EP3063800A2 - Compositions d'encre contenant des polythiophènes pour impression par jet d'encre - Google Patents

Compositions d'encre contenant des polythiophènes pour impression par jet d'encre

Info

Publication number
EP3063800A2
EP3063800A2 EP13896242.8A EP13896242A EP3063800A2 EP 3063800 A2 EP3063800 A2 EP 3063800A2 EP 13896242 A EP13896242 A EP 13896242A EP 3063800 A2 EP3063800 A2 EP 3063800A2
Authority
EP
European Patent Office
Prior art keywords
ink composition
organic solvent
sulfolane
methicone
zonyl
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP13896242.8A
Other languages
German (de)
English (en)
Other versions
EP3063800A4 (fr
Inventor
Inna Tregub
Rajsapan Jain
Michelle CHAN
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kateeva Inc
Original Assignee
Kateeva Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kateeva Inc filed Critical Kateeva Inc
Publication of EP3063800A2 publication Critical patent/EP3063800A2/fr
Publication of EP3063800A4 publication Critical patent/EP3063800A4/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/10Deposition of organic active material
    • H10K71/12Deposition of organic active material using liquid deposition, e.g. spin coating
    • H10K71/13Deposition of organic active material using liquid deposition, e.g. spin coating using printing techniques, e.g. ink-jet printing or screen printing
    • H10K71/135Deposition of organic active material using liquid deposition, e.g. spin coating using printing techniques, e.g. ink-jet printing or screen printing using ink-jet printing
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D11/00Inks
    • C09D11/02Printing inks
    • C09D11/10Printing inks based on artificial resins
    • C09D11/102Printing inks based on artificial resins containing macromolecular compounds obtained by reactions other than those only involving unsaturated carbon-to-carbon bonds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D11/00Inks
    • C09D11/30Inkjet printing inks
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D11/00Inks
    • C09D11/30Inkjet printing inks
    • C09D11/36Inkjet printing inks based on non-aqueous solvents
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D11/00Inks
    • C09D11/52Electrically conductive inks
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D181/00Coating compositions based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing sulfur, with or without nitrogen, oxygen, or carbon only; Coating compositions based on polysulfones; Coating compositions based on derivatives of such polymers
    • C09D181/02Polythioethers; Polythioether-ethers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/17Carrier injection layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/10Deposition of organic active material
    • H10K71/12Deposition of organic active material using liquid deposition, e.g. spin coating
    • H10K71/15Deposition of organic active material using liquid deposition, e.g. spin coating characterised by the solvent used
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/111Organic polymers or oligomers comprising aromatic, heteroaromatic, or aryl chains, e.g. polyaniline, polyphenylene or polyphenylene vinylene
    • H10K85/113Heteroaromatic compounds comprising sulfur or selene, e.g. polythiophene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass

