EP3246479B1 - Absorber unit for absorbing sound - Google Patents

Absorber unit for absorbing sound Download PDF

Info

Publication number
EP3246479B1
EP3246479B1 EP16170670.0A EP16170670A EP3246479B1 EP 3246479 B1 EP3246479 B1 EP 3246479B1 EP 16170670 A EP16170670 A EP 16170670A EP 3246479 B1 EP3246479 B1 EP 3246479B1
Authority
EP
European Patent Office
Prior art keywords
plates
plate
absorbing unit
unit according
boundary surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP16170670.0A
Other languages
German (de)
French (fr)
Other versions
EP3246479A1 (en
EP3246479C0 (en
Inventor
Walter Baumann
Abhay Siddeshwar Rajmane
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
G and H SCHALLSCHUTZ GmbH
Original Assignee
G and H Schallschutz GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by G and H Schallschutz GmbH filed Critical G and H Schallschutz GmbH
Priority to EP16170670.0A priority Critical patent/EP3246479B1/en
Publication of EP3246479A1 publication Critical patent/EP3246479A1/en
Application granted granted Critical
Publication of EP3246479B1 publication Critical patent/EP3246479B1/en
Publication of EP3246479C0 publication Critical patent/EP3246479C0/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/62Insulation or other protection; Elements or use of specified material therefor
    • E04B1/74Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls
    • E04B1/82Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls specifically with respect to sound only
    • E04B1/84Sound-absorbing elements
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/62Insulation or other protection; Elements or use of specified material therefor
    • E04B1/74Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls
    • E04B1/82Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls specifically with respect to sound only
    • E04B2001/8263Mounting of acoustical elements on supporting structure, e.g. framework or wall surface
    • E04B2001/8281Flat elements mounted parallel to a supporting surface with an acoustically active air gap between the elements and the mounting surface
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/62Insulation or other protection; Elements or use of specified material therefor
    • E04B1/74Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls
    • E04B1/82Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls specifically with respect to sound only
    • E04B1/84Sound-absorbing elements
    • E04B2001/8423Tray or frame type panels or blocks, with or without acoustical filling
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/62Insulation or other protection; Elements or use of specified material therefor
    • E04B1/74Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls
    • E04B1/82Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls specifically with respect to sound only
    • E04B1/84Sound-absorbing elements
    • E04B2001/8423Tray or frame type panels or blocks, with or without acoustical filling
    • E04B2001/8452Tray or frame type panels or blocks, with or without acoustical filling with peripheral frame members
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K11/00Methods or devices for transmitting, conducting or directing sound in general; Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/16Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/162Selection of materials
    • G10K11/168Plural layers of different materials, e.g. sandwiches

