h. zu einer weiteren Tertiärkühlzone, verfahren werden. Bei der weiteren Tertiärkühlzone kann ein weiterer Strang gegossen werden, währenddessen der zuvor erzeugte Strang in der Tertiärkühlzone langsam abgekühlt wird. Durch diese Maßnahmen wird die hohe Qualität des Vorblockgießens mit der hohen Produktivität des kontinuierlichen Stranggießens vereint.
- Nach dem Trennen der gekühlten Durchlaufkokille, bzw. der Durchlaufkokille mit der Sekundärkühlzone, von der Tertiärkühlzone ist es vorteilhaft, wenn das Strangende durch eine Wärmeisolation vor zu rascher Abkühlung geschützt wird.
- Weiters ist es vorteilhaft, wenn das Strangende durch eine Heizeinrichtung, insbesondere eine induktive Heizeinrichtung, einen Lichtbogenofen, eine Plasmaheizung oder durch das Abbrennen von exothermem Abdeckpulver, erwärmt wird.
- Durch das Isolieren und das Erwärmen des Strangendes wird der obere Bereich des Strangs bis zum Durcherstarrungsende mit flüssigem Sumpf gehalten und das Nachsaugen der Schmelze in das Strangzentrum sichergestellt. Durch diese Maßnahmen wird eine hohe Qualität erzielt und eine zu große Trichterbildung im Strangende vermieden. Ähnliche Maßnahmen sind aber auch im unteren Bereich des Strangs möglich. Durch diese Maßnahmen werden die Ausbringverluste reduziert, da nur ein kürzerer Abschnitt vom Stranganfang und -ende abgetrennt werden muss.
- Zur Erzielung einer gleichmäßigen Innenstruktur ist eine Rühreinrichtung wie eine Rührspule vorteilhaft. Diese ist günstigerweise entlang der Strangachse verfahrbar. Alternativ dazu kann der teilerstarrte Strang in der Tertiärkühlzone um seine eigene Achse abwechselnd im Uhrzeigersinn und gegen den Uhrzeigersinn gedreht werden. Durch die Richtungsumkehr wird eine besonders innige Vermischung im Inneren des Strangs sichergestellt.
- Damit der gegossene Strang möglichst schnell eine tragfähige Schale erhält und dadurch die Länge der Sekundärkühlung möglichst kurz gehalten werden kann, ist es vorteilhaft, wenn der Strang einen runden Querschnitt hat. Ein ähnlicher Effekt kann auch bei einem Strang mit einem dreirunden, vierrunden etc. Querschnitt erzielt werden.
- Die erfindungsgemäße Aufgabe wird ebenfalls durch eine Vorrichtung nach Anspruch 10 gelöst. Vorteilhafte Ausführungsformen sind Gegenstand der abhängigen Ansprüche.
- Die erfindungsgemäße Stranggießmaschine umfasst
- eine Einrichtung zum Ausziehen eines Strangs aus einer Durchlaufkokille und eine Einrichtung zum Ausfördern des Strangs aus der Stranggießmaschine,
- die gekühlte Durchlaufkokille zur Primärkühlung des Strangs, nachfolgend
- eine Strangführung zum Stützen und Führen des Strangs mit einer Sekundärkühlzone, typischerweise umfassend mehrere Kühldüsen, zum Abkühlen des Strangs, und wiederum nachfolgend
- eine Tertiärkühlzone zum weiteren Abkühlen des Strangs, dadurch gekennzeichnet,
- Anstelle der statisch voreinstellbaren oder dynamisch (d.h. während des Betriebs) gesteuert oder geregelt einstellbaren Wärmeisolation in der Tertiärkühlzone kann die erfindungsgemäße Stranggießmaschine auch eine, vorzugsweise induktive, insbesondere in der Auszugsrichtung verfahrbare, Heizeinrichtung aufweisen.
- Durch die Heizvorrichtung kann die Mantelfläche des Strangs aufgeheizt werden, wodurch die Abkühlung (und dadurch die Gefügeausbildung) im Zentrumsbereich des teilerstarrten Strangs in der Tertiärkühlzone der Stranggießmaschine sehr genau eingestellt werden kann.
- Um die langsame Abkühlung des teilerstarrten Strangs bei einem niedrigen Energieverbrauch für die Heizvorrichtung zu ermöglichen, ist es vorteilhaft, wenn die Tertiärkühlzone eine, insbesondere statisch einstellbare oder eine dynamisch gesteuert oder geregelt einstellbare, Wärmeisolation aufweist.
- Zweckmäßig ist es, wenn die Durchlaufkokille, die Sekundär- und die Tertiärkühlzone in einer Reihe (sog. in-line) angeordnet sind.
- Die Produktivität der semi-kontinuierlichen Stranggießmaschine wird wesentlich erhöht, wenn die Stranggießmaschine mehrere, quer zur Auszugsrichtung der Stranggießmaschine, versetzte Tertiärkühlzonen aufweist, wobei der Maschinenkopf der Stranggießmaschine, umfassend die Durchlaufkokille und vorzugsweise die Sekundärkühlzone, mit einer Tertiärkühlzone verbindbar und trennbar sind und zumindest der Maschinenkopf quer zur Auszugsrichtung verfahrbar ist. Wie oben beschrieben, kann ein einziger Maschinenkopf mehrere Tertiärkühlzonen bedienen, sodass ein hoher Durchsatz trotz der langsamen Abkühlung der teilerstarrten Stränge erreicht wird.
- Vorzugsweise wird der Maschinenkopf zu einer weiteren Tertiärkühlzone verfahren, währenddessen der Strang stationär ist. Dadurch wird die gesteuert oder geregelte, langsame Abkühlung im Zentrumsbereich des Strangs nicht gestört. Alternativ dazu kann aber auch der Strang, ggf. mit der Tertiärkühlung, vom Maschinenkopf weggefahren werden.
