EP1382031B1 - Schalldämpfer - Google Patents

Schalldämpfer Download PDF

Info

Publication number
EP1382031B1
EP1382031B1 EP02740525A EP02740525A EP1382031B1 EP 1382031 B1 EP1382031 B1 EP 1382031B1 EP 02740525 A EP02740525 A EP 02740525A EP 02740525 A EP02740525 A EP 02740525A EP 1382031 B1 EP1382031 B1 EP 1382031B1
Authority
EP
European Patent Office
Prior art keywords
silencer according
micro
flat structures
cavity
silencer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP02740525A
Other languages
English (en)
French (fr)
Other versions
EP1382031A1 (de
Inventor
Helmut Fuchs
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fraunhofer Gesellschaft zur Forderung der Angewandten Forschung eV
Original Assignee
Fraunhofer Gesellschaft zur Forderung der Angewandten Forschung eV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fraunhofer Gesellschaft zur Forderung der Angewandten Forschung eV filed Critical Fraunhofer Gesellschaft zur Forderung der Angewandten Forschung eV
Publication of EP1382031A1 publication Critical patent/EP1382031A1/de
Application granted granted Critical
Publication of EP1382031B1 publication Critical patent/EP1382031B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B9/00Ceilings; Construction of ceilings, e.g. false ceilings; Ceiling construction with regard to insulation
    • E04B9/001Ceilings; Construction of ceilings, e.g. false ceilings; Ceiling construction with regard to insulation characterised by provisions for heat or sound insulation
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B9/00Ceilings; Construction of ceilings, e.g. false ceilings; Ceiling construction with regard to insulation
    • E04B9/34Grid-like or open-work ceilings, e.g. lattice type box-like modules, acoustic baffles
    • E04B9/36Grid-like or open-work ceilings, e.g. lattice type box-like modules, acoustic baffles consisting of parallel slats
    • E04B9/366Grid-like or open-work ceilings, e.g. lattice type box-like modules, acoustic baffles consisting of parallel slats the principal plane of the slats being vertical
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K11/00Methods or devices for transmitting, conducting or directing sound in general; Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/16Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/162Selection of materials
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K11/00Methods or devices for transmitting, conducting or directing sound in general; Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/16Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/172Methods or devices for protecting against, or for damping, noise or other acoustic waves in general using resonance effects

