EP3132327B1 - Condensateurs de découplage commutables - Google Patents

Condensateurs de découplage commutables Download PDF

Info

Publication number
EP3132327B1
EP3132327B1 EP15714078.1A EP15714078A EP3132327B1 EP 3132327 B1 EP3132327 B1 EP 3132327B1 EP 15714078 A EP15714078 A EP 15714078A EP 3132327 B1 EP3132327 B1 EP 3132327B1
Authority
EP
European Patent Office
Prior art keywords
voltage source
circuit
decoupling capacitor
decoupling
switching
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP15714078.1A
Other languages
German (de)
English (en)
Other versions
EP3132327A1 (fr
Inventor
Ryan Michael Coutts
Mikhail Popovich
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Qualcomm Inc
Original Assignee
Qualcomm Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Qualcomm Inc filed Critical Qualcomm Inc
Publication of EP3132327A1 publication Critical patent/EP3132327A1/fr
Application granted granted Critical
Publication of EP3132327B1 publication Critical patent/EP3132327B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/34Parallel operation in networks using both storage and other dc sources, e.g. providing buffering
    • H02J7/345Parallel operation in networks using both storage and other dc sources, e.g. providing buffering using capacitors as storage or buffering devices
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/16Modifications for eliminating interference voltages or currents
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/26Power supply means, e.g. regulation thereof
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/26Power supply means, e.g. regulation thereof
    • G06F1/28Supervision thereof, e.g. detecting power-supply failure by out of limits supervision
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J9/00Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting
    • H02J9/04Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source
    • H02J9/06Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source with automatic change-over, e.g. UPS systems
    • H02J9/061Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source with automatic change-over, e.g. UPS systems for DC powered loads
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/14Modifications for compensating variations of physical values, e.g. of temperature
    • H03K17/145Modifications for compensating variations of physical values, e.g. of temperature in field-effect transistor switches
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K19/00Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits
    • H03K19/0175Coupling arrangements; Interface arrangements
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K19/00Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits
    • H03K19/20Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits characterised by logic function, e.g. AND, OR, NOR, NOT circuits