- Bei der Verstellung der Wärmeisolation ist es vorteilhaft, wenn die verstellbare Wärmeisolation zumindest ein - vorteilhafterweise mehrere - Isolationspanel (auch Lamelle genannt) aufweist, dass in der Auszugsrichtung der Stranggießmaschine verlagerbar oder zur Auszugsrichtung schwenkbar ist. Dadurch kann die Abkühlgeschwindigkeit des teilerstarrten Strangs passiv, d.h. ohne zusätzlichen Energieeintrag, eingestellt werden.
- Mehrere Stränge mit kleinem Format können gleichzeitig erzeugt werden, wenn der Maschinenkopf der Stranggießmaschine mehrere gekühlte Durchlaufkokillen und mehrere dahinter angeordnete Strangführungen mit Sekundärkühlzonen aufweist.
- Eine einfache und robuste Stranggießmaschine weist einen Strangabzugswagen zum Ausziehen des Strangs auf, wobei der Strangabzugswagen in Auszugsrichtung, beispielsweise durch Spindel-, Zahnstangen- oder Zylinderantriebe, verfahrbar ist. Dabei stützt sich der Stranganfang über den Kaltstrang auf dem Strangabzugswagen ab.
- Bei einer Ausführungsform der erfindungsgemäßen Stranggießmaschine ist der Strangabzugswagen mit dem Maschinenkopf verbunden, wobei der Strangabzugswagen mit dem Maschinenkopf quer zur Auszugsrichtung verfahrbar ist. Dabei wird der gegossene Strang nach dem Gießende z.B. auf einem Podest auf dem Hallenboden abgestellt und der Maschinenkopf mit dem Strangabzugswagen zur einer anderen Tertiärkühlung verfahren. Die langsame Abkühlung des abgestellten Strangs kann z.B. durch eine über den Strang gestülpte Thermohaube sichergestellt werden.
- Alternativ dazu wäre es auch möglich, dass der Maschinenkopf stationär ist und der gegossene Strang quer zur Auszugsrichtung verfahrbar ist. Hier wird der gegossene Strang z.B. auf einem Podest abgestellt, wobei das Podest samt dem Strang zu einer weiteren Tertiärkühlzone verfahren werden kann.
- Weitere Vorteile und Merkmale der vorliegenden Erfindung ergeben sich aus der nachfolgenden Beschreibung nicht einschränkender Ausführungsbeispiele, wobei die Figuren zeigen:
-
Fig 1 mit den Teilfiguren 1a...1f zeigen schematisch die Verfahrensschritte beim semi-kontinuierlichen Stranggießen eines Vorblocks aus Stahl. -
Fig 2a und 2b zeigen zwei alternative Ausführungsformen einer Tertiärkühlung für das semi-kontinuierlichen Stranggießen eines Vorblocks aus Stahl. -
Fig 3 zeigt den zeitlichen Verlauf eines Heizaggregats zum Erwärmen eines Vorblocks in einer Tertiärkühlung. -
Fig 4 zeigt die Temperaturen bei der Abkühlung des Strangs 1 in der Tertiärkühlzone 5. -
Fig 5 zeigt die Temperaturverläufe über der Zeit zuFig 4 . -
Fig 6a und6b zeigen eine erfindungsgemäße Stranggießmaschine in einem Auf- und einem Kreuzriss. -
Fig 7 zeigt einen Maschinenkopf einer erfindungsgemäßen Stranggießmaschine in zwei Rissen. -
Fig 8a, 8b zeigen schematisch das Ausfördern eines durcherstarrten Strangs aus einer Tertiärkühlzone. - In den
Fig 1a ...1f sind die Verfahrensschritte beim semi-kontinuierlichen Stranggießen eines Strangs 1 in einer Stranggießmaschine gezeigt. - In
Fig 1a wird aus einem nicht extra dargestellten Pfannenverteiler flüssiger Stahl über ein Tauchrohr in eine gekühlte Durchlaufkokille 2 gegossen, wobei beim Gießstart der Stranggießmaschine die Durchlaufkokille 2 durch den Kaltstrang 6 fluiddicht verschlossen ist, sodass sich in der Kokille ein Gießspiegel M (auch Meniskus genannt) einstellt. Durch das Verbinden des flüssigen Stahls mit dem Kopf des Kaltstrangs 6 bildet sich ein durcherstarrter Stranganfang 1a (sieheFig 1c ) aus. Durch die Primärkühlung der gekühlten Durchlaufkokille 2 ist der dem durcherstarrten Stranganfang 1a entgegen der Auszugsrichtung A nachfolgende teilerstarrte Strang 1b nicht durcherstarrt, sondern weist lediglich eine dünne Strangschale und einen flüssigen Kern auf. Um den Gießspiegel M in der Kokille 2 trotz des über das Tauchrohr nachströmenden flüssigen Stahls in etwa konstant zu halten, wird der Strang 1 aus der Kokille 2 ausgezogen. Dazu weist die Stranggießmaschine einen Strangabzugswagen 11 auf, der den Kaltstrang 6 selbst, eine Gewindespindel 12, eine Gewindemutter 13 und einen Motor 14 zum Verfahren des Strangabzugswagens 11 in die Auszugsrichtung A umfasst. Der Motor 14 ist über ein Getriebe und die Gewindespindel 12 mit der Gewindemutter 13 verbunden und weist einen Durchtrieb für die Gewindespindel 12 auf. - In
Fig 1b wurde der Strang 1 bereits weiter aus der Durchlaufkokille 2 ausgezogen, wobei der Strang 1 in der der Kokille 2 nachfolgenden Strangführung 3 durch mehrere Strangführungsrollen 3a gestützt, geführt und durch mehrere Kühldüsen 4a in der Sekundärkühlung 4 abgekühlt wird. Dabei bildet der Strang 1 eine tragfähige Strangschale aus, die dem ferrostatischen Druck standhalten kann. Somit wird ein Durchbruch des Strangs 1 verhindert. - In