Definitions

  • Ink compositions for inkjet printing layers in organic light emitting diodes have been proposed.
  • problems associated with inadequate wetting properties of the ink compositions has stifled the development of printable inks because improper wetting leads to non-uniform film formation and, therefore, non-uniform luminescence from organic light emitting diode pixels that incorporate the printed films.
  • Another challenge that has impeded the development of inkjet printable compositions for OLED applications is the inability to incorporate high concentrations of active polymers into the inks, while maintaining a jettable ink formulation.
  • Ink compositions comprising polythiophenes that are formulated for inkjet printing the hole injecting layer (HIL) of an OLED are provided.
  • Some embodiments of the ink compositions are characterized by the inclusion of a methicone as a pinning agent. Others are characterized by the inclusion of aprotic solvents that enable the incorporation of high concentrations of the polythiophene in the inks.
  • methods of inkjet printing HILs using the ink compositions are also provided.
  • One embodiment of a method of forming an HIL for an organic light emitting diode comprises the steps of: inkjet printing a droplet (that is, at least one droplet) of an ink composition over an electrode layer in a pixel cell of an organic light emitting diode, the pixel cell defined by a pixel bank; and allowing the volatile components of the ink composition to evaporate, whereby the hole injecting layer is formed.
  • An embodiment of an ink composition that can be used in the method comprises: an electrically conductive polythiophene; water; at least one organic solvent; and methicone, wherein the methicone is present in an amount that provides contact line pinning of the droplet in the pixel cell.
  • Some embodiments of the ink compositions comprise: poly(3,4- ethylenedioxythiophene); water; at least one organic solvent having a surface tension no greater than 55 dyne/cm at 25 °C, a viscosity no greater than 15 cPs at 25 °C, and a boiling point of at least 200 °C; and methicone.
  • the at least one organic solvent can be, for example, sulfolane.
  • FIG. 1 is a block diagram that illustrates an OLED inkjet printing system.
  • FIG. 2 is a schematic representation of gas enclosure system that can house the printing system shown in FIG. 1
  • FIG. 3 is a schematic illustration of a flat panel display comprising a plurality of OLEDs arranged in a matrix of pixel cells, each pixel cell being defined by a pixel bank.
  • FIG. 4A is a microphotograph image of an ink composition containing 0.08 wt. methicone pinned in an OLED pixel cell.
  • FIG. 4B is a black and white line drawing of the microphotograph in FIG. 4A
  • FIG. 5A is a microphotograph image of an ink composition that is free of methicone spilling over an OLED pixel cell.
  • FIG. 5B is a black and white line drawing of the microphotograph in FIG 5A.
  • FIG. 6A is a microphotograph image of an ink composition that is free of methicone dewetting an OLED pixel cell.
  • FIG. 6B is a black and white line drawing of the microphotograph in FIG 6A.
  • FIG. 7A is a microphotograph of the luminescence emitted from an OLED pixel having an HIL printed with an ink composition comprising methicone as a pinning agent.
  • FIG. 7B is a black and white line drawing of the microphotograph in FIG 7A.
  • FIG. 8A is a microphotograph of the luminescence emitted from OLED pixels in which the HILs were printed with an ink composition comprising methicone as a pinning agent and sulfolane as an organic solvent.
  • FIG. 8B is a black and white line drawing of the microphotograph in FIG 8A.
  • FIG. 9A is a microphotograph of the luminescence emitted from OLED pixels in which the HILs were printed with an ink composition comprising methicone as a pinning agent and 1,3 -propanediol as an organic solvent.
  • FIG. 9B is a black and white line drawing of the microphotograph in FIG 9A.
  • FIG. 10 is a graph of drop volume over time for an ink composition before and after a 30 minute idle of the inkjet printing nozzle, as described in Example 2.
  • FIG. 11 is a graph of drop velocity over time for an ink composition before and after a 30 minute idle of the inkjet printing nozzle, as described in Example 2.
  • FIG. 12 is a graph of drop angle over time for an ink composition before and after a 30 minute idle of the inkjet printing nozzle, as described in Example 2.
  • Ink compositions comprising polythiophenes that are formulated for inkjet printing the HIL of an OLED are provided. Also provided are methods of inkjet printing the HILs using the ink compositions.
  • the ink compositions are characterized by high concentrations of electrically conducting polythiophenes, such as poly(3,4-ethylenedioxythiophene) (PEDOT), yet provide wetting, jetting and latency properties that render them well-suited for inkjet printing onto pixilated substrates, such as OLED pixel cells.
  • the ink compositions provide printed HILs having highly uniform thicknesses and homogenous compositions. As a result, the printed HILs contribute to a highly uniform light emission profile for OLEDs into which they are incorporated.
  • the enhanced printability provided by the ink compositions can be attributed, at least in part, to the realization that, at an appropriate concentration, methicone can act as a contact line pinning agent for droplets of the ink compositions in a pixel cell.
  • methicone By providing contact line pinning, the methicone ensures that the footprint of a droplet of the ink composition deposited into a pixel cell remains unchanged from its initial form during the process of drying.
  • a basic embodiment of the ink compositions is an aqueous solution comprising an electrically conductive polythiophene, methicone, at least one organic solvent and water.
  • a basic embodiment of a method of forming an HIL for an OLED using one of the ink compositions comprises the steps of depositing a droplet of the ink composition over a layer of electrically conductive material (i.e., an anode) in a pixel cell of an organic light emitting diode array and allowing the volatile components of the ink composition to evaporate, leaving a solid HIL.
  • the step of allowing the volatile components (e.g., water and organic solvents) to evaporate may be facilitated by subjecting the printed ink composition to reduced pressure, that is - exposing it to a vacuum, by exposing the printed ink composition to elevated temperatures, or a combination of the two.
  • reduced pressure that is - exposing it to a vacuum
  • elevated temperatures or a combination of the two.
  • Methicones are silicone oils polymerized from siloxanes. They are also referred to as methyl hydrogen siloxanes or methyl siloxanes. Methicones are commercially available and sold as surfactants by Botanigenics (Northridge, CA) under the tradename Botanisil®.
