EP3075690B1 - Verfahren und vorrichtung zur überwachung der produktion einer strickmaschine sowie strickmaschine - Google Patents

Verfahren und vorrichtung zur überwachung der produktion einer strickmaschine sowie strickmaschine Download PDF

Info

Publication number
EP3075690B1
EP3075690B1 EP16159895.8A EP16159895A EP3075690B1 EP 3075690 B1 EP3075690 B1 EP 3075690B1 EP 16159895 A EP16159895 A EP 16159895A EP 3075690 B1 EP3075690 B1 EP 3075690B1
Authority
EP
European Patent Office
Prior art keywords
thread
test
sensor
sensor signals
clock unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP16159895.8A
Other languages
English (en)
French (fr)
Other versions
EP3075690A1 (de
Inventor
Thomas Streubel
Sven Schultheiss
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Memminger IRO GmbH
Original Assignee
Memminger IRO GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Memminger IRO GmbH filed Critical Memminger IRO GmbH
Publication of EP3075690A1 publication Critical patent/EP3075690A1/de
Application granted granted Critical
Publication of EP3075690B1 publication Critical patent/EP3075690B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04BKNITTING
    • D04B15/00Details of, or auxiliary devices incorporated in, weft knitting machines, restricted to machines of this kind
    • D04B15/38Devices for supplying, feeding, or guiding threads to needles
    • D04B15/48Thread-feeding devices
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04BKNITTING
    • D04B15/00Details of, or auxiliary devices incorporated in, weft knitting machines, restricted to machines of this kind
    • D04B15/38Devices for supplying, feeding, or guiding threads to needles
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04BKNITTING
    • D04B35/00Details of, or auxiliary devices incorporated in, knitting machines, not otherwise provided for
    • D04B35/10Indicating, warning, or safety devices, e.g. stop motions
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04BKNITTING
    • D04B35/00Details of, or auxiliary devices incorporated in, knitting machines, not otherwise provided for
    • D04B35/10Indicating, warning, or safety devices, e.g. stop motions
    • D04B35/12Indicating, warning, or safety devices, e.g. stop motions responsive to thread consumption
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04BKNITTING
    • D04B35/00Details of, or auxiliary devices incorporated in, knitting machines, not otherwise provided for
    • D04B35/10Indicating, warning, or safety devices, e.g. stop motions
    • D04B35/14Indicating, warning, or safety devices, e.g. stop motions responsive to thread breakage
    • D04B35/16Indicating, warning, or safety devices, e.g. stop motions responsive to thread breakage with detectors associated with a series of threads

