EP3052731A1 - Abstandshalter für isolierverglasungen - Google Patents

Abstandshalter für isolierverglasungen

Info

Publication number
EP3052731A1
EP3052731A1 EP14753266.7A EP14753266A EP3052731A1 EP 3052731 A1 EP3052731 A1 EP 3052731A1 EP 14753266 A EP14753266 A EP 14753266A EP 3052731 A1 EP3052731 A1 EP 3052731A1
Authority
EP
European Patent Office
Prior art keywords
wall
spacer
polymeric
base body
spacer according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP14753266.7A
Other languages
English (en)
French (fr)
Other versions
EP3052731B1 (de
EP3052731B2 (de
Inventor
Hans-Werner Kuster
Walter Schreiber
Martin RIGAUD
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Saint Gobain Glass France SAS
Original Assignee
Saint Gobain Glass France SAS
Compagnie de Saint Gobain SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=49322172&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP3052731(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Saint Gobain Glass France SAS, Compagnie de Saint Gobain SA filed Critical Saint Gobain Glass France SAS
Priority to EP14753266.7A priority Critical patent/EP3052731B2/de
Priority to PL14753266.7T priority patent/PL3052731T5/pl
Publication of EP3052731A1 publication Critical patent/EP3052731A1/de
Publication of EP3052731B1 publication Critical patent/EP3052731B1/de
Application granted granted Critical
Publication of EP3052731B2 publication Critical patent/EP3052731B2/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E06DOORS, WINDOWS, SHUTTERS, OR ROLLER BLINDS IN GENERAL; LADDERS
    • E06BFIXED OR MOVABLE CLOSURES FOR OPENINGS IN BUILDINGS, VEHICLES, FENCES OR LIKE ENCLOSURES IN GENERAL, e.g. DOORS, WINDOWS, BLINDS, GATES
    • E06B3/00Window sashes, door leaves, or like elements for closing wall or like openings; Layout of fixed or moving closures, e.g. windows in wall or like openings; Features of rigidly-mounted outer frames relating to the mounting of wing frames
    • E06B3/66Units comprising two or more parallel glass or like panes permanently secured together
    • E06B3/663Elements for spacing panes
    • E06B3/66309Section members positioned at the edges of the glazing unit
    • E06B3/66361Section members positioned at the edges of the glazing unit with special structural provisions for holding drying agents, e.g. packed in special containers
    • EFIXED CONSTRUCTIONS
    • E06DOORS, WINDOWS, SHUTTERS, OR ROLLER BLINDS IN GENERAL; LADDERS
    • E06BFIXED OR MOVABLE CLOSURES FOR OPENINGS IN BUILDINGS, VEHICLES, FENCES OR LIKE ENCLOSURES IN GENERAL, e.g. DOORS, WINDOWS, BLINDS, GATES
    • E06B3/00Window sashes, door leaves, or like elements for closing wall or like openings; Layout of fixed or moving closures, e.g. windows in wall or like openings; Features of rigidly-mounted outer frames relating to the mounting of wing frames
    • E06B3/66Units comprising two or more parallel glass or like panes permanently secured together
    • E06B3/663Elements for spacing panes
    • E06B3/66304Discrete spacing elements, e.g. for evacuated glazing units
    • EFIXED CONSTRUCTIONS
    • E06DOORS, WINDOWS, SHUTTERS, OR ROLLER BLINDS IN GENERAL; LADDERS
    • E06BFIXED OR MOVABLE CLOSURES FOR OPENINGS IN BUILDINGS, VEHICLES, FENCES OR LIKE ENCLOSURES IN GENERAL, e.g. DOORS, WINDOWS, BLINDS, GATES
    • E06B3/00Window sashes, door leaves, or like elements for closing wall or like openings; Layout of fixed or moving closures, e.g. windows in wall or like openings; Features of rigidly-mounted outer frames relating to the mounting of wing frames
    • E06B3/66Units comprising two or more parallel glass or like panes permanently secured together
    • E06B3/663Elements for spacing panes
    • E06B3/66309Section members positioned at the edges of the glazing unit
    • E06B3/66314Section members positioned at the edges of the glazing unit of tubular shape
    • E06B3/66319Section members positioned at the edges of the glazing unit of tubular shape of rubber, plastics or similar materials
    • EFIXED CONSTRUCTIONS
    • E06DOORS, WINDOWS, SHUTTERS, OR ROLLER BLINDS IN GENERAL; LADDERS
    • E06BFIXED OR MOVABLE CLOSURES FOR OPENINGS IN BUILDINGS, VEHICLES, FENCES OR LIKE ENCLOSURES IN GENERAL, e.g. DOORS, WINDOWS, BLINDS, GATES
    • E06B3/00Window sashes, door leaves, or like elements for closing wall or like openings; Layout of fixed or moving closures, e.g. windows in wall or like openings; Features of rigidly-mounted outer frames relating to the mounting of wing frames
    • E06B3/66Units comprising two or more parallel glass or like panes permanently secured together
    • E06B3/673Assembling the units
    • E06B3/67304Preparing rigid spacer members before assembly
    • EFIXED CONSTRUCTIONS
    • E06DOORS, WINDOWS, SHUTTERS, OR ROLLER BLINDS IN GENERAL; LADDERS
    • E06BFIXED OR MOVABLE CLOSURES FOR OPENINGS IN BUILDINGS, VEHICLES, FENCES OR LIKE ENCLOSURES IN GENERAL, e.g. DOORS, WINDOWS, BLINDS, GATES
    • E06B3/00Window sashes, door leaves, or like elements for closing wall or like openings; Layout of fixed or moving closures, e.g. windows in wall or like openings; Features of rigidly-mounted outer frames relating to the mounting of wing frames
    • E06B3/66Units comprising two or more parallel glass or like panes permanently secured together
    • E06B3/673Assembling the units
    • E06B3/67304Preparing rigid spacer members before assembly
    • E06B3/67308Making spacer frames, e.g. by bending or assembling straight sections
    • E06B3/67313Making spacer frames, e.g. by bending or assembling straight sections by bending
    • EFIXED CONSTRUCTIONS
    • E06DOORS, WINDOWS, SHUTTERS, OR ROLLER BLINDS IN GENERAL; LADDERS
    • E06BFIXED OR MOVABLE CLOSURES FOR OPENINGS IN BUILDINGS, VEHICLES, FENCES OR LIKE ENCLOSURES IN GENERAL, e.g. DOORS, WINDOWS, BLINDS, GATES
    • E06B3/00Window sashes, door leaves, or like elements for closing wall or like openings; Layout of fixed or moving closures, e.g. windows in wall or like openings; Features of rigidly-mounted outer frames relating to the mounting of wing frames
    • E06B3/66Units comprising two or more parallel glass or like panes permanently secured together
    • E06B3/677Evacuating or filling the gap between the panes ; Equilibration of inside and outside pressure; Preventing condensation in the gap between the panes; Cleaning the gap between the panes
    • E06B3/6775Evacuating or filling the gap during assembly
    • EFIXED CONSTRUCTIONS
    • E06DOORS, WINDOWS, SHUTTERS, OR ROLLER BLINDS IN GENERAL; LADDERS
    • E06BFIXED OR MOVABLE CLOSURES FOR OPENINGS IN BUILDINGS, VEHICLES, FENCES OR LIKE ENCLOSURES IN GENERAL, e.g. DOORS, WINDOWS, BLINDS, GATES
    • E06B3/00Window sashes, door leaves, or like elements for closing wall or like openings; Layout of fixed or moving closures, e.g. windows in wall or like openings; Features of rigidly-mounted outer frames relating to the mounting of wing frames
    • E06B3/66Units comprising two or more parallel glass or like panes permanently secured together
    • E06B3/663Elements for spacing panes
    • E06B3/66309Section members positioned at the edges of the glazing unit
    • E06B2003/6638Section members positioned at the edges of the glazing unit with coatings