  • Methicones are also available from the Lubrizol Corporation (Wickliffe, Ohio) under the tradename SilSense®. These include SilSense® Copolyol-1 Silicone (PEG-33 (and) PEG-8 Dimethicone (and) PEG 14), SilSense® DW-18 Silicone (Dimethicone PEG-7 Isostearate), SilSense® SW-12 Silicone (Dimethicone PEG-7 Cocoate), SilSense® IWS (Dimethiconol Ester Dimethiconol Stearate), SilSense® A-21 Silicone (PEG-7 Amodimethicone), SilSense® PE-100 Silicone (Dimethicone PEG-8 Phosphate), and UltrabeeTM WD Silicone
  • the amount of methicone is carefully controlled, such that the methicone acts as a contact line pinning agent. This is important because it prevents the pinned ink composition droplets from pulling away from portions of the banks of the pixel cell (dewetting), which is sometimes accompanied by over-spill at other portions of the pixel cell. It also prevents the ink compositions from piling up at the sides of, or spreading beyond, the pixel cells, as would happen with more complete wetting.
  • the ink compositions can be used to form HILs on a variety of OLED electrode materials.
  • the electrode substrate will comprise a transparent electrically conductive material, such as a transparent conductive oxide (TCO) or silicon.
  • TCO transparent conductive oxide
  • concentration range for methicone in an ink composition will depend on the nature of the underlying substrate. However, for a given substrate, the concentration range at which the methicone provides contact line pinning can be determined by observing the wetting behavior of ink droplets having different methicone concentrations that have been applied to the surface via a drop casting process.
  • some embodiments of the present ink compositions comprise methicone in an amount of no greater than 0.15 weight percent (wt.%), no greater than 0.12 wt.% or no greater than 0.1 wt.%, based on the total weight of the ink composition.
  • Such ranges are suitable when the HIL ink compositions are printed onto known anode materials used in OLED devices.
  • a transparent or translucent anode material is used.
  • Transparent or translucent anode materials can include indium oxide, zinc oxide, indium tin oxide (ITO), and indium zinc oxide (IZO) or the like.
  • a reflective layer is formed below the transparent anode. Reflective layer materials include silver (Ag), silver-palladium-copper (APC), silver-rubidium-gold (ARA), molybdenum- chromium (MoCr) or the like.
  • the aqueous ink compositions further include one or more electrically conducting polythiophenes.
  • PEDOT and mixtures of PEDOT with poly(styrenesulfonate) may be included in the ink compositions.
  • the polythiophenes can be included in the ink compositions at very high concentrations.
  • some embodiments of the ink compositions comprise at least 30 wt.% polythiophene, at least 40 wt.% polythiophene, at least 50 wt.% polythiophene, at least 55 wt.% polythiophene, or at least 60 wt.%
  • the polythiophene can be PEDOT.
  • the aqueous ink compositions comprise at least one organic solvent.
  • a composition may comprise a solvent that reduces the surface tension and/or viscosity of the composition, a solvent that increases the latency of the printed ink composition, or a combination of these types of solvents.
  • the at least one organic solvent can be a solvent having a relatively high boiling point that increases the latency of the printed ink compositions. This is advantageous because it helps to prevent the ink compositions from drying onto and clogging print nozzles during printing.
  • Such solvents desirably have boiling points of at least 200 °C. More desirably they have boiling points of at least 230 °C, at least 250 °C or even at least 280 °C.
  • Diols and glycols such as propanediols, pentanediols, diethylene glycols and triethylene glycols, are examples of organic solvents that can be used to increase latency.
  • the diols and glycols tend to have relatively high viscosities and surface tensions, which can degrade the jettability of ink compositions that include them. Therefore, some embodiments of the present ink compositions are free of diol and glycol solvents.
  • aprotic solvents having boiling points of at least 240 °C, viscosities of no greater than 15 cPs and surface tensions of no greater than 55 dyne/cm, can be used instead of diols or glycols.
  • the recited boiling points refer to boiling points at atmospheric pressures.
  • the recited viscosities and surface tensions refer to viscosities and surface tensions at the printing temperature. For example, if printing occurs at room temperature, the viscosities and surface tensions will be those at about 25 °C.
  • Sulfolane, 2,3, 4,5-tetrahydrothiophene- 1,1 -dioxide, also known as tetramethylene sulfone is an example of a relatively high boiling, relatively lower viscosity aprotic solvent that provides good latency without sacrificing jettability.
  • ink compositions that include sulfolane as an organic solvent can incorporate high concentrations of both the solvent and the polythiophene, while maintaining good jettability.
  • the ink compositions may comprise sulfolane in amounts of at least 5 wt.%, at least 10 wt.% or at least 12 wt.%.
  • Suitable concentration ranges for the sulfolane in the ink compositions include the range from about 3 wt.% to about 15 wt.%. At these sulfolane concentrations, the ink compositions can incorporate high concentrations of PEDOT (e.g., 35 to 70 wt.%). In some of the ink compositions, sulfolane is the majority solvent, that is, it makes up greater than 50 wt.% of the total organic solvent content of the ink composition.
  • Other suitable solvents include propylene carbonate and l,3-dimethyl-3,4,5,6-tetrahydro-2(lH)-pyrimidinone, also known as dimethylpropylene urea.
  • the ink compositions can further include a co-solvent that acts as a surface- tension reducer in order to enhance the jettability of the composition.
  • a co-solvent that acts as a surface- tension reducer in order to enhance the jettability of the composition.
  • ink compositions comprising diols, glycols, sulfolane or other high boiling point solvents may include an additional solvent having a lower surface tension and, typically, a lower boiling point, than those solvents.
  • Propylene glycol methyl ethers or other similar ethers may be used for this purpose.
  • the surface tension, viscosity, latency and wetting properties of the ink compositions should be tailored to allow the compositions to be dispensed through an inkjet printing nozzle without drying onto or clogging the nozzle at the temperature used for printing (e.g., room temperature; ⁇ 25 °C).
  • the optimal properties will vary depending upon such factors as nozzle dimensions, printing speed and printing temperature.