Definitions

  • the invention relates to a method and a device for monitoring the production of a knitting machine according to the preambles of the independent claims and a corresponding knitting machine.
  • the control unit queries the sensor devices individually on the basis of a periodic reference signal, which is a function of the operating position of the textile machine, for the data relating to the state of the feed of the threads.
  • the control unit controls the operation of the textile machine with the data from the sensor devices. It interrupts the operation of the textile machine if there is a difference between the data received from at least one sensor device and the corresponding stored data.
  • a production monitoring / setting device and a corresponding method for a knitting machine, in particular a circular knitting machine, are shown in FIG EP 1 370 720 B1 described.
  • the device comprises several knitting systems, several delivery devices and a computerized unit, the delivery devices being connected to the computerized unit.
  • the production monitoring / setting device receives trigger signals.
  • yarn is delivered to the active knitting systems from multiple non-positive delivery devices according to at least two differing yarn delivery principles.
  • the individual yarn quantities are continuously measured on the delivery devices on the basis of scanned actual rotation signals.
  • the individual amounts of yarn are compared in the computerized unit with the desired amounts of yarn, for example a master piece, and information and / or adjustment measures are derived from the comparisons.
  • Tolerance ranges are defined for the comparisons, the width of which is matched to yarn quality and / or yarn path parameters. Exceeding the different tolerance ranges will trigger different measures, such as alarm signals, Adjustment measures or switching off the knitting machine.
  • the individual amounts of yarn are also used to determine a total amount of yarn and / or a yarn weight, whereby they are converted or converted into the same amount or weight units.
  • the knitting machine with its machine control, the production monitoring / setting device and the delivery devices are linked via a bus system, e.g. a CAN bus system or a daisy chain.
  • a bus system e.g. a CAN bus system or a daisy chain.
  • the EP 2 270 269 B1 describes a method of detecting the stoppage of yarn unwinding from a yarn feeder to a downstream machine.
  • the yarn feeder has a stationary drum and a sensor, the sensor signal of which generates a pulse for each loop unwound from the drum.
  • the machine is stopped if a measured time since the last pulse exceeds a setpoint for the period between two pulses.
  • the setpoint is updated in real time as a function of the yarn unwinding speed.
  • the DE 10 2012 103 535 B3 describes a method for checking production quantities of a knitting machine, which are determined from yarn lengths delivered within a time interval.
  • An Indian EP 2 415 916 B1 The test procedure described uses the measuring impulses of a trigger sensor. For this purpose, the time interval between 2 measuring pulses is measured and compared with a threshold value. The threshold value as a function of the yarn withdrawal speed is updated in real time. A stop signal is generated when the threshold value is overwritten.
  • the object of the invention is to improve a method and a device for monitoring the production of a knitting machine.
  • it is the object of the invention to enable the knitting machine to be stopped quickly in the event of a thread standstill or thread breakage with little effort.
  • a method according to the invention relates to the monitoring of the production of a knitting machine.
  • a knitting machine is designed, for example, as a circular knitting machine or a flat knitting machine.
  • a circular knitting machine has several or a large number of identical or different thread feeding devices.
  • Yarn feeding devices are, for example, positive thread feeding devices, thread tension-controlled thread feeding devices or storage thread feeding devices. These thread feeders are used, for example, when knitting goods with patterns are made.
  • the thread delivery takes place with storage thread feeders, in which the thread is drawn off a winding body.
  • the yarn is delivered by delivering the yarn via a driven bobbin.
  • the thread tension is measured and regulated by changing the rotational speed of the winding body.
  • the thread delivery of the Postiv thread feeder is a feed of the thread synchronous to the speed of the knitting machine.
  • the bobbins of the positive yarn feeders are driven by the drive of the knitting machine, e.g. via a gear unit and toothed belt.
  • jacquard or striping machines are used to produce knitted goods with patterns.
  • a thread feed device is assigned to a knitting point.
  • two or more thread feeding devices are assigned to a knitting point, which alternately or simultaneously deliver different, e.g. differently colored, threads to the knitting point.
  • the thread feed devices assigned to a knitting point are referred to as a group of thread feed devices.
  • the invention relates to a method for monitoring the thread delivery of at least two thread feeding devices or at least two groups of at least two thread feeding devices, ie the thread delivery for at least two knitting stations.
  • a sensor signal with a measuring pulse per unit length of a thread delivery path is generated for each of the delivering yarn feeders by a sensor device which is arranged in the yarn feeder path of the yarn feeder.
  • the sensor signals generated are checked by a control device. If necessary, a stop signal for the knitting machine is generated by the control device.
  • a check is made as to whether at least one of the sensor signals from their thread feeding devices indicates a thread delivery.
  • control device In order to check the sensor signals of the thread feeding devices or the groups, the control device is provided with test events by a clock unit.
  • a test event is an event after the occurrence of which the checking of the sensor signals is started by the control device.
  • control device checks whether at least one measuring pulse has been generated by the sensor devices from each of the thread feed devices or each of the groups in the case of the sensor signals.
  • a test event is determined by the clock unit from the sensor signals from at least two yarn feeding devices or from the sensor signals from at least two groups of yarn feeding devices.
  • the thread feeding devices, the sensor signals of which are used by the clock unit to determine the test events, are called monitor thread feeding devices. Accordingly, the groups used to determine the test events are called monitor groups.
  • the number of measuring pulses is determined for each thread feeder or for each group during the determination of a test event.
  • the number of measuring pulses is set to zero after a check.
  • the checking of the sensor signals is triggered by a test event which has been determined by the clock unit from the sensor signals themselves, namely from sensor signals from at least two monitor thread feeders or at least two monitor groups. This enables the knitting machine to be stopped quickly in the event of a thread standstill or thread breakage with little effort, namely with the aid of sensor signals to be checked.
  • Sensor signals from several, ie from at least two, monitor thread delivery devices or monitor groups are used to determine a test result.
  • different ways of working of the knitting points such as knitting or floating can be taken into account
  • monitor thread feeders or monitor groups are used. This enables a reliable determination of the test results with different working methods of the knitting points or with failure of a monitor thread feeder or a monitor group.
  • all thread feed devices or all groups are used as monitor thread feed devices or monitor groups. This is the case, for example, when only a few, for example up to 16, thread feed devices or groups are monitored.
  • a test event is determined by the clock unit when the sensor signals from N of the monitor thread feeders or from N monitor groups have in each case fed to the clock unit at least M measurement pulses.
  • the number M of measuring pulses to be supplied by a sensor signal of a monitor thread feeder or by a monitor group is at least 2.
  • the number M of measuring pulses is preferably 2 to 5.
  • the number N of monitor thread delivery devices or monitor groups, of which M measurement pulses are to be delivered is at least 1.
  • the number N is preferably 1 to 10.
  • a stop signal is generated faster the lower the numbers N and M are. With very low numbers, however, the risk of incorrect shutdown increases.
  • the monitoring device comprises two thread feeding devices
  • both are also monitor thread feeding devices, i.e. the sensor signals of both thread feeding devices are made available to the clock unit.
  • a test pulse is generated, for example, when one of the sensor signals S has sent two measuring pulses to the clock unit, the number N of sensor signals being set to 1 and the number M of measuring pulses being set to 2. The same applies to an embodiment of the monitoring device with two groups of yarn feeding devices.
  • test events are made available to the control device as test commands by the clock unit.
  • a test command z. B. denotes a program command by means of which a program of the control device which carries out the checking of the sensor signals is started.
  • a test command is generated by the clock unit if it has determined a test event.
  • test events are made available to the control device by the clock unit as test pulses of a test signal.
  • a test pulse of the test signal is generated by the clock unit if a test event was determined by it.
  • the sensor signals are checked in separate control units of the control device.
  • Each of the separate control units is assigned to a yarn feeding device, with the sensor signal from the yarn feeding device being fed to it.
  • the control units are, for example, integrated into the yarn feeders.
  • To check all separate control units z. B. provided a test signal with test pulses. With each test pulse, the separate control units check whether at least one measurement pulse has been generated in the sensor signal. If necessary, for example if this is not the case, the respective separate control unit generates a stop signal for the knitting machine.
  • the sensor signals are checked in a central control unit of the control device.
  • the sensor signals are sent to the central control unit.
  • the test events determined by the clock unit are also made available to the central control unit. With each test event, the central control unit checks whether at least one measuring pulse has been generated for each sensor signal. If necessary, it generates a stop signal for the knitting machine. In one embodiment, the test events are made available to the central control unit as test pulses of the test signal.
  • the unit of length of the thread delivery path corresponds to a yarn turn unwound from a winding body of the thread feeder or to a part of the unwound yarn turn.
  • the yarn turns are passively unwound in storage yarn feeders, namely drawn off by the knitting machine.
  • the yarn windings are actively withdrawn, namely supplied by driven bobbins.
  • different yarn feeding devices are monitored. Measurement pulses from their sensor devices that are matched to one another are used. In an alternative, the length units that are processed per measuring pulse are the same for the various yarn feeders.
  • a device according to the invention for monitoring the production of a knitting machine hereinafter a monitoring device, comprises at least two thread feeding devices, each of which is assigned a sensor device.
  • Each sensor device is designed to generate a sensor signal with one measuring pulse per unit length of a thread delivery path.
  • the monitoring device comprises a control device which is designed to check the sensor signals of the sensor devices. If necessary, the control device generates a stop signal for the knitting machine.
  • the monitoring device comprises a clock unit which is designed to make a test event available to the control device.
  • the clock unit is designed to determine test events from sensor signals from at least two of the yarn feeders, referred to as monitor thread feeders, or from at least two of the groups, referred to as monitor groups.
  • the control device is designed to check for each test event whether at least one measuring pulse has been generated for the sensor signals of each thread feeder or each group.
  • the clock unit is connected to the sensor devices of 4 to 16 monitor thread delivery devices or monitor groups.
  • the clock unit is designed to determine a test event if M measurement pulses have been supplied to it by the sensor signals from N of the monitor thread feeders or from N of the monitor groups, where N is at least 1 and M is at least 2.
  • the clock unit is designed to provide the control unit with the test events as test commands.
  • the clock unit is designed to generate a test command each time a test event has been determined.
  • the clock unit is designed to provide the control device with the test results as test pulses of a test signal.
  • the clock unit is designed to generate a test pulse each time a test event has been determined.
  • control device has separate control units which are each connected to the sensor devices of the thread feeder devices.
  • the separate Control units are connected to the clock unit for receiving the test signal with the test pulses.
  • control device has a central control unit.
  • the central control unit is connected to the sensor devices of the yarn feeding devices for receiving the sensor signals from all monitored yarn feeding devices.
  • the central control unit is connected to the clock unit for receiving the test events.
  • the central control unit is connected to the clock unit for receiving a test signal with test pulses.
  • control unit is connected to the clock unit for receiving a test command.
  • the central control unit and the clock unit are z. B. designed as program units.
  • the thread feeding devices have winding bodies, the unit of length of the thread delivery path corresponding to a yarn turn unwound from the winding body or to a part of the yarn turn.
  • a knitting machine according to the invention is provided with one of the described monitoring devices according to the invention.
  • a device according to the invention is provided for monitoring the production of a circular knitting machine 1.
  • Figure 1 shows a schematic view of the circular knitting machine 1 with elements of devices according to the invention for monitoring the production of the knitting machine, hereinafter referred to as monitoring devices.
  • the circular knitting machine 1 has several yarn feeders, specifically as storage yarn feeders 2, as tension-controlled yarn feeders 3 and as positive yarn feeders 4.
  • the thread feeding devices 2, 3, 4 are arranged on several carrier rings 5 of the circular knitting machines 1.
  • Figure 1 only a few of the yarn feeders are shown, with three storage yarn feeders 2 on an upper carrier ring 5, three yarn tension-controlled yarn feeders 3 on a middle carrier ring 5 and three positive yarn feeders 4 on a lower carrier ring 5.
  • the circular knitting machine 1 has, for example for the production of a patterned knit, for example a jacquard knit, several knitting points 6 on its knitting device, each knitting point 6 being assigned a thread feed device, for example.
  • the knitting device comprises e.g. B. a knitting cylinder 7, which in Figure 1 is covered by rope locks 8 and is indicated as an arrow.
  • Figure 1 also shows that a thread 9 is fed to the knitting station 6 by a storage thread feeder 2.
  • the knitting device In a circular knitting machine 1, the knitting device is known to be rotatably arranged in a frame 10 which is surrounded by a housing 11 in the area below the knitting device and to which the carrier rings 5 are attached in the area above the knitting device.
  • a monitoring device for a jacquard knitting machine. It comprises at least two storage thread feeding devices 2 and a control unit 13.
  • the control unit 13 is like Figure 1 shows, attached to a central part of the frame 11 of the circular knitting machine 1, for example removable.
  • Figure 2 shows a storage yarn feeder 2 with a winding body designed as a storage drum 14.
  • the stationary storage drum 14 is arranged in front of a housing 15. At the inlet end of the storage drum 14, a winding element 16 for winding yarn turns onto the storage drum 14 is arranged. At the other end, i.e. at the outlet end, of the storage drum 14, a cone brake 17 is provided, for example. The cone brake 17 is supported by an arm 18 of the housing 15.
  • a sensor device 19 and a separate control unit 20 are assigned to the storage yarn feeding device 2.
  • the sensor device 19 is designed to generate a sensor signal with one measuring pulse I per unit length of a thread delivery path ⁇ XF.
  • the unit of length of the thread delivery path .DELTA.XF corresponds to a thread turn withdrawn from the storage drum 14.
  • the sensor device 19 is designed, for example, as an optical sensor which generates a measuring pulse I for each yarn winding that is drawn off, i.e. passively unwound.
  • the circumference of the storage drum 14 and thus the length of a thread turn is 20 cm, i.e. the length unit of the thread delivery path ⁇ XF is 20 cm.
  • the separate control unit 20 comprises, for example, a microprocessor. It is designed as an electronic component and / or program units.
  • the separate control unit 20 is designed to check the sensor signal S of the sensor device 19 and, if necessary, to generate a stop signal ST for the circular knitting machine 1.
  • the separate control unit 20 is in the housing 15 and thus in the Storage thread feeder 2 integrated, but in Figure 2 shown separately for clarity.
  • FIG. 13 shows a block diagram of the circular knitting machine 1 with the monitoring device of the first example.
  • Figure 3 eight of the storage thread feeding devices 2 and the control unit 13 of the monitoring device can be seen.
  • the storage thread delivery devices 2 are connected to one another and to the control unit 13 via a communication link 21.
  • the communication connection 21 is designed as two lines and guided on the carrier rings 5 and on parts of the frame 11.
  • the communication link 21 is in Figure 1 not shown. Data is exchanged between the connected devices via the communication link 21.
  • the communication connection 21 is designed, for example, as two lines of a CAN-BUS connection via which serial data transmission takes place.
  • the number J of storage thread feeders 2 is 2 to 126, or more than 126, of which at least 2, preferably 4 to 16, are used as monitor thread feeders.
  • the monitoring device comprises 48 storage thread feeding devices 2 with their sensor devices 19, i.e. the number J of storage thread feeding devices is 48. Of these storage thread feeding devices 2, 16 are used as monitor thread feeding devices.
  • the control unit 13 is connected to the circular knitting machine 1, specifically to its machine control 12, via a control connection 22.
  • the control connection 22 is designed, for example, as a control line. Alternatively, like the communication connection 21, it is designed as a CAN-BUS connection.
  • the block diagram of the Figure 3 illustrates the path of a thread 9 from a thread bobbin 23 via the storage thread feeder 2 to one of the knitting stations 6 on the knitting cylinder 7 of the circular knitting machine 1.
  • FIG. 11 shows a block diagram of this monitoring device, only six of the storage yarn feeders 2, their sensor devices 19 and their separate control units 20 being visible.
  • a control device of the monitoring device is formed, inter alia, by the separate control units 20 of the storage yarn feeder 2.
  • the control device also comprises a control unit K integrated in the control unit 13 for forwarding a stop signal ST to one of the separate control units 20.
  • the monitoring device comprises a clock unit T, which is also integrated in the control unit 13.
  • the control unit 13 is in Figure 4 represented by a dashed line around the clock unit T and the control unit K.
  • the clock unit T is connected to the sensor devices 19 of the 16 monitor thread feeders.
  • the clock unit T is connected to the sensor devices 19 of the three left storage thread feeding devices 2 used as monitor thread feeding devices via the control connection 21.
  • the clock unit T is designed to determine test results from the sensor signals S of the monitor thread feeding devices and to make them available as test pulses T3 of a test signal S3. That is, the clock unit is designed to generate test pulses T3 of a test signal S3. In particular, the clock unit T is designed to generate a test pulse T3 in each case when at least M measurement pulses I have been fed to the clock unit T from at least N of the sensor signals S of the monitor thread feeder devices.
  • the separate control units 20 are connected to the clock unit T for receiving the test signal S3.
  • Each of the separate control units 20 is designed to check for each test pulse T3 of the test signal S3 whether at least one measurement pulse I has been generated for its own sensor signal S. It is designed to generate a stop signal ST and to send it to the control unit K if this is not the case.
  • the control unit K is designed to forward the stop signal ST via the control connection 22 to the machine control 12 of the circular knitting machine 1.
  • the control unit 13 is designed as an electronic device and is provided with a microprocessor, for example.
  • the clock unit T and the control unit K are designed as electronic components and / or program units of the control unit 13.
  • the thread delivery of all storage thread delivery devices 2 is monitored in order to monitor the circular knitting machine 1.
  • the respective sensor device 19 For each thread feeding device 2, the respective sensor device 19 generates a sensor signal S with a measuring pulse I per unit length of the thread delivery path ⁇ XF, i.e. per thread turn withdrawn from the storage drum 14 of the storage thread feeding device 2.
  • the respective separate control unit 20 checks the sensor signal S by checking whether at least one measuring pulse I has been generated for each test pulse T3. It generates a stop signal ST for the circular knitting machine 1 if this is not the case.
  • test events are determined by the clock unit T from the sensor signals S of the monitor thread supply devices and made available as test pulses T3 of a test signal S3.
  • I. E. test pulses T3 are generated by the clock unit T.
  • a test pulse T3 is generated when at least M measuring pulses I have been fed to the clock unit T from at least N of the sensor signals S from the monitor thread feeder.
  • the number N of sensor signals is at least one, preferably 1 to 10.
  • the number M of measurement pulses is at least two, preferably 2 to 5.
  • the number M of measuring pulses is set to 3 and the number N of sensor signals to 2.
  • the numbers N and M can be set variably depending on the quality of the threads and / or the goods and / or other sizes.
  • Figure 5 shows the generation of a test pulse T3 by the clock unit T from the sensor signals S of the monitor thread feeder using a flow chart.
  • NF NF +1. If this is not the case, the process is started again.
  • the clock unit T If the number NF of the sensor signals S corresponds to the specified number N or is greater, the clock unit T generates a test pulse T3 of the test signal S3.
  • Figure 6 shows the checking of a sensor signal S by the corresponding separate control unit 20 on the basis of a flow chart.
  • the separate control unit 20 checks whether the number Mj of measurement pulses is greater than zero.
  • a stop signal ST for the circular knitting machine 1 is generated by the control unit 20 and fed to the machine control 12 of the circular knitting machine 1 via the control connection 22.
  • the respective number Mj is set to zero by the separate control unit 20.
  • the checking of the sensor signal S is started again.
  • a new test pulse T3 is waited for.
  • the measuring pulses I of the sensor device 19 are again added up in the number Mj.
  • the sensor signals S are checked in parallel by all of the separate control units 20.
  • control unit 13 is integrated into the machine control 12 of the circular knitting machine 1.
  • the monitoring device comprises a plurality of thread tension-controlled thread feeding devices 3 with driven winding bodies.
  • a sensor device for a yarn tension-controlled yarn feeding device 3 is designed, for example, as an encoder which is arranged on the driven winding body.
  • the encoder is designed to generate a sensor signal with measuring pulses for a specific angle of rotation of the winding body and thus for a specific thread delivery path ⁇ XF.
  • the thread delivery path ⁇ XF of a measuring pulse corresponds to a thread turn or part of a thread turn that is actively unwound, i.e. delivered, by the bobbin.
  • the monitoring device comprises both storage thread feeding devices 2 and / or thread tension-controlled thread feeding devices 3 and / or positive thread feeding devices.
  • a sensor device for a positive yarn feeder 4 is, for example, like that of the yarn tension-controlled yarn feeder, designed as an encoder on its winding body.
  • the second example corresponds to that of the first example except for the features shown below.
  • Figure 7 shows a block diagram of the monitoring device of the second example.
  • the monitoring device also comprises 48 monitored storage thread feeding devices 2 with their sensor devices 19. 16 of these storage thread feeding devices 2 are used as monitor thread feeding devices.
  • Figure 7 six of the storage yarn feeders 2 and their sensor devices 19 are shown. If necessary, separate control units for further control functions cannot be seen.
  • a control device of the monitoring device comprises a central control unit ZK, which is integrated together with the clock unit T in the control unit 13.
  • the central control unit ZK is connected to all sensor devices 19 and internally, i.e. within the control unit 13, to the clock unit T via the communication link 21 for receiving the sensor signals S.
  • the central control unit ZK is designed to check for each test pulse T3 of the test signal S3 from the clock unit T whether at least one measurement pulse I has been generated for each sensor signal S of the monitored storage thread feeder 2. It is designed to generate a stop signal ST and to forward it to the machine control 12 of the circular knitting machine 1 via the control connection 22.
  • the central control unit ZK checks all sensor signals S as a function of the test pulses T3 made available to the control unit 13 by the clock unit T. It checks whether at least one measuring pulse I has been generated for each sensor signal S. If this is not the case with one of the sensor signals S, it generates a stop signal ST for the circular knitting machine 1 and sends it to the machine control 12.
  • Figure 8 shows the generation of a test pulse T3 by the clock unit T from the sensor signals S of the monitor thread feeder, which corresponds to that of the first example and there based on the Figure 5 is explained.
  • Figure 9 shows the checking of all sensor signals S by the central control unit ZK on the basis of a flow chart.
  • a stop signal ST for the circular knitting machine 1 is generated by the central control unit and fed to the machine control 12 of the circular knitting machine 1 via the communication link 22.
  • the numbers Mj of the measuring pulses I of the sensor signals are set to zero.
  • the checking of the sensor signals S is started again. This means that a new test pulse T3 is waited for. Meanwhile, the measuring pulses Ij of the sensor devices 19 are again added up in the numbers Mj.
  • a monitoring device and a monitoring method of the third example correspond to those of the second example except for the features presented below.
  • the central control unit ZK and the clock unit T are integrated together in the control unit 13.
  • the control unit 13 is connected through its connection to the communication link 21 with all storage thread feed devices 2 for receiving the sensor signals S from all sensor devices 19.
  • the clock unit T of the control unit 13 is connected to the sensor devices 19 of the monitor thread feeding devices. It is designed to determine test events from the sensor signals S of the 16 monitor thread delivery devices.
  • the central control unit ZK is connected to all sensor devices 19. It is designed to check for each test event made available by the clock unit T whether at least one measuring pulse I has been generated for the sensor signals S of each thread feeder 2. If this is not the case, it is designed to generate a stop signal ST and to forward it to the machine control 12 of the circular knitting machine 1 via the control connection 22.
  • the clock unit T and the central control unit ZK are designed, for example, as program units, the test events of the clock unit T being transferred to the central control unit ZK as test commands T3 *.
  • a test signal with test pulses is not required in this example.
  • the yarn delivery of all storage yarn feeders 2 is monitored by the monitoring device.
  • Figure 10 shows the generation of a test event as test command T3 * by the clock unit T and the checking of all sensor signals S started by the test command T3 * by the central control unit ZK using a flowchart.
  • the clock unit T If the number NF of sensor signals S corresponds to the specified number N or is greater, the clock unit T generates a test command T3 * for which the central control unit ZK waits. An explicit display of the test command T3 *, as indicated in the flow chart, is not necessary. It is essential that the clock unit T makes the test command T3 * available to the central control unit ZK and that it starts with the checking of all sensor signals S.
  • the central control unit ZK checks for all of the J storage yarn feeders 2 whether the number Mj of measuring pulses Ij is greater than zero.
  • a stop signal ST for the circular knitting machine 1 is generated by the central control unit ZK and fed to the circular knitting machine 1 via the control connection 22 of the machine controller 12.
  • the numbers Mi, the numbers Mj and the number NF are set to zero.
  • the checking of the sensor signals S is started again.
  • a monitoring device and a monitoring method of the third example correspond to those of the second example except for the features presented below.
  • Figure 11 shows a block diagram of the circular knitting machine 1 with a monitoring device according to the invention of the fourth example, which is provided for a ring knitting machine.
  • the thread delivery of groups G is monitored by two storage thread delivery devices 2 in each case.
  • the two storage thread feeders 2 of a group G supply threads 9 of different colors, for example.
  • the number of storage thread feeders 2 is also 48, and thus the number JG of groups 24. 8 of the groups are used as monitor groups.
  • the groups G are each identified by a dashed line.
  • the two storage thread feeders 2 of a group G are each assigned to one of the knitting stations 6.
  • the circular knitting machine 1 has a ringing device 24 which is arranged in front of the knitting point 6 in the course of the thread.
  • the ringing device 24 is designed to select one of the threads 9 of the two storage thread feeders 2 and to feed it to the knitting station 6.
  • the central control unit ZK checks the sensor signals S as a function of the test pulses T3 made available to the control unit 13 by the clock unit T. It checks whether at least one measuring pulse I has been generated for the sensor signals S of a group. If this is not the case with a group, it generates a stop signal ST for the circular knitting machine 1 and sends it to the machine control 12.
  • Figure 12 shows, using a flow chart, the generation of a test pulse T3 by the clock unit T from the sensor signals S of the monitor groups.
  • the clock unit T If the number NG of the groups G corresponds to the established number N or is greater, the clock unit T generates a test pulse T3 of the test signal S3.
  • the numbers Gi and the number NG are then reset to zero.
  • the generation of a test pulse T3 is started again.
  • Figure 13 shows the checking of the sensor signals S of the groups G by the central control unit ZK on the basis of a flow chart.
  • a stop signal ST for the circular knitting machine 1 is generated by the central control unit ZK and fed to the machine control 12 of the circular knitting machine 1 via the control connection 22.
  • the number Gj of measuring pulses I of the sensor signals S is set to zero.
  • the checking of the sensor signals S is started again. This means that a new test pulse T3 is waited for. In the meantime, the measuring pulses Ij of the groups are again added up in the numbers Gj.