Fig 1c hat der Stranganfang 1a bereits die Sekundärkühlung 3 der Stranggießmaschine passiert und ist in die Tertiärkühlzone 5 eingetreten. In der Tertiärkühlzone 5 wird der Strang 1 weiter langsam gesteuert oder geregelt abgekühlt, sodass im Zentrum des teilerstarrten Strangs 1b die Durcherstarrung mit einer nach oben orientierten Richtung erfolgt. Dadurch bildet sich entweder ein globulares bzw. zumindest ein dendritisches, die Fadenporosität vermeidendes, Gefüge aus. Um das zu rasche Abkühlen des teilerstarrten Strangs 1b zu verhindern, weist die Tertiärkühlzone 5 eine Wärmeisolierung 9 und eine inFig 1f dargestellte Heizeinrichtung 7 auf. In derFig 2a ist ein Beispiel einer Wärmeisolierung 9 für eine Tertiärkühlung gezeigt, wobei die Atmosphäre zwischen dem Strang 1 und der Wärmehaube 9 durch eine Vakuumpumpe (hier eine Strahlpumpe 15) evakuiert wird. Hierzu wird ein Druckanschluss der Strahlpumpe 15 mit einem Druckluftnetz und der Sauganschluss der Strahlpumpe 15 mit dem Raum innerhalb der Wärmeisolierung 9 verbunden. Durch diese Maßnahme wird zudem auch eine Oxidation, d.h. Verzunderung, des Strangs 1 verhindert; außerdem wird durch die Vakuumbehandlung die noch nicht durcherstarrte Schmelze im Strang entgast. Die Wärmeisolation 9 weist mehrere Isolationspanele 9a auf, die unabhängig voneinander geschlossen (Öffnungswinkel 0°), geöffnet (Öffnungswinkel 90°)oder teilweise geöffnet (90° > Öffnungswinkel > 0°) werden können. - In
Fig 1d wurde das Gießen in der Stranggießmaschine beendet, sodass sich ein Strangende 1c ausbildet. Durch das Ausziehen des Strangendes 1c aus der Kokille 2, liegt der Gießspiegel M unterhalb des strichliert dargestellten Gießspiegels gemäß den Verfahrensschritten 1a-1c. - Die
Fig 1e zeigt die Situation nachdem das Strangende 1c des Strangs 1 die Sekundärkühlzone 3 passiert hat, die Sekundärkühlung beendet wurde und das Strangende 1c bündig mit dem oberen Ende der Tertiärkühlzone 5 abschließt. In der Tertiärkühlzone 5 wird die langsame, gesteuert oder geregelte Abkühlung des teilerstarrten Strangs 1b durch die Wärmeisolation 9 und die Erwärmung des Strangs durch die in der Auszugsrichtung A verfahrbare Heizeinrichtung 7 sichergestellt (sieheFig 1f ). Nach dem Trennen und Abheben des Maschinenkopfs, umfassend die Durchlaufkokille 2, die Strangführung 3 und die Sekundärkühlung 4, von der Tertiärkühlung 5, wird das Strangende 1c durch eine induktive Kopfheizung 10 erwärmt, sodass eine zu rasche Abkühlung des Strangendes 1c verhindert wird. - Gemäß den
Figuren 1a ...1f wurde ein runder Stahlstrang 1 mit einem Durchmesser von 1200 mm und einer Länge von 10 m produziert. Die Auszugsgeschwindigkeit des Strangs 1 aus der Durchlaufkokille 2 beträgt 0,25 m/min. Durch die Wärmeisolation 9 und das Wiedererwärmen des Strangs 1 durch die verfahrbare Heizeinrichtung 7 wird die vollständige Durcherstarrung des Strangs 1 erst nach 13 h erreicht. Das Vergießen des Strangs - ohne dem langsamen Abkühlen des Strangs in der Tertiärkühlzone 5 - wurde aber bereits nach 46 min beendet. Da das Vergießen im Gegensatz zur langsamen Durcherstarrung rasch beendet ist, ist es zur Erhöhung des Durchsatzes des semi-kontinuierlichen Stranggießverfahrens vorteilhaft, wenn der inFig 1f nicht mehr dargestellte Maschinenkopf von der Tertiärkühlzone 5 getrennt und quer zur Auszugsrichtung A zu einer weiteren Tertiärkühlzone 5 verfahren wird. Dort kann ein neuer Strang vergossen werden, währenddessen der inFig 1f dargestellte Strang 1 weiter langsam abgekühlt wird. Nach dem langsamen Abkühlen des Strangs 1 bis zu dessen vollständiger Durcherstarrung wird der Strang aus der Stranggießmaschine ausgefördert, bspw. durch eine Vorrichtung gem. denFig 8a und 8b . - In der
Fig 2a ist eine erste alternative Ausführungsform der Tertiärkühlzone 5 vonFig 1 dargestellt. Dabei wird der Raum zwischen dem Strang 1 und der Wärmeisolierung 9 durch eine Strahlpumpe 15 evakuiert, wodurch eine gute Wärmeisolation und eine langsame Abkühlung erreicht wird. Außerdem wird die Oberfläche des Strangs 1 vor Verzunderung geschützt und die Restschmelze entgast. Die Strahlpumpe ist einfach und verschleißfrei; dessen Druckanschluss wird mit einem Druckluftanschluss P und dessen Sauganschluss mit dem zu evakuierenden Raum innerhalb der Tertiärkühlzone verbunden. Das Abblasen kann gegen Umgebungsdruck U erfolgen. Die induktive Kopfheizung 10 ist gegenüber einer Plasmaheizung vorteilhaft, da das magnetische Feld auch durch die Wärmisolierung des Strangendes 1c wirkt. - Die
