EP3204530B2 - Kaltgewalztes und rekristallisierend geglühtes stahlflachprodukt und verfahren zu dessen herstellung - Google Patents
Kaltgewalztes und rekristallisierend geglühtes stahlflachprodukt und verfahren zu dessen herstellung Download PDFInfo
- Publication number
- EP3204530B2 EP3204530B2 EP15762569.0A EP15762569A EP3204530B2 EP 3204530 B2 EP3204530 B2 EP 3204530B2 EP 15762569 A EP15762569 A EP 15762569A EP 3204530 B2 EP3204530 B2 EP 3204530B2
- Authority
- EP
- European Patent Office
- Prior art keywords
- flat steel
- steel product
- temper
- skin
- roll
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/04—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing
- C21D8/0447—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing characterised by the heat treatment
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/04—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing
- C21D8/0421—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing characterised by the working steps
- C21D8/0436—Cold rolling
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/04—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing
- C21D8/0421—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing characterised by the working steps
- C21D8/0442—Flattening; Dressing; Flexing
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/04—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing
- C21D8/0447—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing characterised by the heat treatment
- C21D8/0473—Final recrystallisation annealing
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D9/00—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
- C21D9/46—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/001—Ferrous alloys, e.g. steel alloys containing N
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/004—Very low carbon steels, i.e. having a carbon content of less than 0,01%
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/008—Ferrous alloys, e.g. steel alloys containing tin
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/02—Ferrous alloys, e.g. steel alloys containing silicon
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/04—Ferrous alloys, e.g. steel alloys containing manganese
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/06—Ferrous alloys, e.g. steel alloys containing aluminium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/14—Ferrous alloys, e.g. steel alloys containing titanium or zirconium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/42—Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/44—Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/46—Ferrous alloys, e.g. steel alloys containing chromium with nickel with vanadium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/48—Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/50—Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/54—Ferrous alloys, e.g. steel alloys containing chromium with nickel with boron
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25D—PROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
- C25D3/00—Electroplating: Baths therefor
- C25D3/02—Electroplating: Baths therefor from solutions
- C25D3/22—Electroplating: Baths therefor from solutions of zinc
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D2211/00—Microstructure comprising significant phases
- C21D2211/005—Ferrite
Definitions
- the invention relates to a method for producing a cold-rolled and recrystallization-annealed flat steel product with a ferritic microstructure.
- Flat steel products of this type are used in particular in the field of automobile body construction, where particularly high demands are placed on the formability and optical appearance of the components formed from such flat steel products.
- Flat steel products intended for car body construction or similar applications are typically provided with a surface structure that is characterized by a defined roughness and an equally defined peak distribution in order to meet customer-specific requirements with regard to formability and surface appearance (paintability and paint gloss).
- a typical example of corresponding specifications from the automotive industry is an arithmetic mean roughness (hereinafter referred to as "roughness") Ra of 1.1 - 1.6 ⁇ m with a peak number RPc of at least 60 1/cm.
- the roughness Ra and the peak number RPc are determined in accordance with steel iron test sheet SEP 1940 using a stylus device in accordance with ISO 3274.
- Wsa waviness value Wsa(1 - 5)
- Wsa waviness value Wsa(1 - 5)
- Typical requirements are Wsa values of 0.35 ⁇ m to 0.40 ⁇ m.
- Particularly good paint gloss is achieved with Wsa values of ⁇ 0.35 ⁇ m, in particular ⁇ 0.30 ⁇ m.
- peak numbers RPc of at least 75 1/cm and roughnesses Ra of 0.9 - 1.4 ⁇ m are required.
- the adjustment of the material properties Ra and RPc in the production of cold-rolled flat steel products is typically carried out by skin passing after the recrystallization annealing that the flat steel products undergo after cold rolling in order to ensure their optimum formability.
- Skin-passing is understood here as a pre-rolling or finishing process carried out after recrystallizing annealing, in which the flat steel product is subjected to a slight deformation of approx. 0.2 - 2.0%, which is referred to here as the "skin-passing degree".
- the skin-passing degree is determined by comparing the peripheral speeds of the deflection rollers, which are equipped with position sensors, before and after the rolling mill in which the flat steel product is skin-passed.
- the skin pass degree D is set too high, the roughness Ra will be too high. If, on the other hand, the skin pass degree D is set too low, the edges of the strip may not be dressed, particularly with wide strip dimensions. In these cases, the Ra and RPc values achieved are then too low.
- the skin pass degree D cannot be varied arbitrarily with regard to the mechanical properties of the steel substrate.
- a skin pass degree D that is too low does not adequately counteract a pronounced yield point.
- a skin pass degree D that is too high can result in the strength of the steel substrate being uncorrectably high due to excessive work hardening.
- Soft here means a steel that, in the recrystallized state and after skin-pass rolling, has a yield strength Rp0.2 of no more than 180 N/mm2 and a tensile strength Rm of no more than 340 N/mm2. In practice, this means that flat steel products of the type in question here with dimensions typical for automobiles can currently only be produced with the desired operational reliability at great expense. Steels with a yield strength Rp0.2 of max. 150 MPa and a tensile strength Rm of no more than 310 MPa are particularly critical.
- EP 0 234 698 B1 known method for producing a steel sheet suitable for painting.
- This method provides for a regular pattern of depressions to be created in the surface of a skin-pass roll using an energy beam.
- the flat steel product to be processed is skin-pass rolled using two work rolls, at least one of which is processed in the manner described above.
- the reduction in cross-section achieved by skin-pass rolling should not be less than 0.3% in order to transfer the pattern from the work roll to the surface of the steel sheet.
- a steel sheet which has an average surface roughness Ra within the range of 0.3 to 3.0 ⁇ m and a microscopic shape forming the surface roughness, which consists of trapezoidal raised regions with a flat upper surface, groove-like recessed regions formed in such a way that they completely or partially surround a raised region, and flat central regions formed between the raised regions outside the recessed regions in such a way that they are higher than the bottom of the recessed regions and lower or of the same height as the upper surfaces of the raised regions.
- the raised regions and recessed regions are to have certain geometric dependencies, inter alia, on the diameter of the recesses formed in the skin-pass roll.
- the steel sheet consists of a steel with, in % by weight, 0.10% or less C, 0.05% or less Si, 0.1 - 1.0% Mn, 0.05% or less P, 0.02% or less S, 0.02 - 0.10% Al, less than 0.005% N and the remainder being Fe and unavoidable impurities.
- the steel sheet thus obtained is subjected to an annealing treatment in which it is annealed for at least 30 s at an annealing temperature of 730 - 850 °C and then cooled to a maximum temperature of 600 °C at a cooling rate of at least 5 °C/s.
- the cold-rolled annealed steel flat product obtained thereafter has a structure consisting mainly of ferrite, which has an average crystal grain diameter of 5 - 30 ⁇ m.
- the steel flat product is skin-pass rolled using a roll whose surface roughness Ra is at most 2 ⁇ m. The stretch ratio achieved by skin-pass rolling is adjusted depending on the average crystal grain diameter of the thin cold-rolled annealed sheet.
- the object of the invention was to provide a method for producing a flat steel product.
- a method which allows the reliable production of a flat steel product is specified in claim 1.
- the depressions and peaks formed in the surface which determine the mean roughness Ra and the peak number RPc, are distributed stochastically.
- a flat steel product that can be produced by the method according to the invention thus consists of a soft steel that has a yield strength Rp0.2 of up to 180 MPa, in particular less than 150 MPa, a tensile strength Rm of up to 340 MPa, in particular less than 310 MPa, and at the same time has a high elongation with a breaking elongation A80 of at least 40% and a high n-value of at least 0.23. With this combination of properties, it is optimally suited for forming, in particular for deep drawing.
- a steel flat product that can be produced by the process according to the invention has a surface quality characterized by an arithmetic mean roughness Ra of 0.8 - 1.6 ⁇ m and a peak number RPc of at least 75 1/cm, which makes it extremely suitable for painting with optimized paint gloss.
- Surface structures according to the invention thus reliably achieve Wsa values of at most 0.40 ⁇ m, typically at most 0.35 ⁇ m, in particular less than 0.30 ⁇ m, in particular even when the steel flat products that can be produced by the process according to the invention are in a range of dimensions typical for automotive applications with thicknesses of up to 1.0 mm and widths of at least 1000 mm.
- a steel flac product that can be produced by the process according to the invention is particularly suitable for forming and painting in the uncoated state or in the state covered with a metallic protective layer.
- Such a metallic coating is intended, it should be applied by electrolytic coating.
- electrolytic coating By using known electrolytic processes, it is ensured that the surface structure of the steel strip that has been skin-rolled according to the invention is retained on the surface of the flat steel product covered with the metallic coating.
- An electrolytically applied layer based on zinc is particularly suitable as a metallic protective layer.
- the flat steel product that can be produced by the method according to the invention can also be coated with an inorganic or organic coating.
- Inorganic coating means a passive layer typical for strip processes, e.g. as phosphating or chromating.
- Organic coating means a thick-layer passivation typical for strip processes, e.g. based on Cr(III)-containing compounds.
- Known coating agents can also be used here, which are usually used to improve paint adhesion, friction behavior in the forming tool and the like.
- the surface texture formed on the surface of a flat steel product produced by the method according to the invention is characterized by a stochastic distribution of depressions and peaks which Determine the roughness value Ra according to the invention and the peak number RPc according to the invention.
- Stochastic surface textures are irregular surface textures that are characterized by an irregular statistical distribution of design features such as depressions, which in turn can vary in distance, shape and size from one another.
- Deterministic surface textures are regular surface textures that are characterized by a regular distribution of similar design features.
- a stochastic surface texturing is aimed at in order to optimize the friction behavior between the steel surface and the tool during forming processes in the oiled or greased state.
- a stochastic surface structure is characterized by the fact that under high pressure loads the lubricant can flow out of the stress zone via microchannels that open up between the peaks and valleys of the surface texture.
- this more finely structured network of microchannels allows a more even distribution of the lubricant over the entire surface where contact occurs between the tool and the flat steel product during the forming process.
- a stochastic basic structure ensures flow and adhesion properties for organic or metallic coatings, which can, if necessary, also be applied to the flat steel product that can be produced using the method according to the invention.
- the roughness value Ra should not be less than 0.8 ⁇ m for the surface according to the invention of a flat steel product such as the one before, because otherwise the surface is too smooth. However, the roughness value Ra should not be greater than 1.6 ⁇ m either, because the surface is then too rough to achieve optimized forming properties. In order to be able to use the advantages of the invention reliably, roughness values Ra of 0.9 -1.4 ⁇ m can be provided.
- the peak number RPc should not be less than 75 per cm because this would have a negative effect on the Wsa value.
- the peak number at at least 75 1/cm, it is ensured that the Wsa value of a flat steel product that can be produced by the process according to the invention does not rise above 0.40 ⁇ m, in particular not above 0.35 ⁇ m, and that a coating achieves an optimal paint gloss.
- Higher peak numbers lead to further improved Wsa values of the surface of a flat steel product that can be produced by the process according to the invention. In this way, the Wsa values of flat steel products that can be produced by the process according to the invention of less than 0.30 ⁇ m can be achieved.
- Wsa values of at most 0.40 ⁇ m are reliably achieved if the peak number RPc for the surface produced according to the invention is set at at least 75 per cm. Wsa values of 0.35 ⁇ m or less are achieved if the peak number RPc for the flat steel product surface created according to the invention is set at at least 80 per cm. Finally, Wsa values of less than 0.30 ⁇ m can be ensured by setting a minimum value of 90 per cm for the peak number RPc.
- a flat steel product that can be produced using the method according to the invention contains C, Si, Mn, P, Al and Ti as mandatory alloying elements with the following proviso:
- the C content of the flat steel product that can be produced using the method according to the invention is 0.0001 - 0.003 wt.%.
- C is unavoidably contained in the steel melt, so that C contents of at least 0.0001 wt.% can always be found in a steel according to the invention.
- a C content above 0.003 wt.% impairs the desired formability due to an excessively strong strengthening contribution from carbon. This can be reliably prevented by reducing the C content to 0.002 wt.% or less.
- Si is present in a flat steel product such as the one above in amounts of 0.001 - 0.025 wt.%. Si is also unavoidably present in the steel melt. However, a Si content above the limit of 0.025 wt.% according to the invention impairs the formability due to an excessive contribution to hardening. In order to avoid negative effects of the presence of Si, the Si content of a flat steel product such as the one above can be limited to a maximum of 0.015 wt.%.
- Mn is present in a flat steel product such as the one before in amounts of 0.05 - 0.20 wt.%. Mn contents in this range contribute optimally to the formability of a flat steel product such as the one before. If the Mn contents lie outside the range specified by the invention, the amount is too low or too high due to solid solution strengthening. An optimal influence of the presence of Mn in the flat steel product such as the one before can be ensured by limiting the Mn content to a maximum of 0.15 wt.%.
- P is provided in a flat steel product as before in amounts of 0.001 - 0.015 wt.%.
- P is also unavoidably contained in the steel melt and contributes to solid solution strengthening.
- a P content above the limit according to the invention impairs the desired formability and has negative effects on the desired painting result.
- the P content can be limited to a maximum of 0.012 wt.%.
- Al is present in a flat steel product as before in contents of 0.02 - 0.055 wt.%. Al is used in steel production to calm the steel melt and must therefore be within the limits of the invention However, an Al content above the upper limit of the Al content provided for in the invention impairs the desired formability.
- the positive influence of Al in the alloy of a flat steel product such as the one above can be optimally utilized by limiting the Al content to a maximum of 0.03 wt.%.
- Ti is present in a flat steel product like the one before in amounts of 0.01 - 0.1 wt.%.
- Ti serves to bind interstitial alloying elements and thus contributes to precipitation strengthening.
- a Ti content of less than 0.01 wt.% interstitial alloying elements are still dissolved in the crystal lattice, which has a negative effect on the desired formability.
- Ti contents above 0.1 wt.% do not further improve the formability.
- the positive effects of the presence of Ti can be used with a high degree of certainty when the Ti content is 0.05 - 0.09 wt.%.
- a flat steel product which can be produced by the process according to the invention can optionally additionally contain the following alloying elements in order to achieve or adjust certain properties: Cr can be added to a flat steel product that can be produced by the process according to the invention in amounts of 0.001 - 0.05 wt.%, so that the presence of Cr at such low amounts has a positive effect on the mechanical properties of the flat steel product that can be produced by the process according to the invention, in particular its yield strength and tensile strength.
- a Cr content above the range provided for in the invention impairs the desired formability.
- V can optionally be added to the steel melt to also contribute to the binding of interstitial alloying elements and thus to precipitation strengthening.
- V can be present in the flat steel product as before in contents of up to 0.005 wt.%.
- Mo can optionally be present in the flat steel product as before in amounts of up to 0.015 wt.% to serve for solid solution strengthening.
- a Mo content above the limit according to the invention impairs the desired formability.
- N contents in the flat steel product are to be classified as technically unavoidable impurities.
- N can also serve as precipitation strengthening through the formation of TiN. If the N content is greater than 0.004 wt.%, there is a risk that nitrogen will be dissolved in the crystal lattice and cause a pronounced yield point, which results in poor deep-drawing formability. Therefore, the optional N content is optimally limited to a maximum of 0.003 wt.% in order to ensure the desired forming properties.
- impurities can be present in the flat steel product as before.
- These include B, Cu, Nb, Ni, Sb, Sn and S, the total amount of which is no more than 0.2% by weight, whereby in the case of the presence of Nb, B or Sb the following special requirements apply to these impurities: Sb content no more than 0.001% by weight, Nb content no more than 0.002% by weight and B content no more than 0.0005% by weight.