Definitions

  • the invention relates to an absorber unit for absorbing sound, particularly in closed rooms.
  • anechoic chambers are used to study the exterior noise of vehicles.
  • the noise levels must be recorded in a suitable acoustic environment in order to record and assess them qualitatively and quantitatively and, if necessary, to process them in such a way that sound design is possible.
  • a related area is psychoacoustics, which accounts for large proportions, especially with low frequencies that are reflected in people, for example in the stomach area, so that there is a need for suitable acoustic environments in this frequency range.
  • anechoic rooms have been lined with structured absorbers, in particular with so-called cube or wedge absorbers. Their main feature is that above a certain frequency, known as cut-off frequency f g , they have an absorptivity ⁇ > 99%, measured according to DIN EN ISO 10534-2 in the impedance tube. This property of an individual absorber is transferred to the room if its room boundary surfaces are lined accordingly. The quality of the acoustic free field, which results from the absorber properties, can then be determined with the help of DIN EN ISO 3745 or DIN EN ISO 26101.
  • a cut-off frequency of 38 Hz at an absorber depth of 1.7 m is known for structured linings. Lower limit frequencies with structured absorbers have not been achieved so far.
  • the lining depth can be significantly reduced (t ⁇ 0.5 m), but the resonance results in a discontinuous absorption curve, which also leads to discontinuities in the anechoic room, so that the acoustic spatial field itself fluctuates and the resulting measurement error no longer spatially is to be assigned.
  • a resonant frequency alone is not sufficient for the applications described above, since the requirement for the degree of absorption does not only apply to the resonant frequency, but to all frequencies above the cut-off frequency.
  • the DE 94 00 092 U1 discloses the features of the preamble of claim 1.
  • the absorber unit comprises a plurality of plates made of sound-absorbing material, with at least two adjacent ones Plates are spaced to form a cavity resonator for frequencies below 50 Hz with an air space therebetween.
  • the panels of absorptive material themselves absorb a broader spectrum of frequencies, while also serving as boundaries for air spaces, each of which has a less broad but lower-frequency absorption spectrum.
  • the panels can combine two absorption mechanisms and absorb the desired broad frequency spectrum extending towards low frequencies and absorb discontinuities with little space requirement.
  • Such an arrangement provides a flat absorber that has a small installation depth and at the same time good absorption properties in a wide frequency range that extends down to very low frequencies.
  • the cavity resonator or several or all of the cavity resonators can have a natural frequency of less than 50 Hz, in particular less than 40 Hz, in particular less than 35 Hz, in particular 30 Hz.
  • the absorber unit preferably consists of individual absorber and air layers which are arranged in such a way that the highest possible degree of absorption is achieved with the lowest possible installation depth. This is achieved by optimizing the spacing and thicknesses of the plates and a suitable choice of absorption material, because the absorption efficiency of the resonators depends on the spacing of the plates and the absorption properties of the plates on the thickness of the plates and their flow resistance.
  • the degree of absorption, from which the limit frequency is defined is set to 90%.
  • structured absorbers have an absorptivity of 99%. Measurements with conventional flat absorbers in the higher frequency range (f > 400 Hz) show that the requirements according to DIN EN ISO 3745 can still be met if the degree of absorption is set at around 90%.
  • the absorption material comprises an anisotropic substance with fibers, the plates being designed and arranged in such a way that the fibers run at least in one of the plates along the direction of the plate sequence in the absorber unit.
  • fiber direction is used as follows: It is assumed that a majority of the fibers in a panel run in approximately the same direction, referred to as the fiber direction. In the preferred examples, this roughly corresponds to the direction of the plate sequence or a direction transverse thereto, but this does not mean that all fibers run exactly parallel or transverse to this direction or exactly parallel to one another.
  • the direction of the plate sequence typically corresponds to the direction in which the sound hits the absorber unit during operation.
  • the absorption material can, for example, comprise mineral wool or open-cell foam materials.
  • Mineral wool is an anisotropic material consisting of layers of fibers glued together. Typically, mineral wool with fibers aligned along the direction of sound has the lowest flow resistance.
  • Typical length-related flow resistances (DIN EN 29053) of mineral wool are 5 to 35 kPa*s/m 2 , depending on density and arrangement.
  • Waves are mainly absorbed when there is good impedance matching in the transition area between two media, in this case between air and absorption material. In the prior art structured absorbers, this is accomplished by the shape. In the case of the (flat) absorbers according to the invention, the impedance is preferably matched by adjusting the flow resistance of the absorption material. Materials with very low flow resistance are therefore preferred.
  • the panels can include mineral wool in a special installation position.
  • inherently stable mineral wool panels with low flow resistance can be used with a suitable arrangement.
  • mineral wool ensures non-combustibility class A according to DIN EN 13501.
  • Other materials that have suitable stability and suitable flow resistance are also conceivable.
  • the sheets of absorption material are preferably designed in such a way that they have inherent stability. This facilitates installation in the absorber unit since no special support structures have to be provided.
  • the panels may be arranged such that the grain direction alternates between running along the direction of panel succession and perpendicular to the direction of panel succession from panel to panel.
  • the absorber unit can have at least, in particular exactly three, plates.
  • the fibers of the middle plate can run along the direction of the plate sequence and the fibers of the other two plates can run transversely to the direction of the plate sequence.
  • the thickness of the panels can be between 150 mm and 300 mm.
  • the distances between the panels can be between 100 mm and 200 mm.
  • the plates can all have the same thicknesses and spacings or at least partially different thicknesses and spacings from one another.
  • the absorber unit can comprise at least, in particular precisely, three panels, the thickness of a central panel being less than the thickness of the two adjacent panels and the two adjacent panels having different thicknesses.
  • the absorber unit can comprise a boundary surface which, with respect to the direction of the plate sequence, is arranged adjacent to one of the two outermost plates.
  • the plate that is closest to the boundary surface can then be thicker than the middle plate and thinner than the plate that is furthest away from the boundary surface.
  • the plate lying closest to the boundary surface can then have a thickness of 250 mm
  • the middle plate can have a thickness of 200 mm
  • the plate lying furthest away from the boundary surface can have a thickness of 300 mm.
  • the absorber unit can comprise a boundary surface which is arranged adjacent to one of the two outermost plates in relation to the direction of the plate sequence.
  • the distance between the middle plate and the plate closest to the delimiting surface can then be greater than the distance between the plate closest to the delimiting surface and the delimiting surface and smaller than the distance between the middle plate and the plate furthest from the delimiting surface lying plate.
  • the distance between the middle plate and the plate lying closest to the boundary surface can then be 150 mm, the distance between the plate lying closest to the boundary surface and the boundary surface 100 mm and the distance between the middle plate and the plate furthest from the boundary surface distant panel is 200 mm.
  • the total thickness of the absorber unit can be less than or equal to 1.5 m, preferably less than 1.4 m, in particular 1.2 m.
  • the total thickness can be between 1.1 m and 1.4 m.
  • At least one of the plates can be covered by a perforated plate on one or both main sides of the plate or in the form of a perforated plate cassette.
  • the plate lying closest to the sound source during operation can advantageously be designed in the form of a perforated plate cassette.
  • At least one of the plates can be designed in the form of a link pack.
  • the panels that do not face the sound directly during operation can be integrated into a splitter package.
  • perforated sheet cassettes and/or baffle packs are advantageous because the structure of the panels themselves and the absorber unit is simple and inexpensive.
  • the absorber unit can be designed in such a way that the air spaces can be used to install cables or pipes. This enables an advantageous structure in the corresponding applications where a large number of cables have to be laid for the power supply and/or for data exchange, for example from sensors or the like.
  • FIG 1 a first preferred embodiment of the absorber unit 1 is shown, which comprises three plates 2, 3, 4 made of absorption material, which are also referred to as absorber packages alone or installed in perforated metal cassettes or baffles.
  • the direction of the plate sequence is marked here with the arrow 5.
  • Arrow 6 indicates the approximate direction in which the sound will hit the absorber unit during operation. It should be noted that the absorber unit can also have a different number of absorber packages.
  • An air space 8 is arranged in each case between two adjacent absorber packages.
  • the absorption material of all absorber packs is mineral wool, the fibers of which run in the middle absorber pack 3 along the direction of the plate sequence of the absorber packs (ie in operation the direction of sound) and in the other two absorber packs transversely to it.
  • an open-cell foam can also be used for the two outer absorber packs.
  • the orientation of the fibers can also be chosen differently or other materials can be used as long as there are suitable flow resistances.
  • values for the thickness and distances can also deviate from these values, which mainly depends on the materials used and the desired absorption properties.
  • the absorber unit can be delimited by an element 7, for example a wall or a boundary surface, which is part of the absorber unit.
  • an element 7 for example a wall or a boundary surface, which is part of the absorber unit.
  • the first absorber package 2 faces directly the sound source.
  • the first absorber pack faces directly the interior of the room.
  • the first absorber package is preferably in the form of a plate installed in a perforated sheet metal cassette (not shown here). This can optionally also be color coated.
  • the two rear absorber packs 3, 4 are each preferably in the form of a link pack (not shown here) in which the respective plate is integrated. According to the measurement specification, they can be arranged behind the absorber package on the inside of the room.
  • a backdrop package includes a backdrop frame into which the panel is fitted.
  • the plate can be inserted into the link frame and held by projections on the inner walls or on the edges of the link frame on the inner walls.
  • these projections can run along several, in particular all, sides of the connecting link frame.
  • the panels are supported along their edges and can be slid into the frame guided by the projections.
  • the panels can be inserted from above.
  • the backdrop frame is slightly wider than the inserted plate. It would also be possible to provide a groove in the frame in which the plate is inserted.
  • a strip for example a perforated strip, can be drawn from one side of the link to the other behind a panel.
  • each baffle frame typically exactly one plate is used along the direction of the sound. It is possible for several panels to be placed one on top of the other, for example if the panels are made in a smaller size than the frame. For example, a panel could be 1200 x 600mm, while the height of the backdrop frames could be around 3 meters, allowing multiple panels to be stacked on top of each other have to be used.
  • the panel or panels can be formed from exactly one type of mineral wool or have a layered structure of layers of different types of mineral wool.
  • the backdrop frame can be perforated or made of smooth sheet metal.
  • the sets of backdrops When the sets of backdrops are set up, they can be placed on the ground and stacked on top of each other if necessary. This is particularly advantageous for room heights greater than 3 meters, because the backdrop frames should not be chosen arbitrarily large to ensure stability.
  • the scenes can be connected, for example screwed, to brackets that are attached to the walls.
  • the air layers between the individual packages can optionally be used for installations of all kinds (cables, pipes, etc.), which is not shown here.
  • figure 2 shows a section of the embodiment described above. Here the fiber directions are indicated by hatching.
  • FIG. 12 shows an oblique view of an absorber unit which is designed essentially as in the first embodiment, but which has a boundary surface 7.
  • FIG. No wall shown here, as the absorber unit can in principle also be used free-standing.

Description

Die Erfindung betrifft eine Absorbereinheit zum Absorbieren von Schall, insbesondere in geschlossenen Räumen.The invention relates to an absorber unit for absorbing sound, particularly in closed rooms.

In der Automobilindustrie werden reflexionsarme Räume zum Untersuchen der Außengeräusche von Fahrzeugen verwendet. Die Geräuschpegel müssen in einer geeigneten akustischen Umgebung aufgenommen werden, um diese qualitativ und quantitativ zu erfassen, zu beurteilen, und gegebenenfalls auch so zu verarbeiten, dass Sounddesign möglich ist.In the automotive industry, anechoic chambers are used to study the exterior noise of vehicles. The noise levels must be recorded in a suitable acoustic environment in order to record and assess them qualitatively and quantitatively and, if necessary, to process them in such a way that sound design is possible.

