EP3034666A1 - Dämm- und filterstoff und seine verwendung als inertes schallabsorbierendes material - Google Patents

Dämm- und filterstoff und seine verwendung als inertes schallabsorbierendes material Download PDF

Info

Publication number
EP3034666A1
EP3034666A1 EP15199873.9A EP15199873A EP3034666A1 EP 3034666 A1 EP3034666 A1 EP 3034666A1 EP 15199873 A EP15199873 A EP 15199873A EP 3034666 A1 EP3034666 A1 EP 3034666A1
Authority
EP
European Patent Office
Prior art keywords
fibers
sound
insulating
carbon
gas stream
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP15199873.9A
Other languages
English (en)
French (fr)
Inventor
Andreas Schmohl
Klaus Breuer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fraunhofer Gesellschaft zur Forderung der Angewandten Forschung eV
Original Assignee
Fraunhofer Gesellschaft zur Forderung der Angewandten Forschung eV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fraunhofer Gesellschaft zur Forderung der Angewandten Forschung eV filed Critical Fraunhofer Gesellschaft zur Forderung der Angewandten Forschung eV
Publication of EP3034666A1 publication Critical patent/EP3034666A1/de
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/42Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece
    • D04H1/4209Inorganic fibres
    • D04H1/4242Carbon fibres
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/54Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties by welding together the fibres, e.g. by partially melting or dissolving
    • D04H1/541Composite fibres, e.g. sheath-core, sea-island or side-by-side; Mixed fibres
    • D04H1/5418Mixed fibres, e.g. at least two chemically different fibres or fibre blends
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/42Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece
    • D04H1/4274Rags; Fabric scraps
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/58Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties by applying, incorporating or activating chemical or thermoplastic bonding agents, e.g. adhesives
    • D04H1/60Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties by applying, incorporating or activating chemical or thermoplastic bonding agents, e.g. adhesives the bonding agent being applied in dry state, e.g. thermo-activatable agents in solid or molten state, and heat being applied subsequently
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N1/00Silencing apparatus characterised by method of silencing
    • F01N1/08Silencing apparatus characterised by method of silencing by reducing exhaust energy by throttling or whirling
    • F01N1/10Silencing apparatus characterised by method of silencing by reducing exhaust energy by throttling or whirling in combination with sound-absorbing materials
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N1/00Silencing apparatus characterised by method of silencing
    • F01N1/24Silencing apparatus characterised by method of silencing by using sound-absorbing materials
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N13/00Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00
    • F01N13/16Selection of particular materials
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2310/00Selection of sound absorbing or insulating material
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2530/00Selection of materials for tubes, chambers or housings
    • F01N2530/02Corrosion resistive metals
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2530/00Selection of materials for tubes, chambers or housings
    • F01N2530/18Plastics material, e.g. polyester resin
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2530/00Selection of materials for tubes, chambers or housings
    • F01N2530/18Plastics material, e.g. polyester resin
    • F01N2530/20Plastics material, e.g. polyester resin reinforced with mineral or metallic fibres

