EP1382031B1 - Silencer - Google Patents
Silencer Download PDFInfo
- Publication number
- EP1382031B1 EP1382031B1 EP02740525A EP02740525A EP1382031B1 EP 1382031 B1 EP1382031 B1 EP 1382031B1 EP 02740525 A EP02740525 A EP 02740525A EP 02740525 A EP02740525 A EP 02740525A EP 1382031 B1 EP1382031 B1 EP 1382031B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- silencer according
- micro
- flat structures
- cavity
- silencer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 230000003584 silencer Effects 0.000 title claims abstract description 25
- 229910052751 metal Inorganic materials 0.000 claims description 4
- 239000002184 metal Substances 0.000 claims description 4
- 230000001788 irregular Effects 0.000 claims 1
- 238000005476 soldering Methods 0.000 claims 1
- 238000003466 welding Methods 0.000 claims 1
- 230000000694 effects Effects 0.000 abstract description 7
- 239000011148 porous material Substances 0.000 abstract description 7
- 239000002657 fibrous material Substances 0.000 abstract description 4
- 238000010276 construction Methods 0.000 abstract 1
- 230000035945 sensitivity Effects 0.000 abstract 1
- 230000035939 shock Effects 0.000 abstract 1
- 239000006096 absorbing agent Substances 0.000 description 14
- 239000011797 cavity material Substances 0.000 description 11
- 239000004744 fabric Substances 0.000 description 11
- 238000010521 absorption reaction Methods 0.000 description 10
- 239000000463 material Substances 0.000 description 7
- 239000011888 foil Substances 0.000 description 6
- 238000013016 damping Methods 0.000 description 5
- 239000000835 fiber Substances 0.000 description 5
- 238000002485 combustion reaction Methods 0.000 description 3
- 239000006260 foam Substances 0.000 description 3
- 239000007789 gas Substances 0.000 description 3
- 238000005253 cladding Methods 0.000 description 2
- 238000004140 cleaning Methods 0.000 description 2
- 238000001228 spectrum Methods 0.000 description 2
- 239000004698 Polyethylene Substances 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 1
- 230000002745 absorbent Effects 0.000 description 1
- 239000002250 absorbent Substances 0.000 description 1
- 238000000862 absorption spectrum Methods 0.000 description 1
- 238000007792 addition Methods 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 230000001427 coherent effect Effects 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 210000003027 ear inner Anatomy 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000005284 excitation Effects 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 230000005226 mechanical processes and functions Effects 0.000 description 1
- 239000004745 nonwoven fabric Substances 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 229920003023 plastic Polymers 0.000 description 1
- 229920000515 polycarbonate Polymers 0.000 description 1
- 239000004417 polycarbonate Substances 0.000 description 1
- 229920000728 polyester Polymers 0.000 description 1
- -1 polyethylene Polymers 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 238000009417 prefabrication Methods 0.000 description 1
- 238000007493 shaping process Methods 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 230000002459 sustained effect Effects 0.000 description 1
- 238000009736 wetting Methods 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
- 239000011701 zinc Substances 0.000 description 1
Images
Classifications
-
- E—FIXED CONSTRUCTIONS
- E04—BUILDING
- E04B—GENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
- E04B9/00—Ceilings; Construction of ceilings, e.g. false ceilings; Ceiling construction with regard to insulation
- E04B9/001—Ceilings; Construction of ceilings, e.g. false ceilings; Ceiling construction with regard to insulation characterised by provisions for heat or sound insulation
-
- E—FIXED CONSTRUCTIONS
- E04—BUILDING
- E04B—GENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
- E04B9/00—Ceilings; Construction of ceilings, e.g. false ceilings; Ceiling construction with regard to insulation
- E04B9/34—Grid-like or open-work ceilings, e.g. lattice type box-like modules, acoustic baffles
- E04B9/36—Grid-like or open-work ceilings, e.g. lattice type box-like modules, acoustic baffles consisting of parallel slats
- E04B9/366—Grid-like or open-work ceilings, e.g. lattice type box-like modules, acoustic baffles consisting of parallel slats the principal plane of the slats being vertical
-
- G—PHYSICS
- G10—MUSICAL INSTRUMENTS; ACOUSTICS
- G10K—SOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
- G10K11/00—Methods or devices for transmitting, conducting or directing sound in general; Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
- G10K11/16—Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
- G10K11/162—Selection of materials
-
- G—PHYSICS
- G10—MUSICAL INSTRUMENTS; ACOUSTICS
- G10K—SOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
- G10K11/00—Methods or devices for transmitting, conducting or directing sound in general; Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
- G10K11/16—Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
- G10K11/172—Methods or devices for protecting against, or for damping, noise or other acoustic waves in general using resonance effects
Definitions
- the invention relates to a silencer according to the preamble of claim 1, as it is known for example from DE 197 30 355 C1.
- Sound absorbers and silencers consist to a large extent of more or less homogeneous porous or fibrous material in front of a hard wall or in a housing. Its thickness D defines the lower frequency at which almost complete absorption of the incident sound waves can still be achieved.
- the alternating motion of the air particles due to the sound wave is converted to heat on the way from entry into the passive absorber to the wall and from the wall to the exit from the absorber by friction in the pores or fibers ( Figure 1 (a) ).
- a similar absorption / damping can also be achieved if it is ensured that at a distance from the wall, which corresponds again to D, a suitable flow resistance in the form of a non-woven fabric is spanned, for example, on perforated plate with sufficiently large (> 20%) and as evenly distributed perforation in the form of holes or slots ( Fig. 1 (b) ).