Definitions

  • the present disclosure relates generally to electronic circuits, and more particularly, to switchable decoupling capacitors.
  • SOC System-on-a-Chip
  • SOC monolithic integrated circuit
  • the SOC may include various digital and analog circuits that perform various functions.
  • an SOC may include processors, controllers, graphics, video circuits, audio circuits, wireless modems, networking circuits, memories, peripheral interface circuits, bus interface circuits, sensors, detectors, user interfaces, and/or other suitable circuits.
  • US 2009/179669 A1 which relates to a circuit assembly which includes a functional chip and a capacitor.
  • the functional chip includes two logic islands.
  • the capacitor is configured to be selectively coupled to a power supply terminal of one of the logic islands and another power supply terminal of the other logic island.
  • the integrated circuit includes a first circuit configured to be powered by a first voltage source, a second circuit configured to be powered by a second voltage source, a decoupling capacitor, and a controller configured to switch the decoupling capacitor between the first and second voltage source.
  • the integrated circuit includes first processing means for processing data, the first processing means being configured to be powered by a first voltage source, second processing means for processing data, the second processing means being configured to be powered by a second voltage, decoupling means for decoupling the first and second circuit means, and means for switching the decoupling means between the first and second voltage sources.
  • aspects of a method of decoupling first and second circuits includes processing data with the first circuit powered by a first voltage source, processing data with the second circuit powered by a second voltage, and switching a decoupling capacitor between the first and second voltage sources.
  • connection means any connection or coupling, either direct or indirect, between two or more elements, and can encompass the presence of one or more intermediate elements between two elements that are “connected” or “coupled” together.
  • any reference to an element herein using a designation such as "first,” “second,” and so forth does not generally limit the quantity or order of those elements. Rather, these designations are used herein as a convenient method of distinguishing between two or more elements or instances of an element. Thus, a reference to first and second elements does not mean that only two elements can be employed, or that the first element must precede the second element.
  • switchable decoupling capacitors will now be presented in the context of an SOC for a mobile battery-powered device. However, such aspects may be extended to SOCs for electronic devices that have a fixed location and/or are not battery powered (e.g., desktop computers, household appliances, etc.). Moreover, as those skilled in the art will readily appreciate, the various aspects of switchable decoupling capacitors presented in this disclosure are not limited to SOCs, but may be applied to other types of integrated circuits or chips. For example, switchable decoupling capacitors may be used in processor chips, controller chips, graphics chips, digital signal processing chips, application specific integrated circuits, video chips, audio chips, wireless modem chips, logic chips, and/or other suitable integrated circuits. Accordingly, any reference to a specific application for a switchable decoupling capacitor is intended only to illustrate exemplary aspects of the present invention with the understanding that such aspects may have a wide range of applications.
  • the SOC 100 includes a central processing unit (CPU) 102 for executing software programs and a graphics processing unit (GPU) 106 for rendering graphics.
  • CPU central processing unit
  • GPU graphics processing unit
  • a system bus (not shown) interconnects the CPU 102, the GPU 106, and memory (not shown).
  • a peripheral bus (not shown) interconnects the system bus with centralized logic 108 and various peripheral interfaces, including a wireless modem 110 which supports any suitable air interface standard or protocol.
  • the SOC 100 may also include a means for supplying power to the circuitry comprising a positive voltage rail V DD (not shown) and a negative voltage rail V SS (not shown) (e.g., ground).
  • multiple voltage domains may be generated by one or more internal (or external) voltage regulators.
  • a decoupling capacitor 112 that is shared between two voltage domains may be used to provide a more stable power source to the various circuits operating on the SOC 100.
  • a decoupling capacitor between two voltage domains By sharing a decoupling capacitor between two voltage domains, a considerable amount of surface area on the SOC may saved as compared to having a separate decoupling capacitor for each voltage domain.
  • the decoupling capacitance provided to each voltage domain may be increased by sharing a decoupling capacitor without increasing the surface area on the SOC that would otherwise be required with separate decoupling capacitors for each voltage domain.
  • the decoupling capacitor 112 may serve as an energy reserve to prevent or reduce transient variations in voltage levels during switching.
  • the decoupling capacitor 112 may provide an instantaneous current source to a circuit in a first voltage domain that is switching from a sleep mode to an active mode to prevent or reduce a sudden drop in voltage to other circuitry operating in the first voltage domain.
  • the decoupling capacitor 112 may provide an instantaneous current source to a circuit in a second voltage domain that is switching from a sleep mode to an active mode to prevent or reduce a sudden drop in voltage to other circuitry operating in the second voltage domain.