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Knitting Machines (AREA)

Description

  • Die Erfindung betrifft ein Verfahren und eine Vorrichtung zur Überwachung der Produktion einer Strickmaschine gemäß den Oberbegriffen der unabhängigen Ansprüche sowie eine entsprechende Strickmaschine.
  • In der Stricktechnik wird vielfach eine Überwachung der laufenden Produktion gewünscht. Dazu ist aus der EP 0 752 631 B1 bekannt, die Zufuhr einer Vielzahl von Fäden in eine Textilmaschine zu überwachen. Es sind Sensoreinrichtungen vorgesehen, die den Zustand der Zufuhr der Fäden, mit der sie der Maschine zugeführt werden, insbesondere die Bewegung oder das Stoppen, die Spannung und die Geschwindigkeit der Fäden, zu erfassen. Die Sensoreinrichtungen sind mit einer Steuereinheit verbunden, die auf Grundlage der Sensorsignale den Betrieb der Maschine steuert. Die Steuereinheit ist mit den Sensoreinrichtungen über mindestens einen Kommunikationsleiter verbunden.
  • Die Steuereinheit fragt die Sensoreinrichtungen individuell aufgrund eines periodischen Referenzsignals, das eine Funktion der Betriebsposition der Textilmaschine ist, nach den Daten bezüglich des Zustandes der Zufuhr der Fäden ab. Die Steuereinheit steuert mit den Daten von den Sensoreinrichtungen den Betrieb der Textilmaschine. Sie unterbricht den Betrieb der Textilmaschine, wenn eine Differenz zwischen den von wenigstens einer Sensoreinrichtung erhaltenen Daten und den entsprechenden gespeicherten Daten auftritt.
  • Eine Produktionsüberwachungs/Einstellvorrichtung und ein entsprechendes Verfahren für eine Strickmaschine, insbesondere eine Rundstrickmaschine, sind in der EP 1 370 720 B1 beschrieben. Die Vorrichtung umfasst mehrere Stricksysteme, mehrere Liefergeräte und eine computerisierte Einheit, wobei die Liefergeräte an die computerisierte Einheit angeschlossen sind. Die Produktionsüberwachung/Einstellvorrichtung erhält Trig.Signale.
  • In Betrieb wird Garn zu den aktiven Stricksystemen von mehreren nicht-positiv liefernden Liefergeräten nach zumindest zwei sich unterscheidenden Garn-Förderprinzipien geliefert. Dabei werden die individuellen Garnmengen fortlaufend anhand abgetasteter Ist-Drehsignale an den Liefergeräten gemessen. Die individuellen Garnmengen werden in der computerisierten Einheit mit Soll-Garnmengen etwa eines Masterpieces verglichen und Informationen und/oder Einstellmaßnahmen aus den Vergleichen abgeleitet. Für die Vergleiche sind Toleranzbereiche definiert, die in ihrer Breite auf Garnqualitäts- und/oder Garnwegparameter abgestimmt sind. Das Überschreiten der unterschiedlichen Toleranzbereiche wird zum Auslösen unterschiedlicher Maßnahmen, wie Alarmsignale, Einstellmaßnahmen oder Abschalten der Strickmaschine, genutzt. Die individuellen Garnmengen werden auch zur Feststellung einer Gesamtgarnmenge und/oder eines Garngewichts genutzt, wobei sie in gleiche Mengen- bzw. Gewichtseinheiten umgerechnet oder umgewandelt werden.
  • Die Strickmaschine mit ihrer Maschinensteuerung, die Produktionsüberwachungs-/ Einstellvorrichtung und die Liefergeräte sind über ein Bussystem, z.B. ein CAN-Bussystem oder einen Daisy-Chain, verknüpft.
  • In oben genannten Schriften werden individuell Daten über Zustände der Fadenzufuhr ( EP 0 752 631 B1 ) oder über Garnmengen ( EP 1 370 720 B1 ) erfasst. In einer zentralen Steuereinheit, der ein als Referenzsignal oder Trig.Signal bezeichnetes Synchronisationssignal zugeführt wird, werden die Daten ausgewertet und zur Steuerung und ggf. zum Unterbrechen des Betriebes der Strickmaschine verwendet.
  • Bei der in der EP 1 370 720 beschriebenen Produktionsüberwachung anhand von individuellen Garnmengen werden Garnmengen einer gewissen Größe mit ihren Soll-Garnmengen verglichen. Die individuellen Garnmengen werden zum Beispiel für Strickwege ermittelt, die einer oder mehrerer Umdrehungen des Strickzylinders der Rundstrickmaschine entsprechen.
  • Es ist außerdem zum Beispiel aus der WO 2008/083691 A1 bekannt, zur Produktionsüberwachung mechanische Fadenfühler an einem Fadenliefergerät einzusetzen, die z.B. bei Fadenbruch ein Stoppsignal für die Strickmaschine erzeugen.
  • Die EP 2 270 269 B1 beschreibt ein Verfahren zum Erfassen des Stoppens der Garnabwicklung von einem Garnzuführer zu einer stromabwärts befindlichen Maschine. Der Garnzuführer hat eine stationäre Trommel und einen Sensor, durch dessen Sensorsignal ein Impuls pro von der Trommel abgewickelter Schleife erzeugt wird. Die Maschine wird angehalten, wenn eine gemessene Zeit seit dem letzten Impuls einen Sollwert für die Zeitspanne zwischen zwei Impulsen übersteigt. Der Sollwert wird in Abhängigkeit von der Garnabwickelgeschwindigkeit in Echtzeit aktualisiert.
  • Bei dem in der EP 2 270 269 B1 beschriebenen Verfahren ist es aufwendig, die jeweilige Garnabwickelgeschwindigkeit sehr schnell in Echtzeit zu ermitteln. Insbesondere ist es aufwendig, jeweils die Zeit zwischen zwei Impulsen und den Sollwert in Abhängigkeit von der Abzugsgeschwindigkeit zu ermitteln.
  • Die DE 10 2012 103 535 B3 beschreibt ein Verfahren zur Überprüfung von Produktionsgrößen einer Strickmaschine, die aus innerhalb eines Zeitintervalls gelieferten Garnlängen ermittelt werden.
  • Ein in der EP 2 415 916 B1 beschriebenes Prüfverfahren nutzt die Messimpulse eines Abzugssensors. Dazu wird jeweils das Zeitintervall zwischen 2 Messimpulsen gemessen und mit einem Schwellwert verglichen. Der Schwellwert als Funktion der Garnabzugsgeschwindigkeit wird in Echtzeit aktualisiert. Bei Überschreiben des Schwellwertes wird ein Stoppsignal erzeugt.
  • Die Aufgabe der Erfindung ist es, ein Verfahren und eine Vorrichtung zur Überwachung der Produktion einer Strickmaschine zu verbessern. Insbesondere ist es die Aufgabe der Erfindung, ein schnelles Anhalten der Strickmaschine bei Fadenstillstand oder Fadenbruch mit geringem Aufwand zu ermöglichen.
  • Die Aufgabe ist durch die unabhängigen Ansprüche gelöst.
  • Ein erfindungsgemäßes Verfahren betrifft die Überwachung der Produktion einer Strickmaschine. Eine Strickmaschine ist zum Beispiel als eine Rundstrickmaschine oder eine Flachstrickmaschine ausgebildet.
  • Eine Rundstrickmaschine weist mehrere oder eine Vielzahl von gleichen oder unterschiedlichen Fadenliefergeräten auf. Fadenliefergeräte sind zum Beispiel Positiv-Fadenliefergeräte, fadenspannungsgesteuerte Fadenliefergeräte oder Speicher-Fadenliefergeräte. Diese Fadenliefergeräte werden zum Beispiel eingesetzt, wenn Strickwaren mit Mustern hergestellt werden.
  • Die Fadenlieferung erfolgt bei Speicher-Fadenliefergeräten, in dem der Faden von einem Wickelkörper abgezogen wird.
  • Bei fadenspannungsgesteuerten Fadenliefergeräten erfolgt die Fadenlieferung, in dem der Faden über einen angetriebenen Wickelkörper geliefert wird. Dabei wird die Fadenspannung gemessen und durch Änderung der Drehgeschwindigkeit des Wickelkörpers geregelt.
  • Bei der Fadenlieferung der Postiv-Fadenliefergeräte handelt es sich um eine Zuführung des Fadens synchron zur Geschwindigkeit der Strickmaschine. Dabei werden Wickelkörper der Positiv-Fadenliefergeräte, z.B. über ein Getriebe und Zahnriemen, durch den Antrieb der Strickmaschine angetrieben.
  • Zur Herstellung von Strickwaren mit Mustern werden beispielsweise Jacquard- oder Ringelmaschinen eingesetzt. Bei Jacquardmaschinen ist einer Strickstelle ein Fadenliefergerät zugeordnet. Bei Ringelmaschinen sind einer Strickstelle zwei oder mehrere Fadenliefergeräte zugeordnet, die abwechselnd oder gleichzeitig unterschiedliche, z.B. unterschiedlich gefärbte, Fäden zur Strickstelle liefern. Die einer Strickstelle zugeordneten Fadenliefergeräte werden als Gruppe von Fadenliefergeräten bezeichnet.
  • Die Erfindung betrifft ein Verfahren zur Überwachung der Fadenlieferung mindestens zweier Fadenliefergeräte oder mindestens zweier Gruppen von mindestens zwei Fadenliefergeräten, d.h. die Fadenlieferung für mindestens zwei Strickstellen.
  • Für die liefernden Fadenliefergeräte wird jeweils ein Sensorsignal mit einem Messimpuls pro Längeneinheit eines Fadenlieferweges durch eine Sensorvorrichtung, die im Fadenlieferweg des Fadenliefergerätes angeordnet ist, erzeugt. Die erzeugten Sensorsignale werden durch eine Kontrolleinrichtung überprüft. Ggf. wird durch die Kontrolleinrichtung ein Stoppsignal für die Strickmaschine erzeugt.
  • Zur Überwachung einer Gruppe von Fadenliefergeräten wird überprüft, ob mindestens eines der Sensorsignale ihrer Fadenliefergeräte eine Fadenlieferung anzeigt.
  • Zur Überprüfung der Sensorsignale der Fadenliefergeräte oder der Gruppen werden der Kontrolleinrichtung durch eine Takteinheit Prüfereignisse zur Verfügung gestellt.
  • Als Prüfereignis wird ein Ereignis bezeichnet, nach dessen Eintreten die Überprüfung der Sensorsignale durch die Kontrolleinrichtung gestartet wird.
  • Bei jedem Prüfereignis wird durch die Kontrolleinrichtung überprüft, ob bei den Sensorsignalen von den Sensorvorrichtungen jedes der Fadenliefergeräte oder jeder der Gruppen mindestens ein Messimpuls erzeugt worden ist.
  • Ein Prüfereignis wird durch die Takteinheit aus den Sensorsignalen von mindestens zwei Fadenliefergeräten oder aus den Sensorsignalen von mindestens zwei Gruppen von Fadenliefergeräten bestimmt. Die Fadenliefergeräte, deren Sensorsignale durch die Takteinheit zur Bestimmung der Prüfereignisse herangezogen werden, werden Monitorfadenliefergeräte genannt. Entsprechend werden die zur Bestimmung der Prüfereignisse herangezogenen Gruppen Monitorgruppen genannt.
  • Zur Überprüfung der Sensorsignale werden für jedes Fadenliefergerät oder für jede Gruppe die Anzahl der Messimpulse jeweils während der Bestimmung eines Prüfereignisses bestimmt. Die Anzahlen der Messimpulse werden nach einer Überprüfung auf Null gesetzt.
  • Die Überprüfung der Sensorsignale wird durch ein Prüfereignis ausgelöst, das durch die Takteinheit aus den Sensorsignalen selbst, und zwar aus Sensorsignalen von mindestens zwei Monitorfadenliefergeräten oder mindestens zwei Monitorgruppen, bestimmt worden ist. Dies ermöglicht mit geringem Aufwand, nämlich mit Hilfe von zu überprüfenden Sensorsignalen, ein schnelles Anhalten der Strickmaschine bei Fadenstillstand oder Fadenbruch.
  • Es werden Sensorsignale von mehreren, d. h. von mindestens zwei Monitorfadenliefergeräten oder Monitorgruppen zur Bestimmung eines Prüfergebnisses eingesetzt, damit ggf. unterschiedliche Arbeitsweisen der Strickstellen wie Stricken oder Flottung berücksichtigt werden können
  • In einer Ausführungsform werden 4 bis 16 Monitorfadenliefergeräte oder Monitorgruppen eingesetzt. Dies ermöglicht eine sichere Bestimmung der Prüfergebnisse bei unterschiedlichen Arbeitsweisen der Strickstellen oder bei Ausfall eines Monitorfadenliefergerätes oder einer Monitorgruppe.
  • In einer Ausführungsform werden alle Fadenliefergeräte oder alle Gruppen als Monitorfadenliefergeräte bzw Monitorgruppen eingesetzt. Dies ist zum Beispiel der Fall, wenn nur wenige, beispielsweise bis zu 16, Fadenliefergeräten oder Gruppen überwacht werden.
  • In einer Ausführungsform wird durch die Takteinheit ein Prüfereignis bestimmt, wenn der Takteinheit durch die Sensorsignale von N der Monitorfadenliefergeräte oder von N Monitorgruppen jeweils mindestens M Messimpulse zugeleitet worden sind.
  • Die Anzahl M der Messimpulse, die von einem Sensorsignal eines Monitorfadenliefergerätes oder von einer Monitorgruppe zu liefern ist, beträgt mindestens 2. Vorzugsweise beträgt die Anzahl M der Messimpulse 2 bis 5.