  • acceptable viscosities will include those in the range from about 1 to about 20 cPs and acceptable surface tensions will include those below about 50 dynes/cm.
  • latencies of 20 minutes or longer are desirable, where latency refers to the time that nozzles can be left uncovered and idle before there is a significant reduction in performance, for instance a reduction in drop velocity that will noticeably affect the image quality.
  • Inkjet printers suitable for printing the ink compositions are commercially available and include drop-on-demand printheads, available from, for example, Fujifilm Dimatix (Lebanon, N.H.), Trident International (Brookfield, Conn.), Epson (Torrance, Calif.), Hitachi Data systems Corporation (Santa Clara, Calif.), Xaar PLC (Cambridge, United Kingdom), and Idanit Technologies, Limited (Rishon Le Zion, Isreal) and Ricoh Printing Systems America, Inc. (Simi Valley, CA).
  • the Dimatix Materials Printer DMP- 3000 may be used.
  • a printing system can include, for example, but not limited by, a substrate conveyance system 110, a substrate support apparatus 120, a motion system 130, a printhead assembly 140, an ink delivery system 150, and a control system 160.
  • An OLED substrate can be inserted and removed from printing system 100 using a substrate conveyance system 110.
  • substrate conveyance system 110 can be a mechanical conveyor, a substrate floatation table with a gripper assembly, a robot with end effector, and combinations thereof.
  • a substrate can be supported by support apparatus 120, which can be, for example, but not limited by, a chuck or a floatation table.
  • support apparatus 120 can be, for example, but not limited by, a chuck or a floatation table.
  • various embodiments of printing system 100 can have motion system 130, which can be, for example, but not limited by, a gantry or split axis XYZ system.
  • Printhead assembly 140 can include at least one printhead device that can be mounted to motion system 130.
  • the at least one printhead device included in printhead assembly 140 can have at least one inkjet printhead capable of ejecting drops of an ink composition at a controlled rate, velocity, and size through at least one orifice.
  • Various embodiments of printing system 100 according to the present teachings can have between about 1 to about 60 printhead devices. Additionally, various embodiments of a printhead device can have between about 1 to about 30 inkjet printheads in each printhead device, where each inkjet printhead can have between about 16 to about 2048 nozzles.
  • each nozzle of each inkjet printhead can expel a drop volume of between about O.lpL to about 200pL.
  • Printhead assembly 140 with at least one inkjet printhead can be in fluid communication with an ink composition delivery system 150, which can supply an ink composition to one or more inkjet printheads of printhead assembly 140.
  • either printhead assembly 140 can move over a stationary substrate (gantry style), or both printhead assembly 140 and a substrate can move, in the case of a split axis configuration.
  • Z axis control can be provided by moving printhead assembly 140 relative to a substrate.
  • printhead assembly 140 can be fixed, and a substrate can move in the X and Y axes relative to printhead assembly 140, with Z axis motion provided either by Z-axis movement of printhead assembly 140 or by Z-axis movement of a substrate.
  • drops of an ink composition are ejected at the correct time to be deposited in the desired location on a substrate.
  • control system 160 can be used to control the functions of the printing process. Various embodiments of control system 160 can be accessible to an end user through a user interface. Control system 180 can be used to control, send, and receive data to and from substrate conveyance system 110, substrate support apparatus 120, motion system 130, printhead assembly 140, and an ink composition delivery system 150. Control system 160 can be a computer system, a microcontroller, an application specific integrated circuit (ASIC), a field programmable gate array (FPGA), an electronic circuit capable of sending and receiving control and data information and capable of executing instructions, and combinations thereof. Control system 160 can include one electronic circuit or multiple electronic circuits distributed among substrate conveyance system 110, substrate support apparatus 120, motion system 130, printhead assembly 140, and an ink composition delivery system and 150 for the purpose of providing communication between components, for example.
  • ASIC application specific integrated circuit
  • FPGA field programmable gate array
  • control system 160 of printing system 100 can provide data processing, display and report preparation functions. All such instrument control functions may be dedicated locally to printing system 100, or control system 160 can provide remote control of part or all of the control, analysis, and reporting functions. Finally, various embodiments of printing apparatus 100 can be housed in enclosure 200 of FIG. 2.
  • FIG. 2 is a schematic representation of gas enclosure system 200 that can house printing system 100 of FIG. 1, in accordance with various embodiments.
  • a gas enclosure system 200 can comprise a gas enclosure assembly 250 according to the present teachings, a gas purification loop 230 in fluid communication with gas enclosure assembly 250, and at least one thermal regulation system 240.
  • various embodiments of a gas enclosure system can have pressurized inert gas recirculation system 260, which can supply inert gas for operating various devices, such as a substrate floatation table for an OLED printing system.
  • gas enclosure system 200 can have a filtration and circulation system (not shown) internal to gas enclosure system 200, which along with other components, such as a floatation table, can provide a substantially low-particle printing environment.
  • gas purification loop 230 can include outlet line 231 from gas enclosure assembly 250, to a solvent removal component 232, and then to gas purification system 234. Inert gas purified of solvent and other reactive gas species, such as oxygen and water vapor, are then returned to gas enclosure assembly 250 through inlet line 233.
  • Gas purification loop 230 may also include appropriate conduits and connections, and sensors, for example, oxygen, water vapor and solvent vapor sensors.
  • a gas circulating unit, such as a fan, blower or motor and the like, can be separately provided or integrated, for example, in gas purification system 234, to circulate gas through gas purification loop 230.