Definitions

  • the invention relates to a silencer according to the preamble of claim 1, as it is known for example from DE 197 30 355 C1.
  • Sound absorbers and silencers consist to a large extent of more or less homogeneous porous or fibrous material in front of a hard wall or in a housing. Its thickness D defines the lower frequency at which almost complete absorption of the incident sound waves can still be achieved.
  • the alternating motion of the air particles due to the sound wave is converted to heat on the way from entry into the passive absorber to the wall and from the wall to the exit from the absorber by friction in the pores or fibers ( Figure 1 (a) ).
  • a similar absorption / damping can also be achieved if it is ensured that at a distance from the wall, which corresponds again to D, a suitable flow resistance in the form of a non-woven fabric is spanned, for example, on perforated plate with sufficiently large (> 20%) and as evenly distributed perforation in the form of holes or slots ( Fig. 1 (b) ).
  • the maximum absorption can be shifted to lower frequencies at the same D, if one reduces the hole proportion in the cover of the passive absorber ( ⁇ 10%), so that a uniform coverage of the wall surface with reactive absorbers, so-called Helmholtz resonators, arises the air in the holes as Mass together with the air in the space (D) as spring form a mass-spring system ( Fig. 1 (c) ).
  • this extension of the acoustic effectiveness, for example, of a wall cladding to lower frequencies only succeeds at the expense of absorption at higher frequencies. Frequencies.
  • microperforated absorber 5 can be selected according to D and the thickness t of the cover namely so that the friction in the holes 6 itself already causes the maximum possible absorption.
  • Such sound absorbers are described in DE 43 15 759 C1 and EP 0 679 051 B1, to which reference is expressly made with regard to the effects and technical configurations of the sound absorbers.
  • EP 0 816 583 A1 discloses a device for reducing sound levels in buildings.
  • the device essentially consists of a multiplicity of mutually parallel sound attenuation elements which are designed as polyester, polycarbonate or polyethylene films and have microperforated holes.
  • the Schallabsorbtionsieri are braced along their side edges between two carrier bars and are otherwise placed hanging freely near the wall of a room.
  • Silencers in and on loud devices and systems consist predominantly of sensitive passive layers of porous or fibrous material in front of reverberant walls or cavities provided for this purpose.
  • reactive mufflers which owe their effectiveness to the reflective effect of hollow chambers and deflections in the flow and sound conduction (eg in the exhaust system of internal combustion engines), can be acoustically improved that in the perfused or overflowed muffler chambers at least in places porous, fibrous or otherwise finely structured damping material is introduced.
  • the often prevailing high airborne noise and vibration levels as well as high temperature stress and pollution by the exhaust gases prohibit practically the use of conventional, mechanically resistant fibers and foams.
  • the function of relatively rigid metal or glass foams usually does not last long under the harsh demands of mufflers on engines and vehicles. There is therefore an urgent need for a component that can be built sufficiently robust and sound technology can develop the broadband effect of conventional passive absorber.
  • the object of the invention is therefore to provide a silencer with microperforated components, the z. B. is designed sufficiently robust for the automotive - sector, that is robust enough against the exhaust gas temperature and broadband absorbs sound.
  • the absorber and silencer according to the invention consist of a cover or shell 1, for example a plate or foil made of plastic or metal, which covers or envelops a cavity 2, in which likewise microperforated plates or foils 3 are folded in such a way that the cavity 1 through this Sheet 3 is divided into many smaller to very small cavities 4 ( Fig. 3 ). All of these partial cavities 4 are therefore surrounded by microperforated boundaries, that is to say the planar structures 3, and are connected to one another aerodynamically and acoustically. All internal fabrics 3 find each other and on the outer shell 1, cavity wall and cover of the large cavity 2 mechanically secure hold.
  • the absorption spectrum of a silencer module according to the invention is compared in FIG. 4 with the results of conventional homogeneous fibrous or porous absorber layers (without acoustically effective covers). It approximates quite well the conventional absorption characteristics with a depth of 100 mm, although the used here, not in any way acoustically optimized fabrics material only a small fraction of the cavity material.
  • 0.1 mm thick aluminum metal foils were used, only partially with approximately 0.2 mm holes spaced 2 mm apart. Even better results are possible with more uniform and in the hole size and film thickness varying microperforation of the fabrics.
  • steel foils with a thickness of up to 60 ⁇ have very favorable material properties for use of the fabric.
  • zinc sheet in a thickness of ⁇ 0.1 mm can be used for this purpose.
  • the attenuation spectrum can thus become even more uniform and be extended to slightly lower frequencies, eg. B. by the thickness and space size of the shell or cover is tuned to lower frequencies.
  • the muffler module according to the invention consists in its preferred embodiment variants only of relatively smooth, coherent microperforated fabrics. Dirt that can penetrate through the tiny holes of the shell or cover, can, with appropriate orientation of the folds through appropriate drain openings be rinsed out again. They can not accumulate anywhere or bake permanently. In view of the acoustic excitation of the air in the small holes by airborne sound and the structure and its envelope by structure-borne sound additions and caking of impurities of the muffler wetting fluid anyway less to be feared than in the much more open conventional porous or fibrous structures in the sound can penetrate only if their side facing the sound is left largely (> 20%) open. Should a cleaning be necessary or desirable, the component according to the invention has the advantage that its internal fabric as well as its shell are easy to take apart, clean and re-install.
  • the relatively large contiguous microperforated sheets can better absorb and endure hard knocks and sustained vibrations than thin, discontinuous fibers, webs or foams, whose slender structures are indispensable for their acoustic performance but disadvantageous for their durability and harsh operating conditions.
  • the supporting structure of the damping material must simultaneously meet the acoustic requirements (small fiber thicknesses, thin pore walls)
  • the acoustic function completely detached from the mechanical function, is transmitted to a large number of tiny holes that do not weaken the silencer structure in any way, which, in contrast to the fibers and pores, are not subject to any mechanical stress and the air stimulated in them On top of that, even clean yourself.
  • the sound-absorbing liners 7 are provided in these images of Figure 7 with thick lines. They often consist of the antidrug materials used in the automotive industry, or they consist of merely reactive cell structures with a depth of 0.5 to 5 cm, but which are always effective only in a very narrow frequency range [P. Nelson (ed): Transportation Noise Reference Book, Bultterworth, Cambridge 1987].