  • Die Anzahl N der Monitorfadenliefergeräte oder der Monitorgruppen, von denen M Messimpulse zu liefern sind, beträgt mindestens 1. Vorzugsweise beträgt die Anzahl N 1 bis 10.
  • Die Erzeugung eines Stoppsignals erfolgt um so schneller je geringer die Anzahlen N und M sind. Bei sehr niedrigen Anzahlen steigt jedoch die Gefahr einer Fehlabstellung.
  • Umfasst die Überwachungsvorrichtung in einer Ausführungsform zwei Fadenliefergeräte, so sind beide auch Monitorfadenliefergeräte, d.h. die Sensorsignale beider Fadenliefergeräte werden der Takteinheit zur Verfügung gestellt. Ein Prüfimpuls wird z.B. erzeugt, wenn eines der Sensorsignale S zwei Messimpulse an die Takteinheit gesendet hat, wobei die Anzahl N der Sensorsignale auf 1 und die Anzahl M der Messimpulse auf 2 festgesetzt ist. Für eine Ausführungsform der Überwachungsvorrichtung mit zwei Gruppen von Fadenliefergeräten gilt Entsprechendes.
  • In einer Ausführungsform werden der Kontrolleinrichtung durch die Takteinheit die Prüfereignisse als Prüfbefehle zur Verfügung gestellt. Als Prüfbefehl wird z. B. ein Programmbefehl bezeichnet, durch den ein die Überprüfung der Sensorsignale durchführendes Programm der Kontrolleinrichtung gestartet wird. Durch die Takteinheit wird ein Prüfbefehl erzeugt, wenn durch sie ein Prüfereignis bestimmt wurde.
  • In einer Ausführungsform werden der Kontrolleinrichtung durch die Takteinheit die Prüfereignisse als Prüfimpulse eines Prüfsignal zur Verfügung gestellt. Durch die Takteinheit wird jeweils ein Prüfimpuls des Prüfsignals erzeugt, wenn durch sie ein Prüfereignis bestimmt wurde.
  • In einer Alternative werden die Sensorsignale in separaten Kontrolleinheiten der Kontrolleinrichtung überprüft. Jede der separaten Kontrolleinheiten ist einem Fadenliefergerät zugeordnet, wobei ihr das Sensorsignal des Fadenliefergerätes zugeleitet wird. Die Kontrolleinheiten sind beispielsweise in die Fadenliefergeräte integriert. Zur Überprüfung werden allen separaten Kontrolleinheiten z. B. ein Prüfsignal mit Prüfimpulsen zur Verfügung gestellt. Die separaten Kontrolleinheiten überprüfen bei jedem Prüfimpuls, ob bei dem eigenen Sensorsignal mindestens ein Messimpuls erzeugt worden ist. Ggf., nämlich z.B. falls dies nicht der Fall ist, erzeugt die jeweilige separate Kontrolleinheit ein Stoppsignal für die Strickmaschine.
  • In einer weiteren Alternative werden die Sensorsignale in einer zentralen Kontrolleinheit der Kontrolleinrichtung überprüft. Dazu werden die Sensorsignale der zentralen Kontrolleinheit zugeleitet. Der zentralen Kontrolleinheit werden auch die durch die Takteinheit bestimmten Prüfereignisse zur Verfügung gestellt. Die zentrale Kontrolleinheit überprüft bei jedem Prüfereignis, ob bei jedem Sensorsignal mindestens ein Messimpuls erzeugt worden ist. Ggf. erzeugt sie ein Stoppsignal für die Strickmaschine. In einer Ausführungsform werden die Prüfereignisse der zentralen Kontrolleinheit als Prüfimpulse des Prüfsignals zur Verfügung gestellt.
  • In einer Ausführungsform entspricht die Längeneinheit des Fadenlieferweges einer von einem Wickelkörper des Fadenliefergerätes abgewickelten Garnwindung oder einem Teil der abgewickelten Garnwindung. Die Garnwindungen werden bei Speicher-Fadenliefergeräten passiv abgewickelt, nämlich durch die Strickmaschine abgezogen. Bei fadenspannungsgesteuerten Fadenliefergeräten und bei Positiv-Fadenliefergeräten werden die Garnwindungen aktiv abgezogen, nämlich durch angetriebene Wickelkörper geliefert.
  • In einer Ausführungsform werden verschiedene Fadenliefergeräte überwacht. Dabei werden aufeinander abgestimmte Messimpulse ihrer Sensorvorrichtungen eingesetzt. In einer Alternative sind die Längeneinheiten, die pro Messimpuls abgewickelt werden, für die verschiedenen Fadenliefergeräte gleich.
  • Die im Folgenden beschriebenen erfindungsgemäßen Vorrichtungen weisen den erfindungsgemäßen Verfahren entsprechende Merkmale und Vorteile auf.
  • Eine erfindungsgemäße Vorrichtung zur Überwachung der Produktion einer Strickmaschine, im Folgenden Überwachungsvorrichtung, umfasst mindestens zwei Fadenliefergeräte, denen jeweils eine Sensorvorrichtung zugeordnet ist. Jede Sensorvorrichtung ist dazu ausgebildet, ein Sensorsignal mit jeweils einem Messimpuls pro Längeneinheit eines Fadenlieferweges zu erzeugen.
  • Die Überwachungsvorrichtung umfasst eine Kontrolleinrichtung, die dazu ausgebildet ist, die Sensorsignale der Sensorvorrichtungen zu überprüfen. Die Kontrolleinrichtung erzeugt ggf. ein Stoppsignal für die Strickmaschine.
  • Die Überwachungsvorrichtung umfasst eine Takteinheit, die dazu ausgebildet ist, der Kontrolleinrichtung ein Prüfereignis zur Verfügung zu stellen.
  • Die Takteinheit ist dazu ausgebildet, Prüfereignisse aus Sensorsignalen von mindestens zwei, als Monitorfadenliefergeräte bezeichneten, der Fadenliefergeräten oder, von mindestens zwei, als Monitorgruppen bezeichneten, der Gruppen zu bestimmen.
  • Die Kontrolleinrichtung ist dazu ausgebildet, bei jedem Prüfereignis zu prüfen, ob bei den Sensorsignalen jedes Fadenliefergerätes oder jeder Gruppe mindestens ein Messimpuls erzeugt worden ist.
  • In einer Ausführungsform ist die Takteinheit mit den Sensorvorrichtungen von 4 bis 16 Monitorfadenliefergeräten oder Monitorgruppen verbunden.
  • In einer Ausführungsform ist die Takteinheit dazu ausgebildet, ein Prüfereignis zu bestimmen, wenn ihr durch die der Sensorsignale von N der Monitorfadenliefergeräte oder von N der Monitorgruppen, jeweils M Messimpulse zugeleitet worden sind, wobei N mindestens 1 und M mindestens 2 beträgt.
  • In einer Ausführungsform ist die Takteinheit dazu ausgebildet, der Kontrolleinheit die Prüfereignisse als Prüfbefehle zur Verfügung zu stellen. Die Takteinheit ist dazu ausgebildet, jeweils einen Prüfbefehl zu erzeugen, wenn ein Prüfereignis bestimmt wurde.
  • In einer Ausführungsform ist die Takteinheit dazu ausgebildet, der Kontrolleinrichtung die Prüfergebnisse als Prüfimpulse eines Prüfsignals zur Verfügung zu stellen. Die Takteinheit ist dazu ausgebildet, jeweils einen Prüfimpuls zu erzeugen, wenn ein Prüfereignis bestimmt wurde.
  • In einer Alternative weist die Kontrolleinrichtung separate Kontrolleinheiten auf, die jeweils mit den Sensorvorrichtungen der Fadenliefergeräte verbunden sind. Die separaten Kontrolleinheiten sind zum Empfang des Prüfsignals mit den Prüfimpulsen mit der Takteinheit verbunden.
  • In einer weiteren Alternative weist die Kontrolleinrichtung eine zentrale Kontrolleinheit auf. Die zentrale Kontrolleinheit ist mit den Sensorvorrichtungen der Fadenliefergeräte zum Empfang der Sensorsignale aller überwachten Fadenliefergeräte verbunden. Die zentrale Kontrolleinheit ist mit der Takteinheit zum Empfang der Prüfereignisse verbunden. In einer Alternative ist die zentrale Kontrolleinheit mit der Takteinheit zum Empfang eines Prüfsignals mit Prüfimpulsen verbunden.
  • In einer weiteren Alternative ist die Kontrolleinheit mit der Takteinheit zum Empfang eines Prüfbefehls verbunden. Dabei sind die zentrale Kontrolleinheit und die Takteinheit z. B. als Programmeinheiten ausgebildet.
  • In einer Ausführungsform weisen die Fadenliefergeräte Wickelkörper auf, wobei die Längeneinheit des Fadenlieferweges einer von dem Wickelkörper abgewickelten Garnwindung oder einem Teil der Garnwindung entspricht.
  • Eine erfindungsgemäße Strickmaschine ist mit einer der beschriebenen, erfindungsgemäßen Überwachungsvorrichtungen versehen.
  • Die Erfindung wird anhand von in der Zeichnung schematisch dargestellter Beispiele weiter erläutert. Es zeigen:
    • Figur 1 eine schematische Ansicht einer Rundstrickmaschine mit Elementen erfindungsgemäßer Vorrichtungen;
    • Fig. 2 ein Speicher-Fadenliefergerät;
    • Fig. 3 ein Blockdiagramm einer Rundstrickmaschine (Jacquardmaschine) mit einer erfindungsgemäßen Überwachungsvorrichtung eines ersten Beispiels;
    • Fig. 4 ein Blockdiagramm der Überwachungsvorrichtung des ersten Beispiels;
    • Fig. 5 ein Ablaufdiagramm einer Erzeugung eines Prüfsignals durch die Takteinheit des ersten Beispiels;
    • Fig. 6 ein Ablaufdiagramm einer Überprüfung eines Sensorsignals durch eine separate Kontrolleinheit des ersten Beispiels;
    • Fig. 7 ein Blockdiagramm der Überwachungsvorrichtung eines zweiten Beispiels;
    • Fig. 8 ein Ablaufdiagramm einer Erzeugung eines Prüfsignals durch die Takteinheit des zweiten Beispiels;
    • Fig. 9 ein Ablaufdiagramm einer Überprüfung der Sensorsignale durch eine zentrale Kontrolleinheit des zweiten Beispiels;
    • Fig. 10 ein Ablaufdiagramm einer Überprüfung der Sensorsignale durch eine zentrale Kontrolleinheit eines dritten Beispiels;
    • Fig. 11 ein Blockdiagramm einer Rundstrickmaschine (Ringelmaschine) mit einer erfindungsgemäßen Überwachungsvorrichtung eines vierten Beispiels;
    • Fig. 12 ein Ablaufdiagramm einer Erzeugung eines Prüfsignals durch die Takteinheit des vierten Beispiels; und
    • Fig. 13 ein Ablaufdiagramm einer Überprüfung der Sensorsignale durch eine zentrale Kontrolleinheit des vierten Beispiels.
    Erstes Beispiel
  • Eine erfindungsgemäße Vorrichtung ist zur Überwachung der Produktion einer Rundstrickmaschine 1 vorgesehen.
  • Figur 1 zeigt eine schematischen Ansicht der Rundstrickmaschine 1 mit Elementen erfindungsgemäßer Vorrichtungen zur Überwachung der Produktion der Strickmaschine, im folgenden Überwachungsvorrichtungen genannt.
  • Die Rundstrickmaschine 1 weist mehrere Fadenliefergeräte auf, und zwar als Speicher-Fadenliefergeräte 2, als spannungsgesteuerte Fadenliefergeräte 3 und als Positiv-Fadenliefergeräte 4 ausgebildete Fadenliefergeräte.
  • Die Fadenliefergeräte 2, 3, 4 sind auf mehreren Trägerringen 5 der Rundstrickmaschinen 1 angeordnet. In Figur 1 sind nur einige der Fadenliefergeräte dargestellt, wobei auf einem oberen Trägerring 5 drei Speicher-Fadenliefergeräte 2, auf einen mittleren Trägerring 5 drei fadenspannungsgesteuerte Fadenliefergeräte 3 und auf einem unteren Trägerring 5 drei Positiv-Fadenliefergeräte 4 zu sehen sind.
  • Die Rundstrickmaschine 1 weist, z.B. zur Produktion eines gemusterten Gestricks, zum Beispiels eines Jacquard-Gestricks, mehrere Strickstellen 6 an ihrer Strickvorrichtung auf, wobei jeder Strickstelle 6 beispielsweise ein Fadenliefergerät zugeordnet ist. Die Strickvorrichtung umfasst z. B. einen Strickzylinder 7, der in Figur 1 durch Strickschlösser 8 verdeckt ist und als ein Pfeil angezeigt ist. Figur 1 zeigt auch, dass der Strickstelle 6 ein Faden 9 durch ein Speicher-Fadenliefergerät 2 zugeführt wird.
  • Bei einer Rundstrickmaschine 1 ist bekanntermaßen die Strickvorrichtung drehbar in einem Gestell 10 angeordnet, das im Bereich unterhalb der Strickvorrichtung von einem Gehäuse 11 umgeben ist und an dem im Bereich oberhalb der Strickvorrichtung die Trägerringe 5 befestigt sind. Eine Maschinensteuerung 12, u. a. für einen nicht sichtbaren Antrieb der Strickvorrichtung, ist neben dem Gehäuse 10 angeordnet.
  • Eine erfindungsgemäße Überwachungsvorrichtung des ersten Beispiels ist für eine Jacquard-Strickmaschine vorgesehen. Sie umfasst mindestens zwei Speicher-Fadenliefergeräte 2 sowie eine Steuereinheit 13. Die Steuereinheit 13 ist, wie Figur 1 zeigt, an einem mittleren Teil des Gestells 11 der Rundstrickmaschine 1, z.B. abnehmbar, befestigt.
  • Figur 2 zeigt ein Speicher-Fadenliefergerät 2 mit einem als Speichertrommel 14 ausgebildeten Wickelkörper.