Fig 2b zeigt eine zweite Alternative der Tertiärkühlzone 5 vonFig 1 . Dabei sind die Isolationslamellen 9a der Wärmeisolierung 9 zur Auszugsrichtung verschwenkbar, sodass der Luftwechsel zwischen der Umgebungsluft und dem Strang 1 im Inneren der Tertiärkühlzone 9 einstellbar ist. Lediglich zur Illustration der Funktion der Isolationslamellen 9a wurden die Isolationslamellen 9a auf der rechten Seite des Strangs 1 geschlossen und auf der linken Seite um 10° zur Auszugsrichtung A geöffnet dargestellt. Die Verstellung der Lamellen 9a kann entweder manuell oder durch Aktoren erfolgen. - Die
Fig 3 zeigt schematisch den zeitlichen Verlauf des Verfahrwegs s der induktiven Heizvorrichtung 7 zum Wiedererwärmen der Mantelfläche des Strangs 1. Hierbei ist die Heizvorrichtung 7 im oberen Bereich des Strangs 1 durchgezogen und im unteren Bereich strichliert dargestellt. Da sich die Erstarrungsfront während der Abkühlung von unten nach oben (d.h. vom Stranganfang 1a zum Strangende 1c) verschiebt, verringert sich auch der Verfahrweg s der Heizvorrichtung 7 über der Zeit. Alternativ zu einer verfahrbaren Heizvorrichtung 7 könnten auch mehrere, in Auszugsrichtung A verteilt über die Länge der Tertiärkühlzone 5 angeordnete Heizeinrichtungen (z.B. Brenner) verwendet werden. - Die
Fig 4 zeigt die Temperaturen in °C des gemäßFig 1 erzeugten Strangs 1 in einer Schnittdarstellung 3h nach Gießstart (Teilfigur 1), 8,3h nach Gießstart (Teilfigur 2) und bei Durcherstarrung des Strangs 1, ca. 13h nach Gießstart (Teilfigur 3). Der zeitliche Verlauf der Temperaturen des Strangs 1 an unterschiedlichen Positionen an der Oberfläche und im Zentrum des Strangs sind inFig 5 dargestellt. Daraus geht hervor, dass das Vergießen des Strangs und damit auch die Primär- und die Sekundärkühlung 46 min nach dem Gießstart beendet wird und anschließend der Strang 1 lediglich durch die Tertiärkühlung 5 kontrolliert abgekühlt wird. - In den
Figuren 6a ,6b ist eine erfindungsgemäße VertikalStranggießmaschine in zwei Ansichten dargestellt. Der flüssige Stahl wird von einer Pfanne 30 über ein Schattenrohr in den Gießverteiler 31 gegossen, anschließend strömt die Schmelze über ein nicht dargestelltes Tauchrohr (SEN) in die Durchlaufkokille 2 ein. Durch die Primärkühlung in der Kokille 2 bildet sich ein teilerstarrter Strang 1 mit einer tragfähigen Strangschale aus. In der Kokille 2 wird die Schmelze durch eine optionale Rühreinrichtung 32 noch weiter beeinflusst. Der Strang 1 wird in der Strangführung 3 gestützt, geführt und in der Sekundärkühlzone 4 weiter abgekühlt. Zumindest die Durchlaufkokille 2, die Rührspule 32, die Strangführung 3 mit der Sekundärkühlzone 4, und optional auch die Tertiärkühlzone 5, sind auf einem Gießwagen 33 auf der Gießbühne G verfahrbar. Der Strang 1 mit dem Kaltstrang 6 wird über den Strangabzugswagen 11 aus der Durchlaufkokille 2 ausgezogen. Dazu wird der Strangabzugswagen 11 über vier Gewindespindeln 12 angetrieben und durch zusätzliche Führungsschienen 34 geführt, wobei ein Motor über ein Getriebe und die Gewindespindel 12 mit der Gewindemutter 13 verbunden ist. Nachdem der Gießvorgang beendet und der Strang 1 auf dem Amboss 40 abgestellt worden ist, kann der Gießwagen 33 quer zur Auszugsrichtung A zu einer weiteren Gießstation verfahren werden, da das Gießen des teilerstarrten Strangs, d.h. ohne der Tertiärkühlung des Strangs 1, wesentlich weniger Zeit benötigt als die Tertiärkühlung des Strangs 1 bis zu dessen Durcherstarrung. In der Tertiärkühlzone 5 wird der Strang 1 durch die Wärmeisolierung 9 und ggf. durch eine hier nicht dargestellte Heizeinrichtung langsam abgekühlt, sodass die Erstarrung im Zentrum des Strangs mit einer nach oben orientierten Erstarrungsfront erfolgt. - Eine detailliertere Darstellung des Maschinenkopfes der Stranggießmaschine aus den
Fig 6a ,6b ist inFig 7 dargestellt. - Die
Fig 8a, 8b zeigen schematisch eine Ausführungsform für das Ausfördern des durcherstarrten Strangs 1 aus der Tertiärkühlzone. Der Strang 1 wird durch zwei Bügel 38 seitlich gestützt, sodass auf der Stranggießmaschine auch stark unterschiedliche Durchmesser (siehe Grundriss vonFig 8a ) vergossen werden können. InFig 8a ist der Strang 1 gegenüber der Vertikalen bereits ausgeschwenkt worden und liegt an den Bügeln 38 auf. InFig 8b wird der Strang 1 über den Schwenkantrieb 39 auf einen Rollgang 37 abgelegt, wo er in Pfeilrichtung entnommen werden kann. - Obwohl die Erfindung im Detail durch die bevorzugten Ausführungsbeispiele näher illustriert und beschrieben wurde, so ist die Erfindung nicht durch die offenbarten Beispiele eingeschränkt und andere Variationen können vom Fachmann hieraus abgeleitet werden, ohne den Schutzumfang der Erfindung zu verlassen.