Definitions

  • the invention relates to a spacer for insulating glazing, a method for its production, its use and an insulating glazing.
  • Insulating glazings usually consist of two glass panes, which are arranged at a defined distance from each other by a spacer (spacer).
  • the spacer is arranged circumferentially in the edge region of the glazing. Between the discs, a gap is thus formed, which is usually filled with an inert gas.
  • the heat flow between the limited by the glazing interior and the external environment can be significantly reduced by the insulating glazing compared to a simple glazing.
  • the spacer has a non-negligible influence on the thermal properties of the disc.
  • Conventional spacers are made of a light metal, usually aluminum. These can be processed easily.
  • the spacer is typically made as a straight endless profile, which is cut to the required size and then bent into the rectangular shape required for use in the insulating glazing. Due to the good thermal conductivity of the aluminum, however, the insulating effect of the glazing in the edge area is significantly reduced ⁇ cold edge effect).
  • spacers In order to improve the thermal properties, so-called warm ec / ge solutions for spacers are known. These spacers are made in particular of plastic and therefore have a significantly reduced thermal conductivity. Plastic spacers are known for example from DE 27 52 542 C2 or DE 19 625 845 A1. As far as processing is concerned, however, the plastic spacers have disadvantages. Although they can be produced by extrusion as an endless profile, for example, the subsequent bending requires local heating of the material, which is not easy to achieve with conventional machines. Such profiles therefore require considerable investment for the manufacturer of insulating glazings.
  • the present invention has for its object to provide such a spacer.
  • the spacer according to the invention for insulating glazing of at least two glass panes comprises at least one polymeric base body.
  • the polymeric base body comprises at least two mutually parallel side walls, which are intended to be facing the glass sheets and to be brought into contact with the glass sheets, and which are interconnected by an inner wall and an outer wall.
  • the side walls, the inner wall and the outer wall surround a hollow chamber.
  • Such a hollow chamber is common for spacers and is provided in particular for receiving a desiccant.
  • a reinforcing strip is preferably incorporated.
  • the reinforcing strip preferably contains at least one metal or a metallic alloy.
  • embedded means that the reinforcing strip is surrounded all around by the material of the polymeric main body or the side walls of the polymeric main body.
  • the reinforcing strips give the spacer the necessary flexibility to be processed with conventional industrial equipment. The spacer can be bent to its final shape without having to be heated first. The reinforcement strips keep the shape permanently stable. In addition, the reinforcing strip increases the stability of the spacer. However, the reinforcing strips do not act as a thermal bridge, so that the properties of the spacer with respect to the heat conduction are not significantly adversely affected.
  • the reinforcing strips are incorporated in the polymeric base body, so they have no contact with the environment; (B) the reinforcing strips arranged in the side walls and not in the outer wall or the inner wall, over which the heat exchange between the space between the panes and the outside environment takes place.
  • the simultaneous realization of bendability and optimum thermal properties is the decisive advantage of the present invention.
  • the inventors have also recognized that the bendability depends on the glass fiber content of the polymeric base body.
  • the glass fiber content is in conventional polymeric spacers made of glass fiber reinforced plastic at about 35 wt .-%. By this glass fiber content sufficient stability of the spacer is achieved. However, the spacer with such a high fiber content is too stiff to be bent without damage.
  • the inventors have recognized that a glass fiber content of at most 20 wt .-% allows good flexibility.
  • the associated with the reduced glass fiber content lower rigidity and stability, especially against restoring forces after bending, is compensated by the reinforcing profiles of the invention.
  • the reinforcing strips according to the invention in conjunction with the inventively low glass fiber content of the polymer body thus allow good flexibility while high stability and rigidity in installation position.
  • the other sections of the main body except the side walls, in particular the inner wall and the outer wall, preferably have no metallic inclusions.
  • the thermal conductivity ( ⁇ value) of the spacer is preferably less than 0.25 W / (m * K), more preferably less than 0.2 W / (m * K). This refers to the thermal conductivity measured for the entire spacer (equivalent thermal conductivity) without consideration of local fluctuations in the thermal conductivity as a function of the exact position on the spacer.
  • Such low thermal conductivities are surprisingly achieved by a polymeric base body with the reinforcing profile according to the invention.
  • the side walls of the polymeric base body are intended to be facing the glass sheets in the manufactured insulating glazing.
  • the contact of the spacer with the glass panes takes place via the side walls. There must be no direct contact between spacer and disc. Instead, the contact can be made indirectly, for example via a sealing compound.
  • the inner wall is designed to face the gap between the glass panes in the finished insulating glazing.
  • the inner wall is provided in an advantageous embodiment with holes to ensure the effect of a desiccant in the hollow chamber on the gap.
  • the outer wall is opposite the inner wall and is intended to face the outer periphery of the insulating glazing.
  • the Au 270wand points out of the gap between the glass panes, in which the spacer is arranged out.
  • the side walls, the outer wall and the inner wall and optionally the connecting portions each preferably have a thickness (material thickness) of 0.5 mm to 2 mm, particularly preferably from 0.8 mm to 1, 5 mm.
  • the thickness of the polymeric body is preferably constant, that is, all the walls and portions have the same thickness. Such a spacer is easy to work with and advantageously stable.
  • the inner wall, the outer wall and the side walls are each formed plan in a preferred embodiment.
  • the inner wall, the outer wall and the side walls are in this sense, planar portions of the polymeric body.
  • Each wall is connected at its ends to the respective ends of the two adjacent walls.
  • the side walls may be connected directly to the inner wall and the outer wall.
  • the inner wall is connected directly to the side walls, while the outer wall is connected indirectly, namely via connecting portions with the side walls.
  • the connecting sections are preferably also flat educated.
  • the inner wall is preferably arranged at an angle of about 90 ° to each side wall.
  • the side walls are parallel to each other and the inner wall is parallel to the outer wall.
  • the connecting portions are preferably arranged at an angle to each side wall of 120 ° to 150 °, ideally 135 °. This shape for the spacer has proven particularly useful.
  • the width of the polymeric base body is preferably from 5 mm to 35 mm, particularly preferably from 5 mm to 33 mm, for example from 10 mm to 20 mm.
  • the width is within the meaning of the invention extending between the side walls dimension.
  • the width is the distance between the facing away from each other surfaces of the two side walls.
  • the width of the base body defines the distance of the two glass panes in the insulating glazing.
  • the height of the polymeric base body is preferably from 3 mm to 20 mm, more preferably from 5 mm to 10 mm and most preferably from 5 mm to 8 mm.
  • the hollow chamber of the spacer has an advantageous size for receiving a suitable amount of desiccant.
  • the height is the distance between the opposite surfaces of the outer wall and the inner wall.
  • the polymeric base body preferably comprises at least polyethylene (PE), polycarbonates (PC), polypropylene (PP), polystyrene, polybutadiene, polynitriles, polyesters, polyurethanes, polymethylmethacrylates, polyacrylates, polyamides, polyethylene terephthalate (PET), polybutylene terephthalate (PBT), acrylonitrile-butadiene Styrene (ABS), acrylic ester-styrene-acrylonitrile (ASA), acrylonitrile-butadiene-styrene-polycarbonate (ABS / PC), styrene-acrylonitrile (SAN), polyethylene terephthalate-polycarbonate (PET / PC), polybutylene terephthalate-polycarbonate (PBT / PC) or copolymers or derivatives or mixtures thereof.
  • PE polyethylene
  • PC polycarbonates
  • PP polypropylene
  • polystyrene polybut
  • the polymeric base body particularly preferably contains polypropylene (PP), acrylonitrile-butadiene-styrene (ABS), acrylic ester-styrene-acrylonitrile (ASA), acrylonitrile-butadiene-styrene-polycarbonate (ABS / PC), styrene-acrylonitrile (SAN), polyethylene terephthalate Polycarbonate (PET / PC),
  • the polymeric base body preferably has a glass fiber content of 0 wt .-% to 20 wt .-%, particularly preferably from 0 wt .-% to 15 wt .-%.
  • the glass fiber content is low.
  • the glass fiber content is 0 wt .-%
  • the polymeric base body thus contains no glass fiber reinforced plastic.
  • the polymeric base body contains glass fiber reinforced plastic, wherein the glass fiber content is less than 20 wt .-%, preferably less than 15 wt .-%.
  • the reinforcing strip according to the invention contains, in a preferred embodiment, at least steel.
  • Steel is readily available, easy to process and gives the spacer a particularly advantageous bendability and also improves the stability and rigidity.
  • the steel is most preferably not stainless steel, which is particularly advantageous in terms of the cost of the spacer. Corrosion of the steel is prevented by the incorporation into the polymer body.
  • the reinforcing strip preferably has a thickness of from 0.05 mm to 1 mm, particularly preferably from 0.1 mm to 0.5 mm, very particularly preferably from 0.2 mm to 0.4 mm, in particular from 0.25 mm 0.35 mm. In a particularly preferred embodiment, the thickness of the reinforcing strip is about 0.3 mm. This achieves particularly good results with regard to the bendability, rigidity and stability of the spacer.
  • the reinforcing strip preferably has a width of 1 mm to 5 mm. This achieves good bendability and stiffening. Of course, the width of the reinforcement stiffener also depends on the width of the side wall in the individual case.
  • the length of the reinforcing strip preferably corresponds to the length of the polymeric base body.
  • the reinforcing strip may be perforated in an embodiment of the invention. By suitable perforation, the bendability can be favorably influenced.
  • the reinforcing strip is connected via a bonding agent with the polymeric body.
  • Each contact surface between the reinforcing strip and the base body is preferably provided with the adhesion promoter. This is particularly advantageous for the adhesion between the polymer body and reinforcing strip and thus for the stability of the spacer.
  • the spacer is provided with an insulating film.
  • the insulation film further reduces the thermal conductivity of the spacer.
  • the insulation foil also prevents diffusion through the spacer. In particular, the penetration of moisture into the space between the panes and the loss of an inert gas from the space between the panes is prevented.
  • the insulating film preferably has a gas permeation of less than 0.001 g / (m 2 h).
  • the insulating film is arranged at least on the outer surface of the outer wall.
  • the insulating film is disposed at least on the outer surface of the entire outer wall-containing portion of the base body between the side walls. If the outer wall is connected, for example, to the side walls via a respective connecting section, then the insulating film is arranged on the outer surfaces of the outer wall and the two connecting sections.
  • the insulating film on the outer surface of the entire outer wall-containing portion of the body disposed between the side walls and additionally at least on the Au z Chemistry of at least a portion of each side wall.
  • the insulating film thus extends from the first side wall via the outer wall (and optionally connecting sections) to the opposite side wall. This results in particularly good results with regard to the stability of the composite of polymeric body and insulating file as well as with regard to the thermal properties of the spacer.
  • the insulation film contains at least one polymeric film.
  • the polymeric film serves as a carrier film and preferably has a thickness of 10 ⁇ m to 100 ⁇ m, more preferably of 15 ⁇ m to 60 ⁇ m, which is advantageous for the stability of the insulating film.
  • the insulation film also contains at least one at least one metallic or ceramic layer, which is applied to the carrier film.
  • the thickness of the metallic or ceramic layer is preferably from 10 nm to 1500 nm, particularly preferably from 10 nm to 400 nm, very particularly preferably from 30 nm to 200 nm. This achieves particularly good results with regard to the insulating effect.
  • the insulating film preferably contains at least one further polymeric layer whose thickness is preferably from 5 ⁇ to 100 ⁇ , more preferably from 15 ⁇ to 60 ⁇ .
  • the polymeric carrier film and the polymeric layer are of the same material. This is particularly advantageous since a smaller variety of materials used simplifies the production process.
  • the polymeric film and the polymeric layer or layers preferably have the same material thickness, so that the same starting material can be used for all polymeric constituents of the insulating film.
  • the polymeric film and / or the polymeric layer preferably contain at least polyethylene terephthalate, ethylene vinyl alcohol, polyvinylidene chloride, polyamides, polyethylene, polypropylene, silicones, acrylonitriles, polymethyl acrylates or copolymers or mixtures thereof.