Description

    Stand der Technik
  • Die Erfindung betrifft einen Schalldämpfer gemäß dem Oberbegriff des Anspruch 1, wie er beispielsweise aus der DE 197 30 355 C1 bekannt ist.
  • Schallabsorber und Schalldämpfer bestehen zum großen Teil aus mehr oder weniger homogenem porösen oder faserigen Material vor einer harten Wand oder in einem Gehäuse. Ihre Dicke D definiert die untere Frequenz, bei der noch nahezu vollständige Absorption der auftreffenden Schallwellen erreichbar ist. Die Wechselbewegung der Luftteilchen infolge der Schallwelle wird auf dem Weg vom Eintritt in den passiven Absorber bis zur Wand und von der Wand zum Austritt aus dem Absorber durch Reibung in den Poren bzw. an den Fasern in Wärme umgewandelt (Fig. 1(a)).
  • Eine ähnliche Absorption / Dämpfung kann man auch erreichen, wenn man dafür sorgt, daß im Abstand zur Wand, der etwa wieder D entspricht, ein geeigneter Strömungswiderstand in der Form z.B. eines Faservlieses aufgespannt wird, z.B. auf Lochblech mit ausreichend großer (> 20 %) und möglichst gleichmäßig verteilter Perforation in Form von Löchern oder Schlitzen (Fig. 1(b)).
  • Die maximale Absorption läßt sich bei gleichem D zu tieferen Frequenzen verschieben, wenn man den Lochanteil in der Abdeckung des passiven Absorbers verkleinert (< 10 %), so daß eine gleichmäßige Belegung der Wandfläche mit reaktiven Absorbern, sogenannten Helmholtz-Resonatoren, entsteht, bei denen die Luft in den Löchern als Masse zusammen mit der Luft im Zwischenraum (D) als Feder ein Masse-Feder-System bilden (Fig. 1(c)). Allerdings gelingt diese Ausdehnung der akustischen Wirksamkeit z.B. einer Wandverkleidung zu tieferen Frequenzen nur auf Kosten der Absorption bei höheren. Frequenzen.
  • Wenn man aber den Lochanteil weiter verkleinert (≈ 1 %) und die Löcher oder Schlitze sehr klein (< 1 mm) macht, dann kann man das poröse oder faserige Dämpfungsmaterial in einem solchen mikroperforierten Absorber sogar ganz eliminieren (Fig. 1d)). Die Lochgeometrie des mikroperforierten Absorbers 5 läßt sich entsprechend D und der Stärke t der Abdeckung nämlich so wählen, daß die Reibung in den Löchern 6 selbst bereits die maximal mögliche Absorption bewirkt. Derartige Schallabsorber sind in der DE 43 15 759 C1 und EP 0 679 051 B1 beschrieben, auf die ausdrücklich bezüglich der Wirkungen und technischen Ausgestaltungen der Schallabsorber Bezug genommen wird. Außerdem werden in diesen verkleideten Hohlräumen 2 vor der Wand mit einer fast geschlossenen schallharten Schicht auch bei einer bestimmten höheren Frequenz, deren Wellenlänge etwa 4 D entspricht, sowie ungeradzahligen Vielfachen dieser Frequenz weitere AbsorptionsMaxima anregbar.
  • Man kann auch mehrere mikroperforierte Platten 5 oder Folien hintereinander vor der Wand aufspannen, um so das Dämpfungsspektrum zu erweitern (Fig 1(e)).
  • Schließlich kann man eine etwas breitbandigere Wirksamkeit auch mit einer mikroperforierten Platte oder Folie 5 erreichen, wenn diese schräg, also mit variierendem Abstand zur Wand, aufgespannt wird (Fig 1 (f)).
  • Einzelne Helmholtz-Resonatoren oder Lochplatten-Resonatoren benötigen nach dem Stand der Technik rundum schallharte Berandungen des eingeschlossenen Luftkissens, wie in Fig. 1 nur angedeutet, um ihre Wirkung voll entfalten zu können. Es konnte allerdings in DE 197 54 107 aufgezeigt werden, daß auch frei im Raum aufgespannte mikroperforierte Flächengebilde nach Fig. 2 bei genügend dichter Anordnung parallel zueinander den in dieser Anordnung seitlich eintretenden Schallwellen bevorzugt bei mittleren und höheren Frequenzen Energie entziehen können. Allerdings fehlt diesen rundum offenen mikroperforierten Schallabsorbern die Absorption bei tiefen Frequenzen.