- the maximum absorption can be shifted to lower frequencies at the same D, if one reduces the hole proportion in the cover of the passive absorber ( ⁇ 10%), so that a uniform coverage of the wall surface with reactive absorbers, so-called Helmholtz resonators, arises the air in the holes as Mass together with the air in the space (D) as spring form a mass-spring system ( Fig. 1 (c) ).
- this extension of the acoustic effectiveness, for example, of a wall cladding to lower frequencies only succeeds at the expense of absorption at higher frequencies. Frequencies.
- microperforated absorber 5 can be selected according to D and the thickness t of the cover namely so that the friction in the holes 6 itself already causes the maximum possible absorption.
- Such sound absorbers are described in DE 43 15 759 C1 and EP 0 679 051 B1, to which reference is expressly made with regard to the effects and technical configurations of the sound absorbers.
- EP 0 816 583 A1 discloses a device for reducing sound levels in buildings.
- the device essentially consists of a multiplicity of mutually parallel sound attenuation elements which are designed as polyester, polycarbonate or polyethylene films and have microperforated holes.
- the Schallabsorbtionsieri are braced along their side edges between two carrier bars and are otherwise placed hanging freely near the wall of a room.
- Silencers in and on loud devices and systems consist predominantly of sensitive passive layers of porous or fibrous material in front of reverberant walls or cavities provided for this purpose.
- reactive mufflers which owe their effectiveness to the reflective effect of hollow chambers and deflections in the flow and sound conduction (eg in the exhaust system of internal combustion engines), can be acoustically improved that in the perfused or overflowed muffler chambers at least in places porous, fibrous or otherwise finely structured damping material is introduced.
- the often prevailing high airborne noise and vibration levels as well as high temperature stress and pollution by the exhaust gases prohibit practically the use of conventional, mechanically resistant fibers and foams.
- the function of relatively rigid metal or glass foams usually does not last long under the harsh demands of mufflers on engines and vehicles. There is therefore an urgent need for a component that can be built sufficiently robust and sound technology can develop the broadband effect of conventional passive absorber.
- the object of the invention is therefore to provide a silencer with microperforated components, the z. B. is designed sufficiently robust for the automotive - sector, that is robust enough against the exhaust gas temperature and broadband absorbs sound.
- the absorber and silencer according to the invention consist of a cover or shell 1, for example a plate or foil made of plastic or metal, which covers or envelops a cavity 2, in which likewise microperforated plates or foils 3 are folded in such a way that the cavity 1 through this Sheet 3 is divided into many smaller to very small cavities 4 ( Fig. 3 ). All of these partial cavities 4 are therefore surrounded by microperforated boundaries, that is to say the planar structures 3, and are connected to one another aerodynamically and acoustically. All internal fabrics 3 find each other and on the outer shell 1, cavity wall and cover of the large cavity 2 mechanically secure hold.
- the absorption spectrum of a silencer module according to the invention is compared in FIG. 4 with the results of conventional homogeneous fibrous or porous absorber layers (without acoustically effective covers). It approximates quite well the conventional absorption characteristics with a depth of 100 mm, although the used here, not in any way acoustically optimized fabrics material only a small fraction of the cavity material.
- 0.1 mm thick aluminum metal foils were used, only partially with approximately 0.2 mm holes spaced 2 mm apart. Even better results are possible with more uniform and in the hole size and film thickness varying microperforation of the fabrics.
- steel foils with a thickness of up to 60 ⁇ have very favorable material properties for use of the fabric.
- zinc sheet in a thickness of ⁇ 0.1 mm can be used for this purpose.
- the attenuation spectrum can thus become even more uniform and be extended to slightly lower frequencies, eg. B. by the thickness and space size of the shell or cover is tuned to lower frequencies.
- the muffler module according to the invention consists in its preferred embodiment variants only of relatively smooth, coherent microperforated fabrics. Dirt that can penetrate through the tiny holes of the shell or cover, can, with appropriate orientation of the folds through appropriate drain openings be rinsed out again. They can not accumulate anywhere or bake permanently. In view of the acoustic excitation of the air in the small holes by airborne sound and the structure and its envelope by structure-borne sound additions and caking of impurities of the muffler wetting fluid anyway less to be feared than in the much more open conventional porous or fibrous structures in the sound can penetrate only if their side facing the sound is left largely (> 20%) open. Should a cleaning be necessary or desirable, the component according to the invention has the advantage that its internal fabric as well as its shell are easy to take apart, clean and re-install.
- the relatively large contiguous microperforated sheets can better absorb and endure hard knocks and sustained vibrations than thin, discontinuous fibers, webs or foams, whose slender structures are indispensable for their acoustic performance but disadvantageous for their durability and harsh operating conditions.
- the supporting structure of the damping material must simultaneously meet the acoustic requirements (small fiber thicknesses, thin pore walls)
- the acoustic function completely detached from the mechanical function, is transmitted to a large number of tiny holes that do not weaken the silencer structure in any way, which, in contrast to the fibers and pores, are not subject to any mechanical stress and the air stimulated in them On top of that, even clean yourself.
- the sound-absorbing liners 7 are provided in these images of Figure 7 with thick lines. They often consist of the antidrug materials used in the automotive industry, or they consist of merely reactive cell structures with a depth of 0.5 to 5 cm, but which are always effective only in a very narrow frequency range [P. Nelson (ed): Transportation Noise Reference Book, Bultterworth, Cambridge 1987].