- Flat steel products can, for example, be manufactured reliably using the manufacturing method according to the invention.
- step b) of the method according to the invention the respective sub-steps intended for the heat treatment of the flat steel product are carried out in a continuous furnace.
- the heat treatment process takes place as a continuous annealing process because in this way the individual sub-steps of the heat treatment fit together homogeneously.
- the uninterrupted process results in a significantly lower scatter in the mechanical properties of the flat steel product over its length and width.
- individual sections can be heated directly in a manner known per se, for example in the manner of a DFF (Direct Fired Furnace), a DFI (Direct Flame Impingement) or an NOF (Non Oxidizing Furnace) furnace, or indirectly, for example in the manner of an RTF (Radiant Tube Furnace).
- DFF Direct Fired Furnace
- DFI Direct Flame Impingement
- NOF Non Oxidizing Furnace
- the cooling of the flat steel product to the overaging start temperature T2 and the final cooling of the flat steel product to room temperature can be carried out in a conventional manner by blowing gas, e.g. N2, H2 or a mixture thereof, by applying water, mist or by cooling by contact with cooling rolls, whereby each of these measures can also be carried out in combination with one or more of the other cooling measures.
- blowing gas e.g. N2, H2 or a mixture thereof
- a holding temperature T1 is provided for the recrystallizing annealing, which lies in the temperature range of 750 - 860 °C.
- annealing temperatures below 750 °C complete recrystallization of the structure of the flat steel product can no longer be reliably achieved.
- temperatures above 860 °C there is a risk of coarse grain formation. Both would have a negative effect on the forming properties.
- Optimum results from recrystallizing annealing are obtained when the temperature T1 is 800 - 850 °C.
- the duration t1 for which the steel flat product is held at the holding temperature T1 during recrystallization annealing is 30 - 90 seconds in order to ensure optimum forming properties of the steel flat product produced according to the invention. If t1 were less than 30 seconds, complete recrystallization of the structure could no longer be achieved in an operationally reliable manner. If the holding time t1 is longer than 90 seconds, there would again be a risk of coarse grain formation.
- the flat steel product After holding at the holding temperature T1, the flat steel product is cooled to the overaging start temperature T2 at a cooling rate CR1 of 2 -100 °C/s.
- the cooling rate CR1 is selected so that a flat steel product with optimal forming properties is obtained.
- a minimum cooling rate CR1 of 2 °C/s is required to avoid coarse grain formation. If, on the other hand, the cooling rate CR1 is above 100 °C/s, the grain would be too fine, which would also be contrary to the desired good formability.
- the overaging start temperature T2 is at least 400 °C, because at temperatures below this the cooling capacity required for cooling to the overaging start temperature T2 would be high, but the material properties would no longer be positively influenced. If the overaging start temperature T2 were above 600 °C, however, the recrystallization would not be stopped sustainably enough and there would be a risk of coarse grain formation. With an overaging start temperature T2 of 400 - 600 °C, in particular 400 - 550 °C, optimized forming properties can be achieved.
- the flat steel product is subjected to an overaging treatment for a period t2 of 30 - 400 seconds, during which it is cooled to the overaging end temperature T3 at a cooling rate CR2 of 0.5 - 12 °C/s. If the time t2 were less than 30 seconds, the time in which the interstitial alloy atoms could distribute themselves evenly by diffusion in the recrystallized structure of the flat steel product would be too short. This would have a negative effect on the forming properties. An overaging treatment lasting longer than 400 seconds would not have any additional positive effect. A cooling rate CR2 of at least 0.5 °C/s is set in order to complete the overaging treatment within a practical time.
- the final temperature T3 of the overaging treatment is 250 - 350 °C. If the final overaging temperature T3 were above 350 °C, the flat steel product would be too hot when it enters the final cooling stage, which would have a negative effect on the surface quality and thus the painting properties of the flat steel product as before. On the other hand, an final overaging temperature T3 below 250 °C would have no additional positive effect.
- the partial work steps of work step b) are carried out in a protective gas annealing atmosphere that has a hydrogen content of 1 - 7 vol.% and also consists of nitrogen and technically unavoidable impurities.
- a protective gas annealing atmosphere that has a hydrogen content of 1 - 7 vol.% and also consists of nitrogen and technically unavoidable impurities.
- the dew point of the annealing atmosphere is between -10 °C and -60 °C. If the dew point of the annealing atmosphere were above -10 °C, there would also be a risk of oxide formation on the surface of the flat steel product, which is undesirable with regard to the desired surface. A dew point below -60 °C would only be possible on a large scale with great effort and would not have any additional positive effect. Optimum operating conditions are achieved when the dew point of the annealing atmosphere is between -15 °C and -50 °C.
- a cooling rate CR3 of 1.5 - 5.0 °C/s is provided. This cooling rate CR3 is selected in such a way that deterioration of the surface quality due to oxide formation, which could occur if the cooling is too slow, is avoided in an economical manner.
- the step c) of the method according to the invention is essential for the particularly good suitability of flat steel products for painting with optimized paint gloss.
- This special suitability results from a Wsa value of at most 0.40 ⁇ m, typically at most 0.35 ⁇ m, in particular less than 0.30 ⁇ m, which represents a minimized waviness of the flat steel product surface.
- the above-defined degree of skin passing D for the skin passing rolls (work step c)) provided according to the invention after the heat treatment (work steps b.)) is 0.4 - 0.7%.
- a degree of skin passing D of less than 0.4% the deformation of the flat steel product would be insufficient for optimal forming properties.
- the values specified according to the invention for the roughness Ra and the peak number RPc could also not be achieved.
- a degree of skin passing D of more than 0.7% however, there would be a risk that too much hardening would be introduced into the steel strip, which in turn would have a negative effect on the forming properties.
- degrees of skin passing D of more than 0.7% could lead to a roughness Ra that would lie outside the range of roughnesses specified according to the invention with regard to the desired surface properties.
- the skin pass degree D can be set to at least 0.5%. If any negative effect of skin pass rolling is to be avoided, the skin pass degree D can be limited to a maximum of 0.6%. The latter is particularly useful if the alloying components of the steel from which a flat steel product is made, such as the one above, are each present in contents that are in the ranges highlighted above as being particularly advantageous.
- the skin-pass work roll acting on the relevant surface of the flat steel product has a roughness Ra of .0 - 2.5 ⁇ m and a peak number RPc of at least 100 per cm. If the roughness Ra of the work roll were less than 1.0 ⁇ m or greater than 2.5 ⁇ m, the values of Ra and RPc according to the invention cannot be applied to the flat steel product within the limits of the invention. Forming and painting properties would deteriorate accordingly.
- the roughness Ra of the skin-pass work roll can be set to 1.2 - 2.3 ⁇ m.
- the peak number RPc of the skin-pass work roll surface is at least 100 per cm, with higher peak numbers RPc, such as peak numbers RPc of the work roll of at least 110 per cm, in particular more than 130 per cm, being particularly advantageous.
- the surface structure of the peripheral surface of the skin-pass work roll that comes into contact with the flat steel product is also formed stochastically.
- EDT Electro Discharge Texturing
- the EDT technique is based on roughening the roll surface by spark erosion.
- the skin-pass work roll is moved past an electrode in a tank containing a dielectric. Sparks are created in the roll surface by sparking. If the electrode is connected as an anode (+) (i.e. the current flows away from the roll towards the electrode), very inhomogeneous craters are created on the roll, which is associated with a higher number of peaks. In the opposite case (i.e. connecting the electrode as a cathode (-)), the current flows towards the roll. The results are smooth craters.
- the cap(-) variant of the EDT technique is based on a capacitor discharge that occurs as soon as the electrode is close enough to the roll.
- the cap process produces a stochastic texture on the work rolls because the capacitor capacitance fluctuates to different degrees (between 30% and 100%) and thus holes of different sizes are shot into the roll material.
- the pulse (+) variant of the EDT technique is based on a principle in which the same amount of energy is always applied to the roller to be textured. This creates a stochastic surface texture with greater regularity, which nevertheless offers a sufficiently stochastic distribution of the depressions and peaks for the purposes of the invention.
- the work roll according to the invention can optionally undergo a post-treatment.
- the post-treatment can be carried out as a SuperFinish treatment.
- This is a fine machining process with the aim of removing peaks that protrude above the average roughness depth or reducing their number to a minimum.
- Possibilities for the practical implementation of the SuperFinish process are, for example, from the DE 10 2004 013 031 A1 or the EP 2 006 037 B1 known.
- the number of peaks changes negligibly as a result of the respective post-treatment.
- the skin-pass work rolls can be hard-chrome plated in the usual way before use in order to optimize their wear resistance.
- the heat treatment device (work step b)) and the skin-pass rolling stand required for work step c) are set up in a line.
- the steel flat product cooled after work step b) and emerging from the heat treatment device according to the skin-pass rolling according to work step c) is then processed in a single skin-pass pass. If, however, the skin-pass rolling is to be carried out offline, i.e. independently of the heat treatment process, several skin-pass rolling passes can also be carried out, whereby it can also be seen here that optimal results are achieved when the offline skin-pass rolling is carried out in just one pass.
- dry skin-pass rolling can have advantages in terms of a cleaning or lubricating effect during skin-pass rolling.
- Dry skin-pass rolling can have the advantage that the flat steel product does not come into contact with any wetting medium and, as a result, the risk of corrosion formation during subsequent storage or further processing of the flat steel product is minimized.
- the surface texturing according to the invention which is characterized by roughness values Ra and peak numbers RPc corresponding to the specifications according to the invention, allows a significantly better paint gloss to be produced compared to a comparative product with surface texturing not according to the invention.
- the steel flat products were heat treated in various dimensions in a continuously operating RTF heat treatment furnace, then cooled to room temperature and subsequently skin pass rolled in-line.
- the heat treatment comprises a recrystallization annealing in which the steel strips B1 - B12 were heated to a holding temperature T1 of 835 °C ⁇ 15 °C, at which they were held for a holding time T1 of 60 s.
- steel strips B1 - B12 were subjected to an overaging treatment. For this purpose, they were cooled from the holding temperature T1 at a cooling rate CR1 of 8.5 °C/s to an overaging start temperature T2 of 530 ⁇ 15 °C.
- the steel strips B1 - B12 were then cooled over an aging period t2 of 302 seconds to an aging end temperature T3 of 280 ⁇ 15 °C.
- the cooling rate CR2 with which the steel strips B1 - B12 were cooled from the aging start temperature T2 to the aging end temperature T3 was 0.82 °C/s.
- the steel strips B1 - B12 were cooled to room temperature under the protective gas atmosphere at a cooling rate CR3 of 3.5 °C/s and were fed in a continuous flow into a four-high rolling stand with backup rolls and skin-pass work rolls intended for skin-pass rolling.
- the skin-pass work rolls of the skin-pass rolling stand were always roughened in cap(-) mode using EDT technology and subjected to hard chrome plating in a conventional manner. All skin-pass rolling tests were carried out without the use of a skin-pass agent (dry skin-passing).
- the parameters of the skin-pass rolling (skin-pass degree D, roughness Ra_W and peak number RPc_W of the circumferential surface of the skin-pass work rolls that comes into contact with the steel strips) as well as the width b, thickness d, yield strength Rp0.2, tensile strength Rm, elongation A80 and the n-value determined for the steel strips B1 - B12 are given in Table 2.
- the mechanical properties were determined in a quasi-static tensile test according to DIN 6892 with the sample positioned longitudinally to the rolling direction.
- the roughness Ra and peak count RPc determined for the surfaces of steel strips B1 - B12 are also listed in Table 2.
- the arithmetic mean roughnesses Ra, Ra_W and peak count RPc, RPc_W were always measured according to the Steel-Iron Test Sheet (SEP) 1940 using an electrical stylus device according to ISO 3274.
- the steel strips B11 and B12 which were not manufactured according to the invention, demonstrate the importance of the degree of skin-passing for the success of the invention.
- the Wsa values were determined for the surfaces of the steel strips B1 - B12.
- the results are also entered in Table 2. They confirm that the embodiments according to the invention achieve a Wsa value of ⁇ 0.40 ⁇ m and thus offer optimal conditions for a particularly good paint gloss.
- the waviness characteristic value Wsa was measured in accordance with the Steel-Iron Test Sheet (SEP) 1941, measured on a steel sample that experienced 5% plastic elongation in the Marciniak cupping test.
- Fig. 1 and Fig. 2 illustrate this by comparing components which were produced from a flat steel product according to the invention and a flat steel product not produced according to the invention by forming and painting.
- the flat steel product not produced according to the invention in Fig. 2
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Mechanical Engineering (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- Metal Rolling (AREA)
- Heat Treatment Of Sheet Steel (AREA)
- Heat Treatment Of Steel (AREA)
Description
- Die Erfindung betrifft ein Verfahren zur Herstellung eines kaltgewaltzen und rekristallisierend geglühten Stahlflachprodukts mit einer ferritischen Gefügestruktur.
- Stahlflachprodukte dieser Art werden insbesondere im Bereich des Automobilkarosseriebaus eingesetzt, wo besonders hohe Anforderungen an die Verformbarkeit und die optische Erscheinung der aus solchen Stahlflachprodukten geformten Bauteile gestellt werden.
- Wenn hier von Stahlflachprodukten die Rede ist, so handelt es sich dabei um Walzprodukte, wie Stahlbänder oder -bleche sowie daraus gewonnene Zuschnitte und Platinen.
- Soweit nachfolgend Angaben zu Gehalten von Legierungen gemacht werden, beziehen diese sich immer auf das Gewicht, soweit nicht anders angegeben. Dagegen beziehen sich Angaben zur Zusammensetzung von Atmosphären immer auf das betrachtete Volumen, solange nicht anders angegeben.
- Für den Karosseriebau oder vergleichbare Anwendungen bestimmte Stahlflachprodukte werden typischerweise mit einer Oberflächenstruktur versehen, die sich durch eine definierte Rauheit und eine ebenso definierte Spitzenverteilung auszeichnet, um den hinsichtlich der Umformbarkeit und Oberflächenanmutung (Lackierbarkeit und Lackglanz) bestehenden kundenspezifischen Anforderungen gerecht zu werden. Ein typisches Beispiel für entsprechende Vorgaben aus dem Bereich der Automobilindustrie ist eine arithmetische Mittenrauheit (im Folgenden kurz "Rauheit" genannt) Ra von 1,1 - 1,6 µm bei einer Spitzenanzahl RPc von mindestens 60 1/cm. Die Rauheit Ra und die Spitzenzahl RPc werden dabei gemäß Stahleisenprüfblatt SEP 1940 mittels eines Tastschnittgeräts nach ISO 3274 bestimmt.
- Ein weiteres Kriterium zur Bestimmung der für eine optimale Lackierbarkeit und einen optimalen Lackglanz zu erreichenden Oberflächenbeschaffenheit stellt der sogenannte "Welligkeitskennwert Wsa(1 - 5)", im Folgenden kurz "Wsa" genannt, dar, der gemäß Stahl-Eisen-Prüfblatt SEP 1941:2012-05 nach 5 % plastischer Dehnung im Marciniak-Tiefungsversuch ermittelt wird. Typische Anforderungen liegen bei Wsa-Werten von 0,35 µm bis 0,40 µm. Besonders guter Lackglanz stellt sich bei Wsa-Werten von ≤ 0,35 µm, insbesondere < 0,30 µm, ein. Um derart niedrige Wsa-Werte zu erzielen, werden Spitzenanzahlen RPc von mindestens 75 1/cm und Rauheiten Ra von 0,9 - 1,4 µm gefordert.