  • Die stationäre Speichertrommel 14 ist vor einem Gehäuse 15 angeordnet. An dem Einlaufende der Speichertrommel 14 ist ein Aufwickelelement 16 zum Aufwickeln von Garnwindungen auf die Speichertrommel 14 angeordnet. Am anderen Ende, d.h. an dem Auslaufende, der Speichertrommel 14, ist z.B. eine Konusbremse 17 vorgesehen. Die Konusbremse 17 ist durch einen Ausleger 18 des Gehäuses 15 abgestützt.
  • Dem Speicher-Fadenliefergerät 2 ist eine Sensorvorrichtung 19 und eine separate Kontrolleinheit 20 zugeordnet.
  • Die Sensorvorrichtung 19 ist zur Erzeugung eines Sensorsignals mit jeweils einem Messimpuls I pro Längeneinheit eines Fadenlieferweges ΔXF ausgebildet. In diesem Beispiel entspricht die Längeneinheit des Fadenlieferweges ΔXF einer von der Speichertrommel 14 abgezogenen Garnwindung. Die Sensorvorrichtung 19 ist z.B. als ein optischer Sensor ausgebildet, der bei jeder abgezogenen, d.h. passiv abgewickelten, Garnwindung einen Messimpuls I erzeugt. In einem Beispiel beträgt der Umfang der Speichertrommel 14 und damit die Länge einer Garnwindung 20 cm, d.h. die Längeneinheit des Fadenlieferweges ΔXF beträgt 20 cm.
  • Die separate Kontrolleinheit 20 weist z.B. einen Mikroprozessor auf. Sie ist als eine elektronische Baueinheit und/oder Programmeinheiten ausgebildet.
  • Die separate Kontrolleinheit 20 ist dazu ausgebildet, das Sensorsignal S der Sensorvorrichtung 19 zu überprüfen und ggf. ein Stoppsignal ST für die Rundstrickmaschine 1 zu erzeugen. Die separate Kontrolleinheit 20 ist in das Gehäuse 15 und damit in das Speicher-Fadenliefergerät 2 integriert, jedoch in Figur 2 zur Verdeutlichung separat dargestellt.
  • Figur 3 zeigt ein Blockdiagramm der Rundstrickmaschine 1 mit der Überwachungsvorrichtung des ersten Beispiels. In Figur 3 sind acht der Speicher-Fadenliefergeräte 2 und die Steuereinheit 13 der Überwachungsvorrichtung zu sehen. Die Speicher-Fadenliefergeräte 2 sind über eine Kommunikationsverbindung 21 untereinander und mit der Steuereinheit 13 verbunden.
  • Die Kommunikationsverbindung 21 ist als zwei Leitungen ausgebildet und an den Trägerringen 5 und an Teilen des Gestells 11 geführt. Die Kommunikationsverbindung 21 ist in Figur 1 nicht eingezeichnet. Über die Kommunikationsverbindung 21 werden Daten zwischen den angeschlossenen Geräten ausgetauscht. Die Kommunikationsverbindung 21 ist beispielsweise als zwei Leitungen einer CAN-BUS Verbindung ausgeführt, über die eine serielle Datenübertragung erfolgt.
  • Die Anzahl J der Speicher-Fadenliefergeräte 2 beträgt 2 bis 126, oder mehr als 126, davon sind mindestens 2, vorzugweise 4 bis 16, als Monitorfadenliefergeräte eingesetzt.
  • In diesem Beispiel umfasst die Überwachungseinrichtung 48 Speicher-Fadenliefergeräte 2 mit ihren Sensorvorrichtungen 19, d.h. die Anzahl J der Speicher-Fadenliefergeräte beträgt 48. Von diesen Speicher-Fadenliefergeräten 2 sind 16 als Monitorfadenliefergeräte eingesetzt.
  • Die Steuereinheit 13 ist über eine Steuerverbindung 22 mit der Rundstrickmaschine 1, und zwar mit ihrer Maschinensteuerung 12, verbunden. Die Steuerverbindung 22 ist z.B. als eine Steuerleitung ausgebildet. Alternativ ist sie wie die Kommunikationsverbindung 21 als CAN-BUS Verbindung ausgeführt.
  • Das Blockdiagramm der Figur 3 verdeutlicht den Weg jeweils eines Fadens 9 von einer Garnspule 23 über das Speicher-Fadenliefergerät 2 zu einer der Strickstellen 6 an dem Strickzylinder 7 der Rundstrickmaschine 1.
  • Figur 4 zeigt ein Blockdiagramm dieser Überwachungsvorrichtung, wobei nur sechs der Speicher-Fadenliefergeräte 2, ihre Sensorvorrichtungen 19 und ihre separaten Kontrolleinheiten 20 zu sehen sind.
  • Eine Kontrolleinrichtung der Überwachungsvorrichtung wird unter anderem durch die separaten Kontrolleinheiten 20 der Speicher-Fadenliefergeräte 2 gebildet. Die Kontrolleinrichtung umfasst auch eine in die Steuereinheit 13 integrierte Kontrolleinheit K zur Weiterleitung eines Stoppsignals ST einer der separaten Kontrolleinheiten 20.
  • Die Überwachungsvorrichtung umfasst eine Takteinheit T, die auch in der Steuereinheit 13 integriert ist. Die Steuereinheit 13 ist in Figur 4 durch eine gestrichelte Linie um die Takteinheit T und die Kontrolleinheit K dargestellt.
  • Die Takteinheit T ist mit den Sensorvorrichtungen 19 der 16 Monitorfadenliefergeräte verbunden. In Figur 4 ist zu sehen, dass die Takteinheit T mit den Sensorvorrichtungen 19 der drei linken als Monitorfadenliefergeräte eingesetzten Speicher-Fadenliefergeräten 2 über die Steuerverbindung 21 verbunden ist.
  • Die Takteinheit T ist ausgebildet, aus den Sensorsignalen S der Monitorfadenliefergeräte Prüfergebnisse zu bestimmen und als Prüfimpulse T3 eines Prüfsignals S3 zur Verfügung zu stellen. D.h. die Takteinheit ist dazu ausgebildet, Prüfimpulse T3 eines Prüfsignals S3 zu erzeugen. Insbesondere ist die Takteinheit T dazu ausgebildet, jeweils einen Prüfimpuls T3 zu erzeugen, wenn der Takteinheit T von mindestens N der Sensorsignale S der Monitorfadenliefergeräte jeweils mindestens M Messimpulse I zugeleitet worden sind.
  • Die separaten Kontrolleinheiten 20 sind zum Empfang des Prüfsignals S3 mit der Takteinheit T verbunden. Jede der separaten Kontrolleinheiten 20 ist dazu ausgebildet, bei jedem Prüfimpuls T3 des Prüfsignals S3 zu prüfen, ob bei dem eigenen Sensorsignal S mindestens ein Messimpuls I erzeugt worden ist. Sie ist dazu ausgebildet, falls dies nicht der Fall ist, ein Stoppsignal ST zu erzeugen und an die Kontrolleinheit K zu senden. Die Kontrolleinheit K ist dazu ausgebildet, das Stoppsignal ST über die Steuerverbindung 22 an die Maschinensteuerung 12 der Rundstrickmaschine 1 weiterzuleiten.
  • Die Steuereinheit 13 ist als ein elektronisches Gerät ausgebildet und z.B. mit einem Mikroprozessor versehen. Die Takteinheit T und die Kontrolleinheit K sind als elektronische Baueinheiten und/oder Programmeinheiten der Steuereinheit 13 ausgebildet.
  • In Betrieb wird zur Überwachung der Rundstrickmaschine 1 die Fadenlieferung aller Speicher-Fadenliefergeräte 2 überwacht. Für jedes Fadenliefergerät 2 wird durch die jeweilige Sensorvorrichtung 19 ein Sensorsignal S mit einem Messimpuls I pro Längeneinheit des Fadenlieferweges ΔXF, d.h. pro von der Speichertrommel 14 des Speicher-Fadenliefergerätes 2 abgezogener Garnwindung, erzeugt. Die jeweilige separate Kontrolleinheit 20 überprüft das Sensorsignal S, indem sie überprüft, ob bei jedem Prüfimpuls T3 mindestens ein Messimpuls I erzeugt worden ist. Sie erzeugt ein Stoppsignal ST für die Rundstrickmaschine 1, falls dies nicht der Fall ist.
  • Durch die Takteinheit T werden aus den Sensorsignalen S der Monitorfadenliefergeräte die Prüfereignisse bestimmt und als Prüfimpulse T3 eines Prüfsignals S3 zur Verfügung gestellt. D. h. durch die Takteinheit T werden Prüfimpulse T3 erzeugt. Ein Prüfimpuls T3 wird erzeugt, wenn der Takteinheit T von mindestens N der Sensorsignale S der Monitorfadenliefergeräte jeweils mindestens M Messimpulse I zugeleitet worden sind.
  • Die Anzahl N der Sensorsignale beträgt mindestens eins, vorzugsweise 1 bis 10. Die Anzahl M der Messimpulse mindestens zwei, vorzugsweise 2 bis 5.
  • In diesem Beispiel ist die Anzahl M der Messimpulse auf 3 und die Anzahl N der Sensorsignale auf 2 festgelegt.
  • In einer Alternative sind die Anzahlen N und M variabel je nach Qualität der Fäden und/oder der Ware und/oder anderer Größen einstellbar.
  • Figur 5 zeigt anhand eines Ablaufdiagramms die Erzeugung eines Prüfimpuls T3 durch die Takteinheit T aus den Sensorsignalen S der Monitorfadenliefergeräte.
  • Bei Eingang eines Messimpulses li des Sensorsignals S des i-ten Monitorfadenliefergerätes wird die Anzahl Mi der Messimpulse dieses Sensorsignals S erhöht: Mi = Mi + 1.
  • Falls die Anzahl Mi der festgelegten Anzahl M entspricht oder größer ist, wird eine Anzahl NF der Sensorsignale S erhöht: NF = NF +1. Falls dies nicht der Fall ist, wird das Verfahren erneut gestartet.
  • Falls die Anzahl NF der Sensorsignale S der festgelegten Anzahl N entspricht oder größer ist, wird durch die Takteinheit T ein Prüfimpuls T3 des Prüfsignals S3 erzeugt.
  • Anschließend werden alle Anzahlen Mi und die Anzahl NF auf Null zurückgesetzt. Die Erzeugung eines Prüfimpulses T3 wird erneut gestartet.
  • Figur 6 zeigt anhand eines Ablaufdiagramms die Überprüfung eines Sensorsignals S durch die entsprechende separate Kontrolleinheit 20.
  • Bei Start des Überwachungsverfahrens, d.h. bei Start der in Figur 5 dargestellten Erzeugung eines Prüfimpuls T3 durch die Takteinheit T, wird durch die entsprechende separate Kontrolleinheit 20 die Anzahl der Messimpulse Mj des von der Sensorvorrichtung 19 zugeleiteten Sensorsignals S aufsummiert. Dies ist in Figur 6 nicht dargestellt.
  • Sobald ein Prüfimpuls T3 erzeugt und zugeleitet worden ist, überprüft die separate Kontrolleinheit 20, ob die Anzahl Mj der Messimpulse größer als Null ist.
  • Falls dies nicht der Fall ist, wird durch die Kontrolleinheit 20 ein Stoppsignal ST für die Rundstrickmaschine 1 erzeugt und über die Steuerverbindung 22 der Maschinensteuerung 12 der Rundstrickmaschine 1 zugeführt.
  • Nach jeder Überprüfung wird die jeweilige Anzahl Mj durch die separate Kontrolleinheit 20 auf Null gesetzt.
  • Die Überprüfung des Sensorsignals S wird erneut gestartet. Es wird auf einen neuen Prüfimpuls T3 gewartet. Währenddessen werden wieder die Messimpulse I der Sensorvorrichtung 19 in der Anzahl Mj aufsummiert.
  • Die Überprüfung der Sensorsignale S erfolgt durch alle separaten Kontrolleinheiten 20 parallel.
  • In einer Alternative des ersten Beispiels ist die Steuereinheit 13 in die Maschinensteuerung 12 der Rundstrickmaschine 1 integriert.
  • In einer Alternative umfasst die Überwachungsvorrichtung mehrere fadenspannungsgesteuerte Fadenliefergeräte 3 mit angetriebenen Wickelkörpern.
  • Eine Sensorvorrichtung für ein fadenspannungsgesteuertes Fadenliefergerät 3 ist zum Beispiel als ein Encoder ausgebildet, der an dem angetriebenen Wickelkörper angeordnet ist. Der Encoder ist dazu ausgebildet, ein Sensorsignal mit Messimpulsen für einen bestimmten Drehwinkel des Wickelkörpers und damit für einen bestimmten Fadenlieferweg ΔXF zu erzeugen. Der Fadenlieferweg ΔXF eines Messimpulses entspricht einer Garnwindung oder einem Teil einer Garnwindung, die vom Wickelkörper aktiv abgewickelt, d.h. geliefert, wird.
  • In einer weiteren Alternative umfasst die Überwachungsvorrichtung sowohl Speicher-Fadenliefergeräte 2 und/oder fadenspannungsgesteuerte Fadenliefergeräte 3 und/oder Positiv-Fadenliefergeräte.
  • Eine Sensorvorrichtung für ein Positiv-Fadenliefergerät 4 ist zum Beispiel, wie die des fadenspannungsgesteuerten Fadenliefergerätes, als ein Encoder an seinem Wickelkörper ausgebildet.
  • In einer Ausführungsform sind beim Einsatz verschiedener Fadenliefergeräte in einer Überwachungsvorrichtung deren Sensoreinrichtungen aufeinander abgestimmt ausgebildet, wobei die Messimpulse für die verschiedenen Fadenliefergeräte gleichen Fadenlieferwegen ΔXF entsprechen.
  • Zweites Beispiel
  • Das zweite Beispiel entspricht dem des ersten Beispiels bis auf die im Folgenden dargestellten Merkmale.
  • Figur 7 zeigt ein Blockdiagramm der Überwachungsvorrichtung des zweiten Beispiels. Die Überwachungsvorrichtung umfasst ebenfalls 48 überwachte Speicher-Fadenliefergeräte 2 mit ihren Sensorvorrichtungen 19. Davon sind 16 der Speicher-Fadenliefergeräte 2 als Monitorfadenliefergeräte eingesetzt. In Figur 7 sind sechs der Speicher-Fadenliefergeräte 2 und ihre Sensorvorrichtungen 19 dargestellt. Ggf. vorhanden separate Kontrolleinheiten für weitere Kontrollfunktionen sind nicht zu sehen.