  • Aus der EP 0 816 583 A1 geht eine Vorrichtung zur Verminderung von Schallpegeln in Gebäuden hervor. Die Vorrichtung besteht im Wesentlichen aus einer Vielzahl parallel zueinander angeordneter Schalldämpfungselemente, die als Polyester-, Polycarbonat- oder Polyehtylenfolien ausgebildet sind und über mikroperforierte Löcher verfügen. Die Schallabsorbtionselemente sind längs ihrer Seitenkanten zwischen zwei Trägerleisten verspannt und werden ansonsten frei hängend nahe der Wand eines Raumes plaziert.
  • Nachteile herkömmlicher Schalldämpfer
  • Schalldämpfer in und an lauten Geräten und Anlagen bestehen überwiegend aus empfindlichen passiven Schichten porösen oder faserigen Materials vor schallharten Wänden oder hierfür vorgesehenen Hohlräumen. Auch reaktive Schalldämpfer, die ihre Wirksamkeit der reflektierenden Wirkung von Hohlkammern und Umlenkungen in der Strömungs- und Schallführung (z.B. im Abgasstrang von Verbrennungsmotoren) verdanken, können dadurch akustisch verbessert werden, daß in den durchströmten oder überströmten Schalldämpfer-Kammern zumindest stellenweise poröses, faserigen oder anderweitig fein strukturiertes Dämpfungsmaterial eingebracht wird. Die hier oft herrschenden hohen Luftschall- und Erschütterungs-Pegel sowie starke Temperaturbeanspruchung und Verschmutzung durch die Abgase verbieten aber praktisch den Einsatz konventioneller, mechanisch wenig resistenter Fasern und Schäume. Auch die Funktion relativ steifer Metall- oder Glasschäume bleibt bei den harten Beanspruchungen von Schalldämpfern an Motoren und Fahrzeugen meist nicht lange erhalten. Es besteht daher dringender Bedarf für ein Bauteil, das ausreichend robust aufgebaut werden und schalltechnisch die breitbandige Wirkung konventioneller passiver Absorber entfalten kann.
  • Aufgabe der Erfindung ist es daher einen Schalldämpfer mit mikroperforierten Bauteilen zu schaffen, der z. B. für den Kfz - Bereich genügend robust ausgebildet ist, also gegen die Abgastemperatur robust genug ist und breitbandig Schall absorbiert.
  • Erfindungsgemäß wird dies durch den Schalldämpfer mit mikroperforierten Bauteilen nach Anspruch 1 erreicht. Vorteilhafte Ausgestaltungen sind in den Unteransprüchen gekennzeichnet.
  • Funktionsprinzip des neuartigen Schalldämpfer-Moduls
  • Die erfindungsgemäßen Absorber und Schalldämpfer bestehen aus einer Abdeckung bzw. Hülle 1, z.B. einer Platte oder Folie aus Kunststoff oder Metall, die einen Hohlraum 2 abdeckt oder umhüllt, in dem ebenfalls mikroperforierte Platten oder Folien 3 derart eingefaltet sind, daß der Hohlraum 1 durch diese Flächengebilde 3 in viele kleinere bis hin zu sehr kleinen Hohlräumen 4 unterteilt wird (Fig. 3). Alle diese Teil-Hohlräume 4 werden also von mikroperforierten Berandungen, also den Flächengebilden 3, umgeben und stehen untereinander aerodynamisch und akustisch in Verbindung. Alle innen liegenden Flächengebilde 3 finden untereinander und an der äußeren Hülle 1, Hohlraumwandung und -abdeckung des großen Hohlraumes 2 mechanisch sicheren Halt. Für den Fall, daß die innen liegenden Flächengebilde selbst ausreichende Steifigkeit besitzen, können diese mit der Hülle oder Abdeckung 1 starr verbunden bzw. von diesen formschlüssig eingeklemmt, verklebt oder verschweißt sein (Fig. 3 (a)). Die Hohlräume 2 der Schalldämpfer nach Fig.1d, e, f werden also erfindungsgemäß durch die Flächengebilde 3 in kleine Hohlräume 4 aufgeteilt.