Dabei wird der Bedarf an reflexionsarmen Räumen mit Grenzfrequenzen fg weit unter 50 Hz immer größer. Aufgrund derzeitiger Entwicklungen in Automobilbereich verschiebt sich das durch den Verbrennungsmotor hervorgerufene Mündungsgeräusch am Auspuffrohr zu immer tieferen Frequenzbereichen bis hin zu etwa 30 Hz. Des Weiteren treten tiefe Frequenzen dann auf, wenn Luftströmung über das Fahrzeug streicht. Es kommt dann am Heckteil zu Wirbelablösungen, die einen sehr tieffrequenten Quellschall verursachen, das sogenannte "Wummern". Diese Situation wird in der Automobilindustrie im Windkanal bei Luftströmung untersucht. Auch hier reichen die Geräuschanteile bis in den 30 Hz-Bereich hinunter.The need for anechoic rooms with cut-off frequencies f g far below 50 Hz is increasing. Due to current developments in the automotive sector, the mouth noise on the exhaust pipe caused by the combustion engine is shifting to lower and lower frequency ranges down to around 30 Hz. Low frequencies also occur when air flows over the vehicle. Vortex shedding then occurs at the tail section, which causes a very low-frequency source noise, the so-called "thumping". This situation is examined in the automotive industry in the wind tunnel with air flow. Here, too, the noise components reach down to the 30 Hz range.

Ein Gebiet, das damit verknüpft ist, ist die Psychoakustik, die gerade bei tiefen Frequenzen, die sich beim Menschen beispielsweise in der Magengegend niederschlagen, große Anteile verbucht, so dass Bedarf an geeigneten akustischen Umgebungen in diesem Frequenzbereich besteht.A related area is psychoacoustics, which accounts for large proportions, especially with low frequencies that are reflected in people, for example in the stomach area, so that there is a need for suitable acoustic environments in this frequency range.

Reflexionsarme Räume werden seit den 1950ziger Jahren mit strukturierten Absorbern ausgekleidet, insbesondere mit sogenannten Würfel- oder Keilabsorbern. Deren wesentliches Merkmal ist, dass sie ab einer bestimmten Frequenz, Grenzfrequenz fg genannt, einen Absorptionsgrad α > 99% aufweisen, gemessen nach DIN EN ISO 10534-2 im Impedanzrohr. Diese Eigenschaft eines einzelnen Absorbers überträgt sich auf den Raum, wenn dessen Raumbegrenzungsflächen entsprechend ausgekleidet werden. Die Güte des akustischen Freifeldes, die sich aus den Absorber-Eigenschaften ergibt, kann dann mit Hilfe von DIN EN ISO 3745 bzw. DIN EN ISO 26101 festgestellt werden.Since the 1950s, anechoic rooms have been lined with structured absorbers, in particular with so-called cube or wedge absorbers. Their main feature is that above a certain frequency, known as cut-off frequency f g , they have an absorptivity α > 99%, measured according to DIN EN ISO 10534-2 in the impedance tube. This property of an individual absorber is transferred to the room if its room boundary surfaces are lined accordingly. The quality of the acoustic free field, which results from the absorber properties, can then be determined with the help of DIN EN ISO 3745 or DIN EN ISO 26101.

Bei strukturierten Auskleidungen ist eine Grenzfrequenz von 38 Hz bei einer Absorbertiefe von 1,7 m bekannt. Tiefere Grenzfrequenzen mit strukturierten Absorbern wurden bisher nicht erzielt.A cut-off frequency of 38 Hz at an absorber depth of 1.7 m is known for structured linings. Lower limit frequencies with structured absorbers have not been achieved so far.

Abgesehen von dieser Begrenzung wären zur Erzielung einer bestimmten Grenzfrequenz fg bei strukturierten Absorbern erfahrungsgemäß Absorberlängen t im Bereich von λg/4 bzw. λg/5 nötig, wobei λg die Wellenlänge bei der Grenzfrequenz bedeutet. Bei einer Grenzfrequenz von fg = 30 Hz bedeutet dies rechnerisch eine Absorbertiefe im Bereich von 2,28 m < t < 2,86 m. Dies wäre aufgrund des immens großen Platzbedarfs für die Absorber und des dann benötigten Innenraums zur Messung wirtschaftlich nicht vertretbar. Absorption bei tiefen Frequenzen und geringerem Platzbedarf ist grundsätzlich durch Resonatoren herbeizuführen. Bei Resonanzabsorbern kann zwar die Auskleidungstiefe erheblich reduziert werden (t < 0,5 m), durch die Resonanz entsteht jedoch eine unstetige Absorptionskurve, die im reflexionsarmen Raum ebenfalls zu Unstetigkeiten führt so dass das akustische Raumfeld selbst schwankt und der davon ausgehende Messfehler räumlich nicht mehr zuzuordnen ist.Apart from this limitation, experience has shown that absorber lengths t in the range of λ g /4 or λ g /5 would be necessary to achieve a certain cut-off frequency f g with structured absorbers, where λ g means the wavelength at the cut-off frequency. With a limit frequency of f g = 30 Hz, this means an absorber depth in the range of 2.28 m < t < 2.86 m. This would not be economically justifiable due to the immense space required for the absorber and the interior space then required for the measurement. Absorption at low frequencies and where less space is required is basically to be brought about by resonators. In the case of resonance absorbers, the lining depth can be significantly reduced (t < 0.5 m), but the resonance results in a discontinuous absorption curve, which also leads to discontinuities in the anechoic room, so that the acoustic spatial field itself fluctuates and the resulting measurement error no longer spatially is to be assigned.

Außerdem reicht allein eine Resonanzfrequenz für die oben beschriebenen Anwendungen nicht aus, da der Anspruch an den Absorptionsgrad nicht nur bei der Resonanzfrequenz gilt, sondern für alle Frequenzen oberhalb der Grenzfrequenz.In addition, a resonant frequency alone is not sufficient for the applications described above, since the requirement for the degree of absorption does not only apply to the resonant frequency, but to all frequencies above the cut-off frequency.

Um dieses Problem zu beheben, ist es bekannt, Breitband-Absorptionsmaterial mit einer Resonatorplatte zu kombinieren, was zwar die Resonanzgüte einerseits verringert, andererseits jedoch zu einem breitbandigeren Absorptionsbereich führt und mit dem vorgesetzten Absorptionsstoff auch mittlere und höhere Frequenzen zugänglich macht (siehe zum Beispiel " Broadband compact absorbers for anechoic linings", Helmut V. Fuchs et al., CFA/DAGA'04, Strasbourg, 22-25/03/2004, Seiten 955 und 956 ).In order to solve this problem, it is known to combine broadband absorption material with a resonator plate, which reduces the resonance quality on the one hand, but on the other hand leads to a broader band absorption range and also makes medium and higher frequencies accessible with the absorption material placed in front (see for example " Broadband compact absorbers for anechoic linings", Helmut V. Fuchs et al., CFA/DAGA'04, Strasbourg, 22-25/03/2004, pages 955 and 956 ).

Aufgrund der resonanzartigen Struktur sind hier jedoch Messungen im Impedanzrohr kaum ausführbar, da die Einspann- oder Randbedingungen der Platte für die Lage und Amplitude der Resonanz eine entscheidende Rolle spielen. Hallraummessungen nach ISO 354 sind zwar ohne weiteres möglich, jedoch entbehren derartige Messungen bei sehr hohen Absorptionsgraden jegliche Genauigkeit, da das zugrundeliegende physikalische Modell (nach Sabine) zusammenbricht und nicht mehr gilt. Eine direkte, genaue physikalische Messung dieses Absorbertyps ist also nicht möglich.Due to the resonance-like structure, however, measurements in the impedance tube can hardly be carried out here, since the clamping or boundary conditions of the plate play a decisive role in the position and amplitude of the resonance. Although reverberation room measurements according to ISO 354 are possible without further ado, such measurements lack any accuracy at very high degrees of absorption, since the underlying physical model (according to Sabine) breaks down and is no longer valid. A direct, precise physical measurement of this type of absorber is therefore not possible.