Definitions

  • the invention relates to a fluid-permeable insulation and filter material in the form of a consolidated non-woven fabric, which is intended in particular for use as an inert sound-absorbing material that can come into contact with corrosive and aggressive fluids even at elevated temperatures.
  • fluids refers to free-flowing gaseous, vaporous or liquid substances and substance mixtures to which liquid or solid particulate constituents which can have a corrosive and aggressive action, especially at high temperatures, can also be added as separate phases .
  • High-energy fluids of the type mentioned may contain some of their energy in the form of sound energy or pressure waves or pressure. Since sound, which is perceived by the environment as noise or noise nuisance, in everyday life or at work is perceived as disturbing and proven to be harmful to health, have long been made considerable efforts to suppress sound emissions as far as possible by absorbing the sound energy.
  • Sound energy is removed from currently flowing fluids by various methods, which are often used in combination, and the devices used for this purpose are referred to as silencers.
  • insulation materials used in which the high-energy fluid can penetrate and in which it loses as much of the sound energy contained in it by interaction with the insulating material , typically in that the sound energy in the insulating material is converted into heat or that fine structures such as fine fibers and membranes of the insulating material are destroyed by the sound, wherein the fluid is deprived of the energy contained in it as sound or pressure waves.
  • a new fluid-permeable insulating material which can in principle be used in a multiplicity of different silencer devices, in particular in those in which porous materials, such as rockwool, glass wool or glass fibers, which are currently used for sound absorption, are used At least partially convert sound energy into heat.
  • An insulating material according to the invention should be able to replace the usual porous materials in mufflers of various constructions, but should in particular offer advantages over the currently used materials if the fluid to be extracted from the sound energy, as such or due to the gases contained or entrained liquid or Solid particles are also highly corrosive, especially at higher temperatures.
  • a muffler is disclosed as an insert for a chimney, which has the form of a double-walled tube in which a sound-absorbing and heat-resistant absorber material, in particular rock wool, is arranged between a cylindrical outer tube and a perforated cylindrical inner jacket.
  • a sound-absorbing and heat-resistant absorber material in particular rock wool
  • U.S. Patents 5,926,954 and 6,148,955 are described insofar similar muffler, as well as there a fluid is passed through a perforated inner tube that is surrounded by a sound-absorbing material. This is either a fiberglass material or a mineral wool.
  • the sound-absorbing material is not arranged in the flow path of the fluid to which the sound energy is to be removed, but surrounds its flow path.
  • a muffler of a different kind and for a slightly different use is described in the European patent EP 2 152 556 B1 or the corresponding published US patent application US 2010/0140015 A1 in which a cup-shaped silencer filled with a sound-absorbing material in the form of a cartridge of a knitted fiber material surrounded by a felt layer is used to dampen the exit sound of compressed air from a compressed air system. In this case, flows through the fluid to be extracted from the sound energy, the sound-absorbing material.
  • the material polyamide fibers are provided in particular.
  • a fluid-permeable insulating and filter fabric in the form of a consolidated nonwoven fabric, in which the fibers of the nonwoven fabric are formed at least predominantly of carbon fibers, which consist entirely or at least in the region of their fiber surface made of carbon, and that the fibers are bonded to at least a portion of their contact points by binders, wherein the binders are preferably solidified binder droplets or solidified binder fibers formed from a molten or solvent-containing precursor.
  • Carbon fiber nonwovens have hitherto been mainly produced and used for uses in which the electrical conductivity properties of the carbon fibers are important or in which the electrical conductivity of the carbon fibers is used, for example their conductivity or their heatability in an electrical heating mat.
  • a carbon fiber preform for a carbon fiber reinforced plastic molding with a binder such as a bisphenol A based epoxy resin is solidified by induction induction heating.
  • preforms for carbon fiber reinforced plastic molded parts are primarily a only temporarily, during a production process required solidification EP 0 864 183 B1
  • a carbon fiber nonwoven fabric of carbonized fibers is disclosed as a raw material for a gas diffusion electrode.
  • a heater according to DE 195 09 153 A1 serves a stiffened with an electrically conductive binder carbon fiber fleece with power connections as a heating mat for a heater, in particular for outside mirrors of motor vehicles.
  • a similar application as a heating element in a plastic composite is described in the WO 2006/131108 A1 ,
  • the nonwoven fabric forming the body of the insulating and filtering fabric of the present invention is preferably a nonwoven fabric in the form of a tangled fabric of carbon fibers selected from carbon fiber composites (CFRP) of recycled carbon fibers or carbon fibers obtained by at least surface carbonization (pyrolysis) of plastics or carbon fibers Natural fibers, in particular cellulose and lignin fibers were produced.
  • CFRP carbon fiber composites
  • Natural fibers, in particular cellulose and lignin fibers were produced.
  • Carbon fibers of the type mentioned have due to the preceding recycling process or carbonization usually no smooth surfaces, but are rough and / or have superficially protruding fiber fragments, which is advantageous for the absorption of sound energy and sound attenuation.
  • the binder contained in the insulation and filter material according to the invention is a binder which is at elevated temperatures against corrosive and aggressive chemicals that occur in an exhaust gas stream from combustion gases of a heating system or an internal combustion engine or in a process gas stream of an industrial plant has a resistance at least comparable to the durability of the carbon fibers. This contributes to the insulating material retaining its sound-absorbing properties over long periods of use.
  • Suitable binders can be found, for example, in the classes of epoxy resins, phenolic resins, organosilanes, inorganic silicates, lignin materials and / or lignin sulfonates.
  • hydrocarbon polymers or perfluorinated or partially fluorinated hydrocarbon polymers are used as binders.
  • the invention also relates to the use of an insulating and filter material according to the invention as an inert sound-absorbing material for contact with corrosive and aggressive fluids at elevated temperatures, in particular in a muffler for an exhaust gas stream of combustion gases from a heating system or an internal combustion engine, for a compressed gas stream or for a Process gas flow of an industrial plant, eg in containers, pipelines and process plants.
  • the sound attenuating means may be a muffler formed by an inner tube sheathed with sound absorbing apertures and enclosed by a sound insulating fluid permeable material disposed in a closed outer tube for an exhaust gas flow or in a gas flow a fluid flowed insulation filled, eg cup-shaped, muffler or a muffler of another type known per se for fluids in the form of gases or vapors, in which porous sound-absorbing materials are used.
  • the carbon fiber fleece which forms the body of the insulating and filter cloth, is made of carbon fibers (Carbon fibers), which are characterized by a high resistance to corrosive and aggressive hot fluids.
  • Carbon fibers show only a very low thermal expansion, so that in their use, the thermal stresses remain low due to strong temperature differences in the muffler.
  • recycled carbon fibers are primarily used, which can be recovered from carbon fiber composites (CFRP), or carbon fibers obtained by at least superficial carbonation of natural renewable raw materials, in particular lignin fibers, can be obtained.
  • CFRP carbon fiber composites
  • carbon fibers obtained by at least superficial carbonation of natural renewable raw materials, in particular lignin fibers can be obtained.
  • the carbon fibers it is not necessary for the carbon fibers to have a uniform, narrowly defined fiber length.
  • Carbon fiber waste in long fiber form has already been proposed as a material for certain nonwovens.
  • the performance characteristics of an insulating and filter material according to the invention for sound insulation are also influenced by the binder used, its amount and the manner in which it is used to solidify the nonwoven fabric.
  • the binder is one for the intended use, i. on contact with the respective fluid at its typical temperatures, sufficient resistance, so that the solidification points do not become weak points for the resistance and strength of the entire insulation and filter material according to the invention.
  • binders in the classes of epoxy resins, phenolic resins, organosilanes, inorganic silicates, lignin materials and / or lignosulfonates.
  • the binders can be used to solidify the carbon fiber fabric in a manner known per se as binder solutions to be sprayed on (for example epoxy resins in a solvent such as butyl acetate, phenolic resins in aqueous carriers, organosilanes in an alcohol, lignin or lignin sulfonates in water or water / alcohol mixtures) , With a suitable wetting behavior they migrate along the fiber surfaces and accumulate at the crossing points of the carbon fibers, where they dry or solidify to solid droplets.
  • binders hydrophobic binders based on hydrocarbon polymers, in particular temperature-resistant perfluorinated or partially fluorinated plastics are advantageously scattered in the production of the nonwoven fabric as fine granules between the carbon fibers.
  • the Granules can be obtained inexpensively using fluoropolymer waste.
  • the binders which can be used are also meltable thermoplastics, in particular in the form of solid hydrocarbon polymers without hydrolyzable or hydrophilic groups, e.g. made of polyethylene or polypropylene.
  • binders can also be used as fibers, which are mixed in the production with the carbon fibers of the nonwoven fabric and melt or soften when heated and connect the carbon fibers together.
  • carbon fibers e.g. by doping with metals, by superficial oxidation, by etching or by treatment with a plasma, e.g. an atmospheric or low pressure plasma to cause the carbon fibers to be better absorbed by the binders used, e.g. strongly hydrophobic binders such as fluoropolymer binder are wetted and a favorable ratio of fiber wetting and surface tension of the liquid or molten binder is obtained.
  • a plasma e.g. an atmospheric or low pressure plasma
  • a particularly preferred embodiment of an insulating and filter fabric according to the invention is obtained by solidifying a carbon fiber random mat with a fluoropolymer binder introduced as granules or in fiber form, in particular in quantities between 1 and 20% by weight of the finished consolidated nonwoven can be.
  • a fluoropolymer binder introduced as granules or in fiber form, in particular in quantities between 1 and 20% by weight of the finished consolidated nonwoven can be.
  • carbon fibers and binder can be scattered substantially together on a conveyor belt, compacted by pressing and / or subsequently thermally treated, for example with IR lamps, by induction heating or in a microwave tunnel.
  • the fluoropolymer bonds the fibers their points of contact and thus ensures when cooling for a stabilization of the structure of the fiber mat or the press cake.
  • binder presscake fluoropolymer granules presscake
  • the insulating and filtering materials according to the invention can be produced as fiber mats or press cakes of various design and shape (thickness, density, running area) and subsequently for the intended use, e.g. in a form suitable for the particular type of silencer in which they are to be used.