  • Eine Kontrolleinrichtung der Überwachungsvorrichtung umfasst eine zentrale Kontrolleinheit ZK, die zusammen mit der Takteinheit T in der Steuereinheit 13 integriert ist. Die zentrale Kontrolleinheit ZK ist über die Kommunikationsverbindung 21 zum Empfang der Sensorsignale S mit allen Sensorvorrichtungen 19 und intern, d.h. innerhalb der Steuereinheit 13, mit der Takteinheit T verbunden.
  • Die zentrale Steuereinheit ZK ist dazu ausgebildet, bei jedem Prüfimpuls T3 des Prüfsignals S3 von der Takteinheit T zu prüfen, ob bei jedem Sensorsignal S der überwachten Speicher-Fadenliefergeräte 2 mindestens ein Messimpuls I erzeugt worden ist. Sie ist dazu ausgebildet, ein Stoppsignal ST zu erzeugen und über die Steuerverbindung 22 an die Maschinensteuerung 12 der Rundstrickmaschine 1 weiterzuleiten.
  • In Betrieb überprüft die zentrale Kontrolleinheit ZK alle Sensorsignale S in Abhängigkeit von den durch die Takteinheit T der Steuereinheit 13 zur Verfügung gestellten Prüfimpulsen T3. Sie überprüft, ob bei jedem Sensorsignal S mindestens ein Messimpuls I erzeugt worden ist. Falls dies bei einem der Sensorsignale S nicht der Fall ist, wird durch sie ein Stoppsignal ST für die Rundstrickmaschine 1 erzeugt und an die Maschinensteuerung 12 geleitet.
  • Figur 8 zeigt anhand eines Ablaufdiagramms die Erzeugung eines Prüfimpuls T3 durch die Takteinheit T aus den Sensorsignalen S der Monitorfadenliefergeräte, die der des ersten Beispiels entspricht und dort anhand der Figur 5 erläutert ist.
  • Figur 9 zeigt anhand eines Ablaufdiagramms die Überprüfung aller Sensorsignale S durch die zentrale Kontrolleinheit ZK.
  • Bei Start des Überwachungsverfahrens, d. h. bei Start der in Figur 8 dargestellten Erzeugung eines Prüfimpuls T3 durch die Takteinheit T, werden durch die zentrale Kontrolleinheit ZK die Anzahlen Mj der Messimpulse Ij der on der Sensorvorrichtung 19 zugeleiteten Sensorsignale S jeweils aufsummiert. Dies ist in Figur 9 nicht dargestellt.
  • Sobald ein Prüfimpuls T3 erzeugt und zugeleitet worden ist, überprüft die zentrale Kontrolleinheit ZK, für die Sensorsignale der Speicher-Fadenliefergeräte 2 von j = 1 bis j = J, ob die Anzahl Mj der Messimpulse Ij größer als Null ist. Die Anzahl J ist in diesem Beispiel, wie erwähnt, 48.
  • Falls dies nicht der Fall ist, wird durch die zentrale Kontrolleinheit ein Stoppsignal ST für die Rundstrickmaschine 1 erzeugt und über die Kommunikationsverbindung 22 der Maschinensteuerung 12 der Rundstrickmaschine 1 zugeführt.
  • Nach jeder Überprüfung werden die Anzahlen Mj der Messimpulse I der Sensorsignale auf Null gesetzt.
  • Die Überprüfung der Sensorsignale S wird erneut gestartet. D.h. es wird auf einen neuen Prüfimpuls T3 gewartet. Währenddessen werden wieder die Messimpulse Ij der Sensorvorrichtungen 19 in den Anzahlen Mj aufsummiert.
  • Drittes Beispiel
  • Eine Überwachungsvorrichtung und ein Überwachungsverfahren des dritten Beispiels entsprechen denen des zweiten Beispiels bis auf die im Folgenden dargestellten Merkmale.
  • In diesem Beispiel sind die zentralen Kontrolleinheit ZK und die Takteinheit T gemeinsam in die Steuereinheit 13 integriert. Die Steuereinheit 13 ist durch ihren Anschluss an die Kommunikationsverbindung 21 mit allen Speicher-Fadenliefergeräte 2 zum Empfang der Sensorsignale S aller Sensorvorrichtungen 19 verbunden.
  • Die Takteinheit T der Steuereinheit 13 ist mit den Sensorvorrichtungen 19 der Monitorfadenliefergeräte verbunden. Sie ist dazu ausgebildet, aus den Sensorsignalen S der 16 Monitorfadenliefergeräte Prüfereignisse zu bestimmen.
  • Die zentrale Kontrolleinheit ZK ist mit allen Sensorvorrichtungen 19 verbunden. Sie ist dazu ausgebildet, bei jedem durch die Takteinheit T zur Verfügung gestellten Prüfereignis zu prüfen, ob bei den Sensorsignalen S jedes Fadenliefergerätes 2 mindestens ein Messimpuls I erzeugt worden ist. Sie ist dazu ausgebildet, falls das nicht der Fall ist, ein Stoppsignal ST zu erzeugen und über die Steuerverbindung 22 an die Maschinensteuerung 12 der Rundstrickmaschine 1 weiterzuleiten.
  • Die Takteinheit T und die zentrale Kontrolleinheit ZK sind z.B. als Programmeinheiten ausgebildet, wobei die Prüfereignisse der Takteinheit T als Prüfbefehle T3* an die zentrale Kontrolleinheit ZK übergeben werden. Ein Prüfsignal mit Prüfimpulsen ist bei diesem Beispiel nicht erforderlich.
  • In Betrieb wird durch die Überwachungsvorrichtung die Fadenlieferung aller Speicher-Fadenliefergeräte 2 überwacht.
  • Figur 10 zeigt anhand eines Ablaufdiagramms die Erzeugung eines Prüfereignisses als Prüfbefehl T3* durch die Takteinheit T und die durch den Prüfbefehl T3* gestartete Überprüfung aller Sensorsignale S durch die zentrale Kontrolleinheit ZK.
  • Auch bei diesem Verfahren werden bei Start des Überwachungsverfahrens, d.h. bei Start einer Erzeugung eines Prüfereignisses als Prüfbefehl T3* durch die Takteinheit T, die Anzahlen Mj der Messimpuls Ij der von den Sensorvorrichtungen 19 zugeleiteten Sensorsignale S jeweils aufsummiert. Dies ist in der Figur 10 nicht dargestellt.
  • Bei Eingang eines Messimpulses li des Sensorsignals S des i-ten Monitorfadenliefergerätes wird durch die Takteinheit die Anzahl Mi der Messimpulse li für dieses Monitorfadenliefergerät erhöht: Mi = Mi + 1.
  • Falls die Anzahl Mi der festgelegten Anzahl M entspricht oder größer ist, wird die Anzahl NF der Sensorsignale S der Monitorfadenliefergeräte, bei denen die Anzahl Mi der Messimpulse li die festgelegte Anzahl M erreicht hat, erhöht: NF = NF +1. Falls dies nicht der Fall ist, wird das Verfahren erneut gestartet.
  • Falls die Anzahl NF der Sensorsignale S der festgelegten Anzahl N entspricht oder größer ist, wird durch die Takteinheit T ein Prüfbefehl T3* erzeugt, auf den die zentrale Kontrolleinheit ZK wartet. Eine explizite Anzeige des Prüfbefehls T3*, wie dies im Ablaufdiagramm angedeutet ist, ist nicht notwendig. Wesentlich ist, dass die Takteinheit T der zentralen Kontrolleinheit ZK den Prüfbefehl T3* zur Verfügung stellt und dass diese mit der Überprüfung aller Sensorsignale S startet.
  • D. h. sobald das Prüfereignis eingetreten ist, d.h. die o.g. Abfrage der Anzahl NF positiv beantwortet worden ist, wird durch die zentrale Kontrolleinheit ZK für alle der J Speicher-Fadenliefergeräte 2 überprüft, ob die Anzahl Mj der Messimpulse Ij größer als Null ist.
  • Falls dies bei einem der Speicher-Fadenliefergeräte 2 nicht der Fall ist, wird durch die zentrale Kontrolleinheit ZK ein Stoppsignal ST für die Rundstrickmaschine 1 erzeugt und über die Steuerverbindung 22 der Maschinensteuerung 12 der Rundstrickmaschine 1 zugeführt.
  • Nach jeder Überprüfung werden die Anzahlen Mi, die Anzahlen Mj und die Anzahl NF auf Null gesetzt. Die Überprüfung der Sensorsignale S wird erneut gestartet.
  • Viertes Beispiel (Ringel-Strickmaschine)
  • Eine Überwachungsvorrichtung und ein Überwachungsverfahren des dritten Beispiels entsprechen denen des zweiten Beispiels bis auf die im Folgenden dargestellten Merkmale.
  • Figur 11 zeigt ein Blockdiagramm der Rundstrickmaschine 1 mit einer erfindungsgemäßen Überwachungsvorrichtung des vierten Beispiels, die für eine Ringel-Strickmaschine vorgesehen ist. In diesem Beispiel wird die Fadenlieferung von Gruppen G von jeweils zwei Speicher-Fadenliefergeräten 2 überwacht. Die beiden Speicher-Fadenliefergeräte 2 einer Gruppe G liefern Fäden 9 z.B. unterschiedlicher Farbe. Die Anzahl der Speicher-Fadenliefergeräte 2 beträgt ebenfalls 48, und damit die Anzahl JG der Gruppen 24. Es sind 8 der Gruppen als Monitorgruppen eingesetzt.
  • In Figur 11 sind vier der Gruppen mit jeweils zwei Speicher-Fadenliefergeräten 2 und die Steuereinheit 13 der Überwachungsvorrichtung zu sehen. Die Gruppen G sind jeweils durch eine gestrichelte Linie kenntlich gemacht. Die beiden Speicher-Fadenliefergeräte 2 einer Gruppe G sind jeweils einer der Strickstellen 6 zugeordnet. Die Rundstrickmaschine 1 weist an jeder der Strickstellen 6 eine Ringeleinrichtung 24 auf, die im Fadenverlauf vor der Strickstelle 6 angeordnet ist. Die Ringeleinrichtung 24 ist dazu ausgebildet, einen der Fäden 9 der beiden Speicher-Fadenliefergeräte 2 auszuwählen und der Strickstelle 6 zuzuführen.
  • In Betrieb überprüft die zentrale Kontrolleinheit ZK die Sensorsignale S in Abhängigkeit von den durch die Takteinheit T der Steuereinheit 13 zur Verfügung gestellten Prüfimpulsen T3. Sie überprüft, ob bei den Sensorsignalen S einer Gruppe mindestens ein Messimpuls I erzeugt worden ist. Falls dies bei einer Gruppe nicht der Fall ist, wird durch sie ein Stoppsignal ST für die Rundstrickmaschine 1 erzeugt und an die Maschinensteuerung 12 geleitet.
  • Figur 12 zeigt anhand eines Ablaufdiagramms die Erzeugung eines Prüfimpuls T3 durch die Takteinheit T aus den Sensorsignalen S der Monitorgruppen.
  • Bei Eingang eines Messimpulses li eines Sensorsignals S der i-ten Monitorgruppe die Anzahl Gi der Messimpulse li erhöht: Gi = Gi + 1.
  • Falls die Anzahl Gi der festgelegten Anzahl M entspricht oder größer ist, wird die Anzahl NG der Gruppen G erhöht: NG = NG +1. Falls dies nicht der Fall ist, wird das Verfahren erneut gestartet.
  • Falls die Anzahl NG der Gruppen G der festgestellten Anzahl N entspricht oder größer ist, wird durch die Takteinheit T ein Prüfimpuls T3 des Prüfsignals S3 erzeugt.
  • Anschließend werden die Anzahlen Gi und die Anzahl NG auf Null zurückgesetzt. Die Erzeugung eines Prüfimpulses T3 wird erneut gestartet.
  • Figur 13 zeigt anhand eines Ablaufdiagramms die Überprüfung der Sensorsignalen S der Gruppen G durch die zentrale Kontrolleinheit ZK.
  • Bei Start des Überwachungsverfahrens, d.h. bei Start der in Figur 12 dargestellten Erzeugung eines Prüfimpuls T3, werden durch die zentrale Kontrolleinheit ZK die Anzahlen Gj der Messimpulse Ij der von der Sensorvorrichtung 19 zugeleiteten Sensorsignalen S jeweils aufsummiert. Dies ist in Figur 13 nicht dargestellt.
  • Sobald ein Prüfimpuls T3 erzeugt und zugeleitet worden ist, überprüft die zentrale Kontrolleinheit ZK, für die Sensorsignale S der Gruppen von j = 1 bis j = JG, ob die Anzahl Gj der Messimpulse größer als Null ist. Die Anzahl JG ist in diesem Beispiel, wie erwähnt, 24.
  • Falls dies nicht der Fall ist, wird durch die zentrale Kontrolleinheit ZK ein Stoppsignal ST für die Rundstrickmaschine 1 erzeugt und über die Steuerverbindung 22 der Maschinensteuerung 12 der Rundstrickmaschine 1 zugeführt.
  • Nach jeder Überprüfung werden die Anzahl Gj der Messimpulse I der Sensorsignale S auf Null gesetzt.
  • Die Überprüfung der Sensorsignale S wird erneut gestartet. D.h. es wird auf einen neuen Prüfimpuls T3 gewartet. Währenddessen werden wieder die Messimpulse Ij der Gruppen in den Anzahlen Gj aufsummiert.
  • Bezugszeichenliste
  • 1
    Rundstrickmaschine
    2
    Speicher-Fadenliefergerät
    3
    spannungsgesteuertes Fadenliefergerät
    4
    Positiv-Fadenliefergerät
    5
    Trägerring
    6
    Strickstelle
    7
    Strickzylinder
    8
    Schlösser
    9
    Faden
    10
    Gestell
    11
    Gehäuse
    12
    Maschinensteuerung
    13
    Steuereinheit
    14
    Speichertrommel
    15
    Gehäuse
    16
    Aufwickelelement
    17
    Konusbremse
    18
    Ausleger
    19
    Sensorvorrichtung
    20
    Kontrolleinheit
    21
    Kommunikationsverbindung
    22
    Steuerverbindung
    23
    Garnspule
    24
    Ringeleinrichtung