  • a metallic layer preferably contains iron, aluminum, silver, copper, gold, chromium or alloys or mixtures thereof.
  • a ceramic layer preferably contains silicon oxide and / or silicon nitride.
  • the insulating film preferably contains at least two metallic or ceramic layers, wherein in each case at least one polymeric layer is arranged between two adjacent metallic or ceramic layers. This is particularly advantageous for the insulating effect of the polymeric film, in particular because any defects within a layer can be compensated by one of the other layers. In addition, have multiple thin layers compared to a single thick layer better adhesion properties.
  • the uppermost layer of the insulating film is a polymeric layer, which serves to protect the metallic or ceramic layers. The uppermost layer is the layer which has the greatest distance from the polymeric carrier film.
  • the insulating film has in a particularly advantageous embodiment of two to four metallic or ceramic layers.
  • the metallic or ceramic layers are preferably each arranged alternately with at least one polymeric layer.
  • the invention further comprises an insulating glazing, comprising at least two glass panes arranged parallel to one another and a spacer according to the invention arranged in the edge region between the panes of glass.
  • the spacer is preferably formed circumferentially frame-shaped.
  • Each side wall faces one of the glass panes and is brought into contact with the respective glass pane.
  • the side walls of the spacer are preferably connected via a sealing layer with the glass sheets.
  • butyl is suitable as the sealing layer.
  • an outer sealant is preferably arranged.
  • the externa ßere, preferably plastic sealant contains, for example, polymers or silane-modified polymers, more preferably organic polysulfides, silicones, RTV (raumtemperturvernetzenden) silicone rubber, HTV (hochtemperturvernetzenden) silicone rubber, peroxidischvernetzten silicone rubber and / or addition-crosslinked silicone rubber, polyurethanes, butyl rubber and / or polyacrylates.
  • polymers or silane-modified polymers more preferably organic polysulfides, silicones, RTV (raumtemperturvernetzenden) silicone rubber, HTV (hochtemperturvernetzenden) silicone rubber, peroxidischvernetzten silicone rubber and / or addition-crosslinked silicone rubber, polyurethanes, butyl rubber and / or polyacrylates.
  • the space between the panes is preferably evacuated or filled with an inert gas, for example argon or krypton.
  • the hollow chamber of the spacer is preferably completely or partially filled with a desiccant. Residual moisture in the space between the panes is absorbed by the desiccant so that the panes can not fog up.
  • Suitable drying agents are, in particular, silica gels, molecular sieves, CaCl 2 , Na 2 SO 4 , activated carbon, silicates, bentonites, and / or zeolites.
  • the insulating glazing preferably has a Psi value of less than 0.05 W / (m * K), preferably less than 0.035 W / (m * K).
  • the Psi value is measured as thermal conductivity on insulating glass with frame system.
  • the glass sheets are preferably made of soda-lime glass.
  • the thickness of the disks can in principle be varied as desired, and in particular a thickness of 1 mm to 25 mm, preferably of 3 mm to 19 mm, is customary.
  • the transparency of the discs is preferably greater than 85%.
  • the insulating glazing can also comprise more than two glass panes, wherein a spacer according to the invention is preferably arranged between each two adjacent panes of glass.
  • the object of the invention is further achieved according to the invention by a method for producing a spacer according to the invention for an insulating glazing, wherein a) two reinforcing strips are arranged parallel to one another,
  • the reinforcing strips are overmolded with a polymeric material to form the polymeric base body
  • an insulating film is applied at least on the outer wall of the base body, d) the polymeric base body is cut to size with the reinforcing strips and e) the polymeric base body with the reinforcing strips is bent into a circumferential frame shape.
  • the polymeric base body with the reinforcing strips is produced as an endless profile by extrusion. From this endless profile, a profile section with the required length for use in insulating glass is cut to size. The profile section has a first and a second end. The profile section is then bent to the circumferential, usually rectangular frame shape. The ends are preferably connected to each other, for example by a connector to improve the stability of the frame shape.
  • the hollow chamber of the spacer is preferably filled with a desiccant.
  • the desiccant may alternatively be extruded together with the base body.
  • the bending of the profile section is preferably carried out without prior heating, in particular at ambient temperature. It is a particular advantage of the spacer with the reinforcing strips according to the invention that such heating is not required.
  • the spacer can be processed on conventional industrial manufacturing equipment.
  • the polymeric base body is provided with an insulation film according to the invention. This is preferably done before bending the spacer.
  • the insulating film can be applied for example by gluing on the base body or can be extruded together with the base body.
  • the insulating glass according to the invention is produced by arranging the frame-shaped spacer in the edge region between two parallel glass panes.
  • the glass sheets are connected to the spacer, preferably by pressing and via a respective sealing layer.
  • an externa ßere sealant is arranged at least on the Au Texwand.
  • the marginal space between the discs and the spacer is circumferentially filled with the externa ßeren sealant.
  • the space between the glass panes delimited by the frame-shaped spacer is preferably subjected to negative pressure and / or filled with an inert gas.
  • the invention further comprises the use of the spacer according to the invention in multiple glazings, preferably in insulating glazings.
  • the insulating glazings are preferably used as window glazing or facade glazing of buildings.
  • Fig. 2 shows a cross section through an embodiment of the invention
  • FIG. 3 shows a flow chart of an embodiment of the method according to the invention.
  • Fig. 1 shows a cross section through a spacer according to the invention for an insulating glazing.
  • the spacer comprises a polymer body I, which consists for example of polypropylene (PP).
  • the polymer has a Glass fiber content of 0 wt .-% or a relatively low glass fiber content of, for example, 10 wt .-% to.
  • the main body I comprises two mutually parallel side walls 1, 2, which are intended to be brought into contact with the panes of the insulating glass. Between each one end of each side wall 1, 2 extends an inner wall 3, which is intended to be facing the space between the panes of the insulating glass. At the other ends of the side walls 1, 2, in each case a connecting section 7, T connects. About the connecting portions 7, T, the side walls 1, 2 are connected to a Au texwand 4, which is formed parallel to the inner wall 3. The angle ⁇ between the connecting sections 7 (or 7 ') and the side wall 3 (or 4) is about 45 °. It follows that also the angle between the outer wall 4 and the connecting portions 7, T is about 45 °.
  • the main body I surrounds a hollow chamber 5.
  • the material thickness (thickness) of the side walls 1, 2, the inner wall 3, the Au OWand 4 and the connecting portions 7, T is approximately equal and is for example 1 mm.
  • the main body has, for example, a height of 6.5 mm and a width of 15 mm.
  • a reinforcing strip 6 is embedded in each side wall 1, 2, a reinforcing strip 6 is embedded.
  • the reinforcing strips 6, 6 ' are made of steel, which is not stainless steel, and have a thickness (material thickness) of, for example, 0.3 mm and a width of, for example, 3 mm.
  • the reinforcing strips give the body I sufficient flexibility and stability to be bent without prior heating and to maintain the desired shape permanently.
  • the spacer has a very low thermal conductivity, because the metallic reinforcing strips 6, 6 'are embedded only in the side walls 1, 2, over which only a very small part of the heat exchange between the disc interior and Outside environment takes place.
  • the reinforcing strips 6, 6 ' not as a thermal bridge.
  • an insulating film 8 is arranged on the outer surface of the outer wall 4 and the connecting portions 7, T and a portion of the Au z Chemistry each of the side walls 1, 2.
  • the insulating film 8 reduces diffusion through the spacer. Thereby for example, the ingress of moisture into the interior of the pane of an insulating glazing or the loss of the inert gas filling of the interior of the pane can be reduced.
  • the insulating film 8 also improves the thermal properties of the spacer, thus reducing the thermal conductivity.
  • the insulating film 8 comprises the following layer sequence: a polymeric carrier film (consisting of LLDPE (linear low density polyethylene), thickness: 24 ⁇ m) / a metallic layer (consisting of aluminum, thickness: 50 nm) / a polymeric layer (PET, 12 ⁇ m ) / a metallic layer (Al, 50 nm) / a polymeric layer (PET, 12 ⁇ ).
  • the layer stack on the carrier film thus contains two polymeric layers and two metallic layers, wherein the polymeric layers and the metallic layers are arranged alternately.
  • the layer stack may also comprise further metallic layers and / or polymeric layers, wherein metallic and polymeric layers are preferably also arranged alternately, so that between each two adjacent metallic layers, a polymeric layer is disposed and above the uppermost metallic layer, a polymeric layer is arranged.
  • the spacer according to the invention has advantageous properties with respect to rigidity, tightness and thermal conductivity. It is therefore particularly suitable for use in insulating glasses, especially in the window or facade area of buildings.
  • Fig. 2 shows a cross section through an inventive insulating glass in the region of the spacer.
  • the insulating glass consists of two glass panes 10, 1 1 made of soda-lime glass with a thickness of, for example, 3 mm, which are connected to one another via a arranged in the edge region according to the invention spacers.
  • the spacer is the spacer of FIG. 1 with the reinforcing strips 6,6 'and the insulating film 8.
  • the side walls 1, 2 of the spacer are connected via a respective sealing layer 13 with the glass sheets 10, 1 1.
  • the sealing layer 13 consists for example of butyl.
  • an outer sealant 9 is arranged in the marginal space of the insulating glass between the glass sheets 10, 1 1 and the spacer circumferentially.
  • the sealant 9 is for example a silicone rubber.
  • the hollow chamber 5 of the main body I is filled with a desiccant 12.
  • the desiccant 12 is, for example, a molecular sieve.
  • the desiccant 12 takes up a between the glass sheets and the spacer existing residual moisture and thus prevents fogging of the discs 10, 1 1 in the space between the panes.
  • the effect of the desiccant 12 is promoted by holes, not shown, in the inner wall 3 of the body I.
  • FIG. 3 shows a flow chart of an exemplary embodiment of the method according to the invention for producing a spacer for an insulating glass.
  • FIG. 1 An inventive spacer according to FIG. 1 was produced with the reinforcing strips 6, 6 'according to the invention and the insulating film 8.
  • the spacer was produced as a straight profile and then bent into the required shape for use in insulating glazing. It was then evaluated whether the spacer has been damaged by the bending process, which opposes its use, and whether it retains the desired shape permanently. In case the spacer was not damaged and retained its shape, it was considered to be "bendable.”
  • the spacer's thermal conductivity ( ⁇ value) was measured, which was the equivalent thermal conductivity, ie Total spacer measurement disregarding the spatial dependence of the thermal conductivity on the spacer The results are summarized in Table 1.
  • Comparative Example 1 differed from the example of the present invention by the configuration of the spacer. Otherwise, Comparative Example 1 was carried out in the same way as the example.
  • the spacer in Comparative Example 1 had no reinforcing strips 6, 6 'embedded in the side walls.
  • For putting in the glass fiber content of the polymer body I was 35 wt .-%. Apart from that, the spacer corresponded to that of FIG. 1. The results are summarized in Table 1. Comparative Example 2
  • Comparative Example 2 differed from the example according to the invention by the configuration of the spacer. Otherwise, Comparative Example 2 was carried out in the same way as the example.
  • the spacer in Comparative Example 2 had no reinforcing strips 6, 6 'embedded in the side walls. Instead, a stainless steel foil having a thickness of 0.1 mm was applied on the outer surface of the sidewalls, the connecting portions and the outer wall to provide the spacer according to the prior art with a bendability.
  • the glass fiber content of the polymeric base body I was 35 wt .-%. The results are summarized in Table 1.
  • the spacer according to the invention in the example was in contrast to the spacer of Comparative Example 1 bendable due to the reinforcing strips 6,6 '.
  • the thermal conductivity was increased by the reinforcing strips 6,6 'but only slightly.
  • the spacer according to the invention in the example had, in contrast to the spacer of Comparative Example 2, a significantly low thermal conductivity.
  • the reason for this is the reinforcing strips 6,6 'according to the invention, which, in contrast to the prior art stainless steel foil, does not serve as a thermal bridge.
  • the spacer according to the invention thus combines a sufficient bendability with a very low thermal conductivity. This result was unexpected and surprising to the skilled person. LIST OF REFERENCE NUMBERS