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Exhaust Silencers (AREA)
  • Filtering Materials (AREA)

Abstract

Die Erfindung betrifft einen fluiddurchlässigen Dämm- und Filterstoff in Form eines verfestigten Faservlieses, bei dem die Fasern des Faservlieses wenigstens überwiegend von Kohlenstofffasern gebildet werden, die vollständig oder wenigstens im Bereich ihrer Faseroberfläche aus Kohlenstoff bestehen, und dass die Fasern an wenigstens einem Teil ihrer Kontaktpunkte durch Bindemitteltröpfchen oder durch verfestigte Bindemittelfasern miteinander verbunden sind, und dessen Verwendung als schallabsorbierendes Material für Schalldämpfer.

Description

  • Die Erfindung betrifft einen fluiddurchlässigen Dämm- und Filterstoff in Form eines verfestigten Faservlieses, der insbesondere für eine Verwendung als inertes schallabsorbierendes Material bestimmt ist, das mit korrosiven und aggressiven Fluiden auch bei erhöhten Temperaturen in Kontakt kommen kann.
  • Auf verschiedenen Gebieten der Haushaltstechnik und in der Industrie, beispielsweise in der Energietechnik, der Kraftfahrzeugtechnik und bei zahlreichen industriellen Prozessen, z.B. in der chemischen Industrie und bei der Materialbearbeitung, werden energiereiche Fluide gebildet, die einer Behandlung bedürfen, um ihnen wenigstens einen Teil ihrer Energie zu entziehen, bevor sie abgeleitet werden können, z.B. an die Umgebung bzw. die Umgebungsluft.
  • Mit dem Begriff "Fluide" werden dabei im Rahmen der vorliegenden Anmeldung fließfähige gasförmige, dampfförmige oder auch flüssige Stoffe und Stoffgemische bezeichnet, denen als gesonderte Phasen auch flüssige oder feste teilchenförmige Bestandteile beigemischt sein können, die korrosiv und aggressiv wirken können, insbesondere bei hohen Temperaturen. Energiereiche Fluide der angesprochenen Art können einen Teil ihrer Energie in Form von Schallenergie oder Druckwellen oder von Druck enthalten. Da Schall, der von der Umwelt als Lärm oder Geräuschbelästigung wahrgenommen wird, im Alltag oder am Arbeitsplatz als störend empfunden wird und nachgewiesener Maßen gesundheitsschädlich sein kann, werden seit langem erhebliche Anstrengungen unternommen, durch Absorption der Schallenergie Schallemissionen generell soweit wie möglich zu unterdrücken.
  • Schallenergie wird gegenwärtig strömenden Fluiden nach verschiedenen Verfahren, die häufig in Kombination angewandt werden, entzogen, und die dazu verwendeten Vorrichtungen werden als Schalldämpfer (engl. "silencer") bezeichnet. Neben Verfahren einer aktiven Schalldämpfung mit Gegenschall, der zu einer Schalllöschung führt, kommen bei vielen Verfahren zur Schalldämpfung Dämmstoffe zum Einsatz, in die das energiereiche Fluid eindringen kann und in dem es einen möglichst großen Teil der in ihm enthaltenen Schallenergie durch Wechselwirkung mit dem Dämmstoff verliert, typischerweise dadurch, dass die Schallenergie in dem Dämmstoffmaterial in Wärme umgewandelt wird oder dass feine Strukturen wie feine Fasern und Membranen des Dämmstoffs durch den Schall zerstört werden, wobei dem Fluid die in ihm als Schall- oder Druckwellen enthaltene Energie entzogen wird.
  • Bei zahlreichen Schalldämpfern werden zur Schalllöschung auch Resonanzphänomene genutzt, wobei häufig das Prinzip des "Helmholtz-Resonators" ausgenutzt wird. Dabei kommen Öffnungen geeigneter Größen zur Anwendung, die in den Wänden der durchströmten Fluidleitungen angeordnet sind und in denen es zu einer Schallabsorption durch Anregung von Eigenfrequenzen im Öffnungsquerschnitt und deren Löschung in einem angrenzenden schallabsorbierenden Material kommt.
  • Gemäß der vorliegenden Erfindung soll ein neuer fluiddurchlässiger Dämmstoff bereit gestellt werden, der grundsätzlich in einer Vielzahl von unterschiedlichen Schalldämpfervorrichtungen zum Einsatz kommen kann, und zwar insbesondere in solchen, in denen derzeit zur Schallabsorption poröse Materialien wie Steinwolle, Glaswolle oder Glasfasern eingesetzt werden, die die Schallenergie wenigstens teilweise in Wärme umwandeln. Ein erfindungsgemäßer Dämmstoff soll die üblichen porösen Materialien in Schalldämpfern verschiedener Konstruktionen ersetzen können, soll jedoch insbesondere dann gegenüber den derzeit üblichen Materialien Vorteile bieten, wenn das Fluid, dem Schallenergie entzogen werden soll, als solches oder aufgrund der enthaltenen Gase oder von ihm mitgerissenen flüssigen oder auch festen Partikel stark korrosiv, insbesondere bei höheren Temperaturen, ist.
  • Zur Erläuterung von Schalldämpfer-Grundtypen, in denen ein erfindungsgemäßer Dämmstoff zur Anwendung kommen kann, wird lediglich beispielhaft verwiesen auf Stand der Technik gemäß DE 10 2004 046 553 A1 , wo ein Schalldämpfer als Einsatz für einen Kamin offenbart wird, der die Form eines doppelwandigen Rohrs aufweist, bei dem zwischen einem zylindrischen Außenrohr und einem gelochten zylindrischen Innenmantel ein schallabsorbierendes und hitzebeständiges Absorbermaterial, insbesondere Steinwolle, angeordnet ist. In den miteinander verwandten US-Patenten 5,926,954 und 6,148,955 werden insofern ähnliche Schalldämpfer beschrieben, als auch dort ein Fluid durch ein gelochtes Innenrohr geleitet wird, dass von einem schallabsorbierenden Material umgeben ist. Dieses ist entweder ein Glasfasermaterial oder eine Mineralwolle. Bei Schalldämpfern der bisher beschriebenen Art ist das schallabsorbierende Material nicht im Strömungsweg des Fluids angeordnet, dem die Schallenergie entzogen werden soll, sondern umgibt dessen Strömungsweg.
  • Bei verwandten Schalldämpfern, z.B. gemäß DE 29 04 529 A , werden ähnlich wie bei den eben beschriebenen Schalldämpfern gelochte Rohre verwendet, die von geräuschdämpfenden Füllstoffen umgeben sind, wobei als Füllstoffe Kunststoffschäume, Mineralfasern, Filz, Stahlwolle oder eine Schüttung aus Kunststoffgranulat vorgeschlagen werden.
  • Ein Schalldämpfer etwas anderer Art und für eine etwas andere Verwendung ist beschrieben im Europäischen Patent EP 2 152 556 B1 bzw. der entsprechenden veröffentlichten US-Patentanmeldung US 2010/0140015 A1 , wobei zur Dämpfung des Austrittsgeräusches von Druckluft aus einer Druckluftanlage ein topfartiger Schalldämpfer verwendet wird, der von einem schallabsorbierenden Material in Form einer Patrone aus einem gestrickten Fasermaterial gefüllt ist, das von einer Filzschicht umgeben ist. In diesem Fall durchströmt das Fluid, dem Schallenergie entzogen werden soll, das schallabsorbierende Material. Als Material sind insbesondere Polyamidfasern vorgesehen.
  • Auch bei dem im US-Patent 5,036,585 beschriebenen Auspuff-Schalldämpfer wird als Material für eine schalldämpfende Umhüllung Mineralwolle vorgeschlagen.