Die DE 94 00 092 U1 offenbart die Merkmale des Oberbegriffs von Anspruch 1.The DE 94 00 092 U1 discloses the features of the preamble of claim 1.

Es ist also eine Aufgabe der Erfindung, eine Absorbereinheit bereitzustellen, die in einem breiten Frequenzspektrum, das sich bis in einen niedrigen Frequenzbereich erstreckt, einen hohen Absorptionsgrad hat, dabei Unstetigkeiten der Resonanz vermeidet und zugleich eine geringe Auskleidungstiefe ermöglicht.It is therefore an object of the invention to provide an absorber unit that has a high degree of absorption in a broad frequency spectrum that extends into a low frequency range, avoiding discontinuities in the resonance and at the same time enabling a small lining depth.

Diese Aufgabe wird erfindungsgemäß dadurch gelöst, dass die Absorbereinheit mehrere Platten aus Absorptionsmaterial für Schall umfasst, wobei wenigstens zwei benachbarte Platten unter Bildung eines dazwischenliegenden Luftraums so beabstandet zueinander angeordnet sind, dass sie für Frequenzen unterhalb von 50 Hz einen Hohlraumresonator bilden.According to the invention, this object is achieved in that the absorber unit comprises a plurality of plates made of sound-absorbing material, with at least two adjacent ones Plates are spaced to form a cavity resonator for frequencies below 50 Hz with an air space therebetween.

Durch die Platten aus Absorptionsmaterial selbst wird ein breiteres Frequenzspektrum absorbiert, wobei sie gleichzeitig als Begrenzungen für Lufträume dienen, die jeweils ein weniger breites, dafür aber im niedrigen Frequenzbereich angesiedeltes Absorptionsspektrum aufweisen. Somit können die Platten zwei Absorptionsmechanismen kombinieren und mit wenig Platzbedarf das erwünschte breite und sich zu niedrigen Frequenzen hin erstreckende Frequenzspektrum absorbieren und Unstetigkeiten abfangen. Durch eine solche Anordnung wird ein Flachabsorber bereitgestellt, der eine geringe Einbautiefe und zugleich gute Absorptionseigenschaften in einem breiten Frequenzbereich, der sich bis hin zu sehr niedrigen Frequenzen erstreckt, aufweist.The panels of absorptive material themselves absorb a broader spectrum of frequencies, while also serving as boundaries for air spaces, each of which has a less broad but lower-frequency absorption spectrum. Thus, the panels can combine two absorption mechanisms and absorb the desired broad frequency spectrum extending towards low frequencies and absorb discontinuities with little space requirement. Such an arrangement provides a flat absorber that has a small installation depth and at the same time good absorption properties in a wide frequency range that extends down to very low frequencies.

Insbesondere kann der Hohlraumresonator bzw. mehrere oder alle der Hohlraumresonatoren eine Eigenfrequenz von weniger als 50 Hz, insbesondere weniger als 40 Hz, insbesondere von weniger als 35 Hz, insbesondere von 30 Hz aufweisen.In particular, the cavity resonator or several or all of the cavity resonators can have a natural frequency of less than 50 Hz, in particular less than 40 Hz, in particular less than 35 Hz, in particular 30 Hz.

Die Absorbereinheit besteht vorzugsweise aus einzelnen Absorber- und Luftschichten, die so angeordnet sind, dass ein möglichst hoher Absorptionsgrad bei möglichst geringer Einbautiefe erzielt wird. Dies wird durch Optimieren des Abstands und der Dicken der Platten sowie einer geeigneten Wahl des Absorptionsmaterials erreicht, weil der Absorptionsgrad der Resonatoren von den Abständen der Platten und die Absorptionseigenschaften der Platten von der Dicke der Platten sowie deren Strömungswiderstand abhängen. Insbesondere wird der Absorptionsgrad, ab dem die Grenzfrequenz definiert wird, auf 90% eingestellt. Im Vergleich haben strukturierte Absorber einen Absorptionsgrad von 99%. Messungen mit konventionellen Flachabsorbern im höheren Frequenzbereich (f > 400 Hz) zeigen, dass den Anforderungen nach DIN EN ISO 3745 auch dann noch entsprochen werden kann, wenn der Absorptionsgrad etwa bei 90% eingestellt ist.The absorber unit preferably consists of individual absorber and air layers which are arranged in such a way that the highest possible degree of absorption is achieved with the lowest possible installation depth. This is achieved by optimizing the spacing and thicknesses of the plates and a suitable choice of absorption material, because the absorption efficiency of the resonators depends on the spacing of the plates and the absorption properties of the plates on the thickness of the plates and their flow resistance. In particular, the degree of absorption, from which the limit frequency is defined, is set to 90%. In comparison, structured absorbers have an absorptivity of 99%. Measurements with conventional flat absorbers in the higher frequency range (f > 400 Hz) show that the requirements according to DIN EN ISO 3745 can still be met if the degree of absorption is set at around 90%.

Erfindungsgemäß umfasst das Absorptionsmaterial einen anisotropen Stoff mit Fasern, wobei die Platten derart ausgebildet und angeordnet sind, dass die Fasern zumindest in einer der Platten entlang der Richtung der Plattenabfolge in der Absorbereinheit verlaufen.According to the invention, the absorption material comprises an anisotropic substance with fibers, the plates being designed and arranged in such a way that the fibers run at least in one of the plates along the direction of the plate sequence in the absorber unit.

Der Begriff Faserrichtung wird dabei folgendermaßen verwendet: Es wird angenommen, dass eine Mehrzahl der Fasern in einer Platte etwa in die gleiche Richtung verläuft, als Faserrichtung bezeichnet. In den bevorzugten Beispielen entspricht diese etwa der Richtung der Plattenabfolge oder einer Richtung quer dazu, was jedoch nicht heißt, dass alle Fasern exakt parallel oder quer zu dieser Richtung oder exakt parallel zueinander verlaufen.The term fiber direction is used as follows: It is assumed that a majority of the fibers in a panel run in approximately the same direction, referred to as the fiber direction. In the preferred examples, this roughly corresponds to the direction of the plate sequence or a direction transverse thereto, but this does not mean that all fibers run exactly parallel or transverse to this direction or exactly parallel to one another.

Nach dem Einbau entspricht die Richtung der Plattenabfolge typischerweise der Richtung, in der der Schall im Betrieb auf die Absorbereinheit trifft.After installation, the direction of the plate sequence typically corresponds to the direction in which the sound hits the absorber unit during operation.

Das Absorptionsmaterial kann beispielsweise Mineralwolle oder offenzellige Schaumstoffe umfassen. Mineralwolle ist ein anisotroper Stoff, der aus miteinander verklebten Faserlagen besteht. Dabei weist typischerweise Mineralwolle mit einer Faserrichtung entlang der Schallrichtung ausgerichteten Fasern den niedrigsten Strömungswiderstand auf.The absorption material can, for example, comprise mineral wool or open-cell foam materials. Mineral wool is an anisotropic material consisting of layers of fibers glued together. Typically, mineral wool with fibers aligned along the direction of sound has the lowest flow resistance.