  • Für den Fall, daß die innen liegenden Flächengebilde aus relativ dünnen (< 1 mm) weichen oder / und federnden Folien bestehen (Fig. 3 (b)), können diese entweder ebenfalls an der Berandung 1 befestigt oder von dieser fest umschlossen, z. B. nach Art eines Kissens regelrecht eingepackt werden (Fig. 3 (c)). Wenn zusätzlich auch die Kissen-Hülle weich, flexibel und / oder federnd und mikroperforiert ausgeführt wird, kann man auf diese Weise Schalldämpfer-Packungen fertigen, die sich in hierfür vorgesehene Hohlkammern, z.B. Sacklöcher in einem Maschinengehäuse oder an oder in einem Strömungskanal, einbringen oder -drücken und mit einfachen Verriegelungen dort dauerhaft fixieren lassen. Aber auch eine Vorfertigung als kompletter Rohr- oder Kulissen-Schalldämpfer in geeigneten Gehäusen oder Rahmenkonstruktionen wie nachfolgend beschrieben ist möglich.
  • Das Absorptions-Spektrum eines erfindungsgemäßen Schalldämpfer-Moduls, gemessen im sogenannten Kundt'schen Rohr bei-senkrechtem Schalleinfall, ist in Fig. 4 den Ergebnissen konventioneller homogener faseriger bzw. poröser Absorber-Schichten (ohne akustisch wirksame Abdeckungen) gegenübergestellt. Es nähert die hergebrachte Absorptions-Charakteristik bei einer Bautiefe von 100 mm recht gut an, obwohl die hier verwendeten, noch in keiner Weise akustisch optimierten Flächengebilde nur einen kleinen Bruchteil des Hohlraumes materiell ausfüllen. Bei diesem Modul wurden, nur teilweise mit ca. 0,2 mm großen Löchern im Abstand von 2 mm versehene, 0,1 mm dicke Metall-Folien aus Aluminium verwendet. Noch bessere Ergebnisse sind mit gleichmäßigerer sowie in der Lochgröße und Folienstärke variierender Mikroperforation der Flächengebilde möglich. So weisen Folien aus Stahl mit einer Dicke von bis zu 60 µ sehr günstige Materialeigenschaften zur Verwendung des Flächengebildes auf. Auch Zinkblech in einer Dicke von < 0,1 mm kann hierfür verwendet werden. Das Dämpfungs-Spektrum kann so noch etwas gleichmäßiger werden und zu etwas tieferen Frequenzen ausgedehnt werden, z. B. indem die Dicke und Raumgröße der Hülle oder Abdeckung auf tiefere Frequenzen abgestimmt wird.
  • Vorteile der neuartigen Schalldämpfer
  • Das erfindungsgemäße Schalldämpfer-Modul besteht in seinen bevorzugten Ausführungs-Varianten nur aus relativ glatten, zusammenhängenden mikroperforierten Flächengebilden. Verschmutzungen, die durch die winzigen Löcher der Hülle oder Abdeckung noch einzudringen vermögen, können bei entsprechender Orientierung der Faltungen durch entsprechende Ablauf-Öffnungen wieder ausgespült werden. Sie können sich nirgends ansammeln oder dauerhaft anbacken. In Anbetracht der akustischen Anregung der Luft in den kleinen Löchern durch Luftschall und der Flächengebilde sowie ihrer Umhüllung durch Körperschall sind Zusetzungen und Anbackungen von Verunreinigungen des den Schalldämpfer benetzenden Fluids ohnehin weniger zu befürchten als bei den viel offeneren herkömmlichen porösen oder faserigen Strukturen, in die Schall nur eindringen kann, wenn ihre dem Schall zugekehrte Seite weitgehend (> 20 %) offen belassen wird. Sollte eine Reinigung notwendig oder wünschenswert sein, so hat das erfindungsgemäße Bauteil den Vorteil, daß seine innen liegenden Flächengebilde ebenso wie seine Hülle leicht auseinander zu nehmen, zu reinigen und wieder einzubauen sind.