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Architecture (AREA)
- Electromagnetism (AREA)
- Civil Engineering (AREA)
- Structural Engineering (AREA)
- Acoustics & Sound (AREA)
- Multimedia (AREA)
- Exhaust Silencers (AREA)
Abstract
Description
Die Erfindung betrifft einen Schalldämpfer gemäß dem Oberbegriff des Anspruch 1, wie er beispielsweise aus der DE 197 30 355 C1 bekannt ist.The invention relates to a silencer according to the preamble of
Schallabsorber und Schalldämpfer bestehen zum großen Teil aus mehr oder weniger homogenem porösen oder faserigen Material vor einer harten Wand oder in einem Gehäuse. Ihre Dicke D definiert die untere Frequenz, bei der noch nahezu vollständige Absorption der auftreffenden Schallwellen erreichbar ist. Die Wechselbewegung der Luftteilchen infolge der Schallwelle wird auf dem Weg vom Eintritt in den passiven Absorber bis zur Wand und von der Wand zum Austritt aus dem Absorber durch Reibung in den Poren bzw. an den Fasern in Wärme umgewandelt (Fig. 1(a)).Sound absorbers and silencers consist to a large extent of more or less homogeneous porous or fibrous material in front of a hard wall or in a housing. Its thickness D defines the lower frequency at which almost complete absorption of the incident sound waves can still be achieved. The alternating motion of the air particles due to the sound wave is converted to heat on the way from entry into the passive absorber to the wall and from the wall to the exit from the absorber by friction in the pores or fibers ( Figure 1 (a) ). ,
Eine ähnliche Absorption / Dämpfung kann man auch erreichen, wenn man dafür sorgt, daß im Abstand zur Wand, der etwa wieder D entspricht, ein geeigneter Strömungswiderstand in der Form z.B. eines Faservlieses aufgespannt wird, z.B. auf Lochblech mit ausreichend großer (> 20 %) und möglichst gleichmäßig verteilter Perforation in Form von Löchern oder Schlitzen (Fig. 1(b)).A similar absorption / damping can also be achieved if it is ensured that at a distance from the wall, which corresponds again to D, a suitable flow resistance in the form of a non-woven fabric is spanned, for example, on perforated plate with sufficiently large (> 20%) and as evenly distributed perforation in the form of holes or slots ( Fig. 1 (b) ).
Die maximale Absorption läßt sich bei gleichem D zu tieferen Frequenzen verschieben, wenn man den Lochanteil in der Abdeckung des passiven Absorbers verkleinert (< 10 %), so daß eine gleichmäßige Belegung der Wandfläche mit reaktiven Absorbern, sogenannten Helmholtz-Resonatoren, entsteht, bei denen die Luft in den Löchern als Masse zusammen mit der Luft im Zwischenraum (D) als Feder ein Masse-Feder-System bilden (Fig. 1(c)). Allerdings gelingt diese Ausdehnung der akustischen Wirksamkeit z.B. einer Wandverkleidung zu tieferen Frequenzen nur auf Kosten der Absorption bei höheren. Frequenzen.The maximum absorption can be shifted to lower frequencies at the same D, if one reduces the hole proportion in the cover of the passive absorber (<10%), so that a uniform coverage of the wall surface with reactive absorbers, so-called Helmholtz resonators, arises the air in the holes as Mass together with the air in the space (D) as spring form a mass-spring system ( Fig. 1 (c) ). However, this extension of the acoustic effectiveness, for example, of a wall cladding to lower frequencies only succeeds at the expense of absorption at higher frequencies. Frequencies.
Wenn man aber den Lochanteil weiter verkleinert (≈ 1 %) und die Löcher oder Schlitze sehr klein (< 1 mm) macht, dann kann man das poröse oder faserige Dämpfungsmaterial in einem solchen mikroperforierten Absorber sogar ganz eliminieren (Fig. 1d)). Die Lochgeometrie des mikroperforierten Absorbers 5 läßt sich entsprechend D und der Stärke t der Abdeckung nämlich so wählen, daß die Reibung in den Löchern 6 selbst bereits die maximal mögliche Absorption bewirkt. Derartige Schallabsorber sind in der DE 43 15 759 C1 und EP 0 679 051 B1 beschrieben, auf die ausdrücklich bezüglich der Wirkungen und technischen Ausgestaltungen der Schallabsorber Bezug genommen wird. Außerdem werden in diesen verkleideten Hohlräumen 2 vor der Wand mit einer fast geschlossenen schallharten Schicht auch bei einer bestimmten höheren Frequenz, deren Wellenlänge etwa 4 D entspricht, sowie ungeradzahligen Vielfachen dieser Frequenz weitere AbsorptionsMaxima anregbar.However, if one further reduces the hole proportion (≈ 1%) and makes the holes or slots very small (<1 mm), then one can even completely eliminate the porous or fibrous damping material in such a microperforated absorber ( FIG. 1d) ). The hole geometry of the
Man kann auch mehrere mikroperforierte Platten 5 oder Folien hintereinander vor der Wand aufspannen, um so das Dämpfungsspektrum zu erweitern (Fig 1(e)).It is also possible to span a plurality of
Schließlich kann man eine etwas breitbandigere Wirksamkeit auch mit einer mikroperforierten Platte oder Folie 5 erreichen, wenn diese schräg, also mit variierendem Abstand zur Wand, aufgespannt wird (Fig 1 (f)).Finally, one can achieve a somewhat broadband effectiveness even with a microperforated plate or
Einzelne Helmholtz-Resonatoren oder Lochplatten-Resonatoren benötigen nach dem Stand der Technik rundum schallharte Berandungen des eingeschlossenen Luftkissens, wie in Fig. 1 nur angedeutet, um ihre Wirkung voll entfalten zu können. Es konnte allerdings in DE 197 54 107 aufgezeigt werden, daß auch frei im Raum aufgespannte mikroperforierte Flächengebilde nach Fig. 2 bei genügend dichter Anordnung parallel zueinander den in dieser Anordnung seitlich eintretenden Schallwellen bevorzugt bei mittleren und höheren Frequenzen Energie entziehen können. Allerdings fehlt diesen rundum offenen mikroperforierten Schallabsorbern die Absorption bei tiefen Frequenzen.Individual Helmholtz resonators or perforated plate resonators require, according to the prior art, all-round sound-proof boundaries of the enclosed air cushion, as indicated in FIG. 1 only, in order to fully develop their effect. It could, however, in DE 197 54 107 be shown that even in space spanned microperforated fabric of FIG. 2 in sufficiently dense arrangement parallel to each other in this arrangement laterally entering sound waves preferably at medium and higher frequencies can withdraw energy. However, these all-round open microperforated sound absorbers lack absorption at low frequencies.