  • Thermal regulation system 240 can include, for example, but not limited by, at least one chiller 241, which can have fluid outlet line 243 for circulating a coolant into a gas enclosure assembly, and fluid inlet line 245 for returning the coolant to the chiller.
  • a gas source can be an inert gas, such as nitrogen, any of the noble gases, and any combination thereof.
  • a gas source can be a source of a gas such as clean dry air (CD A).
  • a gas source can be a source supplying a combination of an inert gas and a gas such as CDA.
  • Gas enclosure system 200 can maintain levels for each species of various reactive gas species, including various reactive atmospheric gases, such as water vapor and oxygen, as well as organic solvent vapors at 100 ppm or lower, for example, at 10 ppm or lower, at 1.0 ppm or lower, or at 0.1 ppm or lower. Further, various embodiments of a gas enclosure assembly can provide a low particle environment meeting a range of specifications for airborne particulate matter according to ISO 14644 Class 1 through Class 5 clean room standards.
  • the final inkjet-printed product is an HIL having a highly uniform thickness and composition.
  • layers having a thickness variation no greater than 10% across the entire width of the layer are possible.
  • the thickness across the layer can be measured using metrology tools, such as a stylus contact profilometer or an interferometer microscope.
  • Suitable interferometers for optical interferometry are commercially available from Zygo instrumentation.
  • the ink compositions can be used to print the HILs directly in a multi-layered OLED architecture.
  • a typical OLED comprises a support substrate, an anode, a cathode, a HIL disposed over the anode and a light-emitting layer (EML) disposed in between the HIL and the cathode.
  • EML light-emitting layer
  • Other layers that may be present in the device include a hole transporting layer provided between the HIL and the light-emitting layer to assist with the transport of holes to the light-emitting layer, and an electron transporting layer (ETL) disposed between the EML and the cathode.
  • the substrate is generally a transparent glass or plastic substrate.
  • one or more layers in addition to the HIL may be formed via inkjet printing, while other layers may be deposited using other film-forming techniques.
  • the various layers will be formed within one or more pixel cells.
  • Each pixel cell comprises a floor and is defined by a bank that defines the perimeter of the cell.
  • the surfaces within a cell optionally may be coated with a surface-modifying coating, such as a surfactant. However, in some embodiments, such surfactants are absent, as they may quench the luminescence of the light-emitting layer.
  • FIG. 3 is a schematic illustration of a flat panel display comprising a plurality of OLEDs arranged in a matrix of pixel cells.
  • FIG. 3 depicts an expanded view 320 of an area of panel 300, showing the arrangement 330 of a plurality of pixel cells, including a red light- emitting pixel cell 332, a green light-emitting pixel cell 334 and blue light-emitting pixel cell 336.
  • integrated circuitry 338 can be formed on a flat panel display substrate so that the circuitry is adjacent to each pixel cell for the purpose of applying voltage to each pixel in a controlled fashion during use.
  • Pixel cell size, shape, and aspect ratios can vary depending on, for example, but not limited by, the resolution desired.
  • a pixel cell density of 100 ppi can be sufficient for a panel used for a computer display, where for high resolution of, for example of between about 300 ppi to about 450 ppi, can result in various pixel cell designs amenable to the effective packing of higher pixel density on a substrate surface.
  • aqueous ink compositions formulated for inkjet printing polythiophene-based HILs another aspect of the present technology provides non-aqueous, organic solvent-based ink compositions formulated for inkjet printing HILs or HTLs for OLEDs.
  • the organic HIL/HTL ink compositions comprise a component that is conventionally viewed as a wetting agent, but that is incorporated into the HTL inks in carefully controlled quantities, such that it actually prevents the uncontrolled spreading and pixel cell spill-over that can occur as a result of wetting.
  • the organic inks comprise: (1) a hole injection material or a hole transporting material; (2) one or more organic solvents that solubilize the hole injection or hold transporting material; and (3) a fluorosurfactant.
  • the hole injection or hole transporting material is typically present in an amount of no greater than about 5 wt. , more typically no greater than 2 wt. and still more typically no greater than about 1 wt.% (e.g., from about 0.1 to about 1 wt.%), based on total weight of the ink composition.
  • Organic solvents typically account for about 95 to about 99.8 wt.% of the ink composition.
  • the fluorinated surfactants are typically present in amounts of no greater than about 0.15 wt.%. For example, in some embodiments of the organic solvent- based ink compositions the fluorinated surfactants are present in amounts ranging from about 0.03 wt.% to about 0.1 wt.%.
  • Suitable hole injection materials for the organic solvent-based ink compositions include polythiophenes, as described above.
  • Suitable hole transporting materials include polyvinyl carbazoles or derivatives thereof, polysilanes or derivatives thereof, polysiloxane derivatives having an aromatic amine at the side chain or the main chain, pyrazoline derivatives, arylamine derivatives, stilbene derivatives, triphenyldiamine derivatives, polyaniline or derivatives thereof, polythiophene or derivatives thereof, polyarylamines or derivatives thereof, polypyrroles or derivatives thereof, poly(p-phenylenevinylene) or derivatives thereof, or poly(2,5 thienylene vinylene) or derivatives thereof.
  • Suitable organic solvents for the HIL/HTL ink compositions include alkoxy alcohol, alkyl alcohol, alkyl benzene, alkyl benzoate, alkyl naphthalene, amyl octanoate, anisole, aryl alcohol, benzyl alcohol, butyl benzene, butyrophenone, cis-decalin, dipropylene glycol methyl ether, dodecyl benzene, mesitylene, methoxy propanol, methylbenzoate, methyl naphthalene, methyl pyrrolidinone, phenoxy ethanol, 1,3 -propanediol, pyrrolidinone, trans- decalin, valerophenon, and mixtures thereof.
  • the fluorosurfactants are surfactants comprising a fluorinated alkyl chain.
  • E. I. du Pont de Nemours and Company (Wilmington, Delaware) sells fluorinated surfactants under the tradenames Capstone and Zonyl.
  • the fluorosurfactants may be, for example, fluorotelemers (e.g., telomere B monoether with polyethylene glycol or 2-perfluoroalkyl) ethanol).