Landscapes

  • Engineering & Computer Science (AREA)
  • Structural Engineering (AREA)
  • Civil Engineering (AREA)
  • Architecture (AREA)
  • Joining Of Glass To Other Materials (AREA)
  • Securing Of Glass Panes Or The Like (AREA)
  • Laminated Bodies (AREA)

Abstract

Die vorliegende Erfindung betrifft einen Abstandshalter für eine Isolierverglasung aus mindestens zwei Glasscheiben (10,11), mindestens umfassend: - einen polymeren Grundkörper (I), mindestens umfassend zwei zueinander parallele Seitenwände (1,2), die miteinander verbunden sind durch eine Innenwand (3) und eine Außenwand (4), wobei die Seitenwände (1,2), die Innenwand (3) und die Außenwand (4) eine Hohlkammer (5) umgeben, und - zumindest auf der Außenwand (4) eine Isolationsfolie (8), welche eine polymere Trägerfolie und mindestens eine metallische oder keramische Schicht enthält, wobei in jede Seitenwand (1,2) ein Verstärkungsstreifen (6,6') eingelagert ist, welcher zumindest ein Metall oder eine metallische Legierung enthält.

Description

Abstandshalter für Isolierverglasungen
Die Erfindung betrifft einen Abstandshalter für Isolierverglasungen, ein Verfahren zu dessen Herstellung, dessen Verwendung und eine Isolierverglasung.
Im Fenster- und Fassadenbereich von Gebäuden werden heutzutage fast ausschließlich Isolierverglasungen eingesetzt. Isolierverglasungen bestehen zumeist aus zwei Glasscheiben, welche durch einen Abstandshalter (Spacer) in einem definierten Abstand zueinander angeordnet sind. Der Abstandshalter ist umlaufend im Randbereich der Verglasung angeordnet. Zwischen den Scheiben ist somit ein Zwischenraum ausgebildet, welcher in der Regel mit einem Inertgas gefüllt ist. Der Warmefluss zwischen dem von der Verglasung begrenzten Innenraum und der äu ßeren Umgebung kann durch die Isolierverglasung im Vergleich zu einer einfachen Verglasung erheblich reduziert werden. Der Abstandhalter hat einen nicht zu vernachlässigenden Einfluss auf die thermischen Eigenschaften der Scheibe. Herkömmliche Abstandshalter bestehen aus einem Leichtmetall, üblicherweise Aluminium. Diese lassen sich leicht verarbeiten. Der Abstandshalter wird typischerweise als gerades Endlos-Profil hergestellt, welches auf die benötigte Größe zurechtgeschnitten und dann durch Biegen in die rechteckige Form gebracht wird, welche für den Einsatz in der Isolierverglasung notwendig ist. Aufgrund der guten Wärmeleitfähigkeit des Aluminiums wird die isolierende Wirkung der Verglasung im Randbereich allerdings deutlich herabgesetzt {cold edge- Effekt).
Um die thermischen Eigenschaften zu verbessern, sind sogenannte warm ec/ge-Lösungen für Abstandshalter bekannt. Diese Abstandshalter bestehen insbesondere aus Kunststoff und weisen folglich eine deutlich verringerte Wärmeleitfähigkeit auf. Kunststoff- Abstandshalter sind beispielsweise aus DE 27 52 542 C2 oder DE 19 625 845 A1 bekannt. Was die Verarbeitung anbelangt weisen die Kunststoff-Abstandhalter aber Nachteile auf. Sie lassen sich beispielsweise durch Extrusion zwar als Endlos-Profil herstellen, jedoch erfordert das anschließende Biegen eine lokale Erwärmung des Materials, was mit herkömmlichen Maschinen nicht einfach zu realisieren ist. Solche Profile machen für den Hersteller von Isolierverglasungen also erhebliche Investitionen erforderlich.
In der DE 10 2010 006 127 A1 ist vorgeschlagen, den Kunststoff-Abstandshalter mit einer metallischen Folie zu versehen, um die Biegbarkeit zu verbessern. Die metallische Folie ist insbesondere an den zu den Glasscheiben hingewandten Flächen und der dazwischen liegenden, vom Scheibenzwischenraum abgewandten Fläche des Abstandshalters angeordnet. Die Verbesserung der Biegeeigenschaften geht bei dieser Lösung allerdings mit einer Verschlechterung der thermischen Eigenschaften einher, weil die metallische Folie als Wärmebrücke wirkt. Die thermischen Vorteile des Kunststoff-Abstandshalter werden daher zu einem gewissen Maße wieder aufgewogen.
Aus der DE 198 07 454 A1 ist ein Kunststoff-Abstandshalter bekannt, in dessen Seitenwände Lochblechstreifen eingebettet sind. Die Lochblechstreifen dienen der Versteifung des Abstandshalters. Die Auswirkungen der Lochblechstreifen an die Biegbarkeit sowie damit einhergehende Anforderungen an das Material des Abstandshalters werden nicht diskutiert.
Es besteht also Bedarf an Abstandshaltern für Isolierverglasungen, welche eine minimale Wärmeleitfähigkeit gewährleisten und dennoch einfach zu verarbeiten, insbesondere biegbar sind. Der vorliegenden Erfindung liegt die Aufgabe zugrunde, einen solchen Abstandshalter bereitzustellen.
Die Aufgabe der Erfindung wird erfindungsgemäß durch einen Abstandshalter für eine Isolierverglasung gemäß dem unabhängigen Anspruch 1 gelöst. Bevorzugte Ausführungen gehen aus den Unteransprüchen hervor.
Der erfindungsgemäße Abstandshalter für eine Isolierverglasung aus mindestens zwei Glasscheiben umfasst mindestens einem polymeren Grundkörper. Der polymere Grundkörper umfasst mindestens zwei zueinander parallele Seitenwände, die dafür vorgesehen sind, den Glasscheiben zugewandt zu werden und mit den Glasscheiben in Kontakt gebracht zu werden, und die miteinander verbunden sind durch eine Innenwand und eine Au ßenwand. Die Seitenwände, die Innenwand und die Außenwand umgeben eine Hohlkammer. Eine solche Hohlkammer ist für Abstandshalter üblich und ist insbesondere zur Aufnahme eines Trockenmittels vorgesehen.
In jede Seitenwand des polymeren Grundkörpers ist bevorzugt ein Verstärkungsstreifen eingelagert. Der Verstärkungsstreifen enthält bevorzugt zumindest ein Metall oder eine metallische Legierung. Unter„eingelagert" ist im Sinne der Erfindung zu verstehen, dass der Verstärkungsstreifen rundherum vom Material des polymeren Grundkörpers beziehungsweise der Seitenwände des polymeren Grundkörpers umgeben ist. Die Verstärkungsstreifen verleihen dem Abstandshalter die notwendige Biegbarkeit, um auch mit herkömmlichen industriellen Anlagen verarbeitet zu werden. Der Abstandshalter kann in seine endgültige Form gebogen werden, ohne vorher erwärmt werden zu müssen. Durch die Verstärkungsstreifen bleibt die Form dauerhaft stabil. Zudem erhöht der Verstärkungsstreifen die Stabilität des Abstandshalters. Die Verstärkungsstreifen wirken aber nicht als Wärmebrücke, so dass die Eigenschaften des Abstandshalters hinsichtlich der Wärmeleitung nicht wesentlich negativ beeinflusst werden. Dies hat insbesondere zwei Gründe: (a) die Verstärkungsstreifen sind in den polymeren Grundkörper eingelagert, haben also keinen Kontakt zur Umgebung; (b) die Verstärkungsstreifen in den Seitenwänden angeordnet und nicht etwa in der Außenwand oder der Innenwand, über welche der Wärmeaustausch zwischen Scheibenzwischenraum und äußerer Umgebung erfolgt. Die gleichzeitige Realisierung von Biegbarkeit und optimalen thermischen Eigenschaften ist der entscheidende Vorteil der vorliegenden Erfindung. Die Erfinder haben außerdem erkannt, dass die Biegbarkeit vom Glasfaseranteil des polymeren Grundkörpers abhängt. Der Glasfaseranteil liegt bei üblichen polymeren Abstandshaltern aus glasfaser-verstärktem Kunststoff bei etwa 35 Gew.-%. Durch diesen Glasfaseranteil wird eine ausreichende Stabilität des Abstandshalters erreicht. Allerdings ist der Abstandshalter mit einem so hohen Glasfaseranteil zu steif, um ohne Beschädigung gebogen werden zu können. Die Erfinder haben erkannt, dass ein Glasfaseranteil von höchstens 20 Gew.-% eine gute Biegbarkeit ermöglicht. Die mit dem verringerten Glasfaseranteil einhergehende geringere Steifigkeit und Stabilität, insbesondere auch gegenüber Rückstellkräften nach dem Biegen, wird durch die erfindungsgemäßen Verstärkungsprofile kompensiert.
Die erfindungsgemäßen Verstärkungsstreifen in Verbindung mit dem erfindungsgemäß geringen Glasfaseranteil des polymeren Grundkörpers ermöglichen also eine gute Biegbarkeit bei gleichzeitig hoher Stabilität und Steifigkeit in Einbaulage. Die anderen Abschnitte des Grundkörpers außer den Seitenwänden, insbesondere die Innenwand und die Au ßenwand, weisen bevorzugt keine metallischen Einlagerungen auf.
Die Wärmeleitfähigkeit (λ-Wert) des Abstandshalters beträgt bevorzugt kleiner als 0,25 W/(m*K), besonders bevorzugt kleiner als 0,2 W/(m*K). Damit ist die für den gesamten Abstandshalter gemessene Wärmeleitfähigkeit gemeint (Äquivalent-Wärmeleitfähigkeit) ohne Berücksichtigung lokaler Schwankungen der Wärmeleitfähigkeit in Abhängigkeit von der genauen Position auf dem Abstandshalter. Solch geringe Wärmeleitfähigkeiten sind überraschenderweise durch einen polymeren Grundkörper mit dem erfindungsgemäßen Verstärkungsprofil zu erreichen. Die Seitenwände des polymeren Grundkörpers sind dafür vorgesehen, in der gefertigten Isolierverglasung den Glasscheiben zugewandt zu sein. Der Kontakt des Abstandshalters mit den Glasscheiben erfolgt über die Seitenwände. Es muss dabei kein direkter Kontakt zwischen Abstandhalter und Scheibe vorliegen. Stattdessen kann der Kontakt mittelbar, beispielsweise über eine Dichtmasse erfolgen.
Die Innenwand ist dafür vorgesehen, in der gefertigten Isolierverglasung dem Zwischenraum zwischen den Glasscheiben zugewandt zu ein. Die Innenwand ist in einer vorteilhaften Ausgestaltung mit Löchern versehen, um die Wirkung eines Trockenmittels in der Hohlkammer auf den Zwischenraum zu gewährleisten.
Die Au ßenwand liegt der Innenwand gegenüber und ist dafür vorgesehen, der äu ßeren Umgebung der Isolierverglasung zugewandt zu sein. Die Au ßenwand weist aus dem Zwischenraum zwischen den Glasscheiben, in welchem der Abstandshalter angeordnet ist, heraus.
Die Seitenwände, die Außenwand und die Innenwand und gegebenenfalls die Verbindungsabschnitte weisen jeweils bevorzugt eine Dicke (Materialstärke) von 0,5 mm bis 2 mm, besonders bevorzugt von 0,8 mm bis 1 ,5 mm auf. Die Dicke des polymeren Grundkörpers ist bevorzugt konstant, das hei ßt alle Wände und Abschnitte weisen die gleiche Dicke auf. Ein solcher Abstandshalter ist einfach zu verarbeiten und vorteilhaft stabil.
Die Innenwand, die Außenwand und die Seitenwände sind in einer bevorzugten Ausgestaltung jeweils plan ausgebildet. Die Innenwand, die Außenwand und die Seitenwände sind in diesem Sinne also plane Abschnitte des polymeren Grundkörpers. Jede Wand ist an ihren Enden mit den jeweiligen Enden der beiden benachbarten Wände verbunden. Die Seitenwände können direkt mit der Innenwand und der Au ßenwand verbunden sein.
In einer bevorzugten Ausgestaltung ist die Innenwand direkt mit den Seitenwänden verbunden, während die Außenwand indirekt, nämlich über Verbindungsabschnitte mit den Seitenwänden verbunden ist. Die Verbindungsabschnitte sind bevorzugt ebenfalls plan ausgebildet. Die Innenwand ist bevorzugt in einem Winkel von etwa 90° zu jeder Seitenwand angeordnet. Die Seitenwände sind zueinander parallel und die Innenwand ist parallel zur Au ßenwand. Die Verbindungsabschnitte sind bevorzugt in einem Winkel zu jeder Seitenwand von 120 ° bis 150° idealerweise 135° angeordnet. Diese Form für den Abstandhalter hat sich besonders bewährt.
Die Breite des polymeren Grundkörpers beträgt bevorzugt von 5 mm bis 35 mm, besonders bevorzugt von 5 mm bis 33 mm, beispielsweise von 10 mm bis 20 mm. Die Breite ist im Sinne der Erfindung die sich zwischen den Seitenwänden erstreckende Dimension. Die Breite ist der Abstand zwischen den voneinander abgewandten Flächen der beiden Seitenwände. Die Breite des Grundkörpers legt in die Isolierverglasung den Abstand der beiden Glasscheiben fest.
Die Höhe des polymeren Grundkörpers beträgt bevorzugt von 3 mm bis 20 mm, besonders bevorzugt von 5 mm bis 10 mm und ganz besonders bevorzugt von 5 mm bis 8 mm. In diesem Bereich für die Höhe besitzt der Abstandshalter eine vorteilhafte Stabilität, ist aber andererseits in der Isolierverglasung vorteilhaft unauffällig. Au ßerdem weist die Hohlkammer des Abstandshalters eine vorteilhafte Größe zur Aufnahme einer geeigneten Menge an Trockenmittel auf. Die Höhe ist der Abstand zwischen den voneinander abgewandten Flächen der Außenwand und der Innenwand.
