EP2966154A1 - Composition d'huile lubrifiante - Google Patents
Composition d'huile lubrifiante Download PDFInfo
- Publication number
- EP2966154A1 EP2966154A1 EP14760010.0A EP14760010A EP2966154A1 EP 2966154 A1 EP2966154 A1 EP 2966154A1 EP 14760010 A EP14760010 A EP 14760010A EP 2966154 A1 EP2966154 A1 EP 2966154A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- lubricating oil
- oil composition
- degrees
- less
- shear stability
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M161/00—Lubricating compositions characterised by the additive being a mixture of a macromolecular compound and a non-macromolecular compound, each of these compounds being essential
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M157/00—Lubricating compositions characterised by the additive being a mixture of two or more macromolecular compounds covered by more than one of the main groups C10M143/00 - C10M155/00, each of these compounds being essential
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2203/00—Organic non-macromolecular hydrocarbon compounds and hydrocarbon fractions as ingredients in lubricant compositions
- C10M2203/10—Petroleum or coal fractions, e.g. tars, solvents, bitumen
- C10M2203/102—Aliphatic fractions
- C10M2203/1025—Aliphatic fractions used as base material
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2205/00—Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions
- C10M2205/02—Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions containing acyclic monomers
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2205/00—Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions
- C10M2205/02—Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions containing acyclic monomers
- C10M2205/028—Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions containing acyclic monomers containing aliphatic monomers having more than four carbon atoms
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2207/00—Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
- C10M2207/02—Hydroxy compounds
- C10M2207/023—Hydroxy compounds having hydroxy groups bound to carbon atoms of six-membered aromatic rings
- C10M2207/026—Hydroxy compounds having hydroxy groups bound to carbon atoms of six-membered aromatic rings with tertiary alkyl groups
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2207/00—Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
- C10M2207/28—Esters
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2209/00—Organic macromolecular compounds containing oxygen as ingredients in lubricant compositions
- C10M2209/02—Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
- C10M2209/08—Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds containing monomers having an unsaturated radical bound to a carboxyl radical, e.g. acrylate type
- C10M2209/084—Acrylate; Methacrylate
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2215/00—Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
- C10M2215/02—Amines, e.g. polyalkylene polyamines; Quaternary amines
- C10M2215/06—Amines, e.g. polyalkylene polyamines; Quaternary amines having amino groups bound to carbon atoms of six-membered aromatic rings
- C10M2215/064—Di- and triaryl amines
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2215/00—Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
- C10M2215/086—Imides
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2215/00—Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
- C10M2215/28—Amides; Imides
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2223/00—Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions
- C10M2223/02—Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions having no phosphorus-to-carbon bonds
- C10M2223/04—Phosphate esters
- C10M2223/045—Metal containing thio derivatives
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10N—INDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
- C10N2020/00—Specified physical or chemical properties or characteristics, i.e. function, of component of lubricating compositions
- C10N2020/01—Physico-chemical properties
- C10N2020/019—Shear stability
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10N—INDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
- C10N2020/00—Specified physical or chemical properties or characteristics, i.e. function, of component of lubricating compositions
- C10N2020/01—Physico-chemical properties
- C10N2020/02—Viscosity; Viscosity index
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10N—INDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
- C10N2020/00—Specified physical or chemical properties or characteristics, i.e. function, of component of lubricating compositions
- C10N2020/01—Physico-chemical properties
- C10N2020/04—Molecular weight; Molecular weight distribution
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10N—INDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
- C10N2030/00—Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
- C10N2030/02—Pour-point; Viscosity index
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10N—INDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
- C10N2030/00—Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
- C10N2030/10—Inhibition of oxidation, e.g. anti-oxidants
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10N—INDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
- C10N2030/00—Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
- C10N2030/68—Shear stability
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10N—INDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
- C10N2040/00—Specified use or application for which the lubricating composition is intended
- C10N2040/25—Internal-combustion engines
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10N—INDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
- C10N2060/00—Chemical after-treatment of the constituents of the lubricating composition
- C10N2060/14—Chemical after-treatment of the constituents of the lubricating composition by boron or a compound containing boron
Definitions
- the present invention relates to a lubricating oil composition.
- a fuel-saving performance of the engine oil also needs to be further improved.
- an improvement in temperature-viscosity characteristics is effective for reducing friction in a fluid lubrication region.
- a viscosity index improver is used.
- a polymethacrylate (PMA), a polyolefin copolymer (OCP) and the like are used (Patent Literatures 1 to 4).
- PMA-based viscosity index improver that is excellent in temperature-viscosity characteristics is often used.
- the PMA-based viscosity index improver is not satisfactory in terms of the piston detergency under severer conditions of high temperatures and also may not be so favorable in terms of the shear stability. Accordingly, a