Typische längenbezogene Strömungswiderstände (DIN EN 29053) von Mineralwolle liegen, je nach Dichte und Anordnung, bei 5 bis 35 kPa*s/m2.Typical length-related flow resistances (DIN EN 29053) of mineral wool are 5 to 35 kPa*s/m 2 , depending on density and arrangement.

Wellen werden vorwiegend dann absorbiert, wenn eine gute Impedanzanpassung im Übergangsbereich zwischen zwei Medien, hier also zwischen Luft und Absorbtionsmaterial, erfolgt. Bei den strukturierten Absorbern des Stands der Technik wird dies durch die Formgebung bewerkstelligt. Bei den erfindungsgemäßen (flachen) Absorbern erfolgt die Impedanzanpassung vorzugsweise durch Einstellung des Strömungswiderstandes des Absoprtionsmaterials. Daher werden bevorzugt Materialien mit sehr niedrigen Strömungswiderständen verwendet.Waves are mainly absorbed when there is good impedance matching in the transition area between two media, in this case between air and absorption material. In the prior art structured absorbers, this is accomplished by the shape. In the case of the (flat) absorbers according to the invention, the impedance is preferably matched by adjusting the flow resistance of the absorption material. Materials with very low flow resistance are therefore preferred.

Viele derartige Materialien weisen kaum Eigenstabilität auf, beispielsweise Watte oder lose Glaswolle. Die Verwendung von Mineralwolle reduziert dieses Problem und verleiht Eigenstabilität. Insbesondere können die Platten Mineralwolle in spezieller Einbaulage umfassen. Insofern können durch geeignete Anordnung eigenstabile Mineralwolleplatten mit niedrigem Strömungswiderstand benutzt werden. Zudem stellt Mineralwolle Nichtbrennbarkeit Klasse A nach DIN EN 13501 sicher. Andere Materialien, die geeignete Stabilität und geeigneten Strömungswiderstand aufweisen sind ebenfalls denkbar.Many such materials have hardly any intrinsic stability, for example cotton wool or loose glass wool. The use of mineral wool reduces this problem and provides inherent stability. In particular, the panels can include mineral wool in a special installation position. In this respect, inherently stable mineral wool panels with low flow resistance can be used with a suitable arrangement. In addition, mineral wool ensures non-combustibility class A according to DIN EN 13501. Other materials that have suitable stability and suitable flow resistance are also conceivable.

Die Platten aus Absorptionsmaterial sind vorzugsweise derart ausgebildet, dass sie Eigenstabilität aufweisen. Dies erleichtert den Einbau in die Absorbereinheit, da keine speziellen Stützstrukturen vorgesehen werden müssen.The sheets of absorption material are preferably designed in such a way that they have inherent stability. This facilitates installation in the absorber unit since no special support structures have to be provided.

Die Platten können derart angeordnet sein, dass die Faserrichtung zwischen einem Verlauf entlang der Richtung der Plattenabfolge und senkrecht zur Richtung der Plattenabfolge von Platte zu Platte abwechselt.The panels may be arranged such that the grain direction alternates between running along the direction of panel succession and perpendicular to the direction of panel succession from panel to panel.

Die Absorbereinheit kann mindestens, insbesondere genau drei, Platten aufweisen. Insbesondere können bei genau drei Platten die Fasern der mittleren Platte entlang der Richtung der Plattenabfolge verlaufen und die Fasern der beiden anderen Platten quer zur Richtung der Plattenabfolge verlaufen.The absorber unit can have at least, in particular exactly three, plates. In particular, with exactly three plates, the fibers of the middle plate can run along the direction of the plate sequence and the fibers of the other two plates can run transversely to the direction of the plate sequence.

Die Dicke der Platten kann zwischen 150 mm und 300 mm betragen. Die Abstände zwischen den Platten können zwischen 100 mm und 200 mm betragen. Die Platten können alle die gleichen Dicken und Abstände oder zumindest teilweise unterschiedliche Dicken und Abstände voneinander aufweisen.The thickness of the panels can be between 150 mm and 300 mm. The distances between the panels can be between 100 mm and 200 mm. The plates can all have the same thicknesses and spacings or at least partially different thicknesses and spacings from one another.

Die Absorbereinheit kann mindestens, insbesondere genau, drei Platten umfassen, wobei die Dicke einer mittleren Platte geringer ist als die Dicke der beiden benachbarten Platten und wobei die beiden benachbarten Platten unterschiedliche Dicken haben.The absorber unit can comprise at least, in particular precisely, three panels, the thickness of a central panel being less than the thickness of the two adjacent panels and the two adjacent panels having different thicknesses.

Die Absorbereinheit kann eine Begrenzungsfläche umfassen, die, bezogen auf die Richtung der Plattenabfolge, benachbart zu einer der beiden äußersten Platten angeordnet ist. Insbesondere kann dann die der Begrenzungsfläche am nächsten liegenden Platte dicker sein als die mittlere Platte und dünner als die am weitesten von der Begrenzungsfläche entfernt liegende Platte.The absorber unit can comprise a boundary surface which, with respect to the direction of the plate sequence, is arranged adjacent to one of the two outermost plates. In particular, the plate that is closest to the boundary surface can then be thicker than the middle plate and thinner than the plate that is furthest away from the boundary surface.

Insbesondere kann dann die der Begrenzungsfläche am nächsten liegenden Platte eine Dicke von 250 mm aufweisen, die mittlere Platte eine Dicke von 200 mm aufweisen und die am weitesten von der Begrenzungsfläche entfernt liegende Platte eine Dicke von 300 mm aufweisen.In particular, the plate lying closest to the boundary surface can then have a thickness of 250 mm, the middle plate can have a thickness of 200 mm and the plate lying furthest away from the boundary surface can have a thickness of 300 mm.

Die Absorbereinheit kann eine bzw. die Begrenzungsfläche umfassen, die, bezogen auf die Richtung der Plattenabfolge, benachbart zu einer der beiden äußersten Platten angeordnet ist. Insbesondere kann dann der Abstand zwischen der mittleren Platte und der der Begrenzungsfläche am nächsten liegenden Platte größer sein als der Abstand zwischen der der Begrenzungsfläche am nächsten liegenden Platte und der Begrenzungsfläche und kleiner als der Abstand zwischen der mittleren Platte und der am weitesten von der Begrenzungsfläche entfernt liegenden Platte.The absorber unit can comprise a boundary surface which is arranged adjacent to one of the two outermost plates in relation to the direction of the plate sequence. In particular, the distance between the middle plate and the plate closest to the delimiting surface can then be greater than the distance between the plate closest to the delimiting surface and the delimiting surface and smaller than the distance between the middle plate and the plate furthest from the delimiting surface lying plate.

Insbesondere kann dann der Abstand zwischen der mittleren Platte und der der Begrenzungsfläche am nächsten liegenden Platte 150 mm betragen, der Abstand zwischen der der Begrenzungsfläche am nächsten liegenden Platte und der Begrenzungsfläche 100 mm betragen und der Abstand zwischen der mittleren Platte und der am weitesten von der Begrenzungsfläche entfernt liegenden Platte 200 mm betragen.In particular, the distance between the middle plate and the plate lying closest to the boundary surface can then be 150 mm, the distance between the plate lying closest to the boundary surface and the boundary surface 100 mm and the distance between the middle plate and the plate furthest from the boundary surface distant panel is 200 mm.