-
- 1
- Strang
- 1a
- Stranganfang
- 1b
- teilerstarrter Strang
- 1c
- Strangende
- 2
- Durchlaufkokille, Primärkühlung
- 3
- Strangführung
- 3a
- Strangführungsrollen
- 4
- Sekundärkühlung, Sekundärkühlzone
- 4a
- Kühldüse
- 5
- Tertiärkühlung, Tertiärkühlzone
- 6
- Kaltstrang
- 7
- Heizvorrichtung
- 9
- Wärmeisolation
- 9a
- Isolationspanel
- 10
- Kopfheizung
- 11
- Strangabzugswagen
- 12
- Gewindespindel
- 13
- Gewindemutter
- 14
- Motor
- 15
- Strahlpumpe
- 30, 30'
- Pfanne
- 31
- Gießverteiler
- 32
- Rührspule
- 33
- Gießwagen
- 34
- Führungsschiene
- 35
- Oszilliereinrichtung
- 36
- Wasserabstreifer
- 37
- Rollgang
- 38
- Bügel
- 39
- Schwenkantrieb
- 40
- Amboss
- A
- Auszugsrichtung
- G
- Gießbühne
- M
- Gießspiegel
- P
- Druck in einem Druckluftnetz
- S
- Verfahrweg
- U
- Umgebungsdruck
Claims (17)
- Verfahren zum semi-kontinuierlichen Stranggießen eines Strangs (1), vorzugsweise eines Vorblocks, aus Stahl in einer Stranggießmaschine, wobei die Stranggießmaschine- eine gekühlte Durchlaufkokille (2) zur Primärkühlung des Strangs (1), nachfolgend- eine Strangführung (3) zum Stützen und Führen des Strangs (1) mit einer Sekundärkühlung (4) zum Abkühlen des Strangs (1), und wiederum nachfolgend- eine Tertiärkühlung (5) zum weiteren Abkühlen des Strangs (1)aufweist, umfassend die Verfahrensschritte:- Gießstart der Stranggießmaschine, wobei flüssiger Stahl in die durch einen Kaltstrang (6) verschlossene Durchlaufkokille (2) gegossen wird und der flüssige Stahl mit dem Kaltstrang einen durcherstarrten Stranganfang (1a) und nachfolgend einen teilerstarrten Strang (1b) ausbildet;- Ausziehen des teilerstarrten Strangs (1b) aus der Durchlaufkokille (2);- Stützen und Führen des teilerstarrten Strangs (1b) in der Strangführung (3), wobei der teilerstarrte Strang (1b) durch die Sekundärkühlung (4) abgekühlt wird;- Gießende der Stranggießmaschine, wobei das Vergießen von flüssigem Stahl in die Durchlaufkokille (2) beendet wird und sich ein Strangende (1c) ausbildet;- Ausziehen des Strangendes (1c) aus der Durchlaufkokille (2);- Beenden des Ausziehens, sodass das Strangende (1c) außerhalb der Durchlaufkokille (2) liegt;- Beenden der Sekundärkühlung (4);- gesteuertes oder geregeltes Abkühlen des teilerstarrten Strangs (1b) bis zur Durcherstarrung des Strangs (1) in der Tertiärkühlzone (5) der Stranggießmaschine, wobei das Abkühlen am Stranganfang (1a) stärker und zum Strangende (1c) hin abnehmend erfolgt;- Ausfördern des Strangs (1) aus der Stranggießmaschine.
- Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass die Abkühlung des teilerstarrten Strangs (1b) in der Tertiärkühlzone (5) durch die Beeinflussung zumindest eines aus der Gruppe:- Wärmeisolation des Strangs (1, 1b),- Heizung des Strangs (1, 1b),- Oberflächenkühlung des Strangs (1, 1b) eingestellt wird.
- Verfahren nach Anspruch 2, dadurch gekennzeichnet, dass der teilerstarrte Strang (1b) in der Tertiärkühlzone (5) durch eine Heizvorrichtung (7) aufgeheizt wird.
- Verfahren nach Anspruch 3, dadurch gekennzeichnet, dass das die Heizvorrichtung (7) in die Auszugsrichtung (A) der Stranggießmaschine verfahrbar ist.
- Verfahren nach einem der Ansprüche 2 bis 4, dadurch gekennzeichnet, dass der teilerstarrte Strang (1b) in der Tertiärkühlzone (5) durch eine Wärmeisolation (9) vor zu rascher Abkühlung geschützt wird.
- Verfahren nach Anspruch 5, dadurch gekennzeichnet, dass die Isolationswirkung der Wärmeisolation (9) eingestellt wird.
- Verfahren nach einem der Ansprüche 2 bis 6, dadurch gekennzeichnet, dass das Strangende (1c) durch eine Kopfheizung (10) erwärmt wird.
- Verfahren nach einem der Ansprüche 2 bis 7, dadurch gekennzeichnet, dass die Oberfläche des teilerstarrten Strangs (1b) durch eine Kühlvorrichtung (4a) in der Tertiärkühlzone (5) abgekühlt wird.
- Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der teilerstarrte Strang (1b) in der Tertiärkühlzone (5) durch eine stationäre oder in der Auszugsrichtung (A) verfahrbaren Rührspule (32) gerührt wird oder der teilerstarrte Strang (1b) um seine eigene Achse in der Tertiärkühlzone (5) abwechselnd im Uhrzeigersinn und gegen den Uhrzeigersinn gedreht wird.
- Stranggießmaschine zur Durchführung des Verfahrens nach einem der Ansprüche 1 bis 9 mit- einer Einrichtung zum Ausziehen eines Strangs (1) aus einer Durchlaufkokille (2) und einer Einrichtung (37, 38, 39) zum Ausfördern des Strangs (1) aus der Stranggießmaschine,- der gekühlten Durchlaufkokille (2) zur Primärkühlung des Strangs (1), nachfolgend- einer Strangführung (3) zum Stützen und Führen des Strangs (1) mit einer Sekundärkühlzone (4) zum Abkühlen des Strangs (1), und wiederum nachfolgend- einer Tertiärkühlzone (5) zum weiteren Abkühlen des Strangs (1), dadurch gekennzeichnet,dass die Tertiärkühlzone (5) eine statisch voreinstellbare oder eine dynamisch gesteuert oder geregelt einstellbare Wärmeisolation (9) zum gesteuerten oder geregelten Abkühlen des teilerstarrten Strangs (1b) aufweist.
- Stranggießmaschine nach Anspruch 10, dadurch gekennzeichnet, dass die Tertiärkühlzone (5) eine, insbesondere in die Auszugsrichtung (A) der Stranggießmaschine verfahrbare, Heizvorrichtung (7) aufweist.
- Stranggießmaschine nach einem der Ansprüche 10 bis 11, gekennzeichnet durch mehrere, quer zur Auszugsrichtung (A) der Stranggießmaschine, versetzte Tertiärkühlzonen (5), wobei der Maschinenkopf der Stranggießmaschine, umfassend die Durchlaufkokille (2) und vorzugsweise die Sekundärkühlzone (4), mit einer Tertiärkühlzone (5) verbindbar und trennbar sind.