  • Der Vollständigkeit halber sollen auch noch Schalldämpfer insbesondere für tiefe Frequenzen erwähnt werden, bei denen keine porösen Dämmstoffe im üblichen Sinne verwendet werden, sondern bei denen man eine Schalldämpfung für tiefe Frequenzen unter Ausnutzung von Resonanzphänomenen erreicht. Als Beispiele für diesen Stand der Technik können genannt werden das Europäische Patent EP 0 316 640 B1 oder der Schalldämpfer gemäß dem Europäischen Patent EP 1 382 031 B1 , bei denen zur Schalldämpfung gelochte Rohre, ggf. in Verbindung mit perforierten Folien verwendet werden. Auch wenn derartige Schalldämpfer ohne poröse schallabsorbierende Materialien auskommen, können sie jedoch zur zusätzlichen Schalldämpfung, insbesondere in Hinblick auf höhere Frequenzen, mit Dämmstoffen gemäß der vorliegenden Erfindung kombiniert werden.
  • Soweit gegenwärtig zur Schalldämpfung schallabsorbierende anorganische Materialien wie z.B. Glaswolle oder Mineralwolle eingesetzt werden, wurde festgestellt, dass diese zwar über gewisse Zeiträume auch heißen und korrosiven Fluiden wie Verbrennungsabgasen widerstehen können, es wurde jedoch beobachtet, dass derartige Materialien mit der Zeit verrotten. Insbesondere wurde beobachtet, dass diese Verrottung damit zu tun hat, dass es während des Anfahrens einer Anlage häufig zur Kondensation von chemisch aggressiven Abgasbestandteilen im Schallabsorbermaterial kommt, was die gesamte Schalldämpferkonstruktion angreift und eine Überwachung und Auswechslung des schallabsorbierenden Dämmmaterials notwendig macht.
  • Es ist Aufgabe der vorliegenden Erfindung, durch Bereitstellung eines neuartigen chemikalien- und hitzeresistenten Dämmstoffs die Behandlung energiereicher Fluide zu verbessern, wobei der neue Dämmstoff insbesondere dann Vorteile bieten soll, wenn er zur Schalldämpfung von korrosiven und aggressiven Fluiden, z.B. von heißen Abgasen aus Energieerzeugungsanlagen, dient.
  • Weitere Aufgaben ergeben sich aus den in der nachfolgenden Beschreibung erwähnten Vorteilen eines erfindungsgemäßen Dämmstoffs.
  • Die genannten Aufgaben werden im weitesten Sinne gelöst durch einen fluiddurchlässigen Dämm- und Filterstoff in Form eines verfestigten Faservlieses, bei dem die Fasern des Faservlieses wenigstens überwiegend von Kohlenstofffasern gebildet werden, die vollständig oder wenigstens im Bereich ihrer Faseroberfläche aus Kohlenstoff bestehen, und dass die Fasern an wenigstens einem Teil ihrer Kontaktpunkte durch Bindemittel verbunden sind, wobei die Bindemittel vorzugsweise aus einer schmelzflüssigen oder lösemittelhaltigen Vorstufe gebildete erstarrte Bindemitteltröpfchen oder verfestigte Bindemittelfasern sind.
  • Aus dem Stand der Technik sind zwar bereits verschiedene Kohlenstofffaservliese (Carbonvliese) bekannt. Diese sind jedoch nicht für eine Verwendung als fluiddurchlässige Dämm- und Filterstoffe, die als schallabsorbierndes Material in Schalldämpfern geeignet sind, ausgelegt und daher für eine solche Verwendung auch nicht einsetzbar.
  • Kohlenstofffaservliese werden bisher vor allem für Verwendungen hergestellt und eingesetzt, bei denen es auf die elektrischen Leitfähigkeitseigenschaften der Kohlenstofffasern ankommt bzw. bei denen die elektrische Leitfähigkeit der Kohlenstofffasern genutzt wird, z.B. ihre Ableitfähigkeit oder ihre Erwärmbarkeit in einer elekrischen Heizmatte. Gemäß DE 103 53 070 A1 wird ein Kohlenstofffaser-Vorformling für ein Kohlenstofffaser-verstärktes Kunststoff-Formteil mit einem Bindemittel, z.B. einem Epoxidharz auf Bisphenol-A-Basis, durch elektrisches Induktionsheizen verfestigt. Anders als bei einer Verwendung zur Schallabsorption, bei der Dämmstoff über sehr lange Zeitträume beansprucht wird und seine schalllöschenden Eigenschaften lange beibehalten muss, geht es bei Vorformlingen für Kohlenstofffaser-verstärkte Kunststoff-Formteile in erster Linie um eine nur temporär, während eines Produktionsverfahrens erforderliche Verfestigung Gemäß EP 0 864 183 B1 wird ein Kohlenstofffaservlies aus carbonisierten Fasern als Ausgangsmaterial für eine Gasdiffusionselektrode offenbart.
  • In einer Heizeinrichtung gemäß DE 195 09 153 A1 dient ein mit einem stromleitenden Bindemittel versteiftes Kohlenstofffaservlies mit Stromanschlüssen als Heizmatte für eine Heizeinrichtung, insbesondere für Außenspiegel von Kraftfahrzeugen. Eine ähnliche Anwendung als Heizelement in einem Kunststoffverbund ist beschrieben in der WO 2006/131108 A1 .
  • In der EP 0 612 221 B1 findet sich der Vorschlag, zum Erhitzen des Tabakaroma-Bestandteils in einer elektrischen Zigarette ein Kohlenstofffaservlies zu verwenden, das mit einem Bindemittel auf Kohlenhydratbasis verfestigt ist. Nachfolgend wird die Erfindung anhand von bevorzugten Ausführungsformen noch näher erläutert.
  • Zur Erläuterung dienen auch zwei Figuren, die die Verfestigung eines Kohlenstofffaservlieses mit einem Bindemittel anschaulich beschreibt.
  • Es zeigen:
    • Figur 1 eine Mikrophotographie eines Faser-Kontaktpunkts eines mittels eines organischen Bindemittels verfestigten Kohlenstofffaservlieses; und
    • Figur 2 eine Mikrophotographie eines Faser-Kontaktpunkts eines mittels eines anorganischen Bindemittels verfestigten Kohlenstofffaservlieses.
  • Das den Körper des erfindungsgemäßen Dämm- und Filterstoffs bildende Faservlies ist vorzugsweise ein Faservlies in Form eines wirren Geleges von Kohlenstofffasern, die ausgewählt sind aus aus Kohlenstofffaserverbundstoffen (CFK) recycelten Kohlenstofffasern oder aus Kohlenstofffasern, die durch wenigstens oberflächliche Carbonisierung (Pyrolyse) von Kunststoff- oder Naturfasern, insbesondere Cellulose- und Ligninfasern, hergestellt wurden.
  • Kohlenstofffasern der genannten Art weisen aufgrund des vorausgehenden Recycling-Vorgangs oder der Carbonisierung in der Regel keine glatten Oberflächen auf, sondern sind rau und/oder weisen oberflächlich abstehende Faserfragmente auf, was für die Absorption von Schallenergie und die Schalldämpfung vorteilhaft ist.
  • Vorzugsweise ist das in dem erfindungsgemäßen Dämm- und Filterstoff enthaltene Bindemittel ein Bindemittel, das gegen korrosive und aggressive Chemikalien, die in einem Abgasstrom aus Verbrennungsgasen einer Heizanlage oder einer Verbrennungskraftmaschine oder in einem Prozessgasstrom einer Industrieanlage auftreten, bei erhöhten Temperaturen eine Beständigkeit aufweist, die der Beständigkeit der Kohlenstofffasern wenigstens vergleichbar ist. Das trägt dazu bei, dass der Dämmstoff seine schallabsorbierenden Eigenschaften über lange Anwendungszeiträume beibehält.
  • Geeignete Bindemittel finden sich beispielsweise in den Klassen der Epoxidharze, Phenolharze, Organosilane, anorganischen Silikate, Ligninmaterialien und/oder Ligninsulfonate.
  • Gemäß einer bevorzugsten Ausführungsform insbesondere zur Verwendung mit korrosiven polaren Fluiden werden als Bindemittel Kohlenwasserstoffpolymere oder perfluorierte oder teilfluorierte Kohlenwasserstoffpolymere verwendet.
  • Die Erfindung betrifft außerdem die Verwendung eines erfindungsgemäßen Dämm- und Filterstoffs als inertes schallabsorbierendes Material für einen Kontakt mit korrosiven und aggressiven Fluiden bei erhöhten Temperaturen, insbesondere in einem Schalldämpfer für einen Abgasstrom von Verbrennungsgasen aus einer Heizanlage oder einer Verbrennungskraftmaschine, für einen Druckgasstrom oder für einen Prozessgasstrom einer Industrieanlage, z.B. in Behältern, Rohrleitungen und Prozessanlagen.