- Die Einstellung der Werkstoffkennwerte Ra und RPc erfolgt bei der Erzeugung von kaltgewalzten Stahlflachprodukten typischerweise durch Dressieren nach dem rekristallisierenden Glühen, das die Stahlflachprodukte nach dem Kaltwalzen durchlaufen, um ihre optimale Verformbarkeit zu gewährleisten.
- Unter "Dressieren" ist hierbei ein nach dem rekristallisierenden Glühen absolviertes An- bzw. Nachwalzen zu verstehen, bei dem das Stahlflachprodukt einer geringen Verformung von ca. 0,2 - 2,0 % unterzogen wird, die hier als "Dressiergrad" bezeichnet wird. Der Dressiergrad wird dabei durch einen Vergleich der Umfangsgeschwindigkeiten der Umlenkrollen, die mit Wegerfassungsgebern versehen sind, vor und hinter dem Walzgerüst bestimmt, in dem das Stahlflachprodukt dressiergewalzt wird. Aus der Wegdifferenz der Umlenkrollen (Weg Einlauf s1, Weg Auslauf s2) folgt der Dressiergrad D als D = [(s2-s1)/s1]*100.
- Die kombinierte Anforderung "hohe Spitzenzahl RPc" und "hohe Rauheit Ra" stellt eine komplexe Fertigungsaufgabe dar, die grundsätzlich gilt. Dies ergibt sich daraus, dass eine zur Erzielung von hohen Ra-Werten erforderliche hohe Walzenrauheit grundsätzlich eine geringe Spitzenzahl RPc nach sich zieht, da die zunehmende Oberflächenzerklüftung (= Rauheit) der Walze den Abstand von Wellenberg zu Wellenberg auf der Walzenoberfläche auseinander treibt und somit die Anzahl der am Stahlflachprodukt abbildbaren Spitzen verringert. Erschwerend kommt der Umstand hinzu, dass bereits beim trockenen Dressieren beim Übertrag der auf der Walzenoberfläche vorhandenen Spitzen auf das jeweils gewalzte Stahlflachprodukt ein Spitzenübertragungsverlust von ca. 20 % zu Buche schlägt.
- Hinzu kommt die Regel, dass im Fall, dass der Dressiergrad D zu hoch gewählt ist, die Rauheit Ra zu hoch wird. Wird hingegen der Dressiergrad D zu niedrig angesetzt, könnte es insbesondere bei breiten Bandabmessungen zu nicht ausdressierten Bandrändern kommen. Dort sind dann die erzielten Ra- und RPc-Werte zu niedrig.
- Der Dressiergrad D kann auch in Hinblick auf die mechanischen Eigenschaften des Stahlsubstrats nicht beliebig variiert werden. Ein zu niedriger Dressiergrad D wirkt einer ausgeprägten Streckgrenze nur unzureichend entgegen. Durch einen zu hohen Dressiergrad D kann dagegen die Festigkeit des Stahlsubstrates aufgrund zu intensiver Kaltverfestigung nicht-korrigierbar hoch ausfallen.
- Die Herausforderungen an das Dressierwalzen verschärfen sich, je weicher, breiter und dünner das zu erzeugende Stahlflachprodukt ist. Unter "weich" wird hier ein Stahl verstanden, der im rekristallisierten Zustand und nach dem Dressierwalzen eine Dehngrenze Rp0,2 von höchstens 180 N/mm2 und eine Zugfestigkeit Rm von höchstens 340 N/mm2 besitzt. Dies hat in der Praxis zur Folge, dass sich derzeit Stahlflachprodukte der hier in Rede stehenden Art mit automobiltypischen Abmessungen nur mit großem Aufwand mit der gewünschten Betriebssicherheit erzeugen lassen. Besonders kritisch erweisen sich dabei Stähle mit einer Dehngrenze Rp0,2 von max. 150 MPa und einer Zugfestigkeit Rm von höchstens 310 MPa.
- Es sind verschiedene Vorschläge bekannt, diesen Aufwand in der Praxis beherrschbar zu machen und Stahlflachprodukte zu produzieren, die optimale Voraussetzungen für eine Lackierung mit auch strengsten Anforderungen genügendem Glanzbild schaffen sollen.
- Ein Beispiel hierfür ist das aus der
EP 0 234 698 B1 bekannte Verfahren zur Herstellung eines zum Anstreichen geeigneten Stahlblechs. Dieses Verfahren sieht vor, dass in die Oberfläche einer Dressierwalze mittels eines Energiestrahls ein regelmäßiges Muster von Vertiefungen erzeugt wird. Das zu bearbeitende Stahlflachprodukt wird mittels zweier Arbeitswalzen dressiergewalzt, von denen mindestens eine in der voranstehend angegebenen Weise bearbeitet ist. Die über das Dressierwalzen erzielte Querschnittsverminderung soll dabei nicht weniger als 0,3 % betragen, um das Muster von der Arbeitswalze auf die Oberfläche des Stahlblechs zu übertragen. Auf diese Weise soll ein Stahlblech erhalten werden, das eine durchschnittliche Oberflächenrauheit Ra innerhalb des Bereichs von 0,3 bis 3,0 µm und eine die Oberflächenrauheit bildende mikroskopische Form aufweist, die aus trapezförmigen Erhebungsbereichen mit einer planen oberen Fläche, nutähnlichen Vertiefungsbereichen, die derart ausgebildet sind, dass sie einen Erhebungsbereich vollständig oder teilweise umgeben, und planen Mittelbereichen besteht, die derart zwischen den Erhebungsbereichen außerhalb der Vertiefungsbereiche ausgebildet sind, dass sie höher als der Boden der Vertiefungsbereiche und tiefer oder von gleicher Höhe sind als die oberen Flächen der Erhebungsbereiche. Gleichzeitig sollen die Erhebungen und Vertiefungen bestimmte geometrische Abhängigkeiten unter anderem vom Durchmesser der in die Dressierarbeitswalze eingeformten Vertiefungen aufweisen. - Ein vergleichbarer Vorschlag ist in der
DE 36 86 816 T2 gemacht worden. Auch dort ist vorgeschlagen worden, in die Oberfläche eines kaltgewalzten Stahlflachprodukts ein gleichmäßiges Oberflächenrauheitsmuster einzubringen, das zu einer Oberflächenrauheit Ra von 0,3 - 2,0 µm führt. - Aus der
WO 2011/162135 A1 sind schließlich ein dünnes kaltgewalztes Stahlblech und ein Verfahren zu dessen Herstellung bekannt. Das Stahlblech besteht dabei aus einem Stahl mit in Gew.-%, 0,10 % oder weniger C, 0,05 % oder weniger Si, 0,1 - 1,0 % Mn, 0,05 % oder weniger P, 0,02 % oder weniger S, 0,02 - 0,10 % Al, weniger als 0,005 % N und als Rest aus Fe und unvermeidbaren Verunreinigungen. Das so beschaffene Stahlblech wird einer Glühbehandlung unterzogen, bei der es für mindestens 30 s bei einer Glühtemperatur von 730 - 850 °C geglüht und anschließend auf eine höchstens 600 °C betragende Temperatur mit einer Abkühlrate von mindestens 5 °C/s abgekühlt wird. Das danach erhaltene kaltgewalzte geglühte Stahlflachprodukt weist ein hauptsächlich aus Ferrit bestehendes Gefüge auf, das einen durchschnittlichen Kristallkorndurchmesser von 5 - 30 µm besitzt. Abschließend wird das Stahlflachprodukt unter Verwendung einer Walze dressiergewalzt, deren Oberflächenrauhigkeit Ra höchstens 2 µm beträgt. Das über das Dressierwalzen erzielte Streckverhältnis wird dabei in Abhängigkeit vom durchschnittlichen Kristallkorndurchmesser des dünnen kaltgewalzten geglühten Blechs eingestellt. - Aus der
EP 2 508 629 A1 ist ein Verfahren zur Herstellung eines nicht-kornorientierten Stahls bekannt, der 0,1-1% Si, 0,005-1,0% Al, höchstens 0,004 % C, 0,10-1,50% Mn, höchstens 0,2% P, höchstens 0,05% S, höchstens 0,002 % N, höchstens 0,006 % Nb+V+Ti und als Rest Eisen und unvermeidbare Verunreinigungen enthält. - Aus der
DE 197 01 443 A1 sind ein Blech oder Band, welches eine Streckgrenze Rp0,2 > 200 N/mm2 aufweist, und ein Verfahren zur Herstellung eines solchen Bleches oder Bandes bekannt. - Aus der
EP 0 484 960 A2 sind ein kaltgewalztes Stahlband, welches einen r-Wert in 45°-Richtung von mindestens 1,90 aufweist, und ein Verfahren zur Herstellung eines solchen bekannt. - Aus
EP 1 111 081 A1 sind ein mit Nb legierter ultra-low carbon Stahl, der nahezu keine Niobkarbide enthält, und ein Verfahren zu seiner Herstellung bekannt. - Aus
EP 2 700 731 A1 sind ein mit Bor legiertes Stahlblech, welches ein Bor-Stickstoff-Verhältnis B/N=(B (mass%))/10,81)/(N (mass%)/14,01) von kleiner oder gleich 3,0 aufweist, und ein Verfahren zu seiner Herstellung bekannt. - Aus
DE 196 22 164 C1 ist ein Verfahren zur Erzeugung eines kaltgewalzten Stahlblechs oder -bandes, welches 0,01-0,08% C aufweist, bekannt. - Aus
DE 102012017703A1 sind ein Flachprodukt aus einem Metallwerkstoff, welches eine Oberflächenstruktur mit einer arithmetischen Mittenrauheit von 0,3-3,6 µm und einer Spitzenzahl von 45-180 1/cm aufweist, und ein Verfahren zu seiner Herstellung bekannt. - Vor dem Hintergrund des voranstehend erläuterten Standes der Technik bestand die Aufgabe der Erfindung darin, ein Verfahren zur Herstellung eines Stahlflachprodukts anzugeben.
- Ein Verfahren, das die betriebssichere Erzeugung eines Stahlflachprodukts erlaubt, ist in Anspruch 1 angegeben.
- Vorteilhafte Ausgestaltungen der Erfindung sind in den abhängigen Ansprüchen angegeben und werden nachfolgend wie der allgemeine Erfindungsgedanke im Einzelnen erläutert.
- Ein kaltgewalztes und rekristallisierend geglühtes durch das erfindungsgemäße Verfahren herstellbares Stahlflachprodukt mit einer ferritischen Gefügestruktur besteht demnach aus einem Stahl mit folgender Zusammensetzung (in Gew.-%):
- C: 0,0001 - 0,003 %,
- Si: 0,001 - 0,025 %,
- Mn: 0,05 - 0,20 %,
- P: 0,001 - 0,015 %,
- Al: 0,02 - 0,055 %,
- Ti: 0,01 - 0,1 %,
- Rest Eisen und unvermeidbare Verunreinigungen, wobei der Stahl zusätzlich folgende optionale Legierungselemente enthalten kann:
- Cr: 0, 001 - 0, 05 %,
- V: bis zu 0,005 %,
- Mo: bis zu 0,015 %,
- N: 0,001 - 0,004 %,
- wobei zu den unvermeidbaren Verunreinigungen B, Cu, Nb, Ni, Sb, Sn und S zählen, deren Anteil in Summe höchstens 0,2 Gew.-% ist, wobei im Fall der Anwesenheit von Nb, B oder Sb für diese Verunreinigungen gilt: Sb-Gehalt höchstens 0,001 Gew.-%, Nb-Gehalt höchstens 0,002 Gew.-% und B-Gehalt höchstens 0,0005 Gew.-%, und weist
- eine Dehngrenze Rp0,2 von bis zu 180 MPa,
- eine Zugfestigkeit Rm von bis zu 340 MPa,
- eine Bruchdehnung A80 von mindestens 40 %,
- einen n-Wert von mindestens 0,23
sowie an mindestens einer seiner Oberflächen - eine arithmetische Mittenrauheit Ra von 0,8 - 1,6 µm und
- eine Spitzenzahl RPc von mindestens 75 1/cm auf.
- Dabei sind die die Mittenrauheit Ra und die Spitzenzahl RPc bedingenden, in die Oberfläche eingeformten Vertiefungen und Spitzen stochastisch verteilt.
- Ein durch das erfindungsgemäße Verfahren herstellbares Stahlflachprodukt besteht somit aus einem weichen Stahl, der eine Dehngrenze Rp0,2 von bis zu 180 MPa, insbesondere von weniger als 150 MPa, eine Zugfestigkeit Rm von bis zu 340 MPa, insbesondere von weniger als 310 MPa, besitzt und dabei mit einer Bruchdehnung A80 von mindestens 40 % eine hohe Dehnung und einen hohen n-Wert von mindestens 0,23 besitzt. Mit dieser Eigenschaftskombination ist er für eine Umformung, insbesondere für ein Tiefziehen, optimal geeignet.
- Gleichzeitig weist ein durch das erfindungsgemäße Verfahren herstellbares Stahlfiachprodukt eine durch eine arithmetische Mittenrauheit Ra von 0,8 - 1,6 µm und eine Spitzenzahl RPc von mindestens 75 1/cm gekennzeichnete Oberflächenbeschaffenheit auf, die ihm eine hervorragende Eignung für eine Lackierung mit optimiertem Lackglanz verleiht. So erreichen erfindungsgemäße Oberflächenstrukturen sicher Wsa-Werte von höchstens 0,40 µm, typischerweise höchstens 0,35 µm, insbesondere kleiner als 0,30 µm, und zwar insbesondere auch dann, wenn die durch das erfindungsgemäße Verfahren herstellbaren Stahlflachprodukte in einem für automobiltechnische Anwendungen typischen Abmessungsspektrum mit Dicken von bis zu 1,0 mm und Breiten von mindestens 1000 mm vorliegen.
- Ein durch das erfindungsgemäße Verfahren herstellbare Stahlflacprodukt weist seine besondere Eignung für die Umformung und Lackierung im unbeschichteten oder mit einer metallischen Schutzschicht belegten Zustand auf.
- Im Fall, dass eine solche metallische Beschichtung vorgesehen ist, sollte sie durch elektrolytisches Beschichten aufgetragen werden. Durch Anwendung bekannter elektrolytischer Verfahren wird sichergestellt, dass da die Oberflächenstruktur des erfindungsgemäß dressierten Stahlbandes an der Oberfläche des mit der metallischen Beschichtung belegten Stahlflachprodukts erhalten bleibt. Als metallische Schutzschicht eignet sich dabei insbesondere eine elektrolytisch aufgetragene Schicht auf Basis von Zink.
- Alternativ oder ergänzend zu einer metallischen Schutzbeschichtung der voranstehend genannten Art kann das durch das erfindungsgemäße Verfahren herstellbare Stahlflachprodukt auch mit einer anorganischen oder einer organischen Beschichtung beschichtet werden. Mit anorganischer Beschichtung ist eine für Bandprozesse typische Passivschicht, z. B. als Phosphatierung oder Chromatierung gemeint. Mit organischer Beschichtung ist eine für Bandprozesse typische Dickschichtpassivierung, z. B. auf Basis Cr(III)-haltiger Verbindungen gemeint. Dabei können an sich ebenfalls bekannte Beschichtungsmittel zur Anwendung kommen, die üblicherweise eingesetzt werden, um die Lackhaftung, das Reibverhalten im Umformwerkzeug und desgleichen zu verbessern.
- Die auf der erfindungsgemäß beschaffenen Oberfläche eines durch das erfindungsgemäße Verfahren herstellbaren Stahlflachprodukts ausgebildete Oberflächentextur ist durch eine stochastische Verteilung der Vertiefungen und Spitzen gekennzeichnet die den erfindungsgemäßen Rauheitswert Ra und die erfindungsgemäße Spitzenzahl RPc bestimmen.