  • FIG. 2 is a functional block diagram illustrating an exemplary embodiment of two circuits operating in different power domains sharing a decoupling capacitor on an SOC.
  • a first circuit 202 provides a first processing means for processing data and a second circuit 204 provides a second processing means for processing data.
  • the first circuit 202 is connected to a first voltage source V DD1 and the second circuit 204 is connected to a second voltage source V DD2 .
  • a controller 206 provides a means for switching a decoupling capacitor 112 between the first and second circuits 202 and 204.
  • the decoupling capacitor 112 provides a means for decoupling the first and second circuits 202 and 204.
  • the first circuit 202 may be the CPU 102 and the second circuit 204 may be the GPU 106 (see FIG. 1 ).
  • the various aspects of a switchable decoupling capacitor presented herein may be applied to any combination of the circuits shown in FIG. 1 and/or any other suitable circuits that may reside on an SOC or other integrated circuit.
  • the controller 206 may be configured to switch the decoupling capacitor 112 between the CPU 102, the GPU 106, memory (not shown), or any suitable combination of circuits.
  • the controller 206 may be configured to switch the decoupling capacitor 112 between circuits residing within the CPU 102, GPU 106, or other suitable circuit.
  • Those skilled in the art will be readily able to apply the various aspects of a switching decoupling capacitor to any suitable combination of circuits on an SOC or other integrated circuit based on the teachings presented throughout this disclosure.
  • FIG. 3A is a flow chart illustrating the operation of an exemplary embodiment of the controller when switching portions of the first circuit between the active and sleep mode.
  • the controller 206 may configure the decoupling capacitor's connection(s) in several different ways in block 302 when both the first and second circuits 202 and 204 are in the active mode. For example, the controller 206 may disconnect the decoupling capacitor 112 from both the first and second voltage sources V DD1 and V DD2 , or alternatively, connect the decoupling capacitor 112 to one of the first and second voltage sources V DD1 and V DD2 .
  • the decoupling capacitor 112 may be shared by connecting the decoupling capacitor 112 to both the first and second voltage sources V DD1 and V DD2 .
  • the controller 206 configures the decoupling capacitor's connection(s) such that the decoupling capacitor 112 is disconnected from the first voltage source V DD1 and connected to the second voltage source V DD2 .
  • the decoupling capacitor 112 is charged by the second voltage source V DD2 .
  • the controller 206 disconnects the decoupling capacitor 112 from the second voltage source V DD2 and connects it to the first voltage source V DD1 just prior to transitioning these portions of the first circuit 202 back to the active mode in block 306.
  • the instantaneous current required by these portions of the first circuit 202 is supplied by the decoupling capacitor 112, thereby preventing or reducing a sudden drop in voltage to the other portions of the first circuit 202 by the first voltage source V DD1 .
  • FIG. 3B is a flow chart illustrating the operation of an exemplary embodiment of the controller under these conditions.
  • the controller 206 may configure the decoupling capacitor's connection(s) in several different ways in block 352 when both the first and second circuits 202 and 204 are in the active mode as explained above in connection with FIG. 3A .
  • the controller 206 configures the decoupling capacitor's connection(s) such that the decoupling capacitor 112 is disconnected from the second voltage source V DD2 and connected to the first voltage source V DD1 .
  • the decoupling capacitor 112 is charged by the first voltage source V DD1 .
  • the controller 206 disconnects the decoupling capacitor 112 from the first voltage source V DD1 and connects it to the second voltage source V DD2 just prior to transitioning these portions of the second circuit 204 back to the active mode in block 356.
  • the instantaneous current required by the these portions of the second circuit 204 is supplied by the decoupling capacitor 112, thereby preventing or reducing a sudden drop in voltage to the other portions of the second circuit 204 by the second voltage source V DD2 .
  • FIG. 4 is a schematic diagram of an exemplary embodiment of a controller.
  • the controller 206 is shown with a first switch circuit 402 which provides a means for controlling a connection between the decoupling capacitor 112 and the first voltage source V DD1 , and a second switch circuit 404 which provides a means for controlling a connection between the decoupling capacitor 112 and the second voltage source V DD2 .
  • the first switch circuit 402 is between the decoupling capacitor 112 and the first circuit 202
  • the second switch circuit 404 is between the decoupling capacitor 112 and the second circuit 204.
  • a switch decoder 406 provides a means for controlling the first and second switches 402 and 404 in response to commands from a power management circuit (not shown).
  • the switch decoder 406 connects the decoupling capacitor 112 to the first voltage source V DD1 by closing the first switch 402 and disconnects the decoupling capacitor 112 from the first voltage source V DD1 by opening the first switch 402. Similarly, the switch decoder 406 connects the decoupling capacitor 112 to the second voltage source V DD2 by closing the second switch 404 and disconnects the decoupling capacitor 112 from the second voltage source V DD2 by opening the second switch 404.