  • fluorosurfactants include Zonyl® FS 1033D, Zonyl® FS 1176, Zonyl® FSG, Zonyl® FS-300, Zonyl® FSN, Zonyl® FSH, Zonyl® FSN, Zonyl® FSO, Zonyl® FSN-100, Zonyl® FSO-100, Zonyl® FSH, Zonyl® FSN, Zonyl® FSO, Zonyl® FSH, Zonyl® FSN, Zonyl® FSO s Zonyl® FS 500, Zonyl® FS 510, Zonyl® FSJ, Zonyl® FS-610, Zonyl® 9361, Zonyl® FSA, FSP, FSE, FSJ, Zonyl® FSP, Zonyl® 9361, Zonyl® FSE, Zonyl® FSA, Zonyl® UR
  • Example 1 Effect of Methicone on In-Pixel Uniformity
  • HIL ink compositions A and B were prepared with components and concentrations shown in Table 1. Both Compositions A and B include methicone in concentrations indicated. As a comparative example, an ink composition including the ingredients listed in Table 2, but lacking methicone, was prepared (Comparative Composition).
  • the ink compositions were formulated by placing a clean vial on a balance and transferring the desired amount of Botanisil S-18 into the vial using a Pasteur pipette. The balance was tared and the 1,3-propanediol, water and DPGME were sequentially pipetted into the vial. The vial was then removed from the balance, capped and rotated to mix the resulting aqueous solution. The vial was then returned to the balance and the desired quantity of a PEDOT dispersion (Haraeus Clevios TM PVP Al 4083) was pipetted into the vial. The vial was then removed from the balance, capped and rotated to mix the PEDOT with the other components of the mixture. The resulting PEDOT ink composition was then filtered with a polytetrafluoroethylene (PTFE) filter membrane (2.0 ⁇ ) and the filtered composition was collected in an amber bottle. Finally, the bottle was sonicated for 15 minutes prior to use.
  • PTFE polyt
  • the comparative ink composition was made using the same procedure without the Botanisil S-18.
  • Viscosity measurements were carried out using a DV-I Prime Brookfield rheometer. Surface tension was measured with a SITA bubble pressure tensiometer. The measured values for the methicone-containing ink compositions A and B and the comparative ink composition (Comparative Composition) are provided in Tables 1 and 2.
  • the HIL ink compositions were printed onto ITO anodes in OLED architectures.
  • the substrate of the OLED was glass, with a thickness of 0.5 mm, on which an anode of 60 nm ITO (indium tin oxide) was patterned.
  • a bank material also known as a pixel definition layer
  • the bank material was a negative working photoresist designed for inkjet printing.
  • the resulting cells had banks with heights in the range from about 0.5 to 2 ⁇ that were angled at 45° with respect to the floor of the cell, such that the opening of each cell was wider than its base.
  • the 45° angle is representative of typical bank angles, which range from about 5° to about 70°.
  • the width and length dimensions of the cells were about 60 x 175 ⁇ .
  • An HIL layer was then ink-jet printed, using the ink compositions of Tables 1 and 2, into the cell, dried under vacuum and baked at an elevated temperature in order to remove the water and solvents from the layer.
  • the HIL ink composition was printed at room temperature using the inkjet printing system described in PCT application publication no. WO 2013/158310, the entire disclosure of which is incorporated herein by reference.
  • Inkjet printing into the pixel cells was carried out by filling a bulk ink reservoir with the HIL ink composition.
  • the bulk ink reservoir was in fluid communication with a primary dispensing reservoir and a continuous supply of the HIL ink composition was provided to the primary dispensing reservoir during printing.
  • the HIL ink composition was then fed into a printhead comprising a plurality of nozzles through which the HIL ink composition was jetted into the pixel cells.
  • Typical drop volumes during printing were about 10 pi and about 3 to 10 drops were printed into each cell to form a droplet of the ink composition in the cell.
  • An OLED incorporating an HIL that is printed from the Ink Composition A is fabricated as follows.
  • An HTL layer is inkjet printed onto the HIL layer, followed by drying under vacuum and baking at an elevated temperature to remove solvent and induce the crosslinking in the crosslinkable polymer.
  • the EML layer is inkjet printed onto the HTL layer, followed by drying under vacuum and baking at an elevated temperature to remove solvent.
  • the HTL and EML layers are inkjet printed using the printer described above.
  • the HTL ink composition is comprised of a hole transporting polymer material in an ester-based solvent system composed of a mixture of distilled and degassed diethyl octanoate and octyl octanoate in a weight ratio of 1 : 1.
  • the EML ink composition is comprised of an organic electroluminescent material in diethyl sebacate.
  • ETL layer followed by a cathode layer, was then applied by vacuum thermal evaporation.
  • the ETL material comprised lithium quinolate (LiQ) as an emissive material and the cathode layer was composed of 100 nm of aluminum.
  • HIL ink composition including methicone, sulfolane and the other ingredients listed in Table 3 was prepared.
  • the ink composition was formulated as described in Example 1 , except that sulfolane was used in place of the 1,3 -propanediol.
  • HIL ink compositions were printed and OLED pixels were formed for electroluminescence testing as described in Example 1.
  • Latency measurements for the inks were carried out using the inkjet printing system described in PCT application publication no. WO 2013/158310. The measurements were conducted by firing one nozzle and measuring 300 data points of volume, velocity, and directionality. The nozzle was then idled for 30 minutes. After 30 minutes the nozzle was restarted and 300 more data points were recorded.
  • Latency measurements for the inks were also carried out using a Dimatix Fujifilm DMP-2831 printer. In the drop watching setting all 16 nozzles were turned on and it was confirmed that all nozzles were firing. Jetting was then stopped for 5 min. Jetting was resumed and inspection confirmed that all nozzles were still working. Then, continuous jetting was carried out for periods of 15 and 30 min. Latency time was measured as the time between the end of jetting and the onset of the drying of the ink in the uncapped nozzle, which results in improper droplet firing. To determine when the ink compositions dried they were inspected under a microscope in white light and fluorescent modes.
  • FIG. 10 is a graph of drop volume over 14 minutes for the ink composition before idle and after a 30 minute idle.
  • FIG. 11 is a graph of drop velocity over 14 minutes for the ink composition before idle and after a 30 minute idle. As can be seen in this figure, the drop velocity at restart was only 4% lower than the drop velocity before the idle.
  • FIG. 12 is a graph of drop angle over 14 minutes for the ink composition before idle and after a 30 minute idle. No significant difference in drop angle before and after idle was observed.