- Stochastische Oberflächentexturen, wie sie erfindungsgemäß vorgeschrieben sind, sind unregelmäßige Oberflächentexturen, die gekennzeichnet sind durch eine unregelmäßige statistische Verteilung der Gestaltungsmerkmale wie z. B. Vertiefungen, die untereinander wiederum in Abstand, Form und Größe variieren können. Deterministische Oberflächentexturen sind dagegen regelmäßige Oberflächentexturen, die durch eine regelmäßige Verteilung gleichartiger Gestaltungsmerkmale gekennzeichnet sind.
- Eine stochastische Oberflächentexturierung ist erfindungsgemäß angestrebt, um im geölten bzw. gefetteten Zustand das Reibverhalten zwischen Stahloberfläche und Werkzeug während Umformprozessen zu optimieren. In einem werkzeuggebundenen Umformprozess, insbesondere beim Tief- oder Streckziehen, zeichnet sich eine stochastische Oberflächenstruktur dadurch aus, dass bei hohen Druckbeanspruchungen der Schmierstoff über Mikrokanäle, welche sich zwischen den Bergen und Tälern der Oberflächentextur auftun, aus der Beanspruchungszone abfließen kann. Gegenüber den stärker isolierten Schmiertaschen einer deterministischen Oberflächentexturierung erlaubt dieses feingliedrigere Netz von Mikrokanälen eine gleichmäßigere Verteilung des Schmierstoffes über die gesamte Oberfläche, an der es im Umformprozess zu einem Kontakt zwischen Werkzeug und Stahlflachprodukt kommt. Des Weiteren gewährleistet eine stochastische Grundstruktur Verlaufs- und Haftungseigenschaften für organische oder metallische Beschichtungen, die erforderlichenfalls zusätzlich auf das durch das erfindungsgemäße Verfahren herstellbare Stahlflachprodukt aufgebracht werden können.
- Der Rauheitswert Ra sollte bei der erfindungsgemäßen Oberfläche eines wie zuvor Stahlflachprodukts nicht kleiner als 0,8 µm sein, da die Oberfläche andernfalls zu glatt ist. Der Rauheitswert Ra sollte aber auch nicht größer als 1,6 µm sein, weil die Oberfläche dann zu rau ist, um optimierte Umformeigenschaften zu erzielen. Um die Vorteile der Erfindung betriebssicher nutzen zu können, können Rauheitswerte Ra von 0,9 -1,4 µm vorgesehen werden.
- Die Spitzenzahl RPc sollte nicht kleiner als 75 pro cm sein, weil sich dies negativ auf den Wsa-Wert auswirken würde. Indem die Spitzenzahl auf mindestens 75 1/cm festgelegt ist, ist sichergestellt, dass der Wsa-Wert eines durch das erfindungsgemäße Verfahren herstellbaren Stahlflachprodukts nicht über 0,40 µm, insbesondere nicht über 0,35 µm steigt und eine Lackierung einen optimalen Lackglanz erzielt. Höhere Spitzenzahlen führen zu weiter verbesserten Wsa-Werten der erfindungsgemäß beschaffenen Oberfläche eines durch das erfindungsgemäße Verfahren herstellbaren Stahlflachprodukts. Auf diese Weise lassen sich die Wsa-Werte durch das erfindungsgemäße Verfahren herstellbarer Stahlflachprodukte von kleiner als 0,30 µm erzielen. Wsa-Werte von höchstens 0,40 µm werden betriebssicher erreicht, wenn die Spitzenzahl RPc für die erfindungsgemäß beschaffene Oberfläche auf mindestens 75 pro cm festgelegt wird. Wsa-Werte von höchstens 0,35 µm stellen sich ein, wenn die Spitzenzahl RPc für die erfindungsgemäß beschaffene Stahlflachprodukt-Oberfläche auf mindestens 80 pro cm festgelegt wird. Wsa-Werte von weniger als 0,30 µm lassen sich schließlich dadurch gewährleisten, dass für die Spitzenzahl RPc ein Mindestwert von 90 pro cm festgelegt wird.
- Ein durch das erfindungsgemäße Verfahren herstellbares Stahlflachprodukt enthält als Pflichtlegierungselemente C, Si, Mn, P, Al und Ti mit folgender Maßgabe: Der C-Gehalt des durch das erfindungsgemäße Verfahren herstellbaren Stahlflachprodukts beträgt 0,0001 - 0,003 Gew.-%. C ist unvermeidbar in der Stahlschmelze enthalten, so dass C-Gehalte von mindestens 0,0001 Gew.-% stets in einem erfindungsgemäßen Stahl feststellbar sind. Ein C-Gehalt oberhalb von 0,003 Gew.-% verschlechtert jedoch das angestrebte Umformvermögen durch einen zu starken Verfestigungsbeitrag des Kohlenstoffs. Dies kann dadurch sicher verhindert werden, dass der C-Gehalt auf 0,002 Gew.-% oder weniger abgesenkt wird.
- Si ist in einem wie zuvor Stahlflachprodukt in Gehalten von 0,001 - 0,025 Gew.-% vorhanden. Auch Si ist unvermeidbar in der Stahlschmelze enthalten. Ein Si-Anteil oberhalb der erfindungsgemäßen Grenze von 0,025 Gew.-% verschlechtert jedoch das Umformvermögen durch einen zu starken Verfestigungsbeitrag. Um negative Einflüsse der Anwesenheit von Si zu vermeiden, kann der Si-Gehalt eines wie zuvor Stahlflachprodukts auf höchstens 0,015 Gew.-% beschränkt werden.
- Mn ist in einem wie zuvor Stahlflachprodukt in Gehalten von 0,05 - 0,20 Gew.-% vorhanden. Mn-Gehalte, die in diesem Bereich liegen, tragen optimal zum Umformvermögen eines wie zuvor Stahlflachprodukts bei. Bei außerhalb des erfindungsgemäß vorgegebenen Bereichs liegenden Mn-Gehalten kommt es zu einem zu geringen oder zu hohen Betrag durch Mischkristallverfestigung. Ein optimaler Einfluss der Anwesenheit von Mn im wie zuvor Stahlflachprodukt kann dadurch gesichert werden, dass der Mn-Gehalt auf höchstens 0,15 Gew.-% beschränkt wird.
- P ist in einem wie zuvor Stahlflachprodukt in Gehalten von 0,001 - 0,015 Gew.-% vorgesehen. Auch P ist unvermeidbar in der Stahlschmelze enthalten und liefert einen Beitrag zur Mischkristallverfestigung. Ein P-Anteil oberhalb der erfindungsgemäßen Grenze verschlechtert jedoch das angestrebte Umformvermögen und zeigt negative Auswirkungen auf das angestrebte Lackierergebnis. Um die positiven Einflüsse der Anwesenheit von P durch Mischkristallverfestigung zu nutzen und gleichzeitig negative Einflüsse sicher auszuschließen, kann der P-Gehalt auf höchstens 0,012 Gew.-% beschränkt werden.
- Al ist in einem wie zuvor Stahlflachprodukt in Gehalten von 0,02 - 0,055 Gew.-% vorhanden. Al dient bei der Stahlerzeugung zur Beruhigung der Stahlschmelze und muss daher innerhalb der erfindungsgemäßen Grenzen zulegiert werden. Ein Al-Anteil oberhalb der erfindungsgemäß vorgesehenen Obergrenze des Al-Gehalts verschlechtert jedoch das angestrebte Umformvermögen. Optimal nutzen lässt sich der positive Einfluss von Al in der Legierung eines wie zuvor Stahlflachprodukts dadurch, dass der Al-Gehalt auf höchstens 0,03 Gew.-% beschränkt wird.
- Ti ist in einem wie zuvor Stahlflachprodukt in Gehalten von 0,01 - 0,1 Gew.-% vorhanden. Ti dient zur Abbindung interstitieller Legierungselemente und trägt so zur Ausscheidungsverfestigung bei. Bei einem Ti-Gehalt von weniger als 0,01 Gew.-% liegen interstitielle Legierungselemente weiterhin gelöst im Kristallgitter vor, was sich negativ auf das angestrebte Umformvermögen auswirkt. Durch oberhalb von 0,1 Gew.-% liegende Ti-Gehalte wird das Umformvermögen nicht zusätzlich verbessert. Die positiven Einflüsse der Anwesenheit von Ti lassen sich dann mit hoher Sicherheit nutzen, wenn der Ti-Gehalt 0,05 - 0,09 Gew.-% beträgt.
- Neben den voranstehend genannten, in einem durch das erfindungsgemäße Verfahren herstellbaren Stahlflachprodukt stets vorhandenen Legierungselementen kann ein durch das erfindungsgemäße Verfahren herstellbares Stahlflachprodukt wahlweise zusätzlich folgende Legierungselemente enthalten, um bestimmte Eigenschaften zu erzielen oder einzustellen:
Cr kann in Gehalten von 0,001 - 0,05 Gew.-% einem durch das erfindungsgemäße Verfahren herstellbaren Stahlflachprodukt zugegeben werden, so dass sich die Anwesenheit von Cr bei derart geringen Gehalten positiv auf die mechanischen Eigenschaften des durch das erfindungsgemäße Verfahren herstellbaren Stahlflachprodukts, insbesondere dessen Dehngrenze und Zugfestigkeit, auswirkt. Ein Cr-Anteil oberhalb des erfindungsgemäß vorgesehenen Bereichs verschlechtert jedoch das angestrebte Umformvermögen. - In gleicher Weise kann V optional der Stahlschmelze zulegiert sein, um ebenfalls zur Abbindung interstitieller Legierungselemente und damit zu einer Ausscheidungsverfestigung beizutragen. Hierzu kann V im wie zuvor Stahlflachprodukt in Gehalten von bis zu 0,005 Gew.-% vorhanden sein.
- Mo kann optional in Gehalten von bis zu 0,015 Gew.-% im wie zuvor Stahlflachprodukt vorhanden sein, um zur Mischkristallverfestigung zu dienen. Ein Mo-Anteil oberhalb der erfindungsgemäßen Grenze verschlechtert das angestrebte Umformvermögen jedoch.
- Grundsätzlich sind Gehalte an N im wie zuvor Stahlflachprodukt den technisch unvermeidbaren Verunreinigungen zuzurechnen. In Gehalten von 0,001 - 0,004 Gew.-% kann N aber durch TiN-Bildung zusätzlich einer Ausscheidungsverfestigung dienen. Ist der Anteil an N größer als 0,004 Gew.-%, besteht die Gefahr, dass Stickstoff gelöst im Kristallgitter vorliegt und eine ausgeprägte Streckgrenze verursacht, die eine schlechte Tiefziehverformbarkeit bedingt. Daher ist der optional vorgesehene N-Gehalt optimalerweise auf höchstens 0,003 Gew.-% begrenzt, um die angestrebten Umformeigenschaften zu sichern.
- Neben den voranstehend genannten Legierungselementen und Eisen als Hauptbestandteil eines erfindungsgemäßen Stahls können technisch unvermeidbare Verunreinigungen im wie zuvor Stahlflachprodukt vorhanden sein. Hierzu zählen B, Cu, Nb, Ni, Sb, Sn und S, deren Anteil in Summe höchstens 0,2 Gew.-% ist, wobei im Fall der Anwesenheit von Nb, B oder Sb für diese Verunreinigungen folgende spezielle Maßgaben gelten: Sb-Gehalt höchstens 0,001 Gew.-%, Nb-Gehalt höchstens 0,002 Gew.-% und B-Gehalt höchstens 0,0005 Gew.-%.
- Stahlflachprodukte lassen sich beispielsweise durch die erfindungsgemäße Art und Weise der Herstellung betriebssicher erzeugen.
- Das erfindungsgemäße Verfahren beschreibt Patentanspruch 1.
- Im Arbeitsschritt b) des erfindungsgemäßen Verfahrens werden die für die Wärmebehandlung des Stahlflachprodukts vorgesehenen jeweiligen Teilschritte in einem Durchlaufofen absolviert. Der Wärmebehandlungsprozess erfolgt als im kontinuierlichen Durchlauf absolvierte Glühung, weil sich auf diese Weise die einzelnen Teilschritte der Wärmebehandlung homogen aneinander fügen. Aus dem unterbrechungsfreien Ablauf resultiert eine deutlich geringere Streuung der mechanischen Eigenschaften des Stahlflachprodukts über dessen Länge und Breite.
- In dem für die kontinuierlich ablaufende Wärmebehandlung in der Praxis vorgesehenen Durchlaufofen können einzelne Abschnitte in an sich bekannter Weise beispielsweise nach Art eines DFF- (Direct Fired Furnace), eines DFI-(Direct Flame Impingement) oder eines NOF-(Non Oxidizing Furnace) Ofens direkt oder beispielsweise nach Art eines RTF-(Radiant Tube Furnace) Ofen indirekt beheizt sein.
- Das Abkühlen des Stahlflachprodukts auf die Überalterungsstarttemperatur T2 sowie das Schlusskühlen des Stahlflachprodukts auf Raumtemperatur können in konventioneller Weise durch Aufblasen von Gas, z. B. N2, H2 oder einem Gemisch daraus, durch Aufgeben von Wasser, Nebel oder durch eine Abkühlung über Kontakt zu Kühlrollen durchgeführt werden, wobei jede dieser Maßnahmen auch in Kombination mit einer oder mehreren der anderen Kühlmaßnahmen durchgeführt werden kann.
- Für das rekristallisierende Glühen ist eine Haltetemperatur T1 vorgesehen, die im Temperaturbereich von 750 -860 °C liegt. Bei unterhalb von 750 °C liegenden Glühtemperaturen kann die vollständige Rekristallisation des Gefüges des Stahlflachprodukts nicht mehr sicher erreicht werden. Bei Temperaturen von mehr als 860 °C besteht hingegen die Gefahr von Grobkornbildung. Beides würde sich negativ auf die Umformeigenschaften auswirken. Optimale Ergebnisse der rekristallisierenden Glühung werden erhalten, wenn die Temperatur T1 800 - 850 °C beträgt.
- Die Dauer t1, über die das Stahlflachprodukt beim rekristallisierenden Glühen auf der Haltetemperatur T1 gehalten wird, beträgt 30 - 90 Sekunden, um optimale Umformeigenschaften des erfindungsgemäß erzeugten Stahlflachprodukts zu sichern. Würde t1 weniger als 30 Sekunden betragen, so könnte eine vollständige Rekristallisation des Gefüges nicht mehr betriebssicher erreicht werden. Bei einer Haltezeit t1, die länger als 90 Sekunden ist, würde wiederum die Gefahr von Grobkornbildung bestehen.
- Nach dem Halten auf der Haltetemperatur T1 wird das Stahlflachprodukt mit einer Abkühlgeschwindigkeit CR1 von 2 -100 °C/s auf die Überalterungsstarttemperatur T2 abgekühlt. Die Abkühlgeschwindigkeit CR1 ist dabei so gewählt, dass ein Stahlflachprodukt mit optimalen Umformeigenschaften erhalten wird. Eine Mindestabkühlgeschwindigkeit CR1 von 2 °C/s ist erforderlich, um eine Grobkornbildung zu vermeiden. Liegt dagegen die Abkühlgeschwindigkeit CR1 oberhalb von 100 °C/s würde sich zu feines Korn bilden, was ebenfalls der angestrebten guten Umformbarkeit entgegenstehen würde.