Aus der EP 0 816 583 A1 geht eine Vorrichtung zur Verminderung von Schallpegeln in Gebäuden hervor. Die Vorrichtung besteht im Wesentlichen aus einer Vielzahl parallel zueinander angeordneter Schalldämpfungselemente, die als Polyester-, Polycarbonat- oder Polyehtylenfolien ausgebildet sind und über mikroperforierte Löcher verfügen. Die Schallabsorbtionselemente sind längs ihrer Seitenkanten zwischen zwei Trägerleisten verspannt und werden ansonsten frei hängend nahe der Wand eines Raumes plaziert.
Schalldämpfer in und an lauten Geräten und Anlagen bestehen überwiegend aus empfindlichen passiven Schichten porösen oder faserigen Materials vor schallharten Wänden oder hierfür vorgesehenen Hohlräumen. Auch reaktive Schalldämpfer, die ihre Wirksamkeit der reflektierenden Wirkung von Hohlkammern und Umlenkungen in der Strömungs- und Schallführung (z.B. im Abgasstrang von Verbrennungsmotoren) verdanken, können dadurch akustisch verbessert werden, daß in den durchströmten oder überströmten Schalldämpfer-Kammern zumindest stellenweise poröses, faserigen oder anderweitig fein strukturiertes Dämpfungsmaterial eingebracht wird. Die hier oft herrschenden hohen Luftschall- und Erschütterungs-Pegel sowie starke Temperaturbeanspruchung und Verschmutzung durch die Abgase verbieten aber praktisch den Einsatz konventioneller, mechanisch wenig resistenter Fasern und Schäume. Auch die Funktion relativ steifer Metall- oder Glasschäume bleibt bei den harten Beanspruchungen von Schalldämpfern an Motoren und Fahrzeugen meist nicht lange erhalten. Es besteht daher dringender Bedarf für ein Bauteil, das ausreichend robust aufgebaut werden und schalltechnisch die breitbandige Wirkung konventioneller passiver Absorber entfalten kann.Silencers in and on loud devices and systems consist predominantly of sensitive passive layers of porous or fibrous material in front of reverberant walls or cavities provided for this purpose. Also reactive mufflers, which owe their effectiveness to the reflective effect of hollow chambers and deflections in the flow and sound conduction (eg in the exhaust system of internal combustion engines), can be acoustically improved that in the perfused or overflowed muffler chambers at least in places porous, fibrous or otherwise finely structured damping material is introduced. The often prevailing high airborne noise and vibration levels as well as high temperature stress and pollution by the exhaust gases prohibit practically the use of conventional, mechanically resistant fibers and foams. The function of relatively rigid metal or glass foams usually does not last long under the harsh demands of mufflers on engines and vehicles. There is therefore an urgent need for a component that can be built sufficiently robust and sound technology can develop the broadband effect of conventional passive absorber.
Aufgabe der Erfindung ist es daher einen Schalldämpfer mit mikroperforierten Bauteilen zu schaffen, der z. B. für den Kfz - Bereich genügend robust ausgebildet ist, also gegen die Abgastemperatur robust genug ist und breitbandig Schall absorbiert.The object of the invention is therefore to provide a silencer with microperforated components, the z. B. is designed sufficiently robust for the automotive - sector, that is robust enough against the exhaust gas temperature and broadband absorbs sound.