  • the switch decoder 406 receives a command from the power management circuit to configure the first and second switches 402 and 404 in several different ways when both the first and second circuits 202 and 204 are in the active mode.
  • the switch decoder 406 receives a first command from the power management circuit to open the first switch 402 and close the second switch 404 to charge the decoupling capacitor 112 when portions of the first circuit 202 enter a sleep mode.
  • the switch decoder 406 receives a second command from the power management circuit to first open the second switch 404 and the close the first switch 402 when the portions of the first circuit 202 switch back to the active mode.
  • the power management circuit provides another command to the switch decoder 406 to configure the first and second switches 402 and 404 to support the current operating state of the first and second circuits 202 and 204.
  • the switch decoder 406 receives a first command from the power management circuit to close the first switch 402 and open the second switch 404 when portions of the second circuit 204 enter a sleep mode to charge the decoupling capacitor 112.
  • the switch decoder 406 receives a second command from the power management circuit to open the first switch 402 and close the second switch 404 when the portions of the second circuit 204 switch back to the active mode. This enables the decoupling capacitor 112 to provide the instantaneous current required by the portions of the second circuit 402 transitioning back to the active mode, thereby preventing or reducing a sudden drop in voltage to the other portions of the second circuit 204 connected to the second voltage source V DD2 .
  • the power management circuit After the entire second circuit 204 is active, the power management circuit provides another command to the switch decoder 406 to the switch decoder 406 to configure the first and second switches 402 and 404 to support the current operating state of the first and second circuits 202 and 204.
  • the switch decoder 406 may open and close the first and second switches 402 and 404 in any order to switch the decoupling capacitor 112 between the first and second circuits 202 and 204.
  • the first and second switches 402 and 404 should be operated in a break-before-make fashion. That is, when switching the decoupling capacitor 112 from the first circuit 202 to the second circuit 204, the decoupling capacitor 112 should be disconnected from the first circuit 202 before being connected to the second circuit 204.
  • the decoupling capacitor 112 should be disconnected from the second circuit 204 before being connected to the second circuit 202.
  • FIG. 5 is a schematic diagram of an exemplary embodiment of a controller with variable resistance switches.
  • the switches 402 and 404 are implemented with a resistance that can be varied by the switch decoder 406 during operation.
  • each switch may be implemented in a parallel arrangement of transistors that connect the decoupling capacitor 112 to one of the voltage sources.
  • the first switch 402 is implemented with four transistors 402A-402D connected in parallel between the decoupling capacitor 112 and the first voltage source V DD1
  • the second switch 404 is implemented with four transistors 404A-404D connected in parallel between the decoupling capacitor 112 and the second voltage source V DD2 .
  • the switch decoder 406 varies the resistance of the first and second switches 402 and 404 by controlling the gate inputs to their respective parallel combination of transistors. For example, the switch decoder 406 can disconnect the decoupling capacitor 112 from the first voltage source V DD1 by disabling all transistors 402A-402D forming the first switch 402. This may be achieved by applying a logic level 0 to the gates if the switch 402 is implemented with n-channel transistors 402A-402D or a logic level 1 to the gates if the switch 402 is implemented with p-channel transistors 402A-402D. Typically, the switches are implemented with p-channel transistors.
  • the switch decoder 406 may connect the decoupling capacitor 112 to the first voltage source V DD1 by enabling one or more of the transistors 402A-402D by changing the polarity of the logic level applied to the gate(s).
  • the switch 402 when operating to connect the decoupling capacitor 112 to the first voltage source V DD1 , will have a maximum resistance with one of the four transistors 402A-402D enabled and a minimum resistance with all four transistors 402A-402D enabled.
  • the switch decoder 406 may set the switch 402 to a resistance between the minimum and maximum by enabling two or three of the transistors 402A-402B.
  • the switch decoder 406 may incrementally decrease the resistance of the switch 402 by enabling the transistors 402A-402D in a stepwise fashion by enabling the first transistor 402A, followed by the second transistor 402B, and then the third transistor 402C, and finally the fourth transistor 402D. The operation may be reversed to incrementally increase the resistance.
  • the number of parallel transistors used to implement the first switch 402 may vary depending on the resistive resolution required by any particular application.
  • the switch decoder 406 operates the second switch 404 in a similar manner.
  • the switch decoder 406 disconnects the decoupling capacitor 112 from the second voltage source V DD2 by disabling all transistors 404A-404D forming the second switch 404. This may be achieved by applying a logic level 0 to the gates if the switch 404 is implemented with n-channel transistors 404A-404D or a logic level 1 to the gates if the switch 404 is implemented with p-channel transistors 404A-404D.
  • the switch decoder 406 may connect the decoupling capacitor 112 to the second voltage source V DD2 by enabling one or more of the transistors 404A-404D by changing the polarity of the logic level applied to the gate(s).