Claims (13)

  1. Verfahren zur Überwachung der Produktion einer Strickmaschine,
    wobei die Fadenlieferung mindestens zweier Fadenliefergeräte (2, 3, 4) oder mindestens zweier Gruppen (G) von mindestens zwei Fadenliefergeräten (2, 3, 4), dass heißt die Fadenlieferung für mindestens zwei Strickstellen (6), überwacht wird, wobei für die Fadenliefergeräte (2, 3, 4) jeweils ein Sensorsignal (S) mit einem Messimpuls (I) pro Längeneinheit seines Fadenlieferweges (ΔXF) durch eine Sensorvorrichtung (19) erzeugt wird, wobei die Sensorsignale (S) durch eine Kontrolleinrichtung überprüft werden und gegebenenfalls ein Stoppsignal (ST) für die Strickmaschine erzeugt wird, wobei durch eine Takteinheit (T) aus Sensorsignalen (S) von mindestens zwei, als Monitorfadenliefergeräte bezeichneten, der Fadenliefergeräten (2, 3, 4) oder von mindestens zwei, als Monitorgruppen bezeichneten, der Gruppen Prüfereignisse bestimmt und der Kontrolleinrichtung zur Verfügung gestellt werden, dadurch gekennzeichnet, dass bei Eintreten jedes Prüfereignisses durch die Kontrolleinrichtung überprüft wird, ob bei den Sensorsignalen (S) jedes Fadenliefergerätes oder jeder Gruppe (G) mindestens ein Messimpuls (I) erzeugt worden ist und falls dies nicht der Fall ist, das Stoppsignal (ST) erzeugt wird.
  2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass durch die Takteinheit (T) ein Prüfereignis bestimmt wird, wenn der Takteinheit (T) durch die Sensorsignale (S) von N der Monitorfadenliefergeräte oder der Monitorgruppen jeweils M Messimpulse (I) zugeleitet worden sind, wobei N mindestens 1 und M mindestens 2 beträgt.
  3. Verfahren Anspruch 1 oder 2, dadurch gekennzeichnet, dass der Kontrolleinrichtung durch die Takteinheit (T) die Prüfereignisse als Prüfimpulse (T3) eines Prüfsignals (S3) zur Verfügung gestellt werden, wobei jeweils ein Prüfimpuls (T3) des Prüfsignals (S3) durch die Takteinheit (T) erzeugt wird, wenn ein Prüfereignis bestimmt wurde.
  4. Verfahren nach Anspruch 3, dadurch gekennzeichnet, dass die Sensorsignale (S) in separaten Kontrolleinheiten (20) der Kontrolleinrichtung überprüft werden, die jeweils einem Fadenliefergerät (2, 3, 4) zugeordnet sind und der dessen Sensorsignal (S) zugeleitet wird, wobei das Prüfsignal (S3) mit den Prüfimpulsen (T3) allen separaten Kontrolleinheiten (20) zur Verfügung gestellt wird.
  5. Verfahren nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass die Sensorsignale (S) in einer zentralen Kontrolleinheit (ZK) der Kontrolleinrichtung überprüft werden, wobei die Sensorsignale (S) der zentralen Kontrolleinheit zugeleitet und ihr durch die Takteinheit (T) die Prüfereignisse, zur Verfügung gestellt werden.
  6. Verfahren nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass die Längeneinheit des Fadenlieferweges (ΔXF) einer von einem Wickelkörper des Fadenliefergerätes abgewickelten Garnwindung oder einem Teil der abgewickelten Garnwindung entspricht.
  7. Vorrichtung zur Überwachung der Produktion einer Strickmaschine
    mit mindestens zwei Fadenliefergeräten (2, 3, 4) oder mit mindestens zwei Gruppen (G) von mindestens zwei Fadenliefergeräten (2, 3, 4), dass heißt für die Fadenlieferung zu mindestens zwei Strickstellen (5), wobei den Fadenliefergeräten (2, 3, 4) jeweils eine Sensorvorrichtung (19) zugeordnet ist, wobei jede Sensorvorrichtung (19) dazu ausgebildet ist, ein Sensorsignal (S) mit jeweils einem Messimpuls (I) pro Längeneinheit eines Fadenlieferweges (ΔXF) zu erzeugen, mit einer Kontrolleinrichtung, die dazu ausgebildet ist, die Sensorsignale (S) der Sensorvorrichtungen (19) zu überprüfen und gegebenenfalls ein Stoppsignal (ST) für die Strickmaschine zu erzeugen, und mit einer Takteinheit (T), die dazu ausgebildet ist, Prüfereignisse aus Sensorsignalen (S) von mindestens zwei, als Monitorfadenliefergeräte bezeichneten, der Fadenliefergeräten (2, 3, 4) oder, von mindestens zwei, als Monitorgruppen bezeichneten, der Gruppen (G) zu bestimmen und der Kontrolleinrichtung zur Verfügung zu stellen, dadurch gekennzeichnet, dass die Kontrolleinrichtung dazu ausgebildet ist, bei Eintreten jedes Prüfereignisses zu prüfen, ob bei den Sensorsignalen (S) jedes Fadenliefergerätes (2, 3, 4) oder jeder Gruppe (G) mindestens ein Messimpuls (I) erzeugt worden ist und falls dies nicht der Fall ist, dass Stopffsignal (ST) zu erzeugen.
  8. Vorrichtung nach Anspruch 7, dadurch gekennzeichnet, dass die Takteinheit (T) dazu ausgebildet ist, ein Prüfereignis zu bestimmen, wenn ihr durch die Sensorsignale (S) von N der Monitorfadenliefergeräte oder von N der Monitorgruppen jeweils M Messimpulse (I) zugeleitet worden sind, wobei N mindestens 1 und M mindestens 2 beträgt.
  9. Vorrichtung nach Anspruch 7 oder 8, dadurch gekennzeichnet, dass die Takteinheit (T) dazu ausgebildet ist, die Prüfergebnisse als Prüfimpulse (T3) eines Prüfsignals (S3) zur Verfügung zu stellen, wobei sie dazu ausgebildet ist, jeweils einen Prüfimpuls (T3) zu erzeugen, wenn ein Prüfereignis bestimmt wurde.
  10. Vorrichtung nach Anspruch 9, dadurch gekennzeichnet, dass die Kontrolleinrichtung separate Kontrolleinheiten (20) aufweist, die jeweils mit der Sensorvorrichtung (19) eines Fadenliefergerätes (2, 3, 4) zugeordnet sind und mit dessen Sensorvorrichtung (19) verbunden ist, wobei die separaten Kontrolleinheiten (20) zum Empfang des Prüfsignals (S3) mit der Takteinheit (T) verbunden sind.
  11. Vorrichtung nach einem der Ansprüche 7 bis 9, dadurch gekennzeichnet dass die Kontrolleinrichtung eine zentrale Kontrolleinheit (ZK) aufweist, die mit den Sensorvorrichtungen (19) der Fadenliefergeräte (2, 3, 4) und mit der Takteinheit (T) verbunden ist.
  12. Vorrichtung nach einem der Ansprüche 7 bis 11, dadurch gekennzeichnet, dass die Fadenliefergeräte (2, 3, 4) Wickelkörper aufweist, wobei die Längeneinheit (ΔXF) des Fadenlieferweges einer von dem Wickelkörper abgewickelten Garnwindung oder einem Teil der Garnwindung entspricht.
  13. Strickmaschine mit einer Vorrichtung nach einem der Ansprüche 7 bis 12.
EP16159895.8A 2015-03-30 2016-03-11 Verfahren und vorrichtung zur überwachung der produktion einer strickmaschine sowie strickmaschine Active EP3075690B1 (de)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102015104903.1A DE102015104903B3 (de) 2015-03-30 2015-03-30 Verfahren und Vorrichtung zur Überwachung der Produktion einer Strickmaschine sowie Strickmaschine