Erfindungsgemäß wird dies durch den Schalldämpfer mit mikroperforierten Bauteilen nach Anspruch 1 erreicht. Vorteilhafte Ausgestaltungen sind in den Unteransprüchen gekennzeichnet.According to the invention this is achieved by the muffler with microperforated components according to
Die erfindungsgemäßen Absorber und Schalldämpfer bestehen aus einer Abdeckung bzw. Hülle 1, z.B. einer Platte oder Folie aus Kunststoff oder Metall, die einen Hohlraum 2 abdeckt oder umhüllt, in dem ebenfalls mikroperforierte Platten oder Folien 3 derart eingefaltet sind, daß der Hohlraum 1 durch diese Flächengebilde 3 in viele kleinere bis hin zu sehr kleinen Hohlräumen 4 unterteilt wird (Fig. 3). Alle diese Teil-Hohlräume 4 werden also von mikroperforierten Berandungen, also den Flächengebilden 3, umgeben und stehen untereinander aerodynamisch und akustisch in Verbindung. Alle innen liegenden Flächengebilde 3 finden untereinander und an der äußeren Hülle 1, Hohlraumwandung und -abdeckung des großen Hohlraumes 2 mechanisch sicheren Halt. Für den Fall, daß die innen liegenden Flächengebilde selbst ausreichende Steifigkeit besitzen, können diese mit der Hülle oder Abdeckung 1 starr verbunden bzw. von diesen formschlüssig eingeklemmt, verklebt oder verschweißt sein (Fig. 3 (a)). Die Hohlräume 2 der Schalldämpfer nach Fig.1d, e, f werden also erfindungsgemäß durch die Flächengebilde 3 in kleine Hohlräume 4 aufgeteilt.The absorber and silencer according to the invention consist of a cover or
Für den Fall, daß die innen liegenden Flächengebilde aus relativ dünnen (< 1 mm) weichen oder / und federnden Folien bestehen (Fig. 3 (b)), können diese entweder ebenfalls an der Berandung 1 befestigt oder von dieser fest umschlossen, z. B. nach Art eines Kissens regelrecht eingepackt werden (Fig. 3 (c)). Wenn zusätzlich auch die Kissen-Hülle weich, flexibel und / oder federnd und mikroperforiert ausgeführt wird, kann man auf diese Weise Schalldämpfer-Packungen fertigen, die sich in hierfür vorgesehene Hohlkammern, z.B. Sacklöcher in einem Maschinengehäuse oder an oder in einem Strömungskanal, einbringen oder -drücken und mit einfachen Verriegelungen dort dauerhaft fixieren lassen. Aber auch eine Vorfertigung als kompletter Rohr- oder Kulissen-Schalldämpfer in geeigneten Gehäusen oder Rahmenkonstruktionen wie nachfolgend beschrieben ist möglich.In the event that the internal fabrics of relatively thin (<1 mm) soft or / and resilient films are made ( Fig. 3 (b) ), these can either also attached to the
Das Absorptions-Spektrum eines erfindungsgemäßen Schalldämpfer-Moduls, gemessen im sogenannten Kundt'schen Rohr bei-senkrechtem Schalleinfall, ist in Fig. 4 den Ergebnissen konventioneller homogener faseriger bzw. poröser Absorber-Schichten (ohne akustisch wirksame Abdeckungen) gegenübergestellt. Es nähert die hergebrachte Absorptions-Charakteristik bei einer Bautiefe von 100 mm recht gut an, obwohl die hier verwendeten, noch in keiner Weise akustisch optimierten Flächengebilde nur einen kleinen Bruchteil des Hohlraumes materiell ausfüllen. Bei diesem Modul wurden, nur teilweise mit ca. 0,2 mm großen Löchern im Abstand von 2 mm versehene, 0,1 mm dicke Metall-Folien aus Aluminium verwendet. Noch bessere Ergebnisse sind mit gleichmäßigerer sowie in der Lochgröße und Folienstärke variierender Mikroperforation der Flächengebilde möglich. So weisen Folien aus Stahl mit einer Dicke von bis zu 60 µ sehr günstige Materialeigenschaften zur Verwendung des Flächengebildes auf. Auch Zinkblech in einer Dicke von < 0,1 mm kann hierfür verwendet werden. Das Dämpfungs-Spektrum kann so noch etwas gleichmäßiger werden und zu etwas tieferen Frequenzen ausgedehnt werden, z. B. indem die Dicke und Raumgröße der Hülle oder Abdeckung auf tiefere Frequenzen abgestimmt wird.The absorption spectrum of a silencer module according to the invention, measured in the so-called Kundt tube with vertical sound incidence, is compared in FIG. 4 with the results of conventional homogeneous fibrous or porous absorber layers (without acoustically effective covers). It approximates quite well the conventional absorption characteristics with a depth of 100 mm, although the used here, not in any way acoustically optimized fabrics material only a small fraction of the cavity material. In this module, 0.1 mm thick aluminum metal foils were used, only partially with approximately 0.2 mm holes spaced 2 mm apart. Even better results are possible with more uniform and in the hole size and film thickness varying microperforation of the fabrics. Thus, steel foils with a thickness of up to 60 μ have very favorable material properties for use of the fabric. Also zinc sheet in a thickness of <0.1 mm can be used for this purpose. The attenuation spectrum can thus become even more uniform and be extended to slightly lower frequencies, eg. B. by the thickness and space size of the shell or cover is tuned to lower frequencies.
Das erfindungsgemäße Schalldämpfer-Modul besteht in seinen bevorzugten Ausführungs-Varianten nur aus relativ glatten, zusammenhängenden mikroperforierten Flächengebilden. Verschmutzungen, die durch die winzigen Löcher der Hülle oder Abdeckung noch einzudringen vermögen, können bei entsprechender Orientierung der Faltungen durch entsprechende Ablauf-Öffnungen wieder ausgespült werden. Sie können sich nirgends ansammeln oder dauerhaft anbacken. In Anbetracht der akustischen Anregung der Luft in den kleinen Löchern durch Luftschall und der Flächengebilde sowie ihrer Umhüllung durch Körperschall sind Zusetzungen und Anbackungen von Verunreinigungen des den Schalldämpfer benetzenden Fluids ohnehin weniger zu befürchten als bei den viel offeneren herkömmlichen porösen oder faserigen Strukturen, in die Schall nur eindringen kann, wenn ihre dem Schall zugekehrte Seite weitgehend (> 20 %) offen belassen wird. Sollte eine Reinigung notwendig oder wünschenswert sein, so hat das erfindungsgemäße Bauteil den Vorteil, daß seine innen liegenden Flächengebilde ebenso wie seine Hülle leicht auseinander zu nehmen, zu reinigen und wieder einzubauen sind.The muffler module according to the invention consists in its preferred embodiment variants only of relatively smooth, coherent microperforated fabrics. Dirt that can penetrate through the tiny holes of the shell or cover, can, with appropriate orientation of the folds through appropriate drain openings be rinsed out again. They can not accumulate anywhere or bake permanently. In view of the acoustic excitation of the air in the small holes by airborne sound and the structure and its envelope by structure-borne sound additions and caking of impurities of the muffler wetting fluid anyway less to be feared than in the much more open conventional porous or fibrous structures in the sound can penetrate only if their side facing the sound is left largely (> 20%) open. Should a cleaning be necessary or desirable, the component according to the invention has the advantage that its internal fabric as well as its shell are easy to take apart, clean and re-install.