Der polymere Grundkörper enthält bevorzugt zumindest Polyethylen (PE), Polycarbonate (PC), Polypropylen (PP), Polystyrol, Polybutadien, Polynitrile, Polyester, Polyurethane, Polymethylmetacrylate, Polyacrylate, Polyamide, Polyethylenterephthalat (PET), Polybutylenterephthalat (PBT), Acrylnitril-Butadien-Styrol (ABS), Acrylester-Styrol-Acrylnitril (ASA), Acrylnitril-Butadien-Styrol-Polycarbonat (ABS/PC), Styrol-Acrylnitril (SAN), Polyethylenterephthalat-Polycarbonat (PET/PC), Polybutylenterephthalat- Polycarbonat (PBT/PC) oder Copolymere oder Derivate oder Gemische davon. Der polymere Grundkörper enthält besonders bevorzugt Polypropylen (PP), Acrylnitril-Butadien-Styrol (ABS), Acrylester-Styrol-Acrylnitril (ASA), Acrylnitril-Butadien-Styrol-Polycarbonat (ABS/PC), Styrol-Acrylnitril (SAN), Polyethylenterephthalat-Polycarbonat (PET/PC),
Polybutylenterephthalat-Polycarbonat (PBT/PC) oder Copolymere oder Derivate oder Gemische davon. Diese Materialen sind besonders vorteilhaft im Hinblick auf eine geringe Wärmeleitung und gute Verarbeitung. Der polymere Grundkörper weist bevorzugt einen Glasfaser-Anteil von 0 Gew.-% bis 20 Gew.-% auf, besonders bevorzugt von 0 Gew.-% bis 15 Gew.-%. Im Vergleich zu polymeren Abstandshaltern nach dem Stand der Technik, welche in der Regel einen Glasfaser-Anteil von etwa 35 Gew.-% aufweisen, ist der Glasfaser-Anteil gering. Dadurch wird zwar die Steifigkeit und Stabilität des Abstandshalters verringert, aber die Biegbarkeit vorteilhaft verbessert. Die reduzierte Stabilität, insbesondere auch gegenüber Rückstellkräften nach dem Biegen, wird durch die erfindungsgemäßen Verstärkungsprofile kompensiert. In einer vorteilhaften Ausgestaltung beträgt der Glasfaser-Anteil 0 Gew.-%, der polymere Grundkörper enthält also keinen glasfaserverstärkten Kunststoff. In einer weiteren vorteilhaften Ausgestaltung enthält der polymere Grundkörper glasfaserverstärkten Kunststoff, wobei der Glasfaser-Anteil kleiner 20 Gew.-% beträgt, bevorzugt kleiner 15 Gew.-%. Durch einen Glasfaseranteil kann insbesondere der Wärmeausdehnungskoeffizient des Grundkörpers variiert und angepasst werden.
Der erfindungsgemäße Verstärkungsstreifen enthält in einer bevorzugten Ausgestaltung zumindest Stahl. Stahl ist leicht verfügbar, gut zu verarbeiten und verleiht dem Abstandshalter eine besonders vorteilhafte Biegbarkeit und verbessert zudem die Stabilität und Steifigkeit. Der Stahl ist besonders bevorzugt kein Edelstahl, was im Hinblick auf die Kosten für den Abstandshalter besonders vorteilhaft ist. Eine Korrosion des Stahls wird durch die Einlagerung in den polymeren Grundkörper verhindert.
Der Verstärkungsstreifen weist bevorzugt eine Dicke von 0,05 mm bis 1 mm, besonders bevorzugt von 0,1 mm bis 0,5 mm auf, ganz besonders bevorzugt von 0,2 mm bis 0,4 mm, insbesondere von 0,25 mm bis 0,35 mm. In einer besonders bevorzugten Ausgestaltung beträgt die Dicke des Verstärkungsstreifens etwa 0,3 mm. Damit werden besonders gute Ergebnisse hinsichtlich die Biegbarkeit, Steifigkeit und Stabilität des Abstandshalters erreicht.
Der Verstärkungsstreifen weist bevorzugt eine Breite von 1 mm bis 5 mm auf. Damit wird eine gute Biegbarkeit und Versteifung erreicht. Die Breite des Verstärkungssteifens ist im Einzelfall natürlich auch von der Breite der Seitenwand abhängig. Die Länge des Verstärkungsstreifens entspricht bevorzugt der Länge des polymeren Grundkörpers. Der Verstärkungsstreifen kann in einer Ausbildung der Erfindung perforiert sein. Durch eine geeignete Perforation kann die Biegbarkeit vorteilhaft beeinflusst werden. In einer vorteilhaften Ausgestaltung ist der Verstärkungsstreifen über einen Haftvermittler mit dem polymeren Grundkörper verbunden. Jede Kontaktfläche zwischen Verstärkungsstreifen und Grundkörper ist bevorzugt mit dem Haftvermittler versehen. Das ist besonders vorteilhaft für die Haftung zwischen polymerem Grundkörper und Verstärkungsstreifen und damit für die Stabilität des Abstandshalters.
In einer bevorzugten Ausgestaltung der Erfindung ist der Abstandshalter mit einer Isolationsfolie versehen. Die Isolationsfolie verringert die Wärmeleitfähigkeit des Abstandshalters weiter. Die Isolationsfolie verhindert außerdem die Diffusion durch den Abstandshalter. So wird insbesondere das Eindringen von Feuchtigkeit in den Scheibenzwischenraum und der Verlust eines Inertgases aus dem Scheibenzwischenraum verhindert. Die Isolationsfolie weist bevorzugt eine Gaspermeation kleiner als 0,001 g/(m2 h) auf.
Die Isolationsfolie ist zumindest auf der Außenfläche der Außenwand angeordnet. Mit Au ßenfläche wird im Sinne der Erfindung die von der Hohlkammer abgewandte Oberfläche einer Wand bezeichnet. Bevorzugt ist die Isolationsfolie zumindest auf der Au ßenfläche des gesamten die Außenwand enthaltenden Abschnitts des Grundkörpers zwischen den Seitenwänden angeordnet. Ist die Au ßenwand beispielsweise über jeweils einen Verbindungsabschnitt mit den Seitenwänden verbunden, so ist die Isolationsfolie auf den Au ßenflächen der Au ßenwand und der beiden Verbindungsabschnitte angeordnet. In einer besonders vorteilhaften Ausgestaltung die Isolationsfolie auf der Außenfläche des gesamten die Außenwand enthaltenden Abschnitts des Grundkörpers zwischen den Seitenwänden angeordnet und zusätzlich mindestens auf der Au ßenfläche von zumindest einem Abschnitt jeder Seitenwand. Die Isolationsfolie erstreckt sich also von der ersten Seitenwand über die Au ßenwand (und gegebenenfalls Verbindungsabschnitte) zur gegenüberliegenden Seitenwand. Damit werden besonders gute Ergebnisse hinsichtlich der Stabilität des Verbunds aus polymerem Grundkörper und Isolationsfile sowie hinsichtlich der thermischen Eigenschaften des Abstandshalters erreicht. Die Isolationsfolie enthält mindestens eine polymere Folie. Die polymere Folie dient als Trägerfolie und weist bevorzugt eine Dicke von 10 μηι bis 100 μηι auf, besonders bevorzugt von 15 μηι bis 60 μηι, was vorteilhaft für die Stabilität der Isolationsfolie ist. Die Isolationsfolie enthält au ßerdem zumindest eine mindestens eine metallische oder keramische Schicht, die auf der Trägerfolie aufgebracht ist. Die Dicke der metallischen beziehungsweise keramischen Schicht beträgt bevorzugt von 10 nm bis 1500 nm, besonders bevorzugt von 10 nm bis 400 nm, ganz besonders bevorzugt von 30 nm bis 200 nm. Damit werden besonders gute Ergebnisse hinsichtlich der Isolationswirkung erreicht.
Die Isolationsfolie enthält bevorzugt mindestens eine weitere polymere Schicht, deren Dicke bevorzugt von 5 μηι bis 100 μηι, besonders bevorzugt von 15 μηι bis 60 μηι beträgt.
In einer besonders bevorzugten Ausführungsform bestehen die polymere Trägerolie und die polymere Schicht aus dem gleichen Material. Dies ist besonders vorteilhaft, da eine geringere Vielfalt der verwendeten Materialien den Produktionsablauf vereinfacht. Dabei weisen die polymere Folie und die polymere Schicht oder die polymeren Schichten bevorzugt die gleiche Materialstärke auf, so dass das gleiche Ausgangsmaterial für alle polymeren Bestandteile der Isolationsfolie verwendet werden kann.
Die polymere Folie und/oder die polymere Schicht enthalten bevorzugt zumindest Polyethylenterephthalat, Ethylenvinylalkohol, Polyvinylidenchlorid, Polyamide, Polyethylen, Polypropylen, Silikone, Acrylonitrile, Polymethylacrylate oder Copolymere oder Gemische davon.
Eine metallische Schicht enthält bevorzugt Eisen, Aluminium, Silber, Kupfer, Gold, Chrom oder Legierungen oder Gemische davon.
Eine keramische Schicht enthält bevorzugt Siliziumoxid und/oder Siliziumnitrid.
Die Isolationsfolie enthält bevorzugt mindestens zwei metallische oder keramische Schichten, wobei zwischen zwei benachbarten metallischen oder keramischen Schichten jeweils mindestens eine polymere Schicht angeordnet ist. Das ist besonders vorteilhaft für die isolierende Wirkung der polymeren Folie, insbesondere weil eventuelle Defekte innerhalb einer Schicht durch eine der anderen Schichten ausgeglichen werden können. Zudem weisen mehrere dünne Schichten im Vergleich zu einer einzelnen dicken Schicht bessere Haftungseigenschaften auf. Bevorzugt ist die oberste Schicht der Isolationsfolie eine polymere Schicht, was dem Schutz der metallischen beziehungsweise keramischen Schichten dient. Die oberste Schicht ist dabei diejenige Schicht, die den größten Abstand zur polymeren Trägerfolie aufweist. Die Isolationsfolie weist in einer besonders vorteilhaften Ausgestaltung von zwei bis vier metallische oder keramische Schichten auf. Die metallischen oder keramischen Schichten sind bevorzugt jeweils alternierend mit mindestens einer polymeren Schicht angeordnet.
Die Erfindung umfasst weiter eine Isolierverglasung, mindestens umfassend zwei parallel zueinander angeordnete Glasscheiben und einen im Randbereich zwischen den Glasscheiben angeordneten erfindungsgemäßen Abstandshalter. Der Abstandshalter ist bevorzugt umlaufend rahmenförmig ausgebildet. Jede Seitenwand ist einer der Glasscheiben zugewandt und mit der jeweiligen Glasscheibe in Kontakt gebracht. Die Seitenwände des Abstandshalters sind bevorzugt über eine Dichtungsschicht mit den Glasscheiben verbunden. Als Dichtungsschicht eignet sich beispielsweise Butyl. Zumindest auf der Außenwand des Abstandshalters, bevorzugt im Randraum zwischen den Scheiben und dem Abstandshalter ist bevorzugt eine äußere Dichtmasse angeordnet. Die äu ßere, bevorzugt plastische Dichtmasse enthält beispielsweise Polymere oder silanmodifizierte Polymere, besonders bevorzugt organische Polysulfide, Silikone, RTV (raumtemperturvernetzenden)-Silikonkautschuk, HTV-(hochtemperturvernetzenden) Silikonkautschuk, peroxidischvernetzten-Silikonkautschuk und/oder additionsvernetzten- Silikonkautschuk, Polyurethane, Buthylkautschuk und/oder Polyacrylate.
Der Scheibenzwischenraum ist bevorzugt evakuiert oder mit einem Inertgas gefüllt, beispielsweise Argon oder Krypton.
Die Hohlkammer des Abstandshalters ist bevorzugt vollständig oder teilweise mit einem Trockenmittel gefüllt. Restfeuchtigkeit im Scheibenzwischenraum wird durch das Trockenmittel aufgenommen, so dass die Scheiben nicht beschlagen können. Als Trockenmittel eignen sich insbesondere Kieselgele, Molekularsiebe, CaCI2, Na2S04, Aktivkohle, Silikate, Bentonite, und/oder Zeolithe.
Die Isolierverglasung weist bevorzugt einen Psi-Wert von kleiner 0,05 W/(m*K), bevorzugt kleiner 0,035 W/(m*K) auf. Der Psi-Wert wird als Wärmeleitfähigkeit am Isolierglas mit Rahmensystem gemessen. Die Glasscheiben bestehen bevorzugt aus Kalk-Natron-Glas. Die Dicke der Scheiben kann prinzipiell beliebig variiert werden, gebräuchlich ist insbesondere eine Dicke von 1 mm bis 25 mm, bevorzugt von 3 mm bis 19 mm auf. Die Transparenz der Scheiben beträgt bevorzugt größer als 85%.
Die Isolierverglasung kann natürlich auch mehr als zwei Glasscheiben umfassen, wobei zwischen jeweils zwei benachbarten Glasscheiben bevorzugt ein erfindungsgemäßer Abstandshalter angeordnet ist. Die Aufgabe der Erfindung wird weiter erfindungsgemäß durch ein Verfahren zur Herstellung eines erfindungsgemäßen Abstandshalters für eine Isolierverglasung gelöst, wobei a) zwei Verstärkungsstreifen parallel zueinander angeordnet werden,
b) die Verstärkungsstreifen mit einem polymeren Material umspritzt werden, wobei der polymere Grundkörper entsteht,
c) eine Isolationsfolie zumindest auf der Außenwand des Grundkörpers angebracht wird, d) der polymere Grundkörper mit den Verstärkungsstreifen zurechtgeschnitten wird und e) der polymere Grundkörper mit den Verstärkungsstreifen in eine umlaufende Rahmenform gebogen wird. Der polymere Grundkörper mit den Verstärkungsstreifen wird als Endlos-Profil durch Extrusion hergestellt. Es wird aus diesem Endlos-Profil ein Profilabschnitt mit der für den Einsatz im Isolierglas erforderlichen Länge zurechtgeschnitten. Der Profilabschnitt weist ein erstes und ein zweites Ende auf. Der Profilabschnitt wird dann auf die umlaufende, üblicherweise rechteckige Rahmenform gebogen. Dabei werden die Enden bevorzugt miteinander verbunden, beispielsweise durch eine Steckverbindung, um die Stabilität der Rahmenform zu verbessern.