Publications (2)

Publication Number Publication Date
EP3075690A1 EP3075690A1 (de) 2016-10-05
EP3075690B1 true EP3075690B1 (de) 2021-12-22

Family

ID=55527415

Family Applications (1)

Application Number Title Priority Date Filing Date
EP16159895.8A Active EP3075690B1 (de) 2015-03-30 2016-03-11 Verfahren und vorrichtung zur überwachung der produktion einer strickmaschine sowie strickmaschine

Country Status (4)

Country Link
EP (1) EP3075690B1 (de)
CN (1) CN106012269B (de)
DE (1) DE102015104903B3 (de)
TW (1) TWI620845B (de)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102019104681B3 (de) * 2019-02-25 2020-04-23 Memminger-IRO Gesellschaft mit beschränkter Haftung Verfahren und System mit Fadenliefergeräten zur Überwachung der Produktion einer Strickmaschine

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IT1275465B (it) * 1995-07-03 1997-08-07 Tiziano Barea Dispositivo di controllo dell'alimentazione di una pluralita' di fili o filati ad una macchina tessile avente mezzi sensori codificati e metodo per il suo controllo
DE10112795A1 (de) * 2001-03-16 2002-09-26 Iro Ab Verfahren zur Produktionsüberwachungs/Einstellung einer Strickmaschine, und Produktionsüberwachungs/Einstellungs-Vorrichtung
CN2571800Y (zh) * 2002-08-15 2003-09-10 林忠民 针织机喂纱器的停车器
ES2289254T3 (es) * 2003-10-22 2008-02-01 Luigi Omodeo Zorini Maquina textil y su respectivo procedimiento de control.
DE102005050126B3 (de) * 2005-10-18 2007-04-19 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Vorrichtung und Verfahren zur überwachten Fadenführung in einer Strickmaschine
BRPI0622228B1 (pt) * 2006-12-22 2017-05-02 Memminger-Iro Gmbh aparelho de fornecimento de fio com dispositivo de desligamento aperfeiçoado
EP2270269B1 (de) * 2009-07-03 2011-10-26 L.G.L. Electronics S.p.A. Verfahren zur Erkennung des Anhaltens der Garnabwicklung von einer Garnzufuhr mit stationärer Trommel
EP2415916B1 (de) * 2010-08-04 2015-03-04 L.G.L. Electronics S.p.A. Verfahren und Vorrichtung zur Erkennung unbeabsichtigten Anhaltens des Garns auf einer Fertigungsstrasse für Strickwaren
ITTO20120261A1 (it) * 2012-03-22 2013-09-23 Lgl Electronics Spa Metodo di alimentazione/recupero del filato per macchine tessili, ed apparato per l'esecuzione di tale metodo.
DE102012103535B3 (de) * 2012-04-20 2013-10-10 Memminger-Iro Gmbh Vorrichtung und Verfahren zur Überwachung der Produktion einer Strickmaschine
CN203113045U (zh) * 2013-03-15 2013-08-07 中山市斯玛特电子科技有限公司 一种电脑横机纱嘴工作检测报警装置
DE102013110988B4 (de) * 2013-10-02 2019-08-29 Memminger-Iro Gmbh Verfahren und Vorrichtung zur Überwachung der Produktion einer Strickmaschine sowie Strickmaschine

Also Published As

Publication number Publication date
CN106012269A (zh) 2016-10-12
DE102015104903B3 (de) 2016-06-16
TWI620845B (zh) 2018-04-11
CN106012269B (zh) 2021-07-06
EP3075690A1 (de) 2016-10-05
TW201700809A (zh) 2017-01-01

Similar Documents

Publication Publication Date Title
DE69022035T3 (de) Anordnung für die steuerung und/oder überwachung, an erster stelle von fadenzufuhrvorrichtungen/fadenzufuhrfunktionen in oder auf einer textilmaschine.
EP0853695B1 (de) Fadenliefergerät mit elektronischer ansteuerung
EP2857567B1 (de) Verfahren und Vorrichtung zur Überwachung der Produktion einer Strickmaschine
DE69620684T2 (de) Vorrichtung zur Überwachung der Zufuhr einer Vielzahl von Fäden in einer Textilmaschine mit kodierten Sensoren und Steuerungsverfahren dafür
EP1525344B1 (de) Verfahren und vorrichtung zum liefern von fäden
EP1370720B1 (de) Verfahren zur produktionsüberwachung/einstellung einer strickmaschine, und produktionsüberwachungs/einstellungs-vorrichtung
DE3609719C2 (de)
DE102008008211B4 (de) Verfahren und Strickmaschine zur Herstellung einer Maschenware aus einem ungedrehten Fasermaterial
EP2980291A2 (de) Fadenzuführvorrichtung
EP3075690B1 (de) Verfahren und vorrichtung zur überwachung der produktion einer strickmaschine sowie strickmaschine
DE2556237C2 (de) Spinnmaschinenanlage mit mehreren Offenend-Spinnmaschinen und wenigstens einem Wartungsgerät
DE3731379C2 (de)
DE4213842C2 (de) Verfahren und Einrichtung zur Überwachung der Funktion der Nadeln einer Textilmaschine
EP1733085A1 (de) Vorrichtung und verfahren zur fadenpositivlieferung
DE102012103535B3 (de) Vorrichtung und Verfahren zur Überwachung der Produktion einer Strickmaschine
CH616458A5 (de)
WO2019238481A1 (de) Verfahren und vorrichtung zum anlegen einer fadenschar
EP0728857B1 (de) Verfahren und Vorrichtung zum Aufwickeln von Fadenscharen
DE3827380C2 (de)
EP3798340B1 (de) Verfahren zum fadeneinzug nach dem kettbaumwechsel bei einer kettenwirkmaschine und kettenwirkmaschine mit einer funktion zum fadeneinzug nach dem kettbaumwechsel
DE1804038A1 (de) Vorrichtung zur Steuerung von Kett-Wirkmaschinen
DE102020118972A1 (de) Vorrichtung zum Abziehen und Aufwickeln synthetischer Fäden
DE10146601A1 (de) Verfahren zur Steuerung einer Texturiermaschine sowie eine Texturiermaschine
DE102012025607A1 (de) Vorrichtung und Verfahren zur Überwachung der Produktion einer Strickmaschine
DD147257A1 (de) Schaltungsanordnung zum regeln der kettfadenzufuhr an kettenwirkmaschinen

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20170404

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20210624

GRAJ Information related to disapproval of communication of intention to grant by the applicant or resumption of examination proceedings by the epo deleted

Free format text: ORIGINAL CODE: EPIDOSDIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

INTC Intention to grant announced (deleted)
GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

INTG Intention to grant announced

Effective date: 20211102

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502016014291

Country of ref document: DE

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1456944

Country of ref document: AT

Kind code of ref document: T

Effective date: 20220115

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211222

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211222

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211222

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220322

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20211222

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211222

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220322

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211222

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211222

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220323

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211222

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211222

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211222

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211222

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220422

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211222

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211222

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211222

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211222

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502016014291

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220422

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211222

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211222

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211222

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20220322

26N No opposition filed

Effective date: 20220923

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20220331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220311

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220331

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220311

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220322

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220331

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211222

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220331

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1456944

Country of ref document: AT

Kind code of ref document: T

Effective date: 20220311

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220311

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 502016014291

Country of ref document: DE

Representative=s name: PAUL & ALBRECHT PATENTANWAELTE PARTG MBB, DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20160311

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211222

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211222

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240321

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: TR

Payment date: 20240228

Year of fee payment: 9

Ref country code: IT

Payment date: 20240329

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211222