Andererseits können die relativ großen zusammenhängenden mikroperforierten Flächengebilde harte Stöße und anhaltende Vibrationen besser auffangen und aushalten als dünne, unzusammenhängende Fasern, Gespinste oder Schäume, deren feingliedrige Strukturen für ihre akustische Wirksamkeit unabdingbar, für ihre Haltbarkeit und harten Einsatzbedingungen aber nachteilig sind. Während in bekannten Schalldämpfer-Aufbauten die tragende Struktur des Dämpfungsmaterials gleichzeitig den akustischen Erfordernissen (kleine Faserstärken, dünne Porenwände) folgen muß, wird in den erfindungsgemäßen Schalldämpfern der mechanische Zusammenhalt des gesamten Schalldämpfer-Moduls sowohl in seiner Umhüllung als auch seiner Füllung durch große, relativ stabile oder / und flexible, fast geschlossene und, wenn entfaltet, glatte Flächengebilde gewährleistet. Die akustische Funktion wird dagegen, von der mechanischen Funktion völlig gelöst, einer Vielzahl von die Schalldämpfer-Struktur in keiner Weise schwächenden winzigen Löchern übertragen, die also im Gegensatz zu den Fasern und Poren keinerlei mechanischer Beanspruchung ausgesetzt sind und sich durch die in ihnen angeregte Luft-Wechselbewegung obendrein noch selbst reinigen.On the other hand, the relatively large contiguous microperforated sheets can better absorb and endure hard knocks and sustained vibrations than thin, discontinuous fibers, webs or foams, whose slender structures are indispensable for their acoustic performance but disadvantageous for their durability and harsh operating conditions. While in known muffler structures, the supporting structure of the damping material must simultaneously meet the acoustic requirements (small fiber thicknesses, thin pore walls), in the mufflers according to the invention, the mechanical cohesion of the entire muffler module in both its envelope and its filling by large, relatively stable or / and flexible, almost closed and, when unfolded, smooth fabrics ensured. On the other hand, the acoustic function, completely detached from the mechanical function, is transmitted to a large number of tiny holes that do not weaken the silencer structure in any way, which, in contrast to the fibers and pores, are not subject to any mechanical stress and the air stimulated in them On top of that, even clean yourself.
Besondere Bedeutung hat der Schalldämpfer mit seinen mikroperforierten Bauteilen bei Auspuffanlagen von Verbrennungsmotoren und bei Mantelstrahl-Triebwerken.
Wegen der Gefahr von Verschmutzungen durch Verbrennungsrückstände im Abgasstrom und kurzzeitiger Zerrüttung durch hohe Erschütterungs-Pegel sowie Brandgefahr durch Treibstoff-Ablagerungen und Vereisung werden hier keine porösen oder faserigen ("passiven") Absorptions-Materialien eingesetzt. Stattdessen kommen bisher verschiedene den Schall allenfalls reflektierende, aber nicht absorbierende ("reaktive") Maßnahmen zum Einsatz. In Auspuffanlagen wird der Lärm in "Töpfen" mit Hohlkammer-Labyrinthen und offmals vielfachen Strömungs-Umlenkungen nach dem Prinzip in Fig. 5 reduziert. Wie in Fig. 6 dargestellt, können mikroperforierte Packungen nach Fig. 3c in den zahlreichen Hohlkammern 2 eines Auspufftopfes nach Fig. 5 die Dämpfungswirkung erheblich verbessern, ohne den Gegendruck im Abgasstrang weiter zu erhöhen.Of particular importance is the muffler with its microperforated components in the exhaust systems of internal combustion engines and mantle jet engines.