Abstract

On décrit des compositions d'encre comprenant des polythiophènes et de la méthicone, qui sont formulées pour imprimer par jet d'encre la couche d'injection de trous (HIL) d'une diode électroluminescente organique (OLED). On décrit également des procédés d'impression par jet d'encre de la couche d'injection de trous, qui mettent en oeuvre les compositions d'encre de l'invention.
EP13896242.8A 2013-10-31 2013-12-04 Compositions d'encre contenant des polythiophènes pour impression par jet d'encre Withdrawn EP3063800A4 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201361898343P 2013-10-31 2013-10-31
PCT/US2013/073175 WO2015065499A2 (fr) 2013-10-31 2013-12-04 Compositions d'encre contenant des polythiophènes pour impression par jet d'encre

Publications (2)

Publication Number Publication Date
EP3063800A2 true EP3063800A2 (fr) 2016-09-07
EP3063800A4 EP3063800A4 (fr) 2017-06-21

Family

ID=53005351

Family Applications (1)

Application Number Title Priority Date Filing Date
EP13896242.8A Withdrawn EP3063800A4 (fr) 2013-10-31 2013-12-04 Compositions d'encre contenant des polythiophènes pour impression par jet d'encre

Country Status (5)

Country Link
EP (1) EP3063800A4 (fr)
JP (2) JP6438041B2 (fr)
KR (2) KR20160078973A (fr)
CN (2) CN108219588A (fr)
WO (1) WO2015065499A2 (fr)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180044286A (ko) * 2015-08-24 2018-05-02 디아이씨 가부시끼가이샤 유기 반도체 소자용 잉크 조성물 및 이것을 사용한 유기 반도체 소자
WO2017080307A1 (fr) * 2015-11-12 2017-05-18 广州华睿光电材料有限公司 Composition pour l'impression de dispositifs électroniques et son application dans des dispositifs électroniques
CN105440802B (zh) * 2015-12-22 2017-12-12 江南大学 一种可紫外光二聚的pedot导电墨水及其制备方法
US20180323373A1 (en) * 2017-05-05 2018-11-08 Universal Display Corporation Capacitive sensor for positioning in ovjp printing
CN111373561A (zh) * 2017-11-28 2020-07-03 堺显示器制品株式会社 有机el发光元件及其制造方法
KR102316066B1 (ko) * 2018-07-27 2021-10-21 주식회사 엘지화학 잉크 조성물, 이를 이용한 유기 발광 소자 및 이의 제조방법
KR102156301B1 (ko) * 2018-09-06 2020-09-15 (주)에스티아이 잉크젯 인쇄 방법 및 잉크젯 인쇄 장치
KR102170962B1 (ko) * 2018-12-10 2020-10-28 (주)에스티아이 잉크젯 인쇄 방법 및 잉크젯 인쇄 장치
CN110137230B (zh) * 2019-05-21 2021-02-23 深圳市华星光电半导体显示技术有限公司 一种oled显示面板及其制作方法
KR102243003B1 (ko) * 2020-12-22 2021-04-21 코오롱인더스트리 주식회사 정공수송층 형성용 조성물 및 이를 포함하는 반투명 유기 태양전지
WO2023070618A1 (fr) * 2021-10-30 2023-05-04 华为技术有限公司 Encre d'élément électroluminescent et application de polymère dans celle-ci, et appareil d'affichage et son procédé de fabrication