Die Hohlkammer des Abstandshalters wird bevorzugt mit einem Trockenmittel befüllt. Das Trockenmittel kann alternativ auch zusammen mit dem Grundkörper extrudiert werden.
Das Biegen des Profilabschnitts erfolgt bevorzugt ohne vorheriges Erwärmen, insbesondere bei Umgebungstemperatur. Es ist ein besonderer Vorteil des Abstandshalters mit den erfindungsgemäßen Verstärkungsstreifen, dass eine solche Erwärmung nicht erforderlich ist. So kann der Abstandshalter auf herkömmlichen industriellen Fertigungsanlagen verarbeitet werden. In einer bevorzugten Ausführung wird der polymere Grundkörper mit einer erfindungsgemäßen Isolationsfolie versehen. Bevorzugt erfolgt dies vor dem Biegen des Abstandshalters. Die Isolationsfolie kann beispielsweise durch Kleben auf dem Grundkörper aufgebracht werden oder auch zusammen mit dem Grundkörper extrudiert werden.
Das erfindungsgemäße Isolierglas wird hergestellt, indem der rahmenförmige Abstandshalter im Randbereich zwischen zwei parallelen Glasscheiben angeordnet wird. Die Glasscheiben werden mit dem Abstandshalter verbunden, bevorzugt durch Pressen und über jeweils eine Dichtungsschicht. Anschließend wird eine äu ßere Dichtmasse zumindest auf der Au ßenwand angeordnet. Bevorzugt wird der Randraum zwischen den Scheiben und dem Abstandshalter umlaufend mit der äu ßeren Dichtmasse gefüllt.
Der durch den rahmenförmigen Abstandshalter begrenzte Zwischenraum zwischen den Glasscheiben wird bevorzugt mit Unterdruck beaufschlagt und/oder mit einem Inertgas befüllt.
Die Erfindung umfasst weiter die Verwendung des erfindungsgemäßen Abstandshalters in Mehrfachverglasungen, bevorzugt in Isolierverglasungen. Die Isolierverglasungen werden bevorzugt verwendet als Fensterverglasungen oder Fassadenverglasungen von Gebäuden.
Im Folgenden wird die Erfindung anhand einer Zeichnung und Ausführungsbeispielen näher erläutert. Die Zeichnung ist eine schematische Darstellung und nicht maßstabsgetreu. Die Zeichnung schränkt die Erfindung in keiner Weise ein.
Es zeigen:
Fig. 1 einen perspektivischer Querschnitt durch eine Ausgestaltung des
erfindungsgemäßen Abstandshalters,
Fig. 2 einen Querschnitt durch eine Ausgestaltung der erfindungsgemäßen
Isolierverglasung mit dem erfindungsgemäßen Abstandshalter und
Fig. 3 ein Flussdiagramm einer Ausführungsform des erfindungsgemäßen Verfahrens.
Fig. 1 zeigt einen Querschnitt durch einen erfindungsgemäßen Abstandshalter für eine Isolierverglasung. Der Abstandhalter umfasst einen polymeren Grundkörper I, welcher beispielsweise aus Polypropylen (PP) besteht. Das Polymer weist dabei einen Glasfaseranteil von 0 Gew.-% oder einen relativ geringen Glasfaseranteil von beispielsweise 10 Gew.-% auf.
Der Grundkörper I umfasst zwei zueinander parallel Seitenwände 1 , 2, welche dafür vorgesehen sind, mit den Scheiben des Isolierglases in Kontakt gebracht zu werden. Zwischen jeweils einem Ende jeder Seitenwand 1 ,2 verläuft eine Innenwand 3, welche dafür vorgesehen ist, dem Scheibenzwischenraum des Isolierglases zugewandt zu werden. An den anderen Enden der Seitenwände 1 , 2 schließt sich jeweils ein Verbindungsabschnitt 7, T an. Über die Verbindungsabschnitte 7, T sind die Seitenwände 1 , 2 mit einer Au ßenwand 4 verbunden, welche parallel zur Innenwand 3 ausgebildet ist. Der Winkel α zwischen den Verbindungsabschnitten 7 (beziehungsweise 7') und der Seitenwand 3 (beziehungsweise 4) beträgt etwa 45 °. Daraus ergibt sich, dass auch der Winkel zwischen der Außenwand 4 und den Verbindungsabschnitten 7, T etwa 45 ° beträgt. Der Grundkörper I umgibt eine Hohlkammer 5.
Die Materialstärke (Dicke) der Seitenwände 1 , 2, der Innenwand 3, der Au ßenwand 4 und der Verbindungsabschnitte 7, T ist etwa gleich und beträgt beispielsweise 1 mm. Der Grundkörper weist beispielsweise eine Höhe von 6,5 mm und eine Breite von 15 mm auf. In jede Seitenwand 1 , 2 ist ein Verstärkungsstreifen 6 eingelagert. Die Verstärkungsstreifen 6, 6' bestehen aus Stahl, welcher kein Edelstahl ist, und weisen eine Dicke (Materialstärke) von beispielsweise 0,3 mm auf und eine Breite von beispielsweise 3 mm. Die Länge der Verstärkungsstreifen 6, 6' entspricht der Länge des Grundkörpers I. Die Verstärkungsstreifen verleihen dem Grundkörper I eine hinreichende Biegbarkeit und Stabilität, um ohne vorherige Erwärmung gebogen zu werden und die gewünschten Form dauerhaft beizubehalten. Im Gegensatz zu anderen Lösungen nach dem Stand der Technik weist der Abstandshalter dabei eine sehr geringe Wärmeleitfähigkeit auf, weil die metallischen Verstärkungsstreifen 6, 6' nur in die Seitenwände 1 ,2 eingelagert sind, über welche nur ein sehr geringer Teil des Wärmeaustauschs zwischen Scheibeninnenraum und äu ßerer Umgebung stattfindet. Die Verstärkungsstreifen 6, 6' nicht als Wärmebrücke. Das sind große Vorteile der vorliegenden Erfindung.
Auf der Außenfläche der Außenwand 4 und der Verbindungsabschnitte 7, T sowie einem Abschnitt der Au ßenfläche jeder der Seitenwände 1 , 2 ist eine Isolationsfolie 8 angeordnet. Die Isolationsfolie 8 verringert eine Diffusion durch den Abstandshalter hindurch. Dadurch kann der Feuchtigkeitseintritt in den Scheibeninnenraum einer Isolierverglasung oder der Verlust der Inertgasfüllung des Scheibeninnenraums verringert werden. Die Isolationsfolie 8 verbessert au ßerdem die thermischen Eigenschaften des Abstandshalters, verringert also die Wärmeleitfähigkeit.
Die Isolationsfolie 8 umfasst die folgende Schichtenfolge: eine polymere Trägerfolie (bestehend aus LLDPE (lineares Polyethylen niedriger Dichte), Dicke: 24 μηι) / eine metallische Schicht (bestehend aus Aluminium, Dicke: 50 nm) / eine polymere Schicht (PET, 12 μηι) / eine metallische Schicht (AI, 50 nm) / eine polymere Schicht (PET, 12 μηι). Der Schichtstapel auf der Trägerfolie enthält also zwei polymeren Schichten und zwei metallische Schichten, wobei die polymeren Schichten und die metallischen Schichten alternierend angeordnet sind. Der Schichtstapel kann auch weitere metallische Schichten und/oder polymere Schichten umfassen, wobei metallische und polymere Schichten bevorzugt ebenfalls alternierend angeordnet sind, so dass zwischen jeweils zwei benachbarten metallischen Schichten eine polymere Schicht angeordnet ist und oberhalb der obersten metallischen Schicht eine polymere Schicht angeordnet ist.
Durch den Verbund aus polymerem Grundkörper I, den Verstärkungsstreifen 6,6' und der Isolationsfolie 8 weist der erfindungsgemäße Abstandshalter vorteilhafte Eigenschaften hinsichtlich der Steifigkeit, der Dichtigkeit und der Wärmeleitfähigkeit auf. Er eignet sich daher in besonderem Maße für die Verwendung in Isoliergläser, insbesondere im Fensteroder Fassadebereich von Gebäuden.
Fig. 2 zeigt einen Querschnitt durch ein erfindungsgemäßes Isolierglas im Bereich des Abstandshalters. Das Isolierglas besteht aus zwei Glasscheiben 10, 1 1 aus Kalk-Natron- Glas mit einer Dicke von beispielsweise 3 mm, die über einen im Randbereich angeordneten erfindungsgemäßen Abstandshalter miteinander verbunden sind. Der Abstandshalter ist der Abstandshalter gemäß Fig. 1 mit den Verstärkungsstreifen 6,6' und der Isolationsfolie 8. Die Seitenwände 1 , 2 des Abstandshalters sind über jeweils eine Dichtungsschicht 13 mit den Glasscheiben 10, 1 1 verbunden. Die Dichtungsschicht 13 besteht beispielsweise aus Butyl. Im Randraum des Isolierglases zwischen den Glasscheiben 10, 1 1 und dem Abstandshalter ist umlaufend eine äußere Dichtmasse 9 angeordnet. Die Dichtmasse 9 ist beispielsweise ein Silikonkautschuk. Die Hohlkammer 5 des Grundkörper I ist mit einem Trockenmittel 12 gefüllt. Das Trockenmittel 12 ist beispielsweise ein Molekularsieb. Das Trockenmittel 12 nimmt eine zwischen den Glasscheiben und dem Abstandshalter vorhandene Restfeuchtigkeit auf und verhindert so das Beschlagen der Scheiben 10, 1 1 im Scheibenzwischenraum. Die Wirkung des Trockenmittels 12 wird durch nicht dargestellte Löcher in der Innenwand 3 des Grundkörpers I begünstigt.
Fig. 3 zeigt ein Flussdiagramm eines Ausführungsbeispiels des erfindungsgemäßen Verfahrens zur Herstellung eines Abstandshalters für ein Isolierglas.
Beispiel
Es wurde ein erfindungsgemäßer Abstandshalter gemäß Figur 1 hergestellt mit den erfindungsgemäßen Verstärkungsstreifen 6, 6' und der Isolationsfolie 8. Der Abstandshalter wurde als gerades Profil hergestellt und anschließend in die benötigte Form für den Einsatz in einer Isolierverglasung gebogen. Anschließend wurde bewertet, ob der Abstandshalter durch den Biegevorgang Schaden genommen hat, der seiner Verwendung entgegen steht, und ob er die gewünschte Form dauerhaft beibehält. In dem Fall, dass der Abstandshalter keinen Schaden genommen hat und seine Form beibehielt, wurde er als „biegbar" eingestuft. Au ßerdem wurde die Wärmeleitfähigkeit des Abstandshalters (λ-Wert) gemessen. Es handelte sich dabei um die Äquivalent-Wärmeleitfähigkeit, also eine Messung für den Gesamt-Abstandshalter, welche die Ortsabhängigkeit der Wärmeleitfähigkeit auf dem Abstandshalter unberücksichtigt lässt. Die Ergebnisse sind in Tabelle 1 zusammengefasst.
Verqleichsbeispiel 1 Das Vergleichsbeispiel 1 unterschied sich vom erfindungsgemäßen Beispiel durch die Ausgestaltung des Abstandshalters. Ansonsten wurde das Vergleichsbeispiel 1 genauso durchgeführt wie das Beispiel. Der Abstandshalter im Vergleichsbeispiel 1 wies keine in die Seitenwände eingelagerten Verstärkungsstreifen 6, 6' auf. Au ßerdem betrug der Glasfaseranteil des polymeren Grundkörpers I 35 Gew.-%. Davon abgesehen entsprach der Abstandshalter demjenigen aus Figur 1 . Die Ergebnisse sind in Tabelle 1 zusammengefasst. Vergleichsbeispiel 2
Das Vergleichsbeispiel 2 unterschied sich vom erfindungsgemäßen Beispiel durch die Ausgestaltung des Abstandshalters. Ansonsten wurde das Vergleichsbeispiel 2 genauso durchgeführt wie das Beispiel. Der Abstandshalter im Vergleichsbeispiel 2 wies keine in die Seitenwände eingelagerten Verstärkungsstreifen 6, 6' auf. Stattdessen war auf der Au ßenfläche der Seitenwände, der Verbindungsabschnitte und der Außenwand eine Edelstahlfolie mit einer Dicke von 0,1 mm aufgebracht, um den Abstandshalter gemäß dem Stand der Technik mit einer Biegbarkeit zu versehen. Der Glasfaseranteil des polymeren Grundkörpers I betrug 35 Gew.-%. Die Ergebnisse sind in Tabelle 1 zusammengefasst.
Tabelle 1 biegbar? Wärmeleitfähigkeit
Beispiel ja 0,18 W/(m*K)
Vergleichsbeispiel 1 nein 0 , 16 W/( m * K)
Vergleichsbeispiel 2 ja 0,30 W/(m*K)
Der erfindungsgemäße Abstandshalter im Beispiel war im Gegensatz zum Abstandshalter des Vergleichsbeispiels 1 biegbar aufgrund der Verstärkungsstreifen 6,6'. Die Wärmeleitfähigkeit wurde durch die Verstärkungsstreifen 6,6' aber nur unwesentlich erhöht. Der erfindungsgemäße Abstandshalter im Beispiel wies im Gegensatz zum Abstandshalter des Vergleichsbeispiels 2 eine deutlich geringe Wärmeleitfähigkeit auf. Der Grund dafür sind die erfindungsgemäßen Verstärkungsstreifen 6,6', die im Gegensatz zu der Edelstahlfolie nach dem Stand der Technik nicht als Wärmebrücke dient.
Der erfindungsgemäße Abstandshalter vereint also eine hinreichende Biegbarkeit mit einer sehr geringen Wärmeleitfähigkeit. Dieses Ergebnis war für den Fachmann unerwartet und überraschend. Bezugszeichenliste:
(I) polymerer Grundkörper
(1 ) Seitenwand
(2) Seitenwand
(3) Innenwand
(4) Außenwand
(5) Hohlkammer
(6,6') Verstärkungsstreifen
(7,7') Verbindungsabschnitt
(8) Isolationsfolie
(9) äußere Dichtmasse
(10) Glasscheibe
(1 1 ) Glasscheibe
(12) Trockenmittel
(13) Dichtungsschicht α Winkel zwischen Seitenwand 1 ,2 und Verbindungsabschnitt 7,7'