- Stranggießmaschine nach Anspruch 12, dadurch gekennzeichnet, dass mehrere Tertiärkühlzonen (5) bogenförmig, vorzugsweise kreisförmig, oder linear hintereinanderliegend angeordnet sind.
- Stranggießmaschine nach einem der Ansprüche 11 bis 13, dadurch gekennzeichnet, dass die verstellbare Wärmeisolation (9) zumindest ein Isolationspanel (9a) aufweist, dass in Auszugsrichtung (A) verlagerbar oder zur Auszugsrichtung (A) verschwenkbar ist.
- Stranggießmaschine nach einem der Ansprüche 11 bis 14, dadurch gekennzeichnet, dass die Stranggießmaschine einen Strangabzugswagen (11) zum Ausziehen des Strangs (1) aufweist, wobei der Strangabzugswagen (11) in Auszugsrichtung (A) verfahrbar ist.
- Stranggießmaschine nach Anspruch 11 und 15, dadurch gekennzeichnet, dass der Strangabzugswagen (11) mit dem Maschinenkopf verbunden ist und beide quer zur Auszugsrichtung (A) verfahrbar sind.
- Stranggießmaschine nach einem der Ansprüche 11 bis 15, dadurch gekennzeichnet, dass der Maschinenkopf stationär ist und der Strang (1) quer zur Auszugsrichtung (A) verfahrbar ist.
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP14162061 | 2014-03-27 | ||
EP15702712.9A EP3122492B2 (de) | 2014-03-27 | 2015-01-27 | Semi-kontinuierliches stranggiessen eines stahlstrangs |
PCT/EP2015/051619 WO2015079071A2 (de) | 2014-03-27 | 2015-01-27 | Semi-kontinuierliches stranggiessen eines stahlstrangs |
Related Parent Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP15702712.9A Division-Into EP3122492B2 (de) | 2014-03-27 | 2015-01-27 | Semi-kontinuierliches stranggiessen eines stahlstrangs |
EP15702712.9A Division EP3122492B2 (de) | 2014-03-27 | 2015-01-27 | Semi-kontinuierliches stranggiessen eines stahlstrangs |
Publications (2)
Publication Number | Publication Date |
---|---|
EP3251773A1 true EP3251773A1 (de) | 2017-12-06 |
EP3251773B1 EP3251773B1 (de) | 2020-05-06 |
Family
ID=50389887
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP17173954.3A Active EP3251773B1 (de) | 2014-03-27 | 2015-01-27 | Semi-kontinuierliches stranggiessen eines stahlstrangs |
EP15702712.9A Not-in-force EP3122492B2 (de) | 2014-03-27 | 2015-01-27 | Semi-kontinuierliches stranggiessen eines stahlstrangs |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP15702712.9A Not-in-force EP3122492B2 (de) | 2014-03-27 | 2015-01-27 | Semi-kontinuierliches stranggiessen eines stahlstrangs |
Country Status (6)
Country | Link |
---|---|
US (1) | US10307819B2 (de) |
EP (2) | EP3251773B1 (de) |
CN (1) | CN106457371B (de) |
AT (3) | AT15223U1 (de) |
RU (1) | RU2675880C2 (de) |
WO (1) | WO2015079071A2 (de) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2018172358A1 (de) * | 2017-03-21 | 2018-09-27 | Primetals Technologies Austria GmbH | Anlage und verfahren zum semi-kontinuierlichen stranggiessen von blocksträngen |
EP3885060A1 (de) * | 2020-03-25 | 2021-09-29 | Primetals Technologies Austria GmbH | Stranggiessanlage und verfahren zum betreiben der stranggiessanlage |
Families Citing this family (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
ITUB20159776A1 (it) | 2015-12-30 | 2017-06-30 | Ergolines Lab S R L | Impianto di produzione di barre metalliche, macchina di colata, processo di colata e metodo di controllo di dispositivi elettromagnetici di agitazione di metallo fuso |
DE102017108394A1 (de) * | 2017-04-20 | 2018-10-25 | Inteco Melting And Casting Technologies Gmbh | Verfahren und Vorrichtung zum Herstellen von Gussblöcken aus Metall |
EP3437756B1 (de) | 2017-08-04 | 2021-12-22 | Primetals Technologies Austria GmbH | Stranggiessen eines metallischen strangs |
EP3437759B1 (de) | 2017-08-04 | 2022-10-12 | Primetals Technologies Austria GmbH | Stranggiessen eines metallischen strangs |
EP3437757A1 (de) | 2017-08-04 | 2019-02-06 | Primetals Technologies Austria GmbH | Stranggiessen eines metallischen strangs |
CN108620563A (zh) * | 2018-07-06 | 2018-10-09 | 广东坚美铝型材厂(集团)有限公司 | 一种铸棒机 |
KR102563855B1 (ko) * | 2018-11-28 | 2023-08-03 | 프리메탈스 테크놀로지스 오스트리아 게엠베하 | 금속 스트랜드의 연속 주조 |
KR102586739B1 (ko) * | 2018-11-28 | 2023-10-06 | 프리메탈스 테크놀로지스 오스트리아 게엠베하 | 금속 스트랜드의 연속 주조 |
CN110369686A (zh) * | 2019-07-03 | 2019-10-25 | 西安理工大学 | 一种铸铁水平连铸三次喷冷装置 |
CN114786837A (zh) | 2019-12-20 | 2022-07-22 | 诺维尔里斯公司 | 经由直冷(dc)路线生产的未再结晶锻造材料的减小的最终晶粒尺寸 |
WO2021231124A1 (en) * | 2020-05-13 | 2021-11-18 | Corning Incorporated | Glass molding apparatus including adjustable cooling nozzles and methods of using the same |
CN111468691B (zh) * | 2020-06-12 | 2021-08-20 | 江苏隆达超合金股份有限公司 | 一种铜镍合金半连续圆铸锭引锭头 |
AT525111A1 (de) | 2021-06-08 | 2022-12-15 | Primetals Technologies Austria GmbH | Rühren bei gegossenen Vorblöcken mit oszillierendem Strangrührer |
CN113695545B (zh) * | 2021-08-18 | 2023-03-24 | 中天钢铁集团有限公司 | 一种满足生产大规格线材冷镦钢的小方坯连铸方法 |
CN114309510B (zh) * | 2021-11-24 | 2022-09-09 | 武汉西赛冶金工程有限责任公司 | 机械搅拌的金属连铸工艺及机械搅拌装置 |
CN114905016B (zh) * | 2022-06-13 | 2024-01-12 | 武汉大西洋连铸设备工程有限责任公司 | 一种应用于铸坯凝固过程中的机械旋转搅拌装置 |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE2042546A1 (en) * | 1970-08-27 | 1972-03-02 | Zentralnyj nautschno lssledowatelskij Institut tschernoj metallurgn lmenti I P Bardina, Moskau | Reduction of cooling of continuous castings - in secondary cooling zo |
DE4108785A1 (de) * | 1990-03-19 | 1991-09-26 | Outokumpu Oy | Giessmaschine |
Family Cites Families (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
SU261660A1 (ru) * | 1967-12-25 | 1977-12-05 | Центральный научно-исследовательский институт черной металлургии им. И.П.Бардина | Устройство дл регулировани теплоотвода от кристаллизующегос непрерывного слитка |