  • the switch 404 when operating to connect the decoupling capacitor 112 to the second voltage source V DD2 , will have a maximum resistance with one of the four transistors 404A-404D enabled and a minimum resistance with all four transistors 404A-404D enabled.
  • the switch decoder 406 may set the switch 404 to a resistance between the minimum and maximum by enabling two or three of the transistors 404A-404B.
  • the switch decoder 406 may incrementally decrease the resistance of the switch 404 by enabling the transistors 404A-404D in a stepwise fashion by enabling the first transistor 404A, followed by the second transistor 404B, and then the third transistor 404C, and finally the fourth transistor 404D. The operation may be reversed to incrementally increase the resistance.
  • the number of parallel transistors used to implement the second switch 404 may vary depending on the resistive resolution required by any particular application.
  • the variable resistance switches 402 and 404 may be used by the switch decoder 406 to control damping.
  • the decoupling capacitor 112 is connected to the first voltage source V DD1 by the first switch 402 and disconnected from the second voltage source V DD2 by the second switch 404.
  • the resistance of the first switch 402 may be set high to provide slow charging of the decoupling capacitor 112, and thereby prevent a sudden drop in voltage in the V DD1 voltage domain due to the charging of the capacitor.
  • the connection of the decoupling capacitor 112 is switched by the switch decoder 406 with the decoupling capacitor 112 being connected to the second voltage source V DD2 by the second switch 404 and disconnected from the first voltage source V DD1 by the first switch 402.
  • the resistance of the second switch 404 may be set low by the switch decoder 406 to provide a quick discharge path for the decoupling capacitor 112 to the second circuit 204 to prevent or minimize a sudden drop in voltage in the V DD2 voltage domain.
  • the decoupling capacitor 112 when the second circuit 204 is in an active mode and the first circuit 202 is in a sleep mode, the decoupling capacitor 112 is connected to the second voltage source V DD2 by the second switch 404 and disconnected from the first voltage source V DD1 by the first switch 402.
  • the resistance of the second switch 404 may be set high to provide slow charging of the decoupling capacitor 112, and thereby prevent a sudden drop in voltage in the V DD1 voltage domain.
  • the connection of the decoupling capacitor 112 is switched by the switch decoder 406 with the decoupling capacitor 112 being connected to the first voltage source V DD1 by the first switch 402 and disconnected from the second voltage source V DD2 by the second switch 404.
  • the resistance of the first switch 404 may be set low by the switch decoder 406 to provide a quick discharge path for the decoupling capacitor 112 to the first circuit 202 to prevent or minimize a sudden drop in voltage in the V DD1 voltage domain.
  • FIG. 6 is a flow chart illustrating an exemplary embodiment of a method of decoupling the first and second circuits.
  • the first circuit is powered by a first voltage source and the second circuit is powered by a second voltage source.
  • the method includes processing data in block 602 with the first circuit, and processing data in block 604 with the second circuit.
  • the method further includes switching a decoupling capacitor between the first and second voltage sources in block 606.
  • the decoupling capacitor is switched by controlling a connection between the decoupling capacitor and the first voltage source with the first switching circuit, and controlling a connection between the decoupling capacitor and the second voltage source with the second switching circuit.
  • the connection between the decoupling capacitor and the first voltage source is controlled to charge the decoupling capacitor from the first voltage source, and the connection between the decoupling capacitor and the second voltage source is controlled to supply current from the charged decoupling capacitor to the second circuit.
  • connection between the decoupling capacitor and the first voltage source may be controlled to charge the decoupling capacitor from the first voltage source while the first circuit is in an active mode and the second circuit is in a sleep mode
  • connection between the decoupling capacitor and the second voltage source may be controlled to supply current from the charged decoupling capacitor to the second circuit when the second circuit is transitioned from the sleep mode to an active mode
  • each of the first and second switching circuits comprises a variable resistance.
  • the variable resistance may be implemented by a plurality of parallel transistors independently controllable to vary the resistance thereof as described in greater detail above.
  • the connection between the decoupling capacitor and the first voltage source may be controlled to charge the decoupling capacitor from the first voltage source through a first resistance
  • the connection between the decoupling capacitor and the second voltage source is controlled to supply current from the charged decoupling capacitor to the second circuit, through a second resistance, where the first resistance is higher than the second resistance.
  • connection between the decoupling capacitor and the first voltage source may be controlled to charge the decoupling capacitor from the first voltage source slowly while the first circuit is in an active mode and the second circuit is in a sleep mode
  • connection between the decoupling capacitor and the second voltage source may be controlled to supply current from the charged decoupling capacitor to the second circuit quickly when the second circuit is transitioned from the sleep mode to an active mode