- Die Überalterungsstarttemperatur T2 beträgt mindestens 400 °C, weil bei darunter liegenden Temperaturen die für die Abkühlung auf die Überalterungsstarttemperatur T2 erforderliche Kühlleistung hoch, die Werkstoffeigenschaften jedoch nicht mehr zusätzlich positiv beeinflusst würden. Läge die Überalterungsstarttemperatur T2 dagegen oberhalb von 600 °C, so würde die Rekristallisation nicht nachhaltig genug abgebrochen und es würde die Gefahr von Grobkornbildung bestehen. Mit einer 400 - 600 °C, insbesondere 400 - 550 °C, betragenden Überalterungsstarttemperatur T2 lassen sich optimierte Umformeigenschaften erzielen.
- Ausgehend von der Überalterungsstarttemperatur wird das Stahlflachprodukt über eine Dauer t2 von 30 - 400 Sekunden einer Überalterungsbehandlung unterzogen, bei der es mit einer Abkühlgeschwindigkeit CR2 von 0,5 - 12 °C/s auf die Überalterungsendtemperatur T3 abgekühlt wird. Würde die Zeit t2 weniger als 30 Sekunden betragen, so wäre die Zeit zu kurz, in der sich die interstitiellen Legierungsatome per Diffusion im rekristallisierten Gefüge des Stahlflachprodukts gleichmäßig verteilen können. Dies würde sich negativ auf die Umformeigenschaften auswirken. Eine Überalterungsbehandlung, die länger als 400 Sekunden dauert, würde keinen zusätzlichen positiven Effekt erzielen. Eine Abkühlgeschwindigkeit CR2 von mindestens 0,5 °C/s wird eingestellt, um die Überalterungsbehandlung innerhalb einer praxisgerechten Zeit abzuschließen. Würde dagegen eine oberhalb von 12 °C/s liegende Abkühlgeschwindigkeit CR2 eingestellt, so wäre die Dauer t2 der Überalterungsbehandlung zu kurz. Es würde dann zu wenig Zeit für die Diffusion der interstitiellen Legierungselemente zur Verfügung stehen, wodurch wiederum die Umformeigenschaften verschlechtert würden.
- Die Endtemperatur T3 der Überalterungsbehandlung liegt erfindungsgemäß bei 250 - 350 °C. Läge die Überalterungsendtemperatur T3 über 350 °C, so würde das Stahlflachprodukt zu heiß in die Schlusskühlung übergeleitet, was sich negativ auf die Oberflächenqualität und somit die Lackiereigenschaften des wie zuvor Stahlflachprodukts auswirken würde. Eine unterhalb von 250 °C liegende Überalterungsendtemperatur T3 würde hingegen keinen zusätzlichen positiven Effekt haben.
- Die Teilarbeitsschritte des Arbeitsschritts b) werden unter einer Schutzgas-Glühatmosphäre durchgeführt, die einen Wasserstoff-Gehalt von 1 - 7 Vol.-% besitzt und im Übrigen aus Stickstoff und technisch unvermeidbaren Verunreinigungen besteht. Bei einem H2-Anteil von weniger als 1,0 Vol.-% bestünde die Gefahr von Oxidbildung auf der Oberfläche des Stahlflachprodukts, wodurch sich seine Oberflächenqualität und somit seine Lackiereigenschaften verschlechtern würden. Ein H2-Gehalt der Glühatmosphäre oberhalb von 7,0 Vol.-% würde hingegen keinen zusätzlichen positiven Effekt bringen und wäre auch aus Sicht der Betriebssicherheit problematisch.
- Der Taupunkt der Glühatmosphäre liegt erfindungsgemäß bei -10 °C bis-60 °C. Läge der Taupunkt der Glühatmosphäre oberhalb von -10 °C, so bestünde ebenfalls die Gefahr von hinsichtlich der angestrebten Oberflächen unerwünschter Oxidbildung auf der Oberfläche des Stahlflachprodukts. Ein Taupunkt unterhalb von -60 °C wäre nur mit großem Aufwand im groß-technischen Maßstab zu realisieren und würde auch keinen zusätzlichen positiven Effekt haben. Optimale Betriebsbedingungen ergeben sich, wenn der Taupunkt der Glühatmosphäre -15 °C bis -50 °C beträgt.
- Die nach Ende der Überalterungsbehandlung einsetzende Abkühlung des Stahlflachprodukts läuft unter der schon erläuterten Schutzgasatmosphäre ab. Dabei ist eine Abkühlrate CR3 von 1,5 - 5,0 °C/s vorgesehen. Diese Abkühlrate CR3 ist so gewählt, dass auf wirtschaftliche Weise eine Verschlechterung der Oberflächenbeschaffenheit durch Oxidbildung vermieden wird, zu der es bei einer zu langsamen Abkühlüng kommen könnte.
- Der Arbeitsschritt c) des erfindungsgemäßen Verfahrens ist wesentlich für die besonders gute Eignung wie zuvor Stahlflachprodukte für eine Lackierung mit optimiertem Lackglanz. Diese besondere Eignung ergibt sich durch einen Wsa-Wert von höchstens 0,40 µm, typischerweise höchstens 0,35 µm, insbesondere kleiner als 0,30 µm, der für eine minimierte Welligkeit der Stahlflachprodukt-Oberfläche steht.
- Der oben definierte Dressiergrad D beim erfindungsgemäß nach der Wärmebehandlung (Arbeitsschritte b.)) vorgesehenen Dressierwalzen (Arbeitsschritt c)) liegt bei 0,4 - 0,7 %. Bei einem Dressiergrad D von weniger als 0,4 % würde eine für optimale Umformeigenschaften unzureichende Verformung des Stahlflachprodukts erzielt. Auch könnten bei derart geringen Dressiergraden die erfindungsgemäß vorgegebenen Werte für die Rauheit Ra und die Spitzenzahl RPc nicht erreicht werden. Bei einem Dressiergrad D von mehr als 0,7 % bestünde jedoch die Gefahr, dass eine zu hohe Verfestigung in das Stahlband eingebracht wird, was sich wiederum negativ auf die Umformeigenschaften auswirken würde. Des Weiteren könnten Dressiergrade D von mehr 0,7 % zu einer Rauheit Ra führen, die außerhalb des im Hinblick auf die angestrebten Oberflächeneigenschaften erfindungsgemäß vorgegebenen Bereichs der Rauheiten lägen. Um bei besonders breiten Stahlflachprodukten, d. h. Stahlflachprodukten mit einer Breite von typischerweise 1500 mm und mehr, die erfindungsgemäß vorgegebene Oberflächenstruktur mit hoher Betriebssicherheit zu erzeugen, kann der Dressiergrad D auf mindestens 0,5 % eingestellt werden. Soll jeder negative Effekt des Dressierwalzens vermieden werden, so kann dazu der Dressiergrad D auf maximal 0,6 % begrenzt werden. Letzteres bietet sich insbesondere dann an, wenn die Legierungsbestandteile des Stahls, aus dem ein wie zuvor Stahlflachprodukt besteht, jeweils mit Gehalten vorhanden sind, die in den oben als besonders vorteilhaft herausgestellten Bereichen liegen.
- Damit durch das Dressierwalzen in die Oberfläche des Stahlflachprodukts eine Oberflächenstruktur eingeprägt wird, die den im Hinblick auf die Lackierungseigenschaften optimierten erfindungsgemäßen Vorgaben entspricht, weist die auf die betreffende Oberfläche des Stahlflachprodukts wirkende Dressier-Arbeitswalze eine Rauheit Ra von ,0 - 2,5 µm und eine Spitzenzahl RPc von mindestens 100 pro cm auf. Wäre die Rauheit Ra der Arbeitswalze kleiner als 1,0 µm oder größer als 2,5 µm, so können auf dem Stahlflachprodukt die erfindungsgemäßen Werte von Ra und RPc nicht innerhalb der erfindungsgemäßen Grenzen appliziert werden. Umform- und Lackiereigenschaften würden sich dementsprechend verschlechtern. Um in der Praxis zu gewährleisten, dass die erfindungsgemäß geforderten Rauheitswerte Ra am Stahlflachprodukt betriebssicher erreicht werden, kann die Rauheit Ra der Dressier-Arbeitswalze auf 1,2 - 2,3 µm eingestellt werden.
- Die Spitzenzahl RPc der Dressier-Arbeitswalzenoberfläche beträgt mindestens 100 pro cm, wobei höhere Spitzenzahlen RPc, wie Spitzenzahlen RPc der Arbeitswalze von mindestens 110 pro cm, insbesondere mehr als 130 pro cm, besonders vorteilhaft sind. Indem hohe Spitzenzahlen RPc von 100 pro cm und mehr an der mit dem Stahlflachprodukt in Kontakt kommenden Umfangsfläche der Dressier-Arbeitswalze vorgesehen sind, ist sichergestellt, dass unter Anwendung der voranstehend erläuterten, den erfindungsgemäßen Vorgaben entsprechenden Dressierparameter die geforderte Spitzenanzahl RPc auf das jeweils dressiergewalzte Stahlflachprodukt übertragen werden.
- Damit sich auf der jeweiligen Oberfläche des Stahlflachprodukts eine Oberflächenstruktur mit stochastischer Verteilung der Spitzen und Täler ausbildet, ist auch die Oberflächenstruktur der mit dem Stahlflachprodukt in Kontakt kommenden Umfangsfläche der Dressier-Arbeitswalze entsprechend stochastisch ausgebildet.
- Die erfindungsgemäß vorgesehene Oberflächenstruktur lässt sich beispielsweise in an sich bekannter Weise mittels der für die gezielte Aufrauung von Dressierwalzen etablierten EDT-Technik ("EDT" = Electro Discharge Texturing) im cap(-)- oder Puls(+)-Verfahren herstellen. Eine detaillierte Erläuterung dieser Verfahren findet sich in der Dissertation von Henning Meier, "Über die Aufrauhung von Walzenoberflächen mit Funkenentladungen", TU Braunschweig 1999, Shaker Verlag 1999.
- Die EDT-Technik basiert darauf, dass die Walzenoberfläche durch Funkenerosion aufgeraut wird. Zu diesem Zweck wird die Dressier-Arbeitswalze in einem Tank, in dem sich ein Dielektrikum befindet, an einer Elektrode vorbeigeführt. Durch Funkenüberschlag werden kleine Krater in die Walzenoberfläche geschlagen. Bei Schaltung der Elektrode als Anode (+) (d. h. der Strom fließt von der Walze weg zur Elektrode hin) entstehen auf der Walze sehr inhomogene Krater, was mit einer höheren Spitzenzahl einhergeht. Im umgekehrten Fall (d. h. Schaltung der Elektrode als Kathode (-)) fließt der Strom zur Walze hin. Resultate sind glatte Krater.
- Die cap(-)-Variante der EDT-Technik beruht auf einer Kondensatorentladung, zu der es kommt, sobald die Elektrode nah genug an der Walze ist. Das cap-Verfahren produziert eine stochastische Textur auf den Arbeitswalzen, da die Kondensatorkapazität unterschiedlich stark schwankt (zwischen 30 % und 100 %) und somit unterschiedlich große Löcher in das Walzenmaterial geschossen werden.
- Der Puls(+)-Variante der EDT-Technik liegt ein Prinzip zugrunde, bei dem immer die gleiche Energiemenge auf die zu texturierende Walze aufgebracht wird. Hierdurch bildet sich eine stochastische Oberflächentextur mit größerer Regelmäßigkeit aus, die jedoch eine für die erfindungsgemäßen Zwecke ausreichend stochastische Verteilung der Vertiefungen und Spitzen bietet.
- Anschließend an die Aufrauung kann die erfindungsgemäße Arbeitswalze optional eine Nachbehandlung erfahren. Bei dieser werden stark herausragende Spitzen der Oberflächenstruktur abgeschliffen, um Verunreinigungen der Stahlflachproduktoberfläche durch abgebrochene Spitzen zu reduzieren. Die Nachbehandlung kann als SuperFinish-Behandlung durchgeführt werden. Hierbei handelt es sich um eine Feinstbearbeitung mit dem Ziel, Spitzen, die über den Mittelwert der Rautiefe herausstehen, abzutragen bzw. deren Anzahl auf ein Minimum zu reduzieren. Möglichkeiten der praktischen Umsetzung des SuperFinish-Verfahrens sind beispielsweise aus der
DE 10 2004 013 031 A1 oder derEP 2 006 037 B1 bekannt. Die Spitzenzahl verändert sich durch die jeweilige Nachbehandlung vernachlässigbar gering. Die Oberfläche wird jedoch vergleichmäßigt und der Traganteil erhöht. Dies schlägt sich in einem negativen Rsk-Wert nieder (= Schiefe der Rauheitsverteilung). Bei hohen Rsk-Werten ist die Rauheit demnach ungleichmäßig verteilt, wohingegen geringe bzw. negative Rsk-Werte mit einer sehr gleichmäßigen Rauheitsverteilung einhergehen. - Die Dressier-Arbeitswalzen können schlussendlich vor ihrem Einsatz in bekannter Weise hartverchromt werden, um ihre Verschleißbeständigkeit zu optimieren.
- Aus betrieblicher Sicht vorteilhaft ist es, die Arbeitsschritte b) und c) des erfindungsgemäßen Verfahrens unterbrechungsfrei im kontinuierlichen Durchlauf zu absolvieren. Hierzu werden die Wärmebehandlungseinrichtung (Arbeitsschritt b)) und das für den Arbeitsschritt c) erforderliche Dressierwalzgerüst in einer Linie aufgestellt. Das gemäß Dressierwalzen gemäß Arbeitsschritt c) des nach dem Arbeitsschritt b) abgekühlten und aus der Wärmebehandlungseinrichtung austretenden Stahlflachprodukts wird dann in einem einzigen Dressierstich ausgeführt. Soll das Dressierwalzen dagegen off-line, d. h. unabhängig vom Ablauf der Wärmebehandlung ausgeführt werden, können auch mehrere Dressierwalzstiche ausgeführt werden, wobei sich auch hier zeigt, dass optimale Ergebnisse erzielt werden, wenn das Off-Line-Dressierwalzen in nur einem Stich absolviert wird.
- Der optionale Einsatz eines Dressiermediums (Nassdressieren) kann Vorteile im Hinblick auf eine Reinigungs- oder Schmierwirkung beim Dressierwalzen haben. Ein Trockendressieren kann demgegenüber den Vorteil haben, dass das Stahlflachprodukt mit keinem Benetzungsmedium in Kontakt kommt und in Folge dessen auch die Gefahr von Korrosionsbildung bei einer anschließenden Lagerung oder Weiterverarbeitung des Stahlflachprodukts minimiert is.
- Durch Anwendung des erfindungsgemäßen Verfahrens ist es möglich, ein Stahlflachprodukt mit den oben genannten erfindungsgemäßen mechanischen Werkstoffeigenschaften zu erzeugen, welches gleichzeitig die erfindungsgemäße Oberflächenstruktur über die komplette Bandbreite aufweist (vollständig ausdressiert). Durch die erfindungsgemäße Oberflächentexturierung, welche durch den erfindungsgemäßen Vorgaben entsprechende Rauheitswerte Ra und Spitzenzahlen RPc gekennzeichnet ist, lässt sich ein deutlich besserer Lackglanz erzeugen gegenüber einem Vergleichsprodukt mit nicht-erfindungsgemäßer Oberflächentexturierung.
- Dies soll nachfolgend anhand von Ausführungsbeispielen näher erläutert werden. Dabei zeigen:
- Fig. 1
- einen Ausschnitt einer lackierten Oberfläche eines aus einem wie zuvor Stahlflachprodukt geformten Automobil-Karosseriebauteils;
- Fig. 2
- einen Ausschnitt einer lackierten Oberfläche eines aus einem nicht erfindungsgemäß hergestellten Stahlflachprodukt geformten Automobil-Karosseriebauteils;
- Fig. 3
- den schematischen Verlauf einer erfindungsgemäßen Wärmebehandlung (Arbeitsschritt b)).