JPS57127505A (en) | 1981-01-22 | 1982-08-07 | Nippon Steel Corp | Direct rolling manufacturing device for steel |
SU980935A1 (ru) * | 1981-02-13 | 1982-12-15 | Центральный Ордена Трудового Красного Знамени Научно-Исследовательский Институт Черной Металлургии Им.И.П.Бардина | Способ непрерывной разливки металла |
AT374709B (de) | 1982-03-23 | 1984-05-25 | Uralsky Politekhn Inst | Halbkontinuierliches stranggiessverfahren fuer metall |
JPS5945068A (ja) | 1982-09-06 | 1984-03-13 | Kawasaki Steel Corp | 半連鋳鋳型造塊装置における冷却方法 |
DE3542518A1 (de) * | 1985-12-02 | 1987-06-04 | Mannesmann Ag | Einrichtung zum senkrechten, diskontinuierlichen stranggiessen von metallen, insbesondere von stahl |
JPH0667541B2 (ja) | 1986-02-21 | 1994-08-31 | 株式会社神戸製鋼所 | 半連続鋳造方法 |
DE3621234A1 (de) * | 1986-06-25 | 1988-01-21 | Thyssen Edelstahlwerke Ag | Senkrecht-giessanlage fuer strang-teillaengen |
SU1675033A1 (ru) * | 1988-04-04 | 1991-09-07 | Всесоюзный научно-исследовательский и проектно-конструкторский институт металлургического машиностроения им.А.И.Целикова | Способ электромагнитного перемешивани жидкой фазы непрерывнолитого слитка |
JPH10216911A (ja) * | 1997-02-06 | 1998-08-18 | Daido Steel Co Ltd | 連続鋳造装置 |
RU2187408C2 (ru) * | 2000-05-30 | 2002-08-20 | Федеральное государственное унитарное предприятие Центральный научно-исследовательский институт черной металлургии им. И.П.Бардина | Способ непрерывной разливки слитков для производства железнодорожных рельсов |
JP3696844B2 (ja) * | 2002-07-08 | 2005-09-21 | 九州三井アルミニウム工業株式会社 | 半溶融成型性に優れたアルミニウム合金 |
WO2007048250A1 (en) | 2005-10-28 | 2007-05-03 | Novelis Inc. | Homogenization and heat-treatment of cast metals |
KR101053975B1 (ko) | 2009-01-21 | 2011-08-04 | 주식회사 포스코 | 수직형 반연속 주조 장치 및 이를 이용한 주조 방법 |
AT512214B1 (de) | 2011-12-05 | 2015-04-15 | Siemens Vai Metals Tech Gmbh | Prozesstechnische massnahmen in einer stranggiessmaschine bei giessstart, bei giessende und bei der herstellung eines übergangsstücks |
CN202606822U (zh) | 2012-03-06 | 2012-12-19 | 金川集团股份有限公司 | 一种铜及铜合金铸锭的立式连续铸锭装置 |
ITUD20120095A1 (it) | 2012-05-24 | 2013-11-25 | Ergolines Lab S R L | "dispositivo elettromagnetico di agitazione" |
CN102773427B (zh) | 2012-06-12 | 2015-04-22 | 中冶京诚工程技术有限公司 | 大断面圆坯的连续铸造装置及其铸造方法 |
CN103706769B (zh) | 2014-01-22 | 2015-09-30 | 上海星祥电气有限公司 | 立式连续铸造装置及其方法 |
-
2015
- 2015-01-27 AT ATGM50216/2016U patent/AT15223U1/de unknown
- 2015-01-27 EP EP17173954.3A patent/EP3251773B1/de active Active
- 2015-01-27 WO PCT/EP2015/051619 patent/WO2015079071A2/de active Application Filing
- 2015-01-27 AT ATGM50179/2016U patent/AT15215U1/de not_active IP Right Cessation
- 2015-01-27 US US15/129,576 patent/US10307819B2/en not_active Expired - Fee Related
- 2015-01-27 EP EP15702712.9A patent/EP3122492B2/de not_active Not-in-force
- 2015-01-27 RU RU2016141648A patent/RU2675880C2/ru active
- 2015-01-27 AT ATA50052/2015A patent/AT515731B1/de not_active IP Right Cessation
- 2015-01-27 CN CN201580016900.8A patent/CN106457371B/zh active Active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE2042546A1 (en) * | 1970-08-27 | 1972-03-02 | Zentralnyj nautschno lssledowatelskij Institut tschernoj metallurgn lmenti I P Bardina, Moskau | Reduction of cooling of continuous castings - in secondary cooling zo |
DE4108785A1 (de) * | 1990-03-19 | 1991-09-26 | Outokumpu Oy | Giessmaschine |
Non-Patent Citations (1)
Title |
---|
"ASM Handbook", vol. 15, article "Steel Ingot Casting", pages: 911 - 917 |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2018172358A1 (de) * | 2017-03-21 | 2018-09-27 | Primetals Technologies Austria GmbH | Anlage und verfahren zum semi-kontinuierlichen stranggiessen von blocksträngen |
EP3885060A1 (de) * | 2020-03-25 | 2021-09-29 | Primetals Technologies Austria GmbH | Stranggiessanlage und verfahren zum betreiben der stranggiessanlage |
Also Published As
Publication number | Publication date |
---|---|
AT15215U1 (de) | 2017-03-15 |
EP3122492B2 (de) | 2020-06-10 |
EP3122492A2 (de) | 2017-02-01 |
WO2015079071A3 (de) | 2015-07-30 |
US20170216908A1 (en) | 2017-08-03 |
RU2016141648A3 (de) | 2018-06-29 |
AT515731A2 (de) | 2015-11-15 |
AT515731B1 (de) | 2018-08-15 |
AT515731A3 (de) | 2017-01-15 |
WO2015079071A2 (de) | 2015-06-04 |
EP3122492B1 (de) | 2017-07-05 |
CN106457371B (zh) | 2019-05-07 |
RU2016141648A (ru) | 2018-04-27 |
US10307819B2 (en) | 2019-06-04 |
AT15223U1 (de) | 2017-03-15 |
CN106457371A (zh) | 2017-02-22 |
RU2675880C2 (ru) | 2018-12-25 |
EP3251773B1 (de) | 2020-05-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP3122492B1 (de) | Semi-kontinuierliches stranggiessen eines stahlstrangs | |
EP2462248B1 (de) | Verfahren und vorrichtung zum herstellen eines mikrolegierten stahls, insbesondere eines röhrenstahls | |
DE3246470C1 (de) | Stranggiessverfahren fuer Metalle | |
DE69429900T2 (de) | Verfahren zum Stranggiessen und Verfahren zum Stranggiessen/Walzen von Stahl | |
EP3558563B1 (de) | Verfahren zur endlosen herstellung eines aufgewickelten warmbands in einer giess-walz-verbundanlage und giess-walz-verbundanlage | |
WO2016131437A2 (de) | Verfahren und anlage zum erzeugen von stahlsträngen | |
EP3016762B1 (de) | Giesswalzanlage und verfahren zum herstellen von metallischem walzgut | |
EP3705202B1 (de) | Umbau einer stranggiessanlage für knüppel- oder vorblockstränge | |
EP3993921B1 (de) | Schmelzezuführung für bandgussanlagen | |