  • Bei einer solchen Verwendung kann die schalldämpfende Einrichtung ein Schalldämpfer sein, der gebildet wird von einem mit schallabsorbierenden Öffnungen versehenen offenen, von einem schalldämmenden fluiddurchlässigen Material ummantelten Innenrohr, das in einem geschlossenen Außenrohr für einen Abgasstrom angeordnet ist, oder ein in einem Gasstrom angeordneter, mit einem fluiddurchströmten Dämmmaterial gefüllter, z.B. topfförmiger, Schalldämpfer oder ein Schalldämpfer eines anderen an sich bekannten Typs für Fluide in Form von Gasen oder Dämpfen, bei denen poröse schallabsorbierende Materialien zum Einsatz kommen.
  • Das Kohlenstofffaservlies, das den Körper des Dämm- und Filterstoffs bildet, wird von Kohlenstofffasern (Carbonfasern) gebildet, die sich durch eine hohe Beständigkeit gegen korrosive und aggressive heiße Fluide auszeichnen. Außerdem zeigen Kohlenstofffasern nur eine sehr geringe Wärmeausdehnung, so dass bei ihrer Verwendung die thermischen Spannungen infolge starker Temperaturunterschiede im Schalldämpfer gering bleiben.
  • Aus wirtschaftlichen Gründen, und weil die mechanischen Kennwerte der Kohlenstofffasern bei einer Verwendung in Schalldämpfern nur von untergeordneter Bedeutung sind, werden vorrangig recycelte Kohlenstofffasern (Carbonfasern) verwendet, die aus Carbonfaserverbundwerkstoffen (CFK) wiedergewonnen werden können, oder Kohlenstofffasern, die durch wenigstens oberflächliche Carbonisierung von natürlichen nachwachsenden Rohstoffen, insbesondere von Ligninfasern, erhalten werden können. Für einen erfindungsgemäßen Dämm- und Filterstoff ist es nicht erforderlich, dass die Kohlenstofffasern eine einheitliche, eng definierte Faserlänge aufweisen.
  • Carbonabfälle in Langfaserform wurden bereits als Material für bestimmte Faservliesstoffe vorgeschlagen. Dabei handelt es sich allerdings vor allem um Vlies-Nähgewirke, die nicht für Zwecke der Schalldämmung bestimmt und geeignet sind.
  • Es liegt jedoch auch im Bereich der vorliegenden Erfindung, qualitativ hochwertige "frische" Kohlenstofffasern zu verwenden, was insbesondere dann von Interesse sein könnte, wenn sich herausstellt, dass derartige Kohlenstofffasern bei der Schalldämpfung aufgrund ihrer Elastizitätseigenschaften ein Resonanzverhalten zeigen, welches eine Schalldämpfung im Bereich von speziellen und besonders problematischen Schallfrequenzen ermöglicht.
  • Andererseits können aus nur äußerlich bzw. oberflächlich pyrolysierten (carbonisierten) Ligninfasern weichere, flexiblere Fasersysteme erhalten werden, die für bestimmte andere Anwendungen besondere Vorteile aufweisen können.
  • Die Gebrauchseigenschaften eines erfindungsgemäßen Dämm- und Filterstoffs für die Schalldämmung werden auch durch das verwendete Bindemittel, seine Menge und die Art und Weise, wie es zur Verfestigung des Faservlieses eingesetzt wird, beeinflusst.
  • Grundsätzlich gilt, dass das Bindemittel eine für die beabsichtigte Verwendung, d.h. beim Kontakt mit dem jeweiligen Fluid bei dessen typischen Temperaturen, ausreichende Beständigkeit aufweist, damit die Verfestigungspunkte nicht zu Schwachpunkten für die Beständigkeit und Festigkeit des gesamten erfindungsgemäßen Dämm- und Filterstoffs werden.
  • Für zahlreiche Verwendungen finden sich geeignete Bindemittel in den Klassen der Epoxidharze, Phenolharze, Organosilane, anorganischen Silikate, Ligninmaterialien und/oder Ligninsulfonate. Die Bindemittel können zur Verfestigung des Kohlenstofffaservlieses auf an sich bekannte Weise als aufzusprühende Bindemittellösungen (z.B. Epoxidharze in einem Lösemittel wie Butylacetat; Phenolharze in wässrigen Trägern; Organosilane in einem Alkohol; Lignin bzw. Ligninsulfonate in Wasser oder Wasser/Alkohl-Mischungen) zum Einsatz kommen. Bei einem geeigneten Benetzungsverhalten wandern sie entlang der Faseroberflächen und sammeln sich an den Kreuzungspunkten der Kohlenstofffasern, wo sie zu festen Tropfen trocknen oder erstarren.
  • Wenn im Hinblick auf die spezielle Schalldämpfung besondere Anforderungen an die Korrosionsbeständigkeit gestellt werden, und/oder ein hydrophober Charakter des Dämmstoffs gewünscht wird, können als Bindemittel hydrophobe Bindemittel auf Basis von Kohlenwasserstoffpolymeren zum Einsatz kommen, insbesondere temperaturfeste perfluorierte oder teilfluorierte Kunststoffe. Diese werden bei der Herstellung des Faservlieses vorteilhafterweise als feines Granulat zwischen die Kohlenstofffasern gestreut. Das Granulat kann unter Verwendung von Fluorpolymer-Abfällen kostengünstig erhalten werden.
  • Wenn die zu erwartende Temperaturbelastung nicht zu hoch ist, können als Bindemittel auch schmelzbare thermoplastische Kunststoffe, insbesondere in Form von festen Kohlenwasserstoffpolymeren ohne hydrolysierbare oder hydrophile Gruppen, z.B. aus Polyethylen oder Polypropylen, zum Einsatz kommen.
  • Neben einem Einsatz als Bindemittelgranulat können die meisten Bindemittel auch als Fasern eingesetzt werden, die bei der Herstellung mit den Kohlenstofffasern des Faservliese vermischt werden und beim Erhitzen schmelzen oder erweichen und die Kohlenstofffasern miteinander verbinden.
  • Es liegt ferner im Bereich der Erfindung, die Kohlenstofffasern chemisch zu modifizieren, z.B. durch Dotierung mit Metallen, durch oberflächliche Oxidation, durch Anätzen oder durch Behandlung mit einem Plasma, z.B. einem Atmosphären- oder Niederdruckplasma, um zu erreichen, dass die Kohlenstofffasern besser durch die verwendeten Bindemittel, z.B. stark hydrophobe Bindemittel wie Fluorpolymer-Bindemittel, benetzt werden und ein günstiges Verhältnis von Faserbenetzung und Oberflächenspannung des flüssigen oder schmelzflüssigen Bindemittels erhalten wird.
  • Eine besonders bevorzugte Ausführungsform eines erfindungsgemäßen Dämm- und Filterstoffs wird erhalten, wenn man eine Kohlenstofffaser-Wirrmatte mit einem Fluorpolymer-bindemittel verfestigt, das als Granulat oder in Faserform, insbesondere in Mengen zwischen 1 und 20 Gew.-% des fertigen verfestigten Vlieses, eingebracht werden kann. Dazu können Kohlenstofffasern und Bindemittel im wesentlichen gemeinsam auf ein Förderband aufgestreut, durch Pressen verdichtet und/oder anschließend thermisch behandelt werden, z.B. mit IR-Strahlern, durch Induktionsheizung oder in einem Mikrowellentunnel. Das Fluorpolymer verklebt die Fasern an ihren Berührungspunkten und sorgt damit beim Abkühlen für eine Stabilisierung der Struktur der Fasermatte oder des Presskuchens. Bei höheren Bindemittel-zu-Kohlenstofffaser-Verhältnissen kann es auch zu einem direkten Sintern von einzelnen Bindemittelteilchen kommen, und die Kohlenstofffasern wirken dann stabilisierend, z.B. bei Biegebeanspruchung oder Zugbelastung, auf den Bindemittel-Presskuchen (Fluorpolymergranulat-Presskuchen).
  • Die erfindungsgemäßen Dämm- und Filterstoffe können als Fasermatten oder Presskuchen in verschiedener Auslegung und Form (Dicke, Dichte, laufende Fläche) hergestellt werden und anschließend für die beabsichtigte Verwendung, z.B. in einer für den jeweilige Typ des Schalldämpfers, in dem sie zum Einsatz kommen sollen, geeigneten Form, konfektioniert werden.