  • Andererseits können die relativ großen zusammenhängenden mikroperforierten Flächengebilde harte Stöße und anhaltende Vibrationen besser auffangen und aushalten als dünne, unzusammenhängende Fasern, Gespinste oder Schäume, deren feingliedrige Strukturen für ihre akustische Wirksamkeit unabdingbar, für ihre Haltbarkeit und harten Einsatzbedingungen aber nachteilig sind. Während in bekannten Schalldämpfer-Aufbauten die tragende Struktur des Dämpfungsmaterials gleichzeitig den akustischen Erfordernissen (kleine Faserstärken, dünne Porenwände) folgen muß, wird in den erfindungsgemäßen Schalldämpfern der mechanische Zusammenhalt des gesamten Schalldämpfer-Moduls sowohl in seiner Umhüllung als auch seiner Füllung durch große, relativ stabile oder / und flexible, fast geschlossene und, wenn entfaltet, glatte Flächengebilde gewährleistet. Die akustische Funktion wird dagegen, von der mechanischen Funktion völlig gelöst, einer Vielzahl von die Schalldämpfer-Struktur in keiner Weise schwächenden winzigen Löchern übertragen, die also im Gegensatz zu den Fasern und Poren keinerlei mechanischer Beanspruchung ausgesetzt sind und sich durch die in ihnen angeregte Luft-Wechselbewegung obendrein noch selbst reinigen.
  • Besondere Bedeutung hat der Schalldämpfer mit seinen mikroperforierten Bauteilen bei Auspuffanlagen von Verbrennungsmotoren und bei Mantelstrahl-Triebwerken.
    Wegen der Gefahr von Verschmutzungen durch Verbrennungsrückstände im Abgasstrom und kurzzeitiger Zerrüttung durch hohe Erschütterungs-Pegel sowie Brandgefahr durch Treibstoff-Ablagerungen und Vereisung werden hier keine porösen oder faserigen ("passiven") Absorptions-Materialien eingesetzt. Stattdessen kommen bisher verschiedene den Schall allenfalls reflektierende, aber nicht absorbierende ("reaktive") Maßnahmen zum Einsatz. In Auspuffanlagen wird der Lärm in "Töpfen" mit Hohlkammer-Labyrinthen und offmals vielfachen Strömungs-Umlenkungen nach dem Prinzip in Fig. 5 reduziert. Wie in Fig. 6 dargestellt, können mikroperforierte Packungen nach Fig. 3c in den zahlreichen Hohlkammern 2 eines Auspufftopfes nach Fig. 5 die Dämpfungswirkung erheblich verbessern, ohne den Gegendruck im Abgasstrang weiter zu erhöhen.
  • In Triebwerken wird der Lärm von Fan, Kompressor und Turbine in schallabsorbierenden Auskleidungen von etwa 20 m2 je Triebwerk an dessen Strömungskanälen (Fig. 7) vermindert. Die schallabsorbierenden Auskleidungen 7 sind in diesen Bildern der Fig.7 mit dicken Linien versehen. Sie bestehen oft aus den auch im Automobilbau verwendeten Antidröhnmaterialien, oder sie bestehen aus bloß reaktiven Zellstrukturen mit einer Bautiefe von 0,5 bis 5 cm, die aber stets nur in einem sehr engen Frequenzbereich wirksam werden [P. Nelson (ed): Transportation Noise Reference Book, Bultterworth, Cambridge 1987].
  • Wenn man die aufwendigen Hohlkammern durch mehrfach geschichtete mikroperforierte Strukturen nach Fig. 3 ersetzt, kann ihre Absorptionswirkung erheblich verbessert werden. Weil sich die hier vorgeschlagenen Packungen, anders als konventionelle faserige oder poröse Materialien nicht voll saugen können, bleibt die Verschmutzung und Brandgefahr gering; wenn die mikroperforierten Flächengebilde aus Metall bestehen, lassen sie sich ebenso wie andere Oberflächen des Triebwerkes "enteisen". Da die Kassettierung der absorbierenden Auskleidung entfallen kann, ist durch eine entsprechende Formgebung der Strömungskanäle auch eine reinigende bzw. enteisende Strömung durch den Absorber hindurch möglich.