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Computing Systems (AREA)
  • Power Engineering (AREA)
  • Business, Economics & Management (AREA)
  • Emergency Management (AREA)
  • Semiconductor Integrated Circuits (AREA)
  • Logic Circuits (AREA)
  • Power Sources (AREA)
  • Dc-Dc Converters (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Claims (12)

  1. Circuit intégré (100) comprenant :
    des premiers moyens de traitement (202) pour traiter des données, les premiers moyens de traitement (202) étant configurés pour être alimentés par une première source de tension (VDD1) ;
    des deuxièmes moyens de traitement (204) pour traiter des données, les deuxièmes moyens de traitement (204) étant configurés pour être alimentés par une deuxième source de tension (VDD2) ;
    dans lequel la première source de tension (VDD1) et la deuxième source de tension (VDD2) ne sont pas égales ;
    des moyens de découplage (112) pour découpler les premier (202) et deuxième (204) moyens de traitement ; et
    des moyens pour commuter (206) les moyens de découplage (112) entre les première (VDD1) et deuxième (VDD2) sources de tension ;
    des premiers moyens de commutation (402) pour commander une connexion entre les moyens de découplage (112) et la première source de tension (VDD1) ;
    des deuxièmes moyens de commutation (404) pour commander une connexion entre les moyens de découplage (112) et la deuxième source de tension (VDD2) ; et
    des moyens pour commander (406) les premiers (402) et deuxièmes (404) moyens de commutation, les moyens pour commander (406) les premiers (402) et deuxièmes (404) moyens de commutation étant configurés pour commander les premiers moyens de commutation (402) pour charger les moyens de découplage (112) à partir de la première source de tension (VDD1), caractérisé en ce que les moyens pour commander (406) les premiers (402) et deuxièmes (404) moyens de commutation sont en outre configurés pour commander les deuxièmes moyens de commutation (404) pour fournir un courant provenant des moyens de découplage chargés (112) aux deuxièmes moyens de traitement (204) et à la deuxième source de tension (VDD2).
  2. Circuit intégré (100) selon la revendication 1, dans lequel les moyens pour commander (406) les premiers (402) et deuxièmes (404) moyens de commutation sont en outre configurés pour commander les premiers moyens de commutation (402) pour charger les moyens de découplage (112) à partir de la première source de tension (VDD1) quand les premiers moyens de traitement (202) sont dans un mode actif et les deuxièmes moyens de traitement (204) sont dans un mode de veille, et pour commander les deuxièmes moyens de commutation (404) pour fournir un courant provenant des moyens de découplage chargés (112) aux deuxièmes moyens de traitement (204) quand les deuxièmes moyens de traitement (204) passent du mode de veille au mode actif.
  3. Circuit intégré (100) selon la revendication 1, dans lequel chacun des premiers (402) et deuxièmes (404) moyens de commutation comprennent une résistance variable.
  4. Circuit intégré (100) selon la revendication 3, dans lequel chacun des premiers (402) et deuxièmes (404) moyens de commutation comprennent une pluralité de transistors en parallèle chacun commandable indépendamment au moyen des moyens pour commander (406) les premiers (402) et deuxièmes (404) moyens de commutation pour faire varier leur résistance.
  5. Circuit intégré (100) selon la revendication 3, dans lequel les moyens pour commander (406) les premiers (402) et deuxièmes (404) moyens de commutation sont en outre configurés pour commander les premiers moyens de commutation (402) pour charger les moyens de découplage (112) à partir de la première source de tension (VDD1) par l'intermédiaire d'une première résistance, et pour commander les deuxièmes moyens de commutation (404) pour fournir un courant provenant des moyens de découplage chargés (112) aux deuxièmes moyens de traitement (204) par l'intermédiaire d'une deuxième résistance, la première résistance étant supérieure à la deuxième résistance.
  6. Circuit intégré (100) selon la revendication 5, dans lequel les moyens pour commander (406) les premiers (402) et deuxièmes (404) moyens de commutation sont en outre configurés pour commander les premiers moyens de commutation (402) pour charger les moyens de découplage (112) à partir de la première source de tension (VDD1) quand les premiers moyens de traitement (202) sont dans un état actif et les deuxièmes moyens de traitement (204) sont dans un état de veille, et pour commander aux deuxièmes moyens de commutation (404) pour fournir un courant allant des moyens de découplage chargés (112) aux deuxièmes moyens de traitement (204) quand les deuxièmes moyens de traitement (204) passent du mode de veille au mode actif.
  7. Procédé de découplage de premier (202) et deuxième (204) circuits, comprenant les étapes suivantes :
    le traitement de données par le premier circuit (202) alimenté par une première source de tension (VDD1) ;
    le traitement des données par le deuxième circuit (204) alimenté par une deuxième source de tension (VDD2) ;
    la commutation d'un condensateur de découplage (112) entre les première (VDD1) et deuxième (VDD2) sources de tension ;
    dans lequel la première source de tension (VDD1) et la deuxième source de tension (VDD2) ne sont pas égales ;
    dans lequel le condensateur de découplage (112) est commuté en commandant une connexion entre le condensateur de découplage (112) et la première source de tension (VDD1) avec un premier circuit de commutation (402), et en commandant une connexion entre le condensateur de découplage (112) et la deuxième source de tension (VDD2) avec un deuxième circuit de commutation (404) ; et
    dans lequel la connexion entre le condensateur de découplage (112) et la première source de tension (VDD1) est commandée pour charger le condensateur de découplage (112) à partir de la première source de tension (VDD1), caractérisé en ce que la connexion entre le condensateur de découplage (112) et la deuxième source de tension (VDD2) est commandée pour fournir un courant provenant du condensateur de découplage chargé (112) au deuxième circuit (204) et à la deuxième source de tension (VDD2).
  8. Procédé selon la revendication 7, dans lequel la connexion entre le condensateur de découplage (112) et la première source de tension (VDD1) est commandée pour charger le condensateur de découplage (112) à partir de la première source de tension (VDD1) quand le premier circuit (202) est en mode actif et le deuxième circuit (204) est en mode de veille, et dans lequel la connexion entre le condensateur de découplage (112) et la deuxième source de tension (VDD2) est commandée pour fournir un courant provenant du condensateur de découplage chargé (112) au deuxième circuit (204) quand le deuxième circuit (204) passe du mode de veille à un mode actif.
  9. Procédé selon la revendication 7, dans lequel chacun des premier (402) et deuxième (404) circuits de commutation comprend une résistance variable.
  10. Procédé selon la revendication 9, dans lequel chacun des premier (402) et deuxième (404) circuits de commutation comprend une pluralité de transistors en parallèle chacun commandable indépendamment pour faire varier leur résistance.
  11. Procédé selon la revendication 9, dans lequel la connexion entre le condensateur de découplage (112) et la première source de tension (VDD1) est commandée pour charger le condensateur de découplage (112) à partir de la première source de tension (VDD1) par l'intermédiaire d'une première résistance, et dans lequel la connexion entre le condensateur de découplage (112) et la deuxième source de tension (VDD2) est commandée pour fournir un courant provenant du condensateur de découplage chargé (112) au deuxième circuit (204), par l'intermédiaire d'une deuxième résistance, la première résistance étant supérieure à la deuxième résistance.
  12. Procédé selon la revendication 11, dans lequel la connexion entre le condensateur de découplage (112) et la première source de tension (VDD1) est commandée pour charger le condensateur de découplage (112) à partir de la première source de tension (VDD1) quand le premier circuit (202) est en mode actif et le deuxième circuit (204) est en mode de veille, et dans lequel la connexion entre le condensateur de découplage (112) et la deuxième source de tension (VDD2) est commandée pour fournir un courant provenant du condensateur de découplage chargé (112) au deuxième circuit (204) quand le deuxième circuit (204) passe du mode de veille à un mode actif.
EP15714078.1A 2014-04-16 2015-03-13 Condensateurs de découplage commutables Active EP3132327B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US14/254,872 US9871506B2 (en) 2014-04-16 2014-04-16 Switchable decoupling capacitors
PCT/US2015/020539 WO2015160454A1 (fr) 2014-04-16 2015-03-13 Condensateurs de découplage commutables