Claims (9)

  1. Schalldämpfer für einen Abgasstrom mit einem fluiddurchlässigen Dämm- und Filterstoff in Form eines verfestigten Faservlieses, dadurch gekennzeichnet, dass die Fasern des Faservlieses zumindest überwiegend von Kohlenstofffasern gebildet werden, die vollständig oder wenigstens im Bereich ihrer Faseroberfläche aus Kohlenstoff bestehen, und dass die Fasern an wenigstens einem Teil ihrer Kontaktpunkte durch aus einer schmelzflüssigen oder lösemittelhaltigen Vorstufe gebildete erstarrte Bindemitteltröpfchen oder durch verfestigte Bindemittelfasern miteinander verbunden sind.
  2. Schalldämpfer nach Anspruch 1, dadurch gekennzeichnet, dass im Dämm- und Filterstoff ein Bindemittel enthalten ist, das gegen korrosive und aggressive Chemikalien, die in einem Abgasstrom aus Verbrennungsgasen einer Heizanlage oder einer Verbrennungskraftmaschine oder in einem Prozesgasstrom einer Industrieanlage auftreten, bei erhöhten Temperaturen eine Beständigkeit aufweist, die wenigstens der Beständigkeit der Kohlenstofffasern vergleichbar ist.
  3. Schalldämpfer nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass als Bindemittel Epoxidharze, Phenolharze, Organosilane, anorganischen Silikate, Lignin und/oder Ligninsulfonate vorhanden sind.
  4. Schalldämpfer nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass als Bindemittel Kohlenwasserstoffpolymere oder perfluorierte oder teilfluorierte Kohlenwasserstoffpolymere vorhanden sind.
  5. Schalldämpfer nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass das Faservlies ein wirres Gelege von Kohlenstofffasern ist, die ausgewählt sind aus aus Kohlenstofffaserverbundstoffen (CFK) recycelten Kohlenstofffasern oder aus Kohlenstofffasern, die durch wenigsten oberflächliche Carbonisierung von Kunststoff- und/oder Naturfasern, insbesondere Cellulose- und Ligninfasern, hergestellt wurden.
  6. Verfahren zur Schalldämmung, bei welchem ein Gasstrom durch einen Dämm- und Filterstoff aus inertem schallabsorbierenden Material geleitet wird,
    dadurch gekennzeichnet, dass
    der Dämm- und Filterstoff in Form eines verfestigten Faservlieses vorliegt, wobei die Fasern des Faservlieses zumindest überwiegend von Kohlenstofffasern gebildet werden, die vollständig oder wenigstens im Bereich ihrer Faseroberfläche aus Kohlenstoff bestehen, und dass die Fasern an wenigstens einem Teil ihrer Kontaktpunkte durch aus einer schmelzflüssigen oder lösemittelhaltigen Vorstufe gebildete erstarrte Bindemitteltröpfchen oder durch verfestigte Bindemittelfasern miteinander verbunden sind.
  7. Verfahren nach Anspruch 6 bei welchem der Gasstrom Verbrennungsgase aus einer Heizanlage oder einer Brennkraftmaschine enthält oder daraus besteht oder der Gasstrom einen Druckgasstrom oder einen Prozessgasstrom einer Industrieanlage enthält oder daraus besteht.
  8. Verfahren nach Anspruch 6 oder 7, bei welchem der Dämm- und Filterstoff in einen Schalldämpfer eingebracht ist, welcher in Form eines mit schallabsorbierenden Öffnungen versehenen offenen, von einem schalldämmenden fluiddurchlässigen Material ummantelten Innenrohrs aufgebaut ist, das in einem geschlossenen Außenrohr für einen Abgasstrom angeordnet ist, oder ein in einem Gasstrom angeordneter, mit einem fluiddurchströmten Dämmmaterial gefüllter topfförmiger Schalldämpfer ist.
  9. Verfahren nach einem der Ansprüche 6 bis 8, dadurch gekennzeichnet, dass der Dämm- und Filterstoff mit einem korrosiven und/oder aggressiven Fluid in Kontakt steht.
EP15199873.9A 2014-12-17 2015-12-14 Dämm- und filterstoff und seine verwendung als inertes schallabsorbierendes material Withdrawn EP3034666A1 (de)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102014226266.6A DE102014226266A1 (de) 2014-12-17 2014-12-17 Dämm- und Filterstoff und seine Verwendung als inertes schallabsorbierendes Material