Claims

Patentansprüche
Abstandshalter für eine Isolierverglasung, mindestens umfassend:
- einen polymeren Grundkörper (I), mindestens umfassend zwei zueinander parallele Seitenwände (1 ,2), die miteinander verbunden sind durch eine Innenwand (3) und eine Außenwand (4), wobei die Seitenwände (1 ,
2), die Innenwand
(3) und die Au ßenwand (4) eine Hohlkammer (5) umgeben, und
- zumindest auf der Außenwand
(4) eine Isolationsfolie (8), welche eine polymere Trägerfolie und mindestens eine metallische oder keramische Schicht enthält, wobei in jede Seitenwand (1 ,2) ein Verstärkungsstreifen (6,6') eingelagert ist, welcher zumindest ein Metall oder eine metallische Legierung enthält,
und wobei der Grundkörper (I) einen Glasfaser-Anteil von 0 Gew.-% bis 20 Gew.-% aufweist.
Abstandshalter nach Anspruch 1 , wobei der Verstärkungsstreifen (6,6') zumindest Stahl enthält, der bevorzugt kein Edelstahl ist.
Abstandshalter nach Anspruch 1 oder 2, wobei der Verstärkungsstreifen (6,6') eine Dicke von 0,05 mm bis 1 mm, bevorzugt von 0,1 mm bis 0,
5 mm, besonders bevorzugt von 0,2 mm bis 0,4 mm aufweist.
Abstandshalter nach einem der Ansprüche 1 bis 3, wobei der Verstärkungsstreifen (6,
6') eine Breite von 1 mm bis 5 mm aufweist.
Abstandshalter nach einem der Ansprüche 1 bis 4, wobei die Dicke der polymeren Trägerfolie der Isolationsfolie (8) von 10 μηι bis 100 μηι und die Dicke der metallischen oder keramischen Schicht der Isolationsfolie (8) von 10 nm bis 1500 nm beträgt und wobei die Isolationsfolie (8) mindestens eine weitere polymere Schicht mit einer Dicke von 5 μηι bis 100 μηι enthält.
Abstandshalter nach Anspruch 5, wobei die Isolationsfolie (8) von zwei bis vier metallische oder keramische Schichten enthält, die jeweils alternierend mit mindestens einer polymeren Schicht angeordnet sind.
7. Abstandshalter nach Anspruch 5 oder 6, wobei die metallische oder keramische Schicht der Isolationsfolie (8) zumindest Eisen, Aluminium, Silber, Kupfer, Gold, Chrom, Siliziumoxid, Siliziumnitrid oder Legierungen oder Gemische davon enthält und wobei die polymere Trägerfolie der Isolationsfolie (8) zumindest Polyethylenterephthalat,
Ethylenvinylalkohol, Polyvinylidenchlorid, Polyamide, Polyethylen, Polypropylen, Silikone, Acrylonitrile, Polymethylacrylate oder Copolymere oder Gemische enthält.
8. Abstandshalter nach einem der Ansprüche 1 bis 7, wobei der Grundkörper (I) zumindest Polyethylen (PE), Polycarbonate (PC), Polystyrol, Polybutadien, Polynitrile, Polyester,
Polyurethane, Polymethylmetacrylate, Polyacrylate, Polyamide, Polyethylenterephthalat (PET), Polybutylenterephthalat (PBT), bevorzugt Polypropylen (PP), Acrylnitril-Butadien- Styrol (ABS), Acrylester-Styrol-Acrylnitril (ASA), Acrylnitril-Butadien-Styrol-Polycarbonat (ABS/PC), Styrol-Acrylnitril (SAN), Polyethylenterephthalat-Polycarbonat (PET/PC), Polybutylenterephthalat-Polycarbonat (PBT/PC) oder Copolymere oder Derivate oder
Gemische davon enthält.
9. Abstandshalter nach einem der Ansprüche 1 bis 8, wobei der Grundkörper (I) einen Glasfaser-Anteil von 0 Gew.-% bis 15 Gew.-% aufweist.
10. Abstandshalter nach einem der Ansprüche 1 bis 9, wobei der Verstärkungsstreifen (6,6') perforiert ist.
1 1 . Abstandshalter nach einem der Ansprüche 1 bis 10, wobei die Seitenwände (1 ,2), die Innenwand (3) und die Au ßenwand (4) jeweils plan sind und die Innenwand (3) direkt mit den Seitenwänden (1 ,2) verbunden ist und die Au ßenwand (4) über plane Verbindungsabschnitte (7,7') mit den Seitenwänden (1 ,2) verbunden ist, wobei der Winkel α zwischen der Seitenwand (1 ,2) und dem Verbindungsabschnitt (7,7') von 120° bis 150° beträgt.
12. Abstandshalter nach einem der Ansprüche 1 bis 1 1 , der eine Wärmeleitfähigkeit von kleiner als 0,25 W/(m*K), bevorzugt kleiner 0,2 W/(m*K) aufweist.
13. Isolierverglasung, mindestens umfassend zwei parallel zueinander angeordnete Glasscheiben (10,1 1 ), einen im Randbereich zwischen den Glasscheiben (10,1 1 ) angeordneten Abstandshalter nach einem der Ansprüche 1 bis 12, wobei jede Seitenwand (1 ,2) einer der Glasscheiben (10,1 1 ) zugewandt ist, und eine äu ßere
Dichtungsschicht (9) zumindest auf der Außenwand (4), wobei die Hohlkammer (5) bevorzugt mit einem Trockenmittel (12), bevorzugt Kieselgele, Molekularsiebe, CaCI2, Na2S04, Aktivkohle, Silikate, Bentonite, und/oder Zeolithe, ganz oder teilweise gefüllt ist.
14. Verfahren zur Herstellung eines Abstandshalters für eine Isolierverglasung nach einem der Ansprüche 1 bis 12, wobei
a) zwei Verstärkungsstreifen (6,6') parallel zueinander angeordnet werden,
b) die Verstärkungsstreifen (6,6') mit einem polymeren Material umspritzt werden, wobei der polymere Grundkörper (I) entsteht,
c) eine Isolationsfolie (8) zumindest auf der Außenwand (4) des Grundkörpers (I) angebracht wird,
d) der polymere Grundkörper (I) zurechtgeschnitten wird und
e) der polymere Grundkörper (I) in eine umlaufende Rahmenform gebogen wird und die Enden des polymeren Grundkörpers (I) miteinander verbunden werden.
Verwendung eines Abstandshalters nach einem der Ansprüche 1 bis 12 Mehrfachverglasungen, bevorzugt in Isolierverglasungen, insbesondere Fensterverglasungen oder Fassadenverglasungen von Gebäuden.
EP14753266.7A 2013-09-30 2014-08-22 Abstandshalter für isolierverglasungen Active EP3052731B2 (de)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP14753266.7A EP3052731B2 (de) 2013-09-30 2014-08-22 Abstandshalter für isolierverglasungen
PL14753266.7T PL3052731T5 (pl) 2013-09-30 2014-08-22 Element dystansowy dla oszkleń izolacyjnych

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
EP13186710 2013-09-30
PCT/EP2014/067901 WO2015043848A1 (de) 2013-09-30 2014-08-22 Abstandshalter für isolierverglasungen
EP14753266.7A EP3052731B2 (de) 2013-09-30 2014-08-22 Abstandshalter für isolierverglasungen

Publications (3)

Publication Number Publication Date
EP3052731A1 true EP3052731A1 (de) 2016-08-10
EP3052731B1 EP3052731B1 (de) 2018-04-11
EP3052731B2 EP3052731B2 (de) 2024-06-19

Family

ID=49322172

Family Applications (1)

Application Number Title Priority Date Filing Date
EP14753266.7A Active EP3052731B2 (de) 2013-09-30 2014-08-22 Abstandshalter für isolierverglasungen

Country Status (14)

Country Link
US (1) US20160201381A1 (de)
EP (1) EP3052731B2 (de)
JP (1) JP6419168B2 (de)
KR (2) KR20180021248A (de)
CN (1) CN105579653A (de)
AU (1) AU2014327719B2 (de)
BR (1) BR112016001213B1 (de)
CA (1) CA2920464C (de)
DK (1) DK3052731T4 (de)
EA (1) EA030837B1 (de)
MX (1) MX2016004016A (de)
PL (1) PL3052731T5 (de)
TR (1) TR201807298T4 (de)
WO (1) WO2015043848A1 (de)

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160095129A (ko) 2013-12-12 2016-08-10 쌩-고벵 글래스 프랑스 압출된 프로파일링된 밀봉체를 포함하는, 절연 글레이징 유닛용 스페이서
US10190359B2 (en) 2013-12-12 2019-01-29 Saint-Gobain Glass France Double glazing having improved sealing
PL3161237T3 (pl) 2014-06-27 2018-12-31 Saint-Gobain Glass France Oszklenie zespolone z elementem dystansowym i sposób wytwarzania takiego oszklenia oraz jego zastosowanie jako oszklenia budynku
WO2015197491A1 (de) 2014-06-27 2015-12-30 Saint-Gobain Glass France Isolierverglasung mit abstandhalter und verfahren zur herstellung
CA2958613C (en) 2014-09-25 2019-05-07 Saint-Gobain Glass France Spacer for insulating glazing units
KR102195198B1 (ko) 2015-03-02 2020-12-28 쌩-고벵 글래스 프랑스 절연 글레이징용 유리 섬유-강화 스페이서
JP6529423B2 (ja) * 2015-11-09 2019-06-12 倉敷紡績株式会社 複層ガラス用スペーサーおよび複層ガラス
CN108366681A (zh) * 2015-12-21 2018-08-03 法国圣戈班玻璃厂 用于冷藏柜具的隔绝玻璃元件
DE102016115023A1 (de) 2015-12-23 2017-06-29 Ensinger Gmbh Abstandhalter für Isolierglasscheiben
PT3440299T (pt) * 2016-04-05 2021-06-16 Saint Gobain Unidade de vidro isolante para um móvel de refrigeração
CN107587817A (zh) * 2017-10-30 2018-01-16 南京南优新材料有限公司 一种内置遮阳中空玻璃制品全暖边间隔型材组件
DK3781773T3 (da) * 2018-04-16 2022-04-11 Saint Gobain Afstandsholder med forstærkningselementer
MX2020012232A (es) 2018-05-14 2021-01-29 Saint Gobain Unidad de acristalamiento aislante.
EP3794198B1 (de) 2018-05-14 2022-05-04 Saint-Gobain Glass France Isolierverglasungseinheit
US20220243526A1 (en) 2019-07-17 2022-08-04 Saint-Gobain Glass France Spacer for insulated glass units
WO2021028110A1 (de) 2019-08-09 2021-02-18 Saint-Gobain Glass France Verglasung mit rfid-transponder
DE102019121690A1 (de) * 2019-08-12 2021-02-18 Ensinger Gmbh Abstandhalter für Isolierglasscheiben
US20230184029A1 (en) * 2020-05-06 2023-06-15 Saint-Gobain Glass France Spacer for insulated glazing
WO2022179965A1 (de) 2021-02-25 2022-09-01 Saint-Gobain Glass France Kaltbiegbarer abstandhalter mit verbesserter steifigkeit
WO2023161213A1 (de) 2022-02-24 2023-08-31 Saint-Gobain Glass France Vorrichtung und verfahren zum automatisierten zusammensetzen eines polymeren abstandshalters für isolierverglasungen
CA3240032A1 (en) 2022-04-14 2023-10-19 Nikolai BORCHMANN Spacer with improved mechanical stiffness
WO2024104686A1 (de) 2022-11-14 2024-05-23 Saint-Gobain Glass France Verglasungselement mit integriertem sonnenschutz