EP3600721B1 (de) | Anlage und verfahren zum semi-kontinuierlichen stranggiessen von blocksträngen | |
AT411822B (de) | Verfahren und vorrichtung zum starten eines giessvorganges | |
EP3291933B1 (de) | Giess-walz-anlage und verfahren zu deren betrieb | |
WO2015014865A1 (de) | GIEßWALZANLAGE ZUM HERSTELLEN VON METALLBÄNDERN | |
EP3437759B1 (de) | Stranggiessen eines metallischen strangs | |
EP3229992B1 (de) | Vorrichtung und verfahren zur herstellung von ingots | |
EP3223979B1 (de) | Stranggiessanlage für duennbrammen | |
DE3542518A1 (de) | Einrichtung zum senkrechten, diskontinuierlichen stranggiessen von metallen, insbesondere von stahl | |
EP3427863A1 (de) | Verfahren und anlage zur herstellung von gussblöcken aus metall | |
AT378140B (de) | Diskontinuierliche stranggussanlage | |
EP3015192B1 (de) | Verfahren und Vorrichtung zum Stranggießen einer Leichtmetalllegierung | |
DE2024747C3 (de) | Verfahren zum halbkontinuierllchen Stranggießen, insbesondere von Stahl, und Vorrichtung zur Durchführung des Verfahrens * | |
DE1292793C2 (de) | Vorrichtung zum Abziehen eines Stahlstranges aus einer Strangkokille | |
DE2143445C3 (de) | Verfahren und Vorrichtung zum Herstellen von metallischen Blöcken | |
DE1931715A1 (de) | Verfahren und Vorrichtung zum Vergiessen von Metallen |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED |
|
AC | Divisional application: reference to earlier application |
Ref document number: 3122492 Country of ref document: EP Kind code of ref document: P |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE |
|
17P | Request for examination filed |
Effective date: 20180606 |
|
RBV | Designated contracting states (corrected) |
Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: EXAMINATION IS IN PROGRESS |
|
17Q | First examination report despatched |
Effective date: 20190513 |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: GRANT OF PATENT IS INTENDED |
|
INTG | Intention to grant announced |
Effective date: 20200103 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE PATENT HAS BEEN GRANTED |
|
AC | Divisional application: reference to earlier application |
Ref document number: 3122492 Country of ref document: EP Kind code of ref document: P |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: REF Ref document number: 1265974 Country of ref document: AT Kind code of ref document: T Effective date: 20200515 Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 502015012552 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: GERMAN |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: NV Representative=s name: DENNEMEYER AG, CH |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG4D |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: MP Effective date: 20200506 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200907 Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200806 Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200906 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200506 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200807 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200506 Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200506 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: RS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200506 Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200806 Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200506 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200506 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200506 Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200506 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200506 Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200506 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200506 Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200506 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200506 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 502015012552 Country of ref document: DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200506 Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200506 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed |
Effective date: 20210209 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200506 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200506 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20210127 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20210127 |
|
REG | Reference to a national code |
Ref country code: BE Ref legal event code: MM Effective date: 20210131 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20210131 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20210127 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20210127 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20210131 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200506 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200506 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO Effective date: 20150127 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: AT Payment date: 20240122 Year of fee payment: 10 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200506 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20240119 Year of fee payment: 10 Ref country code: CH Payment date: 20240202 Year of fee payment: 10 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: IT Payment date: 20240129 Year of fee payment: 10 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200506 |