Die Gesamtdicke der Absorbereinheit kann kleiner oder gleich 1,5 m sein, vorzugsweise kleiner als 1,4 m, insbesondere 1,2 m sein. Beispielsweise kann die Gesamtdicke zwischen 1,1 m und 1,4 m liegen.The total thickness of the absorber unit can be less than or equal to 1.5 m, preferably less than 1.4 m, in particular 1.2 m. For example, the total thickness can be between 1.1 m and 1.4 m.

Mindestens eine der Platten kann durch ein Lochblech auf einer oder beiden Hauptseiten der Platte abgedeckt oder in Form einer Lochblechkassette ausgebildet sein. Insbesondere die im Betrieb der Schallquelle am nächsten liegende Platte kann vorteilhaft in Form einer Lochblechkassette ausgebildet sein. Mindestens eine der Platten kann in Form eines Kulissenpaketes ausgebildet sein. Insbesondere die Platten, die im Betrieb nicht direkt dem Schall zugewandt sind, können in ein Kulissenpaket integriert sein.At least one of the plates can be covered by a perforated plate on one or both main sides of the plate or in the form of a perforated plate cassette. especially the The plate lying closest to the sound source during operation can advantageously be designed in the form of a perforated plate cassette. At least one of the plates can be designed in the form of a link pack. In particular, the panels that do not face the sound directly during operation can be integrated into a splitter package.

Die Verwendung von Lochblechkassetten und/oder Kulissenpaketen ist vorteilhaft, da der Aufbau der Platten selbst und der Absorbereinheit einfach und günstig ist.The use of perforated sheet cassettes and/or baffle packs is advantageous because the structure of the panels themselves and the absorber unit is simple and inexpensive.

Die Absorbereinheit kann derart ausgebildet sein, dass die Lufträume zur Installation von Kabeln oder Rohren verwendbar sind. Dies ermöglicht einen vorteilhaften Aufbau bei den entsprechenden Anwendungen, wo zur Stromversorgung und/oder zum Datenaustausch, beispielsweise von Sensoren oder Ähnlichem, viele Kabel verlegt werden müssen.The absorber unit can be designed in such a way that the air spaces can be used to install cables or pipes. This enables an advantageous structure in the corresponding applications where a large number of cables have to be laid for the power supply and/or for data exchange, for example from sensors or the like.

Weitere Merkmale und Vorteile werden nachfolgend anhand der beispielhaften Figuren erläutert. Dabei zeigt:

Fig. 1
eine schematische, nicht maßstabsgetreue Schrägansicht einer ersten Ausführungsform der erfindungsgemäßen Absorbereinheit,
Fig. 2
eine schematische, nicht maßstabsgetreue Schnittansicht der ersten Ausführungsform und
Fig. 3
eine schematische, nicht maßstabsgetreue Schrägansicht einer zweiten Ausführungsform der erfindungsgemäßen Absorbereinheit.
Further features and advantages are explained below with reference to the exemplary figures. It shows:
1
a schematic oblique view, not true to scale, of a first embodiment of the absorber unit according to the invention,
2
a schematic, not to scale sectional view of the first embodiment and
3
a schematic oblique view, not true to scale, of a second embodiment of the absorber unit according to the invention.

In Figur 1 ist eine erste bevorzugte Ausführungsform der Absorbereinheit 1 gezeigt, die drei Platten 2, 3, 4 aus Absorptionsmaterial umfasst, die allein oder in Lochblechkassetten oder Kulissen eingebaut auch als Absorberpakete bezeichnet werden. Die Richtung der Plattenabfolge ist hier mit dem Pfeil 5 gekennzeichnet. Pfeil 6 kennzeichnet die ungefähre Richtung, in der im Betrieb der Schall auf die Absorbereinheit treffen wird. Es sei angemerkt, dass die Absorbereinheit auch eine andere Anzahl an Absorberpaketen aufweisen kann.In figure 1 a first preferred embodiment of the absorber unit 1 is shown, which comprises three plates 2, 3, 4 made of absorption material, which are also referred to as absorber packages alone or installed in perforated metal cassettes or baffles. The direction of the plate sequence is marked here with the arrow 5. Arrow 6 indicates the approximate direction in which the sound will hit the absorber unit during operation. It should be noted that the absorber unit can also have a different number of absorber packages.

Zwischen zwei benachbarten Absorberpaketen ist jeweils ein Luftraum 8 angeordnet. Vorzugsweise ist dabei das Absorptionsmaterial aller Absorberpakete Mineralwolle, deren Fasern in dem mittleren Absorberpaket 3 entlang der Richtung der Plattenabfolge der Absorberpakete (also im Betrieb der Schallrichtung) verlaufen und in den anderen beiden Absorberpaketen quer dazu. Alternativ kann für die beiden äußeren Absorberpakete auch ein offenzelliger Schaumstoff verwendet werden. Die Ausrichtung der Fasern kann jedoch auch anders gewählt werden oder andere Materialien können verwendet werden, solange geeignete Strömungswiderstände vorliegen.An air space 8 is arranged in each case between two adjacent absorber packages. Preferably, the absorption material of all absorber packs is mineral wool, the fibers of which run in the middle absorber pack 3 along the direction of the plate sequence of the absorber packs (ie in operation the direction of sound) and in the other two absorber packs transversely to it. Alternatively, an open-cell foam can also be used for the two outer absorber packs. However, the orientation of the fibers can also be chosen differently or other materials can be used as long as there are suitable flow resistances.

Die drei Absorberpakete können beispielsweise eine Dicke von d = 300 mm, e = 200 mm und f = 250 mm und einen Abstand von a = 200 mm bzw. b = 150 mm aufweisen. Allerdings können Werte für die Dicke und Abstände auch von diesen Werten abweichen, was vor allem von den verwendeten Materialien und den gewünschten Absorptionseigenschaften abhängt.The three absorber packs can, for example, have a thickness of d=300 mm, e=200 mm and f=250 mm and a distance of a=200 mm or b=150 mm. However, values for the thickness and distances can also deviate from these values, which mainly depends on the materials used and the desired absorption properties.

Die Absorbereinheit kann durch ein Element 7, beispielsweise eine Wand oder eine Begrenzungsfläche, die Teil der Absorbereinheit ist, begrenzt sein. Beispielsweise kann, wie in der Figur 1 gezeigt, die Absorbereinheit im Betrieb, beispielsweise in einem Abstand von c = 100 mm, an einer Wand (oder der Decke) eines Raums befestigt sein, die vorzugsweise einen hohen Strömungswiderstand aufweist.The absorber unit can be delimited by an element 7, for example a wall or a boundary surface, which is part of the absorber unit. For example, as in the figure 1 shown, the absorber unit in operation, for example at a distance of c = 100 mm, on a wall (or the ceiling) of a room, which preferably has a high flow resistance.