Family Cites Families (43)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2094381A (en) * 1932-06-06 1937-09-28 Owens Illinois Glass Co Double glazing
US3168089A (en) * 1963-09-24 1965-02-02 Mills Prod Inc Oven door window unit
US3998680A (en) * 1975-10-28 1976-12-21 Flint Theodore R Method of fabricating insulating glass units
US4080482A (en) * 1975-11-11 1978-03-21 D. C. Glass Limited Spacer for glass sealed unit and interlock member therefor
US4479988A (en) * 1981-07-02 1984-10-30 Reddiplex Limited Spacer bar for double glazing
GB2162228B (en) * 1984-07-25 1987-07-15 Sanden Corp Double-glazed window for a refrigerator
US5302425A (en) * 1989-06-14 1994-04-12 Taylor Donald M Ribbon type spacer/seal system
US5290611A (en) * 1989-06-14 1994-03-01 Taylor Donald M Insulative spacer/seal system
US5079054A (en) * 1989-07-03 1992-01-07 Ominiglass Ltd. Moisture impermeable spacer for a sealed window unit
US5675944A (en) * 1990-09-04 1997-10-14 P.P.G. Industries, Inc. Low thermal conducting spacer assembly for an insulating glazing unit and method of making same
US5209034A (en) * 1990-12-18 1993-05-11 Tremco, Inc. Prevention of fogging and discoloration of multi-pane windows
DE9103448U1 (de) * 1991-03-20 1992-07-16 Helmut Lingemann GmbH & Co, 5600 Wuppertal Abstandhalter für ein Mehrscheiben-Isolierglas
US5313762A (en) * 1991-12-26 1994-05-24 Bayomikas Limited Insulating spacer for creating a thermally insulating bridge
US5439716A (en) * 1992-03-19 1995-08-08 Cardinal Ig Company Multiple pane insulating glass unit with insulative spacer
EP0601488B1 (de) * 1992-12-10 1997-05-02 Thermix GmbH Isolationssysteme für Verglasungen Abstandhalter
US5424111A (en) * 1993-01-29 1995-06-13 Farbstein; Malcolm N. Thermally broken insulating glass spacer with desiccant
US5962090A (en) * 1995-09-12 1999-10-05 Saint-Gobain Vitrage Suisse Ag Spacer for an insulating glazing assembly
JPH10292743A (ja) * 1997-04-11 1998-11-04 Asahi Glass Co Ltd 複層ガラス用スペーサーおよび複層ガラス
US6351923B1 (en) * 1997-07-22 2002-03-05 Wallace H. Peterson Spacer for insulated windows having a lengthened thermal path
DK1017923T3 (da) * 1997-09-25 2001-10-08 Caprano & Brunnhofer Afstandsholderprofil til termorudeenhed
DE19805348A1 (de) 1998-02-11 1999-08-12 Caprano & Brunnhofer Abstandhalterprofil für Isolierscheibeneinheit
DE19807454A1 (de) * 1998-02-21 1999-08-26 Ensinger Abstandhalter
DE29807418U1 (de) * 1998-04-27 1999-06-24 Flachglas AG, 90766 Fürth Abstandhalterprofil für Isolierscheibeneinheit
CA2269110A1 (en) * 1998-04-27 1999-10-27 Flachglas Aktiengesellschaft Spacing profile for double-glazing unit
US6266940B1 (en) * 1998-07-31 2001-07-31 Edgetech I.G., Inc. Insert for glazing unit
DE60031866T2 (de) * 1999-09-01 2007-05-31 PRC-Desoto International, Inc., Glendale Isolierscheibeneinheit mit strukturellem, primärem dichtungssystem
US6613404B2 (en) * 2001-05-29 2003-09-02 Terry S. Johnson Suppressing heat flux in insulating glass structures
ATE479817T1 (de) * 2002-11-13 2010-09-15 Visionwall Corp Energiesparendes fenster
US7997037B2 (en) * 2003-06-23 2011-08-16 Ppg Industries Ohio, Inc. Integrated window sash with groove for desiccant material
US6989188B2 (en) * 2003-11-07 2006-01-24 Technoform Caprano Und Brunnhofer Gmbh & Co. Kd Spacer profiles for double glazings
EP1797271B1 (de) * 2004-09-09 2009-11-11 Technoform Caprano + Brunnhofer GmbH & Co. KG Abstandhalterprofil für einen abstandhalterrahmen für eine isolierfenstereinheit und isolierfenstereinheit
US7685782B2 (en) * 2004-12-10 2010-03-30 Newell Operating Company Muntin clip
GB0610634D0 (en) * 2006-05-30 2006-07-05 Dow Corning Insulating glass unit
US20080053037A1 (en) * 2006-08-29 2008-03-06 Gallagher Raymond G System and method for reducing heat transfer from a warm side to a cold side along an edge of an insulated glazing unit
TW200930883A (en) * 2007-11-13 2009-07-16 Infinite Edge Technologies Llc Box spacer with sidewalls
EP2255057A1 (de) * 2008-02-15 2010-12-01 AGC Glass Europe Verglasungsscheibe
DE102008033249A1 (de) * 2008-07-15 2010-01-21 Gssg Holding Gmbh & Co. Kg Isolierglasscheibe
CN102770616B (zh) * 2010-01-20 2015-11-25 泰诺风玻璃隔热控股股份有限公司 中空玻璃单元的复合边缘支架、中空玻璃单元的复合边缘、具有复合边缘支架的中空玻璃单元和中空玻璃单元的间隔条
DE102010006127A1 (de) * 2010-01-29 2011-08-04 Technoform Glass Insulation Holding GmbH, 34277 Abstandshalterprofil mit Verstärkungsschicht
DE102010015836A1 (de) * 2010-04-20 2011-10-20 S & T Components Gmbh & Co. Kg Abstandhalter
AU2012365511B2 (en) * 2012-01-13 2016-07-14 Saint-Gobain Glass France Spacer for insulating glazing units
ITBO20120078A1 (it) * 2012-02-20 2013-08-21 Al7 Meipa S R L Elemento distanziale per vetrate isolanti
DE102012105960A1 (de) 2012-07-04 2014-01-09 Ensinger Gmbh Abstandhalter fuer Isolierglasscheiben

Also Published As

Publication number Publication date
CA2920464A1 (en) 2015-04-02
EP3052731B1 (de) 2018-04-11
US20160201381A1 (en) 2016-07-14
TR201807298T4 (tr) 2018-06-21
EA030837B1 (ru) 2018-10-31
WO2015043848A1 (de) 2015-04-02
DK3052731T4 (da) 2024-07-29
CA2920464C (en) 2017-10-31
AU2014327719A1 (en) 2016-02-18
DK3052731T3 (da) 2018-05-28
AU2014327719B2 (en) 2016-11-24
EA201690676A1 (ru) 2016-07-29
BR112016001213B1 (pt) 2021-11-03
KR20160047539A (ko) 2016-05-02
PL3052731T3 (pl) 2018-08-31
CN105579653A (zh) 2016-05-11
JP6419168B2 (ja) 2018-11-07
JP2016531821A (ja) 2016-10-13
PL3052731T5 (pl) 2024-07-15
EP3052731B2 (de) 2024-06-19
BR112016001213A2 (pt) 2017-08-29
KR20180021248A (ko) 2018-02-28
MX2016004016A (es) 2016-06-02

Similar Documents

Publication Publication Date Title
EP3052731B1 (de) Abstandshalter für isolierverglasungen
EP1529920B1 (de) Abstandshalterprofil für Isolierscheibeneinheit und Isolierscheibeneinheit
EP3440299B1 (de) Isolierglaseinheit für ein kühlmöbel
EP1055046B1 (de) Abstandhalterprofil für isolierscheibeneinheit
EP2526247B1 (de) Randverbundklammer für isolierglaseinheit, randverbund einer isolierglaseinheit, isolierglaseinheit mit randverbundklammer
EP3230544B1 (de) Isolierverglasung
EP3265636B1 (de) Glasfaserverstärktes abstandsstück für eisenverglasung, verfahren zu dessen herstellung und verwendung eines solchen abstandhalters in mehrfachverglasungen
EP3008270A1 (de) Abstandshalter für dreifachisolierverglasungen
WO2018050357A1 (de) Abstandshalter für isolierverglasungen, verfahren zur herstellung des abstandshalters und mehrfachisolierverglasung
EP3781773B1 (de) Abstandhalter mit verstärkungselementen
EP3230546B1 (de) Abstandshalter für isolierverglasungen
WO2020094380A1 (de) Isolierverglasung mit doppeltem abstandhalter
WO2016150705A1 (de) Abstandshalter für eine isolierverglasung mit erhöhter dichtigkeit
DE202020005649U1 (de) Abstandhalter für Isolierglaseinheiten
WO2017032862A1 (de) Eckverbinder für isolierverglasungen
WO2020053082A1 (de) Abstandhalter mit metallischen seitenteilen
WO2017064168A1 (de) Verbinder zur verbindung von zwei hohlprofilleisten
EP3999709B1 (de) Abstandhalter für isolierglaseinheiten
EP3708759A1 (de) Isolierverglasungsgrundkörper und isolierverglasung, sowie verfahren zu deren herstellung
WO2018068899A1 (de) Abstandhalter für isolierverglasungen
WO2017093413A1 (de) Abstandhalter mit druckausgleich für isolierglaseinheiten
DE202022002958U1 (de) Abstandhalter mit co-extrudiertem Hohlprofil
DE202023103832U1 (de) Abstandhalter für Isolierverglasungen
WO2019174913A1 (de) Abstandhalter für isolierverglasungen
EP3770369A1 (de) Lagervorrichtung für hohlprofilabstandhalter

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20160210

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

INTG Intention to grant announced

Effective date: 20180209

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 988216

Country of ref document: AT

Kind code of ref document: T

Effective date: 20180415

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502014007946

Country of ref document: DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: FP

REG Reference to a national code

Ref country code: DK

Ref legal event code: T3

Effective date: 20180522

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 5

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180711

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180411

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180711

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180411

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180411

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180411

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180411

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180411

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180712

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180411

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180411

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180813

REG Reference to a national code

Ref country code: DE

Ref legal event code: R026

Ref document number: 502014007946

Country of ref document: DE

PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

PLAX Notice of opposition and request to file observation + time limit sent

Free format text: ORIGINAL CODE: EPIDOSNOBS2

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180411

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180411

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180411

26 Opposition filed

Opponent name: ENSINGER GMBH

Effective date: 20190108

26 Opposition filed

Opponent name: TECHNOFORM GLASS INSULATION HOLDING GMBH

Effective date: 20190110

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180411

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180411

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180822

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20180831

PLBB Reply of patent proprietor to notice(s) of opposition received

Free format text: ORIGINAL CODE: EPIDOSNOBS3

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180411

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180411

RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: SAINT-GOBAIN GLASS FRANCE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20140822

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180822

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180411

Ref country code: MK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180411

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180811

APBM Appeal reference recorded

Free format text: ORIGINAL CODE: EPIDOSNREFNO

APBP Date of receipt of notice of appeal recorded

Free format text: ORIGINAL CODE: EPIDOSNNOA2O

APAH Appeal reference modified

Free format text: ORIGINAL CODE: EPIDOSCREFNO

PLAB Opposition data, opponent's data or that of the opponent's representative modified

Free format text: ORIGINAL CODE: 0009299OPPO

R26 Opposition filed (corrected)

Opponent name: TECHNOFORM GLASS INSULATION HOLDING GMBH

Effective date: 20190110

APBM Appeal reference recorded

Free format text: ORIGINAL CODE: EPIDOSNREFNO

APBP Date of receipt of notice of appeal recorded

Free format text: ORIGINAL CODE: EPIDOSNNOA2O

APBQ Date of receipt of statement of grounds of appeal recorded

Free format text: ORIGINAL CODE: EPIDOSNNOA3O

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230515

APAH Appeal reference modified

Free format text: ORIGINAL CODE: EPIDOSCREFNO

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: TR

Payment date: 20230821

Year of fee payment: 10

Ref country code: IT

Payment date: 20230711

Year of fee payment: 10

Ref country code: CZ

Payment date: 20230728

Year of fee payment: 10

Ref country code: CH

Payment date: 20230902

Year of fee payment: 10

Ref country code: AT

Payment date: 20230725

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: PL

Payment date: 20230712

Year of fee payment: 10

APBU Appeal procedure closed

Free format text: ORIGINAL CODE: EPIDOSNNOA9O

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 502014007946

Country of ref document: DE

Representative=s name: OBERMAIR, CHRISTIAN, DR. RER. NAT., DE

PUAH Patent maintained in amended form

Free format text: ORIGINAL CODE: 0009272

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: PATENT MAINTAINED AS AMENDED

27A Patent maintained in amended form

Effective date: 20240619

AK Designated contracting states

Kind code of ref document: B2

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: DE

Ref legal event code: R102

Ref document number: 502014007946

Country of ref document: DE

REG Reference to a national code

Ref country code: DK

Ref legal event code: T4

Effective date: 20240722

REG Reference to a national code

Ref country code: NL

Ref legal event code: FP

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20240705

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240702

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DK

Payment date: 20240813

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20240701

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20240702

Year of fee payment: 11