Publications (1)

Publication Number Publication Date
EP3034666A1 true EP3034666A1 (de) 2016-06-22

Family

ID=55299174

Family Applications (1)

Application Number Title Priority Date Filing Date
EP15199873.9A Withdrawn EP3034666A1 (de) 2014-12-17 2015-12-14 Dämm- und filterstoff und seine verwendung als inertes schallabsorbierendes material

Country Status (2)

Country Link
EP (1) EP3034666A1 (de)
DE (1) DE102014226266A1 (de)

Citations (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2904529A1 (de) 1979-02-07 1980-08-14 Graubremse Gmbh Mit einer abblasoeffnung versehenes luftventil fuer eine druckluftanlage
WO1988002695A1 (en) * 1986-10-14 1988-04-21 The Dow Chemical Company Sound and thermal insulation
EP0396753A1 (de) * 1988-07-28 1990-11-14 Yamato Co: Ltd Dämpfvorrichtung für auspuffgas
US5036585A (en) 1988-08-05 1991-08-06 Grunzweig & Hartmann Ag Process for the manufacture of an exhaust silencer
EP0316640B1 (de) 1987-11-18 1993-02-10 BBC Brown Boveri AG Tieffrequenzschalldämpfer
DE19509153A1 (de) 1995-03-14 1996-09-19 Bayerische Motoren Werke Ag Formkörper mit Heizeinrichtung, insbesondere Außenrückblickspiegel eines Kraftfahrzeugs
US5926954A (en) 1997-09-10 1999-07-27 Acoust-A-Fiber Research & Development, Inc. Method of making a silencer
EP0612221B1 (de) 1992-09-11 1999-11-17 Philip Morris Products Inc. Tabakgeschmackstoffeinheit für elektrische rauchartikel
EP0963964A1 (de) * 1997-02-27 1999-12-15 Osaka Gas Company Limited Schallabsorbierendes und wärmedämmendes material, und verfahren zur herstellung desselben
EP0864183B1 (de) 1995-11-28 2000-11-08 Proton Motor Fuel Cell Gmbh Gasdiffusionselektrode für polymerelektrolytmembran-brennstoffzellen
DE10010112A1 (de) * 2000-03-03 2001-09-06 Asglawo Gmbh Stoffe Zum Daemme Verfahren zur Herstellung eines flexiblen,hochtemperaturbeständigen Wärme-und Schalldämmmaterials geringer Dichte,insbesondere für Anwendungen in der Luft-und Raumfahrtindustrie sowie im Fahrzeug-,Waggon- und Schiffsbau
DE10353070A1 (de) 2003-11-13 2005-06-30 Airbus Deutschland Gmbh Verfahren und Vorrichtung zur Binderaktivierung auf einem Faserhalbzeug/Preform durch direktes Erwärmen von Kohlenstofffasern über eine angelegte elektrische Spannung
DE102004046553A1 (de) 2004-09-24 2006-03-30 Rotex Heating Systems Gmbh Schalldämpfer für eine Abgasleitung einer Heizungsanlage
EP1382031B1 (de) 2001-04-27 2006-07-12 Fraunhofer-Gesellschaft Zur Förderung Der Angewandten Forschung E.V. Schalldämpfer
WO2006131108A1 (de) 2005-06-10 2006-12-14 Engelmann Automotive Gmbh Verfahren zur herstellung eines beheizbaren formkörpers, insbesondere für aussenrückblickspiegel mit einem heizelement
US20080142295A1 (en) * 2006-12-14 2008-06-19 Huff Norman T Binder for preforms in silencers
US20100140015A1 (en) 2007-05-09 2010-06-10 Stephan Weber Silencer

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5582622A (en) * 1994-10-12 1996-12-10 Bipolar Technologies, Inc. Methods of making bipolar battery plates comprising carbon and a fluoroelastomer
DE19713068A1 (de) * 1997-03-27 1998-10-01 Ecm Ingenieur Unternehmen Fuer Verfahren zur Herstellung von Heißgasfilter-Elementen sowie die Verwendung des Filters zur Heißgasfiltration von Rauchgasen
DE19836267A1 (de) * 1998-08-11 2000-02-17 Gunther Rosenmayer Elektrisch leitfähiges Schichtmaterial
EP1052321B1 (de) * 1999-05-12 2008-08-27 Sumitomo Electric Industries, Ltd. Vliesstoff aus Metallfasern und Verfahren zu dessen Herstellung
JP2002146659A (ja) * 2000-11-07 2002-05-22 Sumitomo Electric Ind Ltd 金属不織布及びその製造方法
US20040142620A1 (en) * 2002-09-10 2004-07-22 Fibermark, Inc. Nonwoven fiber webs with poly(phenylene sulfide) binder