Because of the risk of contamination by combustion residues in the exhaust stream and short-term disruption due to high vibration levels and fire hazard due to fuel deposits and icing no porous or fibrous ("passive") absorption materials are used here. Instead, so far different sound but at most reflective, but not absorbing ("reactive") measures are used. In exhaust systems, the noise is reduced in "pots" with hollow chamber labyrinths and multiple manifold flow deflections according to the principle in FIG. 5 . As shown in FIG. 6, microperforated packages according to FIG. 3c in the numerous
In Triebwerken wird der Lärm von Fan, Kompressor und Turbine in schallabsorbierenden Auskleidungen von etwa 20 m2 je Triebwerk an dessen Strömungskanälen (Fig. 7) vermindert. Die schallabsorbierenden Auskleidungen 7 sind in diesen Bildern der Fig.7 mit dicken Linien versehen. Sie bestehen oft aus den auch im Automobilbau verwendeten Antidröhnmaterialien, oder sie bestehen aus bloß reaktiven Zellstrukturen mit einer Bautiefe von 0,5 bis 5 cm, die aber stets nur in einem sehr engen Frequenzbereich wirksam werden [P. Nelson (ed): Transportation Noise Reference Book, Bultterworth, Cambridge 1987].In engines, the noise of fan, compressor and turbine in sound-absorbing liners of about 20 m 2 per engine on the flow channels (Fig. 7) is reduced. The sound-absorbing
Wenn man die aufwendigen Hohlkammern durch mehrfach geschichtete mikroperforierte Strukturen nach Fig. 3 ersetzt, kann ihre Absorptionswirkung erheblich verbessert werden. Weil sich die hier vorgeschlagenen Packungen, anders als konventionelle faserige oder poröse Materialien nicht voll saugen können, bleibt die Verschmutzung und Brandgefahr gering; wenn die mikroperforierten Flächengebilde aus Metall bestehen, lassen sie sich ebenso wie andere Oberflächen des Triebwerkes "enteisen". Da die Kassettierung der absorbierenden Auskleidung entfallen kann, ist durch eine entsprechende Formgebung der Strömungskanäle auch eine reinigende bzw. enteisende Strömung durch den Absorber hindurch möglich.If one replaces the complex hollow chambers with multi-layered microperforated structures according to FIG. 3, their absorption effect can be considerably improved. Because the packages proposed here, unlike conventional fibrous or porous materials can not fully suck, the pollution and risk of fire remains low; if the microperforated sheets are made of metal, they can be used as well as other surfaces of the Engine "de-icing". Since the cassetting of the absorbent lining can be dispensed with, a corresponding shaping of the flow channels also makes possible a cleaning or de-icing flow through the absorber.
Claims (13)
- Silencer having micro-perforated components including an jacket or cover (1) enclosing a first cavity at least partly,
characterised in that micro-perforated flat structures (3) are provided in the interior of this first cavity (2), which contact each other substantially only along lines or on dots in such a way that a plurality of second cavities (4), which are smaller relative to said first cavity (2), are aerodynamically and acoustically communicating with each other,
that said micro-perforation presents dimensions smaller than 1 mm,
that said flat structures (3) present a thickness of < 0.2 mm, and
that the ratio of the hole area to the total area of said flat structure amounts to < 1 %. - Silencer according to Claim 1,
characterised in that said flat structures (3) consist of a metal. - Silencer according to Claim 1 or 2,
characterised in that said micro-perforated flat structures (3) are provided in the form of plane webs and are disposed in zigzag or undulated arrangements. - Silencer according to Claim 1 or 2,
characterised in that said micro-perforated flat structures (3) as such are configured in the form of small round cavities or cavities provided with edges. - Silencer according to Claim 1 or 2,
characterised in that said micro-perforated flat structures (3) are creased so as to form irregular cavities. - Silencer according to Claim 1 or 2,
characterised in that said micro-perforated flat structures (3) fill said first cavity (2) at least partly. - Silencer according to any of the Claims 1 to 6,
characterised in that major air or exhaust-gas connecting lines (8) are provided in said first cavity (2). - Silencer according to any of the Claims 1 to 7,
characterised in that said first large cavity (2) is connected to gas or exhaust-gas lines (8) and corresponding outlets. - Silencer according to any of the Claims 1 to 8,
characterised in that said jacket and/or said cover (1) has a micro-perforated configuration at least in parts. - Silencer according to any of the Claims 1 to 9,
characterised in that said jacket and/or cover (1) has a closed configuration impermeable to air. - Silencer according to any of the Claims 1 to 10,
characterised in that said jacket and/or said cover (1) has a hard, soft, flexible and/or resilient configuration. - Silencer according to any of the Claims 1 to 11,
characterised in that said flat structures (3) are connected to said jacket and/or cover (1) in a positive manner, e.g. by clamping, bonding, soldering or welding. - Silencer according to any of the Claims 1 to 12,
characterised in that said micro-perforation constitutes holes having a diameter of less than 1 mm, preferably of less than 0.7 mm.