- Es sind kaltgewalzte, walzharte Stahlflachprodukte in Form von Stahlbändern B1 - B12 aus Stählen S1 - S6 bereitgestellt worden, die die in Tabelle 1 angegebene Zusammensetzung aufwiesen.
- Die Stahlflachprodukte wurden in verschiedenen Abmessungen in einem kontinuierlich arbeitenden Wärmebehandlungsofen der RTF-Bauart wärmebehandelt, dann auf Raumtemperatur abgekühlt und anschließend in-line dressiergewalzt.
- Die Wärmebehandlung umfasst ein rekristallisierendes Glühen, bei dem die Stahlbänder B1 - B12 auf eine Haltetemperatur T1 von 835 °C ± 15 °C erwärmt worden sind, auf der sie über eine Haltezeit T1 von 60 s gehalten worden sind.
- Nach dem rekristallisierenden Glühen sind die Stahlbänder B1 - B12 einer Überalterungsbehandlung unterzogen worden. Dazu sind sie von der Haltetemperatur T1 aus mit einer Abkühlgeschwindigkeit CR1 von 8,5 °C/s auf eine Überalterungsstarttemperatur T2 abgekühlt worden, die 530 ± 15 °C betrug.
- Ausgehend hiervon sind die Stahlbänder B1 - B12 dann jeweils über eine Überalterungsdauer t2 von 302 Sekunden auf eine Überalterungsendtemperatur T3 abgekühlt worden, die 280 ± 15 °C betrug. Die Abkühlgeschwindigkeit CR2, mit der die Stahlbänder B1 - B12 von der Überalterungsstarttemperatur T2 auf die Überalterungsendtemperatur T3 abgekühlt worden sind, betrug 0,82 °C/s.
- Während der gesamten Wärmebehandlung sind die Stahlbänder B1 - B12 unter einer Glühatmosphäre gehalten worden, die aus 4 Vol.-% H2 und als Rest aus N2 und unvermeidbaren Verunreinigungen bestand. Ihr Taupunkt war auf -45 °C ± 2 °C eingestellt.
- Nach Ende der Überalterungsbehandlung und vor dem Austritt aus dem Durchlaufofen sind die Stahlbänder B1 - B12 noch unter der Schutzgasatmosphäre mit einer Abkühlgeschwindigkeit CR3 von 3,5 °C/s auf Raumtemperatur abgekühlt und im kontinuierlich fortgesetzten Durchlauf in ein für das Dressierwalzen vorgesehenes Quarto-Walzgerüst mit Stützwalzen und Dressier-Arbeitswalzen geleitet worden. Die Dressier-Arbeitswalzen des Dressierwalzgerüsts wurden stets im cap(-)-Modus mittels EDT-Technik aufgeraut und in an sich bekannter Weise einer Hartverchromung unterzogen. Alle Dressierwalzversuche wurden ohne den Einsatz eines Dressiermittels durchgeführt (Trockendressieren).
- Die Parameter des Dressierwalzens (Dressiergrad D, Rauheit Ra_W und Spitzenzahl RPc_W der mit den Stahlbändern jeweils in Kontakt kommenden Umfangsfläche der Dressier-Arbeitswalzen) sowie die für die Stahlbänder B1 - B12 ermittelte Breite b, Dicke d, Dehngrenze Rp0,2, Zugfestigkeit Rm, Dehnung A80 und der n-Wert sind in Tabelle 2 angegeben. Die mechanischen Eigenschaften wurden im quasi-statischen Zugversuch gemäß DIN 6892 mit Probenlage längs zur Walzrichtung ermittelt.
- Ebenso sind in Tabelle 2 die für die Oberflächen der Stahlbänder B1 - B12 ermittelte Rauheit Ra und Spitzenzahl RPc aufgeführt. Die arithmetischen Mittenrauheiten Ra, Ra_W und Spitzenzahl RPc, RPc_W wurden stets gemäß Stahl-Eisen-Prüfblatt (SEP) 1940 mittels eines elektrischen Tastschnittgerätes nach ISO 3274 gemessen.
- Die Eigenschaften der Stahlbänder B1 und B9 zeigen, dass durch höhere Spitzenzahlen RPc bessere Wsa-Werte erreicht werden.
- Die nicht erfindungsgemäß hergestellten Stahlbänder B11 und B12 belegen die Bedeutung des Dressiergrads für den Erfolg der Erfindung.
- Zusätzlich sind für die Oberflächen der Stahlbänder B1 - B12 die Wsa-Werte bestimmt. Die Ergebnisse sind ebenfalls in Tabelle 2 eingetragen. Sie bestätigen, dass die erfindungsgemäßen Ausführungsbeispiele einen Wsa-Wert < 0,40 µm erzielen und so optimale Voraussetzungen für einen besonders guten Lackglanz bieten. Die Messung des Welligkeitskennwertes Wsa erfolgte gemäß Stahl-Eisen-Prüfblatt (SEP) 1941, gemessen wurde an einer Stahlprobe, die im Marciniak-Tiefungsversuch 5 % plastische Dehnung erfuhr.
-
Fig. 1 und Fig. 2 illustrieren dies anhand einer Gegenüberstellung von Bauteilen, welche aus einem erfindungsgemäßen und einem nicht-erfindungsgemäß hergestellten Stahlflachprodukt durch Umformen und Lackieren hergestellt wurden. Das nicht erfindungsgemäße hergestellte, inFig. 2 dargestellte Ausführungsbeispiel, das aus dem die erfindungsgemäßen Anforderungen nicht erfüllenden Stahlband B3 erzeugt worden ist, zeigt nach dem Lackieren einen deutlich schlechteren Lackglanz als das inFig. 1 dargestellte Beispiel, das aus dem erfindungsgemäß hergestellten Stahlband B1 geformt worden ist.Tabelle 1 Stahl C Si Mn P Al Ti S Cr Nb V Mo N Cu Ni B Sn S1 0,0019 0,005 0,11 0,010 0,029 0,072 0,007 0,032 0,001 0,001 0,004 0,0017 0,014 0,021 0,0002 0,004 S2 0,0015 0,006 0,13 0,010 0,026 0,069 0,009 0,045 0,001 0,001 0,006 0,0026 0,017 0,022 0,0002 0,007 S3 0,0023 0,005 0,09 0,008 0,024 0,075 0,005 0,030 0,001 0,001 0,009 0,0027 0,017 0,027 0,0002 0,004 S4 0,0025 0,006 0,09 0,008 0,024 0,073 0,007 0,024 0,001 0,002 0,004 0,0037 0,010 0,016 0,0002 0,005 S5 0,0020 0,005 0,11 0,010 0,026 0,072 0,007 0,028 0,001 0,003 0,003 0,0025 0,011 0,015 0,0002 0,006 S6 0,0016 0,007 0,11 0,006 0,029 0,073 0,006 - - - - 0,0020 0,011 0,017 0,0002 0,004 Angaben in Gew.-%, Rest Eisen und unvermeidbare Verunreinigungen Tabelle 2 Stahlband Stahl d (mm) b (mm) Rp0,2 (MPa) Rm (MPa) A80 (%) n Ra (µm) RPc (1/cm) D (%) Ra_W (µm) RPc_W (1/cm) Wsa [µm] Erfindungsgemäß? B1 S1 0,85 1608 136 289 47,6 0,245 0,94 92 0,4 1,4 139 0,27 ja B2 S1 0,85 1608 139 285 46,5 0,245 1,30 79 0,5 1,4 105 0,37 ja B3 S2 0,74 1651 142 287 47,8 0,240 1,31 68 0,5 3,0 95 0,44 nein B4 S3 0,85 1573 142 294 47,5 0,241 1,35 84 0,6 2,2 115 0,33 ja B5 S3 0,85 1573 138 290 47,2 0,247 1,29 83 0,5 2,2 115 0,32 ja B6 S4 0,69 1551 147 302 44,0 0,238 1,16 85 0,6 2,2 114 0,34 ja B7 S4 0,69 1551 146 303 45,4 0,236 1,18 80 0,6 2,2 110 0,35 ja B8 S5 0,82 1610 160 297 45,8 0,230 1,27 53 0,7 1,5 90 0,47 nein B9 S6 0,85 1573 130 278 48,5 0,246 1,25 93 0,5 1,4 139 0,26 ja B10 S6 0,85 1573 133 281 47,9 0,245 1,19 87 0,6 2,2 124 0,31 ja B11 S6 0,85 1573 129*) 275 48,1 0,214 0,71 65 0,3 1,1 110 0,43 nein B12 S4 0,69 1551 187 352 38,2 0,238 1,72 70 0,8 2,2 104 0,41 nein *) Beim Beispiel B11 zeigte das Stahlflachprodukt eine ausgeprägte Streckgrenze Reh, deren Wert hier angegeben ist.
Claims (11)
- Verfahren zur Herstellung eines kaltgewalzten und rekristallisierend geglühten Stahlflachprodukts mit ferritischer Gefügestruktur, das eine Dehngrenze Rp0,2 von bis zu 180 MPa, eine Zugfestigkeit Rm von bis zu 340 MPa, eine Bruchdehnung A80 von mindestens 40 %, einen n-Wert von mindestens 0,23 sowie an mindestens einer seiner Oberflächen eine arithmetische Mittenrauheit Ra von 0,8 - 1,6 µm und eine Spitzenzahl RPc von mindestens 75 1/cm aufweist, wobei die die Mittenrauheit Ra und die Spitzenzahl RPc bedingenden, in die Oberfläche eingeformten Vertiefungen und Spitzen stochastisch verteilt vorliegen,
umfassend folgende Arbeitsschritte:a) Bereitstellen eines walzharten, kaltgewalzten Stahlflachprodukts mit ferritischer Gefügestruktur, das aus einem Stahl mit folgender Zusammensetzung besteht (in Gew.-%):C: 0,0001- 0,003 %, Si: 0,001 - 0,025 %, Mn: 0,05 - 0,20 %, P: 0,001 - 0,015 %, Al: 0,02 - 0,055 %, Ti: 0,01 - 0,1 %, Rest Eisen und unvermeidbare Verunreinigungen, wobei der Stahl zusätzlich folgende optionale Legierungselemente enthalten kann:Cr: 0,001- 0,05 %, V: bis zu 0,005 %, Mo: bis zu 0,015 %, N: 0,001- 0,004 %, wobei zu den unvermeidbaren Verunreinigungen B, Cu, Nb, Ni, Sb, Sn und S zählen, deren Anteil in Summe höchstens 0,2 Gew.-% ist; und wobei im Fall der Anwesenheit von Nb, B oder Sb für diese Verunreinigungen gilt: Sb-Gehalt höchstens 0,001 Gew.-%, Nb-Gehalt höchstens 0,002 Gew.-% und B-Gehalt höchstens 0,0005 Gew.-%,b) im kontinuierlichen Durchlauf durch einen Glühofen erfolgendes Wärmebehandeln des Stahlflachprodukts unter einer Glühatmosphäre, die bei einem Taupunkt von -10 °C bis -60 °C aus 1 - 7 Vol.-% H2 und als Rest aus N2 und unvermeidbaren Verunreinigungen besteht,- wobei das Stahlflachprodukt zum rekristallisierenden Glühen- bis zu einer Haltetemperatur T1 von 750 - 860 °C aufgeheizt wird,- bei der Haltetemperatur T1 für eine Zeit t1 von 30 - 90 s gehalten wird,- wobei das Stahlflachprodukt für eine anschließende Überalterungsbehandlung- von der Haltetemperatur T1 mit einer Abkühlungsgeschwindigkeit CR1 von 2 - 100 °C/s auf eine Überalterungsstarttemperatur T2 von 400 - 600 °C abgekühlt wird,- nach dem Abkühlen auf die Überalterungsstarttemperatur T2 über eine Zeit t2 von 30 - 400 s mit einer Abkühlungsgeschwindigkeit CR2 von 0,5 - 12 °C/s auf eine Überalterungsendtemperatur T3 von 250 - 350 °C abgekühlt wird, und- wobei das Stahlflachprodukt nach dem Abkühlen auf die Überalterungsendtemperatur T3 mit einer Abkühlungsgeschwindigkeit CR3 von 1,5 - 5,0 °C/s auf Raumtemperatur abgekühlt wird;c) Dressierwalzen des rekristallisierend geglühten Stahlflachprodukts mit einem Dressiergrad D von 0,4 - 0,7 % unter Verwendung einer Dressier-Arbeitswalze, deren mit dem Stahlflachprodukt in Kontakt kommende Umfangsfläche eine arithmetische Mittenrauheit Ra von 1,0 - 2,5 µm und eine Spitzenanzahl RPc von mindestens 100 1/cm besitzt, wobei die die Mittenrauheit Ra und die Spitzenzahl RPc bedingenden, in die Oberfläche der Dressier-Arbeitswalze eingeformten Vertiefungen und Spitzen stochastisch verteilt vorliegen. - Verfahren nach Anspruch 1,
dadurch gekennzeichnet, dass
die Haltetemperatur T1 800 - 850 °C beträgt. - Verfahren nach einem der Ansprüche 1 oder 2,
dadurch gekennzeichnet, dass
die Überalterungsstarttemperatur T2 400 - 550 °C beträgt. - Verfahren nach einem der Ansprüche 1 bis 3,
dadurch gekennzeichnet, dass
der Taupunkt der Glühatmosphäre -15 °C bis -50 °C beträgt. - Verfahren nach einem der Ansprüche 1 bis 4,
dadurch gekennzeichnet, dass
das Dressierwalzen als Nassdressierwalzen ausgeführt wird, bei dem in Förderrichtung des Stahlflachprodukts vor der Dressier-Arbeitswalze eine Dressierflüssigkeit mindestens auf die Oberfläche des Stahlflachprodukts aufgebracht wird, auf die die Dressier-Arbeitswalze wirkt. - Verfahren nach einem der Ansprüche 1 bis 5,
dadurch gekennzeichnet, dass
der Dressiergrad D 0,5 - 0,6 % beträgt. - Verfahren nach einem der Ansprüche 1 bis 6,
dadurch gekennzeichnet, dass
die arithmetische Mittenrauheit Ra der mit dem Stahlflachprodukt in Kontakt kommenden Umfangsfläche der Dressier-Arbeitswalze 1,2 - 2,3 µm beträgt. - Verfahren nach einem der Ansprüche 1 bis 7,
dadurch gekennzeichnet, dass
die Spitzenzahl RPc der mit dem Stahlflachprodukt in Kontakt kommenden Umfangsfläche der Dressier-Arbeitswalze mindestens 130 1/cm beträgt. - Verfahren nach einem der Ansprüche 1 bis 8,
dadurch gekennzeichnet, dass
die Arbeitsschritte b) und c) in einer unterbrechungsfreien Abfolge absolviert werden. - Verfahren nach einem der Ansprüche 1 bis 9,
dadurch gekennzeichnet, dass
das Stahlflachprodukt nach dem Dressierwalzen mit einer metallischen Beschichtung auf Basis von Zn belegt wird. - Verfahren nach Anspruch 9,
dadurch gekennzeichnet, dass
die metallische Beschichtung durch elektrolytisches Verzinken auf das Stahlflachprodukt aufgebracht wird.