Publications (2)

Publication Number Publication Date
EP3132327A1 EP3132327A1 (fr) 2017-02-22
EP3132327B1 true EP3132327B1 (fr) 2019-08-14

Family

ID=52808137

Family Applications (1)

Application Number Title Priority Date Filing Date
EP15714078.1A Active EP3132327B1 (fr) 2014-04-16 2015-03-13 Condensateurs de découplage commutables

Country Status (7)

Country Link
US (1) US9871506B2 (fr)
EP (1) EP3132327B1 (fr)
JP (1) JP6419843B2 (fr)
KR (1) KR101837606B1 (fr)
CN (1) CN106170905B (fr)
BR (1) BR112016024212A2 (fr)
WO (1) WO2015160454A1 (fr)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106165342B (zh) * 2014-01-14 2019-10-15 飞利浦灯具控股公司 针对电力分配系统中的受电设备的低电力待机
WO2016072023A1 (fr) * 2014-11-07 2016-05-12 株式会社ソシオネクスト Circuit intégré à semi-conducteur
US9825627B2 (en) * 2015-08-07 2017-11-21 Mediatek Inc. Apparatus for performing signal driving in an electronic device with aid of different types of decoupling capacitors for pre-driver and post-driver
KR20180081042A (ko) * 2015-08-31 2018-07-13 메이오 파운데이션 포 메디칼 에쥬케이션 앤드 리써치 위 신생물 검출 방법
US20170373587A1 (en) * 2016-06-28 2017-12-28 Intel Corporation Compact partitioned capacitor for multiple voltage domains with improved decoupling
EP3264241A1 (fr) * 2016-06-29 2018-01-03 Saint-Gobain Glass France Vitrage feuilleté d'éclairage avec un dispositif tactile capacitif et une diode électroluminescente et sa fabrication
US10664035B2 (en) * 2017-08-31 2020-05-26 Qualcomm Incorporated Reconfigurable power delivery networks
US11105844B2 (en) 2019-06-28 2021-08-31 Microsoft Technology Licensing, Llc Predictive voltage transient reduction in integrated circuits
KR102515565B1 (ko) * 2019-12-17 2023-04-04 장승욱 센서보드의 전원 노이즈가 감소된 스마트팜 복합환경 제어시스템