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7833612B2 (en) * 2003-09-12 2010-11-16 Samsung Mobile Display Co., Ltd. Substrate for inkjet printing and method of manufacturing the same
JP2005105070A (ja) * 2003-09-29 2005-04-21 Seiko Epson Corp インクジェット用インク、膜形成方法、電気光学装置の製造方法および電気光学装置
JP4852818B2 (ja) * 2003-09-29 2012-01-11 セイコーエプソン株式会社 電気光学装置の製造方法
JP2005105069A (ja) * 2003-09-29 2005-04-21 Seiko Epson Corp インクジェット用インク、液滴吐出装置および液滴吐出方法
JP2005144324A (ja) * 2003-11-14 2005-06-09 Seiko Epson Corp 膜形成方法、デバイス製造方法および電気光学装置
JP5148843B2 (ja) * 2005-05-20 2013-02-20 住友化学株式会社 高沸点組成物及びそれを用いた高分子発光素子
GB0510382D0 (en) * 2005-05-20 2005-06-29 Cambridge Display Tech Ltd Ink jet printing compositions in opto-electrical devices
EP2236561B1 (fr) * 2005-05-20 2013-07-03 Sumitomo Chemical Company, Limited Composition polymerique et dispositif polymerique electroluminescent l'utilisant
JP2009528663A (ja) * 2006-03-02 2009-08-06 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー 閉じ込められた層を製造するための方法、及び同方法によって製造されたデバイス
US8017241B2 (en) * 2006-07-21 2011-09-13 Plextronics, Inc. Sulfonation of conducting polymers and OLED, photovoltaic, and ESD devices
JP2008081550A (ja) * 2006-09-26 2008-04-10 Japan Aviation Electronics Industry Ltd 配線材用インクとその製造方法
JP2008130790A (ja) * 2006-11-21 2008-06-05 Seiko Epson Corp 液状体、有機el装置、およびその製造方法、並びに電子機器
JP2008153159A (ja) * 2006-12-20 2008-07-03 Dainippon Printing Co Ltd 有機エレクトロルミネッセンス素子およびその製造方法
US7981323B2 (en) * 2007-07-13 2011-07-19 Konarka Technologies, Inc. Selenium containing electrically conductive copolymers
JP5402641B2 (ja) * 2007-11-14 2014-01-29 コニカミノルタ株式会社 非水系インクジェットインク及びインクジェット記録方法
JP2009238593A (ja) * 2008-03-27 2009-10-15 Casio Comput Co Ltd 発光素子及びその製造方法
JP2009289474A (ja) * 2008-05-27 2009-12-10 Casio Comput Co Ltd 発光装置及び発光装置の製造方法
GB2466842B (en) * 2009-01-12 2011-10-26 Cambridge Display Tech Ltd Interlayer formulation for flat films
WO2010110347A1 (fr) * 2009-03-27 2010-09-30 富士フイルム株式会社 Elément électroluminescent organique et procédé de fabrication d'un élément électroluminescent organique
JP2011233480A (ja) * 2010-04-30 2011-11-17 Ricoh Co Ltd 積層構造の形成方法及び有機エレクトロルミネッセンス素子の製造方法
KR101898499B1 (ko) * 2010-08-20 2018-09-13 로디아 오퍼레이션스 중합체 조성물, 중합체 막, 중합체 겔, 중합체 발포제, 및 이러한 막, 겔, 및 발포제를 포함하는 전자장치
WO2013040468A1 (fr) * 2011-09-16 2013-03-21 Kateeva, Inc Formulations filmogènes pour impression sur substrats

Also Published As

Publication number Publication date
JP6438041B2 (ja) 2018-12-12
JP2018119164A (ja) 2018-08-02
JP2017502485A (ja) 2017-01-19
KR20180108917A (ko) 2018-10-04
CN105658742B (zh) 2018-03-30
KR20160078973A (ko) 2016-07-05
EP3063800A4 (fr) 2017-06-21
WO2015065499A2 (fr) 2015-05-07
WO2015065499A3 (fr) 2015-07-16
CN105658742A (zh) 2016-06-08
CN108219588A (zh) 2018-06-29

Similar Documents

Publication Publication Date Title
US10093819B2 (en) Fluorosurfactant-containing ink compositions for inkjet printing
JP6438041B2 (ja) インクジェット印刷のためのポリチオフェン含有インク組成物
US10662343B2 (en) Ester-based solvent systems for printable organic light-emitting diode ink formulations
TWI583746B (zh) 用於噴墨印刷的含聚噻吩墨水組成物

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20160531

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAX Request for extension of the european patent (deleted)
A4 Supplementary search report drawn up and despatched

Effective date: 20170522

RIC1 Information provided on ipc code assigned before grant

Ipc: H01L 51/50 20060101AFI20170516BHEP

17Q First examination report despatched

Effective date: 20191105

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN WITHDRAWN

18W Application withdrawn

Effective date: 20191205