Claims (13)

  1. Schalldämpfer mit mikroperforierten Bauteilen mit einer Hülle oder Abdeckung (1), die einen ersten Hohlraum (2) wenigstens teilweise umhüllen,
    dadurch gekennzeichnet, dass im Inneren dieses ersten Hohlraumes (2) mikroperforierte Flächengebilde (3) vorgesehen sind, die sich im wesentlichen nur linien- oder punktförmig derart berühren, dass eine Vielzahl von zweiten Hohlräumen (4), die gegenüber dem ersten Hohlraum (2) kleiner sind, miteinander aerodynamisch und akustisch in Verbindung stehen,
    dass die Mikroperforation Abmessungen kleiner als 1 mm hat,
    dass die Flächengebilde (3) eine Dicke von < 0,2 mm aufweisen und
    dass das Verhältnis von Lochfläche zu Gesamtfläche des Flächengebildes <1 % beträgt.
  2. Schalldämpfer nach Anspruch 1,
    dadurch gekennzeichnet, dass die Flächengebilde (3) aus Metall bestehen.
  3. Schalldämpfer nach Anspruch 1 oder 2,
    dadurch gekennzeichnet, dass die mikroperforierten Flächengebilde (3) als ebene Bahnen vorgesehen und zickzackförmig oder wellenförmig angeordnet sind.
  4. Schalldämpfer nach Anspruch 1 oder 2,
    dadurch gekennzeichnet, dass die mikroperforierten Flächengebilde (3) selbst als kleine runde oder mit Kanten versehene Hohlräume ausgebildet sind.
  5. Schalldämpfer nach Anspruch 1 oder 2,
    dadurch gekennzeichnet, dass die mikroperforierten Flächengebilde (3) derart zusammengeknüllt sind, dass unregelmäßige Hohlräume entstehen.
  6. Schalldämpfer nach Anspruch 1 oder 2,
    dadurch gekennzeichnet, dass die mikroperforierten Flächengebilde (3) wenigstens teilweise den ersten Hohlraum (2) ausfüllen.
  7. Schalldämpfer nach einem der Ansprüche 1 bis 6,
    dadurch gekennzeichnet, dass in dem ersten Hohlraum (2) größere Luft- oder Abgasverbindungsleitungen (8) vorgesehen sind.
  8. Schalldämpfer nach einem der Ansprüche 1 bis 7,
    dadurch gekennzeichnet, dass der erste große Hohlraum (2) mit Gas- oder Abgasleitungen (8) und entsprechenden Auslässen verbunden ist.
  9. Schalldämpfer nach einem der Ansprüche 1 bis 8,
    dadurch gekennzeichnet, dass die Hülle und/oder die Abdeckung (1) wenigstens teilweise mikroperforiert ausgebildet ist.
  10. Schalldämpfer nach einem der Ansprüche 1 bis 9,
    dadurch gekennzeichnet, dass die Hülle und/oder die Abdeckung (1) geschlossen und luftundurchlässig ausgebildet ist.
  11. Schalldämpfer nach einem der Ansprüche 1 bis 10,
    dadurch gekennzeichnet, dass die Hülle und/oder die Abdeckung (1) hart, weich flexibel und/oder federnd ausgebildet ist.
  12. Schalldämpfer nach einem der Ansprüche 1 bis 11,
    dadurch gekennzeichnet, dass die Flächengebilde (3) mit der Hülle und/oder der Abdeckung (1) formschlüssig, z.B. verklemmt, verklebt, verlötet oder verschweißt, verbunden sind.
  13. Schalldämpfer nach einem der Ansprüche 1 bis 12,
    dadurch gekennzeichnet, dass die Mikroperforation Löcher mit einem Durchmesser kleiner 1 mm, bevorzugt kleiner 0,7 mm darstellt.
EP02740525A 2001-04-27 2002-04-26 Schalldämpfer Expired - Lifetime EP1382031B1 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE10120727 2001-04-27
DE10120727 2001-04-27
PCT/EP2002/004636 WO2002089110A1 (de) 2001-04-27 2002-04-26 Schalldämpfer