Patent Citations (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2904529A1 (de) 1979-02-07 1980-08-14 Graubremse Gmbh Mit einer abblasoeffnung versehenes luftventil fuer eine druckluftanlage
WO1988002695A1 (en) * 1986-10-14 1988-04-21 The Dow Chemical Company Sound and thermal insulation
EP0316640B1 (de) 1987-11-18 1993-02-10 BBC Brown Boveri AG Tieffrequenzschalldämpfer
EP0396753A1 (de) * 1988-07-28 1990-11-14 Yamato Co: Ltd Dämpfvorrichtung für auspuffgas
US5036585A (en) 1988-08-05 1991-08-06 Grunzweig & Hartmann Ag Process for the manufacture of an exhaust silencer
EP0612221B1 (de) 1992-09-11 1999-11-17 Philip Morris Products Inc. Tabakgeschmackstoffeinheit für elektrische rauchartikel
DE19509153A1 (de) 1995-03-14 1996-09-19 Bayerische Motoren Werke Ag Formkörper mit Heizeinrichtung, insbesondere Außenrückblickspiegel eines Kraftfahrzeugs
EP0864183B1 (de) 1995-11-28 2000-11-08 Proton Motor Fuel Cell Gmbh Gasdiffusionselektrode für polymerelektrolytmembran-brennstoffzellen
EP0963964A1 (de) * 1997-02-27 1999-12-15 Osaka Gas Company Limited Schallabsorbierendes und wärmedämmendes material, und verfahren zur herstellung desselben
US5926954A (en) 1997-09-10 1999-07-27 Acoust-A-Fiber Research & Development, Inc. Method of making a silencer
US6148955A (en) 1997-09-10 2000-11-21 Acoust-A-Fiber Research And Development Inc Silencer
DE10010112A1 (de) * 2000-03-03 2001-09-06 Asglawo Gmbh Stoffe Zum Daemme Verfahren zur Herstellung eines flexiblen,hochtemperaturbeständigen Wärme-und Schalldämmmaterials geringer Dichte,insbesondere für Anwendungen in der Luft-und Raumfahrtindustrie sowie im Fahrzeug-,Waggon- und Schiffsbau
EP1382031B1 (de) 2001-04-27 2006-07-12 Fraunhofer-Gesellschaft Zur Förderung Der Angewandten Forschung E.V. Schalldämpfer
DE10353070A1 (de) 2003-11-13 2005-06-30 Airbus Deutschland Gmbh Verfahren und Vorrichtung zur Binderaktivierung auf einem Faserhalbzeug/Preform durch direktes Erwärmen von Kohlenstofffasern über eine angelegte elektrische Spannung
DE102004046553A1 (de) 2004-09-24 2006-03-30 Rotex Heating Systems Gmbh Schalldämpfer für eine Abgasleitung einer Heizungsanlage
WO2006131108A1 (de) 2005-06-10 2006-12-14 Engelmann Automotive Gmbh Verfahren zur herstellung eines beheizbaren formkörpers, insbesondere für aussenrückblickspiegel mit einem heizelement
US20080142295A1 (en) * 2006-12-14 2008-06-19 Huff Norman T Binder for preforms in silencers
US20100140015A1 (en) 2007-05-09 2010-06-10 Stephan Weber Silencer
EP2152556B1 (de) 2007-05-09 2014-06-11 KNORR-BREMSE Systeme für Nutzfahrzeuge GmbH Schalldämpfer

Also Published As

Publication number Publication date
DE102014226266A1 (de) 2016-06-23

Similar Documents

Publication Publication Date Title
EP1852252B1 (de) Hochtemperaturbeständiger Verbundwerkstoff
EP1104497B1 (de) Wärme- und schalldämmende verkleidung für den motorraum von kraftfahrzeugen
CH686785A5 (de) Geruchsarmer, schall- und waermedaemmender Formkoerper sowie Verfahren zu dessen Herstellung.
EP3197585B1 (de) Filterkerze mit mineralischem zusatzstoff
DE102014016167A1 (de) Filterelement und Verfahren zum Herstellen desselben
DE60122198T2 (de) Perfektionierung von verfahren zur verdichtung einer porösen struktur unter erhitzung
DE102012219409A1 (de) Filtermaterial mit erhöhter Standzeit und dieses Filtermaterial enthaltendes Filterelement
EP0499040B1 (de) Korrosions- und hitzebeständige Packung für Stoff- und Wärmeaustauschprozesse
DE2702210C3 (de) Filterkörper zur Feinstabscheidung von Nebel- und Feststoffaerosolen aus Gasen, insbesondere Druckluft sowie Verfahren zur Herstellung solcher Filterkörper
EP3034666A1 (de) Dämm- und filterstoff und seine verwendung als inertes schallabsorbierendes material
WO1995026938A1 (de) Wärmedämmformteile
EP0875272A2 (de) Verfahren zur Herstellung von Heissgasfilter - Elementen sowie die Verwendung des Filters zur Heissgasfiltration von Rauchgasen
EP3198069B1 (de) Verwendung eines carbonfaservliesstoffs als thermisches isoliermaterial
DE2940230A1 (de) Verfahren zur verbesserung des waermedaemmvermoegens von daemmstoffen, die ueberwiegend oder ausschliesslich aus anorganischen materialien bestehen
DE19858025A1 (de) Lagerungsmatte zur Lagerung eines für die Reinigung von Kraftfahrzeugabgasen eingesetzten Abgaskatalysators in einem metallischen Katalysatorgehäuse
DE102016209244B4 (de) Verfahren zur Herstellung eines Garnes, Verfahren zur Herstellung eines Vlieses und Vlies
DE102010012416A1 (de) Bauteil und Formteil sowie Herstellungsverfahren hierfür
EP0852663A1 (de) Abgaskrümmer
DD155897A1 (de) Herstellung von daemmelementen aus faserschichten unterschiedlichen waermeleitwertes
DE102013101144A1 (de) Verfahren zur Herstellung von Vliesstoffen aus Mineralfasern
WO2020221721A1 (de) Carbonfaserhaltiges tropfenabscheidungsmaterial
EP1591429A1 (de) Schaumkeramikmaterial mit offenen Poren und runden Hohlräumen und Verfahren zu dessen Herstellung
EP2899072B1 (de) Isoliervorrichtung und Verfahren zu deren Herstellung
DE19809685C2 (de) Festkörperfilter auf der Basis von Quarzsand
EP3864210A1 (de) Hohlzylindrisches carbonfasergebilde

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20161223