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| PL15762569.0T PL3204530T5 (pl) | 2014-10-09 | 2015-09-09 | Walcowany na zimno i wyżarzany rekrystalizująco płaski wyrób stalowy oraz sposób jego wytwarzania |
Applications Claiming Priority (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| EP14188314 | 2014-10-09 | ||
| PCT/EP2015/070577 WO2016055227A1 (de) | 2014-10-09 | 2015-09-09 | Kaltgewalztes und rekristallisierend geglühtes stahlflachprodukt und verfahren zu seiner herstellung |
Publications (3)
| Publication Number | Publication Date |
|---|---|
| EP3204530A1 EP3204530A1 (de) | 2017-08-16 |
| EP3204530B1 EP3204530B1 (de) | 2019-01-09 |
| EP3204530B2 true EP3204530B2 (de) | 2024-10-09 |
Family
ID=51743278
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| EP15762569.0A Active EP3204530B2 (de) | 2014-10-09 | 2015-09-09 | Kaltgewalztes und rekristallisierend geglühtes stahlflachprodukt und verfahren zu dessen herstellung |
Country Status (13)
| Country | Link |
|---|---|
| US (1) | US10683560B2 (de) |
| EP (1) | EP3204530B2 (de) |
| JP (1) | JP6636512B2 (de) |
| KR (1) | KR102462210B1 (de) |
| CN (1) | CN106795575B (de) |
| BR (1) | BR112017007273B1 (de) |
| CA (1) | CA2961427C (de) |
| ES (1) | ES2716937T5 (de) |
| MX (1) | MX2017004593A (de) |
| PL (1) | PL3204530T5 (de) |
| TR (1) | TR201905219T4 (de) |
| WO (1) | WO2016055227A1 (de) |
| ZA (1) | ZA201701938B (de) |
Families Citing this family (16)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP6636512B2 (ja) | 2014-10-09 | 2020-01-29 | ティッセンクルップ スチール ヨーロッパ アクチェンゲゼルシャフトThyssenKrupp Steel Europe AG | 冷間圧延および再結晶焼鈍平鋼製品、ならびにそれを製造するための方法 |
| JP7181182B2 (ja) * | 2016-09-20 | 2022-11-30 | ティッセンクルップ スチール ヨーロッパ アクチェンゲゼルシャフト | 平鋼製品の製造方法および平鋼製品 |
| DE102017103308A1 (de) * | 2017-02-17 | 2018-08-23 | Voestalpine Stahl Gmbh | Verfahren zum Herstellen von Stahlblechen |
| DE102017103303A1 (de) * | 2017-02-17 | 2018-08-23 | Voestalpine Stahl Gmbh | Verfahren zum Herstellen von Stahlblechen |
| JP2020525639A (ja) * | 2017-02-17 | 2020-08-27 | フォエスタルピネ スタール ゲーエムベーハー | 鋼板の製造方法 |
| DE102017218704A1 (de) * | 2017-10-19 | 2019-04-25 | Thyssenkrupp Ag | Verfahren zur Herstellung eines mit einem metallischen, vor Korrosion schützenden Überzug versehenen Stahlbauteils |
| CN108642421A (zh) * | 2018-05-15 | 2018-10-12 | 首钢集团有限公司 | 一种镀锌钢板的生产方法 |
| TWI656225B (zh) * | 2018-05-18 | 2019-04-11 | 中國鋼鐵股份有限公司 | 熱浸鍍鋅鋼片之製造方法 |
| WO2020048602A1 (de) * | 2018-09-06 | 2020-03-12 | Thyssenkrupp Steel Europe Ag | Verzinktes kaltfeinblech mit verbesserten tribologischen eigenschaften ii |
| WO2020048601A1 (de) * | 2018-09-06 | 2020-03-12 | Thyssenkrupp Steel Europe Ag | Verzinktes kaltfeinblech mit verbesserten tribologischen eigenschaften i |
| CN109825763B (zh) * | 2019-01-23 | 2021-04-30 | 邢台钢铁有限责任公司 | 一种高导电性阴极扁钢用工业纯铁及其生产方法 |
| DE102019118578A1 (de) * | 2019-07-09 | 2021-01-14 | Thyssenkrupp Steel Europe Ag | Verfahren zum Herstellen eines Blechproduktes und Blechprodukt |
| KR102281203B1 (ko) * | 2019-12-19 | 2021-07-26 | 주식회사 포스코 | 프레스 성형성 및 도장 선영성이 우수한 도금강판용 조질압연 롤 및 이를 이용한 도금강판의 제조방법 |
| DE102021200744A1 (de) | 2021-01-28 | 2022-07-28 | Thyssenkrupp Steel Europe Ag | Verfahren zum Texturieren einer Dressierwalze, Dressierwalze und dressiertes Stahlblech |
| CN114182079B (zh) * | 2021-11-18 | 2024-04-16 | 山东钢铁集团日照有限公司 | 一种外板用冷轧深冲钢表面轧制纹的控制方法 |
| DE102023111354A1 (de) | 2023-05-03 | 2024-11-07 | Thyssenkrupp Steel Europe Ag | Elektrolytisch verzinktes Stahlblech |
Citations (6)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| EP0391658B1 (de) † | 1989-04-07 | 1993-07-21 | Kawasaki Steel Corporation | Nass-Kaltwalzverfahren |
| JPH08337842A (ja) † | 1995-06-12 | 1996-12-24 | Kobe Steel Ltd | 耐木目状疵性に優れた電気亜鉛めっき用鋼板および電気亜鉛めっき鋼板、並びにそれらの製造方法 |
| DE69408739T2 (de) † | 1993-06-29 | 1998-07-16 | Nippon Kokan Kk | Oberflächenbehandeltes Stahlblech und Methode zur Herstellung desselben |
| US5954896A (en) † | 1995-02-23 | 1999-09-21 | Nippon Steel Corporation | Cold rolled steel sheet and galvanized steel sheet having improved homogeneity in workability and process for producing same |
| WO2009034250A1 (fr) † | 2007-07-19 | 2009-03-19 | Arcelormittal France | Procede de fabrication de tôles d'acier a hautes caracteristiques de resistance et de ductilite, et tôles ainsi produites |
| RU2366730C1 (ru) † | 2008-07-08 | 2009-09-10 | Открытое акционерное общество "Магнитогорский металлургический комбинат" | Способ производства if-стали |
Family Cites Families (38)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JPS61291924A (ja) | 1985-06-17 | 1986-12-22 | Nippon Steel Corp | 加工性の優れたプレス成形用鋼板の製造方法 |
| US4775599A (en) | 1985-12-24 | 1988-10-04 | Kawasaki Steel Corporation | Cold rolled steel sheets having an improved press formability |
| US4798772A (en) | 1986-01-17 | 1989-01-17 | Kawasaki Steel Corporation | Steel sheets for painting and a method of producing the same |
| JP2792898B2 (ja) | 1989-04-07 | 1998-09-03 | 川崎製鉄株式会社 | 化成処理性にすぐれた深絞り用冷延鋼板の製造方法 |
| EP0484960B9 (de) * | 1990-11-09 | 2003-10-29 | Nippon Steel Corporation | Kaltgewalztes Stahlband mit hervorragender Pressverformbarkeit und Verfahren zur Herstellung |
| JPH04200902A (ja) | 1990-11-30 | 1992-07-21 | Kawasaki Steel Corp | 塗膜鮮映性とプレス成形性に優れた金属板およびその製造方法 |
| JP3185227B2 (ja) | 1991-01-07 | 2001-07-09 | 日本鋼管株式会社 | 極めて優れた深絞り成形性と張出し成形性を有する冷延鋼板の製造方法 |
| DE19622164C1 (de) * | 1996-06-01 | 1997-05-07 | Thyssen Stahl Ag | Verfahren zur Erzeugung eines kaltgewalzten Stahlbleches oder -bandes mit guter Umformbarkeit |
| DE19701443A1 (de) | 1997-01-17 | 1998-07-23 | Thyssen Stahl Ag | Stahl |
| ATE244318T1 (de) | 1999-12-22 | 2003-07-15 | Sidmar Nv | Ultraniedriggekohlte stahlzusammensetzung, verfahren zur herstellung dieses einbrennhärtbaren stahls, und das hergestellte produkt |
| JP2001288549A (ja) | 2000-03-31 | 2001-10-19 | Kawasaki Steel Corp | プレス成形性に優れた冷延鋼板、めっき鋼板の製造方法 |
| US20030015263A1 (en) * | 2000-05-26 | 2003-01-23 | Chikara Kami | Cold rolled steel sheet and galvanized steel sheet having strain aging hardening property and method for producing the same |
| DE60110586T2 (de) * | 2000-05-31 | 2005-12-01 | Jfe Steel Corp. | Kaltgewalztes stahlblech mit ausgezeichneten reckalterungseigenschaftenund herstellungsverfahren für ein solches stahlblech |
| EP1318205A4 (de) * | 2000-06-20 | 2005-08-03 | Jfe Steel Corp | Dünnes stahlblech und entsprechendes herstellungsverfahren |
| JP2002004019A (ja) | 2000-06-23 | 2002-01-09 | Nkk Corp | 亜鉛めっき鋼板 |
| EP1327697A4 (de) * | 2000-10-19 | 2009-11-11 | Jfe Steel Corp | Zinkbeschichtete stahlplatte und herstellungsverfahren dafür und verfahren zur herstllung von artikeln über pressen |
| DE60220191T2 (de) * | 2001-06-06 | 2008-01-17 | Nippon Steel Corp. | Hochfestes feuerverzinktes galvanisiertes stahlblech und feuerverzinktes geglühtes stahlblech mit ermüdungsfestigkeit,korrosionsbeständigkeit,duktilität und plattierungshaftung,nach starker verformung und verfahren zu dessen herstellung |
| JP4110750B2 (ja) * | 2001-06-07 | 2008-07-02 | Jfeスチール株式会社 | 耐食性と導電性に優れた有機被覆鋼板 |
| JP2003080302A (ja) | 2001-09-12 | 2003-03-18 | Nkk Corp | 亜鉛めっき鋼板の調質圧延方法 |
| JP3753062B2 (ja) | 2001-12-20 | 2006-03-08 | Jfeスチール株式会社 | 合金化溶融亜鉛めっき鋼板及びその製造方法 |
| JP2003306759A (ja) | 2002-04-18 | 2003-10-31 | Jfe Steel Kk | プレス成形性に優れた亜鉛めっき鋼板の製造方法 |
| JP2004076158A (ja) | 2002-07-29 | 2004-03-11 | Jfe Steel Kk | 表面処理鋼板 |
| JP4599855B2 (ja) | 2004-03-04 | 2010-12-15 | Jfeスチール株式会社 | 冷延鋼板の製造方法及び圧延用ロール表面の調整方法 |
| DE102004013031A1 (de) | 2004-03-16 | 2005-10-06 | Waldrich Siegen Werkzeugmaschinen Gmbh | Verfahren und Maschine zur Herstellung einer Walze |
| CN101400817B (zh) * | 2006-03-16 | 2010-06-30 | 杰富意钢铁株式会社 | 冷轧钢板及其制造方法、电池及其制造方法 |
| ES2348815T3 (es) | 2007-06-22 | 2010-12-15 | Thyssenkrupp Steel Europe Ag | Producto plano de un material metalico, en particular de un material de acero, uso de un producto plano semejante asi como cilindro y procedimiento para la fabricacion de tales productos planos. |
| JP5589269B2 (ja) | 2008-09-25 | 2014-09-17 | 新日鐵住金株式会社 | 合金化溶融亜鉛めっき鋼板及び合金化溶融亜鉛めっき鋼板の製造方法 |
| JP5655300B2 (ja) * | 2009-03-05 | 2015-01-21 | Jfeスチール株式会社 | 曲げ加工性に優れた冷延鋼板、その製造方法およびそれを用いた部材 |
| DE102010017354A1 (de) | 2010-06-14 | 2011-12-15 | Thyssenkrupp Steel Europe Ag | Verfahren zum Herstellen eines warmgeformten und gehärteten, mit einer metallischen Korrosionsschutzbeschichtung überzogenen Stahlbauteils aus einem Stahlflachprodukt |
| JP5549414B2 (ja) | 2010-06-23 | 2014-07-16 | Jfeスチール株式会社 | 形状凍結性に優れた冷延薄鋼板およびその製造方法 |
| CN102453837B (zh) | 2010-10-25 | 2013-07-17 | 宝山钢铁股份有限公司 | 一种高磁感无取向硅钢的制造方法 |
| CN101956133B (zh) * | 2010-10-29 | 2012-09-05 | 攀钢集团钢铁钒钛股份有限公司 | 一种低屈服强度耐时效连退冷轧钢板及其生产方法 |
| MX2013005311A (es) * | 2010-11-22 | 2013-06-13 | Nippon Steel & Sumitomo Metal Corp | Lamina de acero de tipo endurecimiento mediante envejecimiento por deformacion excelente en resistencia al envejecimiento y metodo de fabricacion de la misma. |
| JP5958038B2 (ja) | 2011-04-21 | 2016-07-27 | Jfeスチール株式会社 | 外圧に対する缶胴部の座屈強度が高く、成形性および成形後の表面性状に優れた缶用鋼板およびその製造方法 |
| DE102012017703A1 (de) | 2012-09-07 | 2014-03-13 | Daetwyler Graphics Ag | Flachprodukt aus Metallwerkstoff, insbesondere einem Stahlwerkstoff, Verwendung eines solchen Flachprodukts sowie Walze und Verfahren zur Herstellung solcher Flachprodukte |
| DE102014010020A1 (de) | 2014-07-08 | 2016-01-14 | Clariant International Ltd. | Adsorptionsmaterial zur Adsorption von Edelgasen, Verwendung desselben und Verfahren zur Adsorption von Edelgasen |
| JP6636512B2 (ja) | 2014-10-09 | 2020-01-29 | ティッセンクルップ スチール ヨーロッパ アクチェンゲゼルシャフトThyssenKrupp Steel Europe AG | 冷間圧延および再結晶焼鈍平鋼製品、ならびにそれを製造するための方法 |
| CN104946978B (zh) * | 2015-07-07 | 2017-03-01 | 新余钢铁集团有限公司 | 一种用于家电面板的彩涂冷轧基板及其制造方法 |
-
2015
- 2015-09-09 JP JP2017518505A patent/JP6636512B2/ja not_active Expired - Fee Related
- 2015-09-09 CA CA2961427A patent/CA2961427C/en active Active
- 2015-09-09 MX MX2017004593A patent/MX2017004593A/es unknown
- 2015-09-09 US US15/518,167 patent/US10683560B2/en active Active
- 2015-09-09 BR BR112017007273-4A patent/BR112017007273B1/pt not_active IP Right Cessation
- 2015-09-09 ES ES15762569T patent/ES2716937T5/es active Active
- 2015-09-09 CN CN201580054737.4A patent/CN106795575B/zh active Active
- 2015-09-09 TR TR2019/05219T patent/TR201905219T4/tr unknown
- 2015-09-09 KR KR1020177012453A patent/KR102462210B1/ko active Active
- 2015-09-09 WO PCT/EP2015/070577 patent/WO2016055227A1/de not_active Ceased
- 2015-09-09 PL PL15762569.0T patent/PL3204530T5/pl unknown
- 2015-09-09 EP EP15762569.0A patent/EP3204530B2/de active Active
-
2017
- 2017-03-20 ZA ZA2017/01938A patent/ZA201701938B/en unknown
Patent Citations (6)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| EP0391658B1 (de) † | 1989-04-07 | 1993-07-21 | Kawasaki Steel Corporation | Nass-Kaltwalzverfahren |
| DE69408739T2 (de) † | 1993-06-29 | 1998-07-16 | Nippon Kokan Kk | Oberflächenbehandeltes Stahlblech und Methode zur Herstellung desselben |
| US5954896A (en) † | 1995-02-23 | 1999-09-21 | Nippon Steel Corporation | Cold rolled steel sheet and galvanized steel sheet having improved homogeneity in workability and process for producing same |
| JPH08337842A (ja) † | 1995-06-12 | 1996-12-24 | Kobe Steel Ltd | 耐木目状疵性に優れた電気亜鉛めっき用鋼板および電気亜鉛めっき鋼板、並びにそれらの製造方法 |
| WO2009034250A1 (fr) † | 2007-07-19 | 2009-03-19 | Arcelormittal France | Procede de fabrication de tôles d'acier a hautes caracteristiques de resistance et de ductilite, et tôles ainsi produites |
| RU2366730C1 (ru) † | 2008-07-08 | 2009-09-10 | Открытое акционерное общество "Магнитогорский металлургический комбинат" | Способ производства if-стали |
Non-Patent Citations (31)
| Title |
|---|
| BERANGER, Gerard et al., "LE LIVRE DE L'ACIER"TECHNIQUE & DOCUMENTATION, 1994, extrait sur le recuit en continu † |
| Blumeneau, Marc et al., "Modernization of the continuous annealing line of ThyssenKrupp Steel Europe in Dortmund" Steel 2012 † |
| Clausmeyer, Till et al., "Phenomenological modeling of anisotropy induced by evolution of the dislocation structure on the macroscopic and microscopic scale" Int J Master Form,2011 † |
| COPPIN, Patrick et al., "Atmospheres de traitement thermique "Techniques de I'ingenieur, 10 mars 2000, † |
| DIN Deutsches Institut fur Normung e.V., "DIN EN 10152-Elektrolytisch verzinkte kaltgewalzte Flacherzeugnisse aus Stahl zum Kaltumformen" Berlin: Beuth Verlag GmbH, 2009,Tabelle 1; Seite 5, Abschnitt 4.1 † |
| Dressierschrieb † |
| Fachbuch „Werkstoffe 1 - Legierungsbildung Stahl und Eisen"von Dipl. Ing. Joseph Flimm, 1950 † |
| FRANK BEIER ET AL: "From skin pass to paint - evaluation of measurements of sheet metal waviness and roughness throughout the processing chain", SCT 2014, 15 June 2014 (2014-06-15) - 19 June 2014 (2014-06-19), pages 183 - 190 † |
| Fronhoffs, Cornelius et al., « Steel for highest paint appearance quality in automotive application », SCT 2014, 15 juin 2014 † |
| Gerstein, Gregory et al., « Characterization of the microstructure evolution in IF-Steel and AA6016 during plane strain tension and simple shear", Materials 2015, 8, 285-301,03 septembre 2014, † |
| Institut fur Eisenhuttenkunde, "Werkstoffkunde Stahl fur Studium und Praxis" Mainz: Verlag Mainz,Wissenschaftsverlag, Aachen, 2004, Ed. 2 ISBN: 3-89653-820-9, Seite 128 † |
| Irie, T. et al., "Development of deep drawable and bake hardenable high strength steel sheet by continuous annealing of extra low-carbon steels with Nb or Ti and P", The Metallurgical Society of AIME, 1982, † |
| Larour, Patrick et al., "Influence of strain rate, temperature,plastic strain, and microstructure on the strain rate sensitivity of automotive sheet steels" steel research, 2012 † |