Publications (2)

Publication Number Publication Date
EP1382031A1 EP1382031A1 (de) 2004-01-21
EP1382031B1 true EP1382031B1 (de) 2006-07-12

Family

ID=7682968

Family Applications (1)

Application Number Title Priority Date Filing Date
EP02740525A Expired - Lifetime EP1382031B1 (de) 2001-04-27 2002-04-26 Schalldämpfer

Country Status (4)

Country Link
EP (1) EP1382031B1 (de)
AT (1) ATE333134T1 (de)
DE (1) DE50207500D1 (de)
WO (1) WO2002089110A1 (de)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3034666A1 (de) 2014-12-17 2016-06-22 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Dämm- und filterstoff und seine verwendung als inertes schallabsorbierendes material
CN107204182A (zh) * 2017-07-06 2017-09-26 江苏华强新能源科技有限公司 一种新型消音器

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1953354A1 (de) * 2003-08-11 2008-08-06 ArvinMeritor Emissions Technologies GmbH Abgasschalldämpfer
EP1507071B2 (de) * 2003-08-11 2019-10-16 Faurecia Emissions Control Technologies, Germany GmbH Abgasschalldämpfer
DE10337110A1 (de) * 2003-08-11 2005-03-17 Zeuna-Stärker GmbH & Co. KG Abgasschalldämpfer
EP1878008B1 (de) 2005-03-18 2013-09-18 Tumane Enterprises Limited Schalldämpfende strömungskanaleinrichtung

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4312885A1 (de) * 1993-04-20 1994-10-27 Fraunhofer Ges Forschung Unterdecke
DE19626676A1 (de) * 1996-07-03 1998-01-08 Kaefer Isoliertechnik Vorrichtung zur Verminderung von Schallpegeln in Gebäuden
DE19754107C1 (de) * 1997-12-05 1999-02-25 Fraunhofer Ges Forschung Schallabsorber

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3034666A1 (de) 2014-12-17 2016-06-22 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Dämm- und filterstoff und seine verwendung als inertes schallabsorbierendes material
DE102014226266A1 (de) 2014-12-17 2016-06-23 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Dämm- und Filterstoff und seine Verwendung als inertes schallabsorbierendes Material
CN107204182A (zh) * 2017-07-06 2017-09-26 江苏华强新能源科技有限公司 一种新型消音器

Also Published As

Publication number Publication date
WO2002089110A1 (de) 2002-11-07
EP1382031A1 (de) 2004-01-21
DE50207500D1 (de) 2006-08-24
ATE333134T1 (de) 2006-08-15

Similar Documents

Publication Publication Date Title
EP2026994B1 (de) Akustisch und thermisch wirkende isolation
US6182787B1 (en) Rigid sandwich panel acoustic treatment
EP2316117B1 (de) Geräuschgeminderte vorrichtung und verfahren zur geräuschverringerung
EP0697051B1 (de) Unterdecke
SE506188C2 (sv) Ljudabsorberande element samt förfarande för framställning av detta element samt användning av elementet
DE112005003232T5 (de) Schallschluckende Struktur
DE2534556B2 (de) Schalldämpfer für Gasströme
US20030098200A1 (en) Acoustical absorptive splitter
EP1382031B1 (de) Schalldämpfer
DE69723870T2 (de) Vorrichtung und verfahren zur schalldämpfung in einem transportsystem für gasförmige stoffe und anwendung einer solchen vorrichtung in einem abgassystem eines schiffes
JPH0245461Y2 (de)
EP1034920A1 (de) Schallschutzkapselung
JP2603131B2 (ja) 消音装置
JP2010521624A (ja) 還元剤の調量のための装置
DE102006033053B3 (de) Kraftfahrzeug-Schalldämpfer
DE60118221T2 (de) Schallabsorptionsvorrichtung
DE2437947C3 (de) Anordnung zur Absorption von Luftschall
DE2248638A1 (de) Resonatorkammerschalldaempfer fuer gasturbine
CN210531248U (zh) 一种风机消音器
KR101979378B1 (ko) 스플리터 및 이를 포함하는 소음기
JP3073420B2 (ja) 高温用サイレンサ
WO2006077119A1 (de) Schalldämpferbox
CN204511573U (zh) 谐振消声器
DE3322204A1 (de) Schalldaempfer fuer gasfoermige medien
DE102008030709A1 (de) Mehrlagiges Abschirmteil

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20030918

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

17Q First examination report despatched

Effective date: 20050610

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20060712

Ref country code: GB

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060712

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060712

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060712

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060712

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REF Corresponds to:

Ref document number: 50207500

Country of ref document: DE

Date of ref document: 20060824

Kind code of ref document: P

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20061012

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20061012

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20061023

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20061212

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: FRAUNHOFER-GESELLSCHAFT ZUR FOERDERUNG DER ANGEWAN

GBV Gb: ep patent (uk) treated as always having been void in accordance with gb section 77(7)/1977 [no translation filed]

Effective date: 20060712

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

EN Fr: translation not filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20070413

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

BERE Be: lapsed

Owner name: FRAUNHOFER-GESELLSCHAFT ZUR FORDERUNG DER ANGEWAN

Effective date: 20070430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070430

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070511

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20061013

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070426

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060712

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070426

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060712

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060712

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20130423

Year of fee payment: 12

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 50207500

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20141101

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 50207500

Country of ref document: DE

Effective date: 20141101