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4420156B2 (ja) 2000-06-14 2010-02-24 日本電気株式会社 半導体装置
US6949967B2 (en) 2003-09-24 2005-09-27 Taiwan Semiconductor Manufacturing Company Dynamically adjustable decoupling capacitance to reduce gate leakage current
US20040226735A1 (en) * 2003-05-12 2004-11-18 Ping Wu Method and apparatus for integrated noise decoupling
US20070127169A1 (en) * 2005-12-07 2007-06-07 Rambus, Inc. Integrated circuit with configurable bypass capacitance
JP5175597B2 (ja) * 2007-11-12 2013-04-03 エスケーハイニックス株式会社 半導体集積回路
US7701277B2 (en) 2007-12-12 2010-04-20 Synopsys, Inc. Variable-impedance gated decoupling cell
US7667487B2 (en) * 2008-01-10 2010-02-23 International Business Machines Corporation Techniques for providing switchable decoupling capacitors for an integrated circuit
US9425192B2 (en) 2008-12-11 2016-08-23 Altera Corporation Integrated circuit decoupling capacitors
CN101807105B (zh) * 2009-02-17 2014-12-10 国家电网公司 时序控制电路
JP5271850B2 (ja) * 2009-08-26 2013-08-21 ルネサスエレクトロニクス株式会社 半導体集積回路
JP5481211B2 (ja) * 2010-01-20 2014-04-23 国立大学法人 東京大学 半導体集積回路装置
US8339757B2 (en) * 2010-04-19 2012-12-25 Faraday Technology Corp. Electrostatic discharge circuit for integrated circuit with multiple power domain
US8400743B2 (en) * 2010-06-30 2013-03-19 Advanced Micro Devices, Inc. Electrostatic discharge circuit
US8427224B2 (en) 2011-07-26 2013-04-23 National Chiao Tung University On-chip active decoupling capacitors for regulating voltage of an integrated circuit
US8972758B2 (en) 2011-11-30 2015-03-03 International Business Machines Corporation Charge recycling between power domains of integrated circuits
US20150077170A1 (en) * 2013-09-13 2015-03-19 International Business Machines Corporation Efficient wakeup of power gated domains through charge sharing and recycling

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
JP6419843B2 (ja) 2018-11-07
US20150303912A1 (en) 2015-10-22
US9871506B2 (en) 2018-01-16
CN106170905B (zh) 2019-06-04
KR20160145013A (ko) 2016-12-19
CN106170905A (zh) 2016-11-30
WO2015160454A1 (fr) 2015-10-22
KR101837606B1 (ko) 2018-03-12
EP3132327A1 (fr) 2017-02-22
BR112016024212A2 (pt) 2017-08-15
JP2017514389A (ja) 2017-06-01

Similar Documents

Publication Publication Date Title
EP3132327B1 (fr) Condensateurs de découplage commutables
US7279927B2 (en) Integrated circuit with multiple power domains
CN107924223B (zh) 用于集成电路电网效率的功率多路复用器
US7385435B2 (en) Programmable power gating circuit
US7376037B1 (en) Programmable logic device with power-saving architecture
US20120200345A1 (en) Integrated circuit having power gating function and semiconductor device including the same
KR102611894B1 (ko) 능동 부하를 사용한 전력 멀티플렉싱
EP3652611B1 (fr) Multiplexeur de puissance numérique
JP2013528300A (ja) 複数の低電力モードを有するデータプロセッサ
US8723592B2 (en) Adjustable body bias circuit
US8762753B2 (en) Power management circuit using two configuration signals to control the power modes of two circuit modules using two crosslinked multiplexers and a level shifter
US9715272B2 (en) Portable electronic device and core swapping method thereof
US7877619B2 (en) Power mode control method and circuitry
US10901486B2 (en) Configurable interconnect apparatus and method
US20230124949A1 (en) True power shedding apparatus and method to reduce power consumption
JP2004047810A (ja) 半導体集積回路
CN114144742B (zh) 跨域功率控制电路
US9871507B1 (en) Generating an overdrive voltage for power switch circuitry
US11429129B2 (en) Multi-deck circuits with common rails

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20160907

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20190305

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: AT

Ref legal event code: REF

Ref document number: 1167773

Country of ref document: AT

Kind code of ref document: T

Effective date: 20190815

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602015035777

Country of ref document: DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20190814

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190814

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190814

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190814

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190814

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191216

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190814

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191114

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191114

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 1167773

Country of ref document: AT

Kind code of ref document: T

Effective date: 20190814

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190814

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191214

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190814

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190814

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190814

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191115

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190814

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190814

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190814

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190814

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190814

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190814

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190814

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200224

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190814

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190814

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190814

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602015035777

Country of ref document: DE

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20200219

Year of fee payment: 6

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG2D Information on lapse in contracting state deleted

Ref country code: IS

26N No opposition filed

Effective date: 20200603

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190814

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190814

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20200331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200313

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200331

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200331

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200313

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200331

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20210311

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190814

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190814

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190814

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20220313

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220313

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240209

Year of fee payment: 10