Das erste Absorberpaket 2 ist im Betrieb direkt der Schallquelle zugewandt. Wenn die Absorbereinheit beispielsweise an der Decke oder Wand eines Raumes befestigt ist, ist das erste Absorberpaket direkt dem Rauminneren zugewandt. Vorzugsweise ist das erste Absorberpaket in Form einer in einer perforierten Lochblechkassette (hier nicht gezeigt) eingebauten Platte ausgebildet. Diese kann wahlweise auch farblich beschichtet sein. Die beiden hinteren Absorberpakete 3, 4 sind jeweils vorzugsweise in Form eines Kulissenpaketes (hier nicht gezeigt), in dem die jeweilige Platte integriert ist, ausgebildet. Sie können entsprechend der Messvorschrift hinter dem rauminnenseitigen Absorberpaket angeordnet sein.During operation, the first absorber package 2 faces directly the sound source. For example, if the absorber unit is attached to the ceiling or wall of a room, the first absorber pack faces directly the interior of the room. The first absorber package is preferably in the form of a plate installed in a perforated sheet metal cassette (not shown here). This can optionally also be color coated. The two rear absorber packs 3, 4 are each preferably in the form of a link pack (not shown here) in which the respective plate is integrated. According to the measurement specification, they can be arranged behind the absorber package on the inside of the room.

Ein Kulissenpaket umfasst einen Kulissenrahmen, in den die Platte eingepasst ist. So kann die Platte in den Kulissenrahmen eingelegt und durch Vorsprünge an den Innenwänden oder an den Kanten des Kulissenrahmens an den Innenwänden gehalten werden. Diese Vorsprünge können insbesondere entlang mehrerer, insbesondere aller, Seiten des Kulissenrahmens verlaufen. So werden die Platten entlang ihrer Kanten gestützt und können in den Rahmen, geführt durch die Vorsprünge, eingeschoben werden. Beispielsweise können die Platten von oben eingeschoben werden. Dabei ist der Kulissenrahmen etwas breiter als die eingelegte Platte. Es wäre ebenfalls möglich, im Rahmen eine Nut vorzusehen, in der die Platte eingesetzt ist. Zum zusätzlichen Stützen und um eine Ausbeulung der Platten zu vermeiden, kann ein Band, beispielsweise ein Lochband von einer Kulissenseite zur anderen hinter einer Platte vorbeigezogen sein.A backdrop package includes a backdrop frame into which the panel is fitted. Thus, the plate can be inserted into the link frame and held by projections on the inner walls or on the edges of the link frame on the inner walls. In particular, these projections can run along several, in particular all, sides of the connecting link frame. Thus the panels are supported along their edges and can be slid into the frame guided by the projections. For example, the panels can be inserted from above. The backdrop frame is slightly wider than the inserted plate. It would also be possible to provide a groove in the frame in which the plate is inserted. For additional support and to prevent the panels from bulging, a strip, for example a perforated strip, can be drawn from one side of the link to the other behind a panel.

In jedem Kulissenrahmen ist typischerweise entlang der Schallrichtung genau eine Platte eingesetzt. Es ist möglich, dass mehrere Platten übereinander angeordnet sind, beispielsweise wenn die Platten in einer kleineren Größe gefertigt werden als der Rahmen. Beispielsweise könnte eine Platte 1200 x 600 mm groß sein, während die Höhe der Kulissenrahmen etwa 3 Meter betragen kann, so dass mehrere Platten übereinander eingesetzt werden müssen. In einem Kulissenrahmen kann die Platte bzw. können die Platten aus genau einer Art von Mineralwolle ausgebildet sein oder eine Schichtstruktur von Lagen verschiedener Arten von Mineralwolle aufweisen.In each baffle frame, typically exactly one plate is used along the direction of the sound. It is possible for several panels to be placed one on top of the other, for example if the panels are made in a smaller size than the frame. For example, a panel could be 1200 x 600mm, while the height of the backdrop frames could be around 3 meters, allowing multiple panels to be stacked on top of each other have to be used. In a backdrop frame, the panel or panels can be formed from exactly one type of mineral wool or have a layered structure of layers of different types of mineral wool.

Der Kulissenrahmen kann gelocht oder aus Glattblech ausgebildet sein. Wenn die Kulissenpakete aufgebaut werden, können diese auf den Boden gestellt und gegebenenfalls, wenn erforderlich, aufeinander gestapelt werden. Dies ist vor allem bei Raumhöhen größer 3 Meter vorteilhaft, weil die Kulissenrahmen zum Sicherstellen der Stabilität nicht beliebig groß gewählt werden sollten. Um ein Kippen zu verhindern und die Abstände sicher einzustellen, können die Kulissen mit Auslegern, die an den Wänden befestigt sind, verbunden, beispielsweise verschraubt sein.The backdrop frame can be perforated or made of smooth sheet metal. When the sets of backdrops are set up, they can be placed on the ground and stacked on top of each other if necessary. This is particularly advantageous for room heights greater than 3 meters, because the backdrop frames should not be chosen arbitrarily large to ensure stability. To prevent tipping and to set the distances safely, the scenes can be connected, for example screwed, to brackets that are attached to the walls.

Die Luftschichten zwischen den einzelnen Paketen können optional für Installationen aller Art (Kabel, Rohre, etc.) genutzt werden, was hier nicht gezeigt ist.The air layers between the individual packages can optionally be used for installations of all kinds (cables, pipes, etc.), which is not shown here.

Figur 2 zeigt einen Schnitt der oben beschriebenen Ausführungsform. Hier sind die Faserrichtungen mittels der Schraffierung angedeutet. figure 2 shows a section of the embodiment described above. Here the fiber directions are indicated by hatching.

Figur 3 zeigt eine Schrägansicht einer im Wesentlichen wie in der ersten Ausführungsform ausgebildeten Absorbereinheit, die jedoch eine Begrenzungsfläche 7 aufweist. Hier keine Wand abgebildet, da die Absorbereinheit prinzipiell auch freistehend verwendet werden kann. figure 3 FIG. 12 shows an oblique view of an absorber unit which is designed essentially as in the first embodiment, but which has a boundary surface 7. FIG. No wall shown here, as the absorber unit can in principle also be used free-standing.

Die Begrenzungsfläche kann beispielsweise in einem Abstand von c = 100 mm von dem dritten Absorberpaket 4 angeordnet sein und weist vorzugsweise eine hohe Strömungsimpedanz auf. So wird auch zwischen der Begrenzungsfläche und dem dritten Absorberpaket noch ein Hohlraumresonator erzeugt. Auch hier kann der Abstand anders gewählt sein.The boundary surface can be arranged, for example, at a distance of c=100 mm from the third absorber package 4 and preferably has a high flow impedance. A cavity resonator is thus also produced between the boundary surface and the third absorber package. Again, the distance can be chosen differently.

Es versteht sich, dass in den zuvor beschriebenen Ausführungsformen genannte Merkmale nicht auf diese speziellen Kombinationen beschränkt sind und auch in beliebigen anderen Kombinationen möglich sind, sofern diese unter den Schutzumfang der Erfindung fallen, welche alleinig durch die beigefügten Ansprüche definiert ist.It should be understood that features mentioned in the embodiments described above are not limited to these specific combinations and can also be in any other combination as long as they fall within the scope of the invention, which is defined solely by the appended claims.