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE10120727 | 2001-04-27 | ||
DE10120727 | 2001-04-27 | ||
PCT/EP2002/004636 WO2002089110A1 (en) | 2001-04-27 | 2002-04-26 | Silencer |
Publications (2)
Publication Number | Publication Date |
---|---|
EP1382031A1 EP1382031A1 (en) | 2004-01-21 |
EP1382031B1 true EP1382031B1 (en) | 2006-07-12 |
Family
ID=7682968
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP02740525A Expired - Lifetime EP1382031B1 (en) | 2001-04-27 | 2002-04-26 | Silencer |
Country Status (4)
Country | Link |
---|---|
EP (1) | EP1382031B1 (en) |
AT (1) | ATE333134T1 (en) |
DE (1) | DE50207500D1 (en) |
WO (1) | WO2002089110A1 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3034666A1 (en) | 2014-12-17 | 2016-06-22 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Insulating and filter material and its use as inert sound-absorbing material |
CN107204182A (en) * | 2017-07-06 | 2017-09-26 | 江苏华强新能源科技有限公司 | A kind of Novel muffler |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE10337110A1 (en) * | 2003-08-11 | 2005-03-17 | Zeuna-Stärker GmbH & Co. KG | Internal combustion engine silencer for use on road vehicle has straight-through pipe with perforations surrounded by outer housing with perforated tubes acting as damping chambers |
EP1953354A1 (en) * | 2003-08-11 | 2008-08-06 | ArvinMeritor Emissions Technologies GmbH | Exhaust silencer |
EP2851526B1 (en) * | 2003-08-11 | 2018-05-23 | Faurecia Emissions Control Technologies, Germany GmbH | Exhaust Silencer |
ES2439222T3 (en) | 2005-03-18 | 2014-01-22 | Tumane Enterprises Limited | Sound damping flow channel device |
CN108665886B (en) * | 2018-05-23 | 2024-05-14 | 南京邮电大学 | Rigid ultrathin perforated plate absorber with resonance sound absorption structure |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE4312885A1 (en) * | 1993-04-20 | 1994-10-27 | Fraunhofer Ges Forschung | Counter-ceiling |
DE19626676A1 (en) * | 1996-07-03 | 1998-01-08 | Kaefer Isoliertechnik | Device for reducing sound levels in buildings |
DE19754107C1 (en) * | 1997-12-05 | 1999-02-25 | Fraunhofer Ges Forschung | Sound absorber, for suspension from ceiling |
-
2002
- 2002-04-26 AT AT02740525T patent/ATE333134T1/en not_active IP Right Cessation
- 2002-04-26 EP EP02740525A patent/EP1382031B1/en not_active Expired - Lifetime
- 2002-04-26 WO PCT/EP2002/004636 patent/WO2002089110A1/en active IP Right Grant
- 2002-04-26 DE DE50207500T patent/DE50207500D1/en not_active Expired - Lifetime
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3034666A1 (en) | 2014-12-17 | 2016-06-22 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Insulating and filter material and its use as inert sound-absorbing material |
DE102014226266A1 (en) | 2014-12-17 | 2016-06-23 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Insulating and filtering material and its use as an inert sound-absorbing material |
CN107204182A (en) * | 2017-07-06 | 2017-09-26 | 江苏华强新能源科技有限公司 | A kind of Novel muffler |
Also Published As
Publication number | Publication date |
---|---|
EP1382031A1 (en) | 2004-01-21 |
ATE333134T1 (en) | 2006-08-15 |
WO2002089110A1 (en) | 2002-11-07 |
DE50207500D1 (en) | 2006-08-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2026994B1 (en) | Acoustically and thermally acting insulation | |
US6182787B1 (en) | Rigid sandwich panel acoustic treatment | |
EP2316117B1 (en) | Noise-reducing device and method for reducing noise | |
EP0697051B1 (en) | False ceiling | |
SE506188C2 (en) | Sound absorbing element and method for making this element and use of the element | |
DE69611508T2 (en) | Compressor equipped with an acoustic outlet piece | |
DE2534556B2 (en) | Silencers for gas flows | |
JPS6046311B2 (en) | Silencer | |
US20030098200A1 (en) | Acoustical absorptive splitter | |
EP1382031B1 (en) | Silencer | |
DE69723870T2 (en) | DEVICE AND METHOD FOR SOUND ABSORBATION IN A TRANSPORT SYSTEM FOR GASEOUS SUBSTANCES AND APPLICATION OF SUCH A DEVICE IN AN EXHAUST SYSTEM OF A SHIP | |
JPH0245461Y2 (en) | ||
JP2603131B2 (en) | Silencer | |
DE29815712U1 (en) | Sound absorber | |
DE102006033053B3 (en) | Motor vehicle silencer has upper side lining section consisting of textile material of synthetic fibers which deflects moisture, and bottom side lining section consisting of textile material of synthetic fibers which absorbs moisture | |
US5250764A (en) | Consecutive plate acoustic suppressor apparatus and methods | |
DE60118221T2 (en) | SOUND ABSORPTION DEVICE | |
DE2437947C3 (en) | Arrangement for the absorption of airborne sound | |
DE2248638A1 (en) | RESONATOR SILENCER FOR GAS TURBINE | |
EP3246479B1 (en) | Absorber unit for absorbing sound | |
WO1994024382A1 (en) | False ceiling | |
CN210531248U (en) | Fan silencer | |
KR101979378B1 (en) | Splitter and sound attenuator including the same | |
JP3073420B2 (en) | High temperature silencer | |
WO2006077119A1 (en) | Sound-absorbing box |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20030918 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR |
|
17Q | First examination report despatched |
Effective date: 20050610 |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED. Effective date: 20060712 Ref country code: GB Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20060712 Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20060712 Ref country code: IE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20060712 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20060712 |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: GERMAN |
|
REF | Corresponds to: |
Ref document number: 50207500 Country of ref document: DE Date of ref document: 20060824 Kind code of ref document: P |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20061012 Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20061012 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20061023 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20061212 |
|
NLV1 | Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act | ||
RAP2 | Party data changed (patent owner data changed or rights of a patent transferred) |
Owner name: FRAUNHOFER-GESELLSCHAFT ZUR FOERDERUNG DER ANGEWAN |
|
GBV | Gb: ep patent (uk) treated as always having been void in accordance with gb section 77(7)/1977 [no translation filed] |
Effective date: 20060712 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FD4D |
|
EN | Fr: translation not filed | ||
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed |
Effective date: 20070413 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
BERE | Be: lapsed |
Owner name: FRAUNHOFER-GESELLSCHAFT ZUR FORDERUNG DER ANGEWAN Effective date: 20070430 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20070430 Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20070430 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20070430 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20070511 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20061013 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20070426 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20060712 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20070430 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20070426 Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20060712 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20060712 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20130423 Year of fee payment: 12 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R119 Ref document number: 50207500 Country of ref document: DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20141101 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R119 Ref document number: 50207500 Country of ref document: DE Effective date: 20141101 |