| norme EN 10130 publiee en 2006, † |
| Pradhan, R. et al., "Development of the strip temperature control technique for a continous annealing line", Developmen tin the Annealing of Sheet Steels, 1992, † |
| Pradhan, R. et al., « Continuous annealing line of Sollac Ste Agathe », Development in the Annealing of Sheet Steels, 1992, † |
| programme de SCT 2014, la conference pendant laquelle D1 a ete rendu accessible au public, † |
| Ritterbach, Benedikt et al., "Qualitatregelkreis zur Erzeugung definierter Feinblechrauheiten mit verschiedenen Texturierverfahren", VDI VERLAG, 1999, † |
| Salzgitter Flachstahl GmbH, "Messblatt Nr. 1269376",12.07.2014 † |
| Salzgitter Flachstahl GmbH, "Qualitatsprotokoll DressierstraBe 3, Nr. 0047783/001", 24.06.2014 † |
| Salzgitter Flachstahl GmbH, "TC-Prufkarte Schmelze-Nr.64187", 29.03.2014 † |
| Salzgitter Flachstahl GmbH, "Versandanzeige: 85008437",14.07.2014 † |
| Salzgitter Flachstahl GmbH, "Versandanzeige: 85069434",18.08.2014 † |
| Stahleisen-Berichte, "Spurenelemente in Stahlen" Dusseldorf:Verlag Stahleisen mbH, 1985 ISBN: 3-514-00324-6 † |
| Stahlinstitut VDEh , "Stahlfibel" Dusseldorf: Verlag Stahleisen GmbH, 2007 ISBN: 978-3-514-00741-3, Seite 120, Spalten 2 und 3 † |
| thyssenkrupp, « ThyssenKrupp Steel Europe presents innovative finishes for top class paintwork", TKS, 05 novembre 2013, † |
| Translation of JPH08337842 † |
| Walzenprotokoll fur Walzennummer 9235 † |
| Walzenprotokoll fur Walzennummer 9246 † |
| Wikipedia, "Strain hardening exponent" † |
| Zimnik, Ritterbach, Mull, Walter, Benedikt, Karl et al., "Pretex -Ein neues Verfahren zur Erzeugung textuherter Feinbleche fur hochste Anspruche" Stahl und Eisen, Vol. 3, 16 Marz 1998,Seiten 78 und 79 † |
Also Published As
| Publication number | Publication date |
|---|---|
| JP2017534758A (ja) | 2017-11-24 |
| CN106795575B (zh) | 2018-08-28 |
| CA2961427C (en) | 2019-01-08 |
| US10683560B2 (en) | 2020-06-16 |
| BR112017007273B1 (pt) | 2021-03-09 |
| EP3204530B1 (de) | 2019-01-09 |
| BR112017007273A2 (pt) | 2018-01-23 |
| US20170306430A1 (en) | 2017-10-26 |
| MX2017004593A (es) | 2017-07-10 |
| KR20170067839A (ko) | 2017-06-16 |
| PL3204530T3 (pl) | 2019-07-31 |
| ZA201701938B (en) | 2022-05-25 |
| WO2016055227A1 (de) | 2016-04-14 |
| CA2961427A1 (en) | 2016-04-14 |
| TR201905219T4 (tr) | 2019-05-21 |
| JP6636512B2 (ja) | 2020-01-29 |
| ES2716937T5 (en) | 2025-02-12 |
| CN106795575A (zh) | 2017-05-31 |
| KR102462210B1 (ko) | 2022-11-03 |
| PL3204530T5 (pl) | 2024-12-02 |
| ES2716937T3 (es) | 2019-06-18 |
| EP3204530A1 (de) | 2017-08-16 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| EP3204530B2 (de) | Kaltgewalztes und rekristallisierend geglühtes stahlflachprodukt und verfahren zu dessen herstellung | |
| EP2290133B1 (de) | Verfahren zum Herstellen eines mit einem metallischen, vor Korrosion schützenden Überzug versehenen Stahlbauteils und Stahlbauteil | |
| EP1660693B1 (de) | Verfahren zum herstellen eines gehärteten profilbauteils | |
| EP2553133B1 (de) | Stahl, stahlflachprodukt, stahlbauteil und verfahren zur herstellung eines stahlbauteils | |
| EP3655560B1 (de) | Stahlflachprodukt mit guter alterungsbeständigkeit und verfahren zu seiner herstellung | |
| WO2015036151A1 (de) | Verfahren zum herstellen eines mit einem metallischen, vor korrosion schützenden überzug versehenen stahlbauteils und stahlbauteil | |
| EP3250727B2 (de) | Verfahren zur herstellung eines bauteils aus pressformgehärtetem, auf basis von aluminium beschichtetem stahlblech | |
| WO2008113426A2 (de) | Verfahren zum flexiblen walzen von beschichteten stahlbändern | |
| EP2828414A1 (de) | Zunderarmer vergütungsstahl und verfahren zur herstellung eines zunderarmen bauteils aus diesem stahl | |
| EP4038215B1 (de) | Verfahren zur herstellung eines pressgehärteten stahlblechbauteils mit einem aluminiumbasierten überzug sowie eine ausgangsplatine und ein pressgehärtetes stahlblechbauteil hieraus | |
| EP1263540B1 (de) | Verfahren zur herstellung von dünnwandigen bauteilen aus stahl und danach hergestellte bauteile | |
| EP1153145A1 (de) | Stahlband mit guten umformeigenschaften sowie verfahren zum herstellen desselben | |
| EP3658307B1 (de) | Blechbauteil, hergestellt durch warmumformen eines stahlflachprodukts und verfahren zu dessen herstellung | |
| EP4192993A1 (de) | Verfahren zum herstellen von beschichtetem stahlband, und verfahren zum herstellen eines gehärteten stahlprodukts daraus | |
| EP3827103B1 (de) | Verfahren zur herstellung eines gehärteten stahlprodukts | |
| EP3583239B1 (de) | Verfahren zum herstellen von stahlblechen, stahlblech und dessen verwendung | |
| EP2455180A1 (de) | Eisen-Chrom-Molybdän-Mangan Legierung, eine Verwendung dieser Legierung, ein Verfahren zur Erstellung dieser Legierung, eine Rolle für eine Walzanlage mit einer Oberfläche aus dieser Legierung sowie eine Rolle für eine Walzanlage mit einer Oberfläche, die mit einem Verfahren zur Erstellung dieser Legierung erstellt ist | |
| EP3875626B1 (de) | Verpackungsblecherzeugnis | |
| EP4093896A1 (de) | Stahlbauteil mit einer manganhaltigen korrosionsschutzschicht | |
| DE102020203421A1 (de) | Stahlflachprodukt mit einem ZnCu-Schichtsystem | |
| EP4516954A1 (de) | Stahlflachprodukt mit einer schutzschicht gegen zunder | |
| EP4512922A1 (de) | Stahlflachprodukt mit verbesserten verarbeitungseigenschaften nach der warmumformung | |
| EP4339324A1 (de) | Stahlflachprodukt mit einer aktivierungsschicht für die warmumformung | |
| DE102022123741A1 (de) | FAL-beschichtetes Stahlblech für die Warmumformung | |
| EP4592407A1 (de) | Höchstfester stahl mit guten umform- und oberflächeneigenschaften |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE |
|
| PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
| STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE |
|
| 17P | Request for examination filed |
Effective date: 20170314 |
|
| AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
| AX | Request for extension of the european patent |
Extension state: BA ME |
|
| TPAC | Observations filed by third parties |
Free format text: ORIGINAL CODE: EPIDOSNTIPA |
|
| DAV | Request for validation of the european patent (deleted) | ||
| DAX | Request for extension of the european patent (deleted) | ||
| STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: EXAMINATION IS IN PROGRESS |
|
| 17Q | First examination report despatched |
Effective date: 20180125 |
|
| GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
| STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: GRANT OF PATENT IS INTENDED |
|
| INTG | Intention to grant announced |
Effective date: 20180914 |
|
| GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
| GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
| STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE PATENT HAS BEEN GRANTED |
|
| AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
| REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
| REG | Reference to a national code |
Ref country code: AT Ref legal event code: REF Ref document number: 1087367 Country of ref document: AT Kind code of ref document: T Effective date: 20190115 Ref country code: CH Ref legal event code: EP |
|
| REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: GERMAN |
|
| REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 502015007629 Country of ref document: DE |
|
| REG | Reference to a national code |
Ref country code: SE Ref legal event code: TRGR |
|
| REG | Reference to a national code |
Ref country code: NL Ref legal event code: FP |
|
| REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG4D |
|
| REG | Reference to a national code |
Ref country code: ES Ref legal event code: FG2A Ref document number: 2716937 Country of ref document: ES Kind code of ref document: T3 Effective date: 20190618 |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190509 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190109 Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190409 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190109 |
|
| REG | Reference to a national code |
Ref country code: SK Ref legal event code: T3 Ref document number: E 30805 Country of ref document: SK |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190109 Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190509 Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190409 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190410 Ref country code: RS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190109 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190109 |
|
| REG | Reference to a national code |
Ref country code: DE Ref legal event code: R026 Ref document number: 502015007629 Country of ref document: DE |
|
| PLBI | Opposition filed |
Free format text: ORIGINAL CODE: 0009260 |
|
| PLAX | Notice of opposition and request to file observation + time limit sent |
Free format text: ORIGINAL CODE: EPIDOSNOBS2 |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190109 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190109 Ref country code: AL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190109 Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190109 |
|
| 26 | Opposition filed |
Opponent name: ARCELORMITTAL Effective date: 20191007 Opponent name: SALZGITTER FLACHSTAHL GMBH Effective date: 20191008 |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190109 |
|
| PLBB | Reply of patent proprietor to notice(s) of opposition received |
Free format text: ORIGINAL CODE: EPIDOSNOBS3 |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190109 |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190109 |
|
| REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20190930 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20190930 Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20190909 Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20190909 |
|
| RDAF | Communication despatched that patent is revoked |
Free format text: ORIGINAL CODE: EPIDOSNREV1 |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190109 |
|
| APBM | Appeal reference recorded |
Free format text: ORIGINAL CODE: EPIDOSNREFNO |
|
| APBP | Date of receipt of notice of appeal recorded |
Free format text: ORIGINAL CODE: EPIDOSNNOA2O |
|
| APAH | Appeal reference modified |
Free format text: ORIGINAL CODE: EPIDOSCREFNO |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO Effective date: 20150909 Ref country code: MT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190109 |
|
| APBQ | Date of receipt of statement of grounds of appeal recorded |
Free format text: ORIGINAL CODE: EPIDOSNNOA3O |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190109 |
|
| P01 | Opt-out of the competence of the unified patent court (upc) registered |
Effective date: 20230526 |
|
| PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: TR Payment date: 20230907 Year of fee payment: 9 Ref country code: NL Payment date: 20230920 Year of fee payment: 9 Ref country code: GB Payment date: 20230920 Year of fee payment: 9 Ref country code: CZ Payment date: 20230905 Year of fee payment: 9 |
|
| PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: SK Payment date: 20230904 Year of fee payment: 9 Ref country code: SE Payment date: 20230920 Year of fee payment: 9 |
|
| APBU | Appeal procedure closed |
Free format text: ORIGINAL CODE: EPIDOSNNOA9O |
|
| PUAH | Patent maintained in amended form |
Free format text: ORIGINAL CODE: 0009272 |
|
| STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: PATENT MAINTAINED AS AMENDED |
|
| 27A | Patent maintained in amended form |
Effective date: 20241009 |
|
| AK | Designated contracting states |
Kind code of ref document: B2 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
| REG | Reference to a national code |
Ref country code: DE Ref legal event code: R102 Ref document number: 502015007629 Country of ref document: DE |
|
| PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: ES Payment date: 20241028 Year of fee payment: 10 |
|
| REG | Reference to a national code |
Ref country code: ES Ref legal event code: DC2A Ref document number: 2716937 Country of ref document: ES Kind code of ref document: T5 Effective date: 20250212 |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190109 |
|
| REG | Reference to a national code |
Ref country code: SK Ref legal event code: MM4A Ref document number: E 30805 Country of ref document: SK Effective date: 20240909 |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190109 |
|
| REG | Reference to a national code |
Ref country code: SE Ref legal event code: EUG |
|
| GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20240909 |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20240909 |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SK Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20240909 |
|
| PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20250919 Year of fee payment: 11 |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20240910 |
|
| PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: PL Payment date: 20250901 Year of fee payment: 11 Ref country code: IT Payment date: 20250923 Year of fee payment: 11 |
|
| PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: BE Payment date: 20250918 Year of fee payment: 11 |
|
| PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20250922 Year of fee payment: 11 Ref country code: AT Payment date: 20250919 Year of fee payment: 11 |