Claims (14)

  1. An absorbing unit (1) for absorbing sound, in particular in closed rooms, comprising a plurality of plates (2, 3, 4) made of sound-absorbent material, wherein at least two adjacent plates (2, 3, 4) are spaced from each other for creating an air space (8) therebetween thus forming a cavity resonator for frequencies below 50 Hz,
    characterized in that the absorbent material comprises an anisotropic fabric including fibers,
    wherein the plates are configured and arranged such that the fibers in at least one of the plates (2, 3, 4) run along the direction of the plate sequence (5) in the absorbing unit (1).
  2. The absorbing unit according to claim 1, wherein the cavity resonator has a natural frequency of less han 50 Hz,
    in particular less than 40 Hz, more particularly of less than 35 Hz and in particular of 30 Hz.
  3. The absorbing unit according to any one of the preceding claims, wherein the absorbent material comprises mineral wool or open-cell foams.
  4. The absorbing unit according to any one of the preceding claims, wherein the plates (2, 3, 4) made of absorbent material are configured two exhibit inherent stability.
  5. The absorbing unit according to any one of the preceding claims, wherein the absorbent material comprises fibers and the plates (2, 3, 4) are arranged such that the direction of the fibers between plates alternates between the direction of the plate sequence (5) and perpendicular to the direction of the plate sequence (5).
  6. The absorbing unit according to any one of the preceding claims, wherein the absorbent material comprises fibers comprising at least three plates (2, 3, 4), wherein the fibers of the middle one of the three plates (3) extend along the direction of the plate sequence (5) and the fibers of the other two plates (2, 4) extends transverse to the direction of the plate sequence (5).
  7. The absorbing unit according to any one of the preceding claims, wherein the thickness of the plates (2, 3, 4) is between 150 mm and 300 mm and/or wherein the distances between the plates (2, 3, 4) are between 100 mm and 200 mm.
  8. The absorbing unit according to any one of the preceding claims, wherein the plates (2, 3, 4) have equal or at least partially different thicknesses and distances.
  9. The absorbing unit unit according to any one of the preceding claims, comprising at least three of said plates (2, 3, 4), wherein the thickness of the middle plate (3) of said three plates is smaller than the thickness of the two adjacent plates (2, 4) and the two adjacent plates (2, 4) differ in thickness.
  10. The absorbing unit according to claim 10, wherein the absorbing unit (1) comprises a boundary surface (7) disposed adjacent one of the two outer panels (4), and wherein the plate (4) closest to the boundary surface (7) is thicker than the middle panel (3) and thinner than the panel (2) furthest from the boundary surface (7).
  11. The absorbing unit according to any one of the preceding claims, comprising three plates or the three of said plates (2, 3, 4), wherein said absorbing unit (1) comprises the or a boundary surface (7) arranged adjacent to one of the two outermost plates (2, 4), wherein the distance between the middle plate (3) of the three plates and the plate (4) closest to the boundary surface (7) is greater than the distance between the plate (4) closest to the boundary surface (7) and the boundary surface (7) and smaller than the distance between the middle plate (3) and the plate (2) furthest from the boundary surface (7).
  12. The absorbing unit according to any one of the preceding claims, wherein the total thickness of the absorber unit (1) is less than or equal to 1.5 m, preferably less than 1.4 m, in particular 1.2 m.
  13. The absorbing unit according to any one of the preceding claims, wherein at least one of the plates (2, 3, 4) is covered by a perforated plate on one or both main sides of the plate or is configured in the form of a cassette made of perforated plate.
  14. The absorbing unit according to any one of the preceding claims, wherein at least one of the plates (2, 3, 4) is integrated into a baffle package.
EP16170670.0A 2016-05-20 2016-05-20 Absorber unit for absorbing sound Active EP3246479B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP16170670.0A EP3246479B1 (en) 2016-05-20 2016-05-20 Absorber unit for absorbing sound

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP16170670.0A EP3246479B1 (en) 2016-05-20 2016-05-20 Absorber unit for absorbing sound

Publications (3)

Publication Number Publication Date
EP3246479A1 EP3246479A1 (en) 2017-11-22
EP3246479B1 true EP3246479B1 (en) 2023-07-05
EP3246479C0 EP3246479C0 (en) 2023-07-05

Family

ID=56108482

Family Applications (1)

Application Number Title Priority Date Filing Date
EP16170670.0A Active EP3246479B1 (en) 2016-05-20 2016-05-20 Absorber unit for absorbing sound

Country Status (1)

Country Link
EP (1) EP3246479B1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020125799A1 (en) * 2018-12-21 2020-06-25 The Hong Kong University Of Science And Technology Soft acoustic boundary plate
CN112049472A (en) * 2020-09-10 2020-12-08 湖北汇宜建设工程有限公司 A canopy gives sound insulation for building engineering construction

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0890507A1 (en) * 1997-07-09 1999-01-13 Johns Manville International, Inc. Sound control through resonance damping

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE9400092U1 (en) * 1994-01-05 1994-03-10 Jung Akustik Gmbh Frequency-variable soundproofing element
DE202012006256U1 (en) * 2012-06-28 2012-07-31 zörb acustic GmbH Soundproofing element

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0890507A1 (en) * 1997-07-09 1999-01-13 Johns Manville International, Inc. Sound control through resonance damping

Also Published As

Publication number Publication date
EP3246479A1 (en) 2017-11-22
EP3246479C0 (en) 2023-07-05

Similar Documents

Publication Publication Date Title
DE69532979T2 (en) Soundproofing device using a porous material
DE10347084B4 (en) Tunable sound absorbing and air filtering damper and manufacturing method
EP2937483B1 (en) Building panel, in particular wall or ceiling panel
EP2540926B1 (en) Acoustic dampening element and method for manufacturing the same
CH639453A5 (en) COMPONENT FOR AIR SOUND INSULATION.
WO2000036240A1 (en) Structured moulded parts for sound absorption
EP0683480B1 (en) Sound absorber
DE2515127C2 (en) Sound absorbing plate
EP3246479B1 (en) Absorber unit for absorbing sound
EP1495885B2 (en) Air conduit for automotive vehicle
WO2012083319A2 (en) Sound protection component
EP0742322B1 (en) Sound damping device
DE2744382C3 (en) Sound-absorbing wall or ceiling cladding with a layer that is sealed on the room side and provided with openings
CH619804A5 (en) Splitter sound-damper
EP1597442B2 (en) Double-shelled separating wall with a lining made of mineral wool
DE2437947C3 (en) Arrangement for the absorption of airborne sound
DE60118221T2 (en) SOUND ABSORPTION DEVICE
CH683855A5 (en) Sound absorbing plate.
DE2303611C3 (en)
DE102011107484A1 (en) Sound absorber for a wall or a ceiling
DE3530430C2 (en) Silencer backdrop
AT292979B (en) Plate-shaped, sound-absorbing, double-shell construction element with bulk material filling
DE19841567C1 (en) Air channel sound damper for machine shop ventilation
EP2575127A1 (en) Acoustic absorption element
EP1720153A1 (en) Silencer for passage

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20180518

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20200622

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20221104

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

RIN1 Information on inventor provided before grant (corrected)

Inventor name: RAJMANE, ABHAY SIDDESHWAR

Inventor name: BAUMANN, WALTER

RAP3 Party data changed (applicant data changed or rights of an application transferred)

Owner name: G + H SCHALLSCHUTZ GMBH

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1584973

Country of ref document: AT

Kind code of ref document: T

Effective date: 20230715

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502016015909

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

U01 Request for unitary effect filed

Effective date: 20230711

U07 Unitary effect registered

Designated state(s): AT BE BG DE DK EE FI FR IT LT LU LV MT NL PT SE SI

Effective date: 20230720

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231006

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230705

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231105

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230705

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231005

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231105

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230705

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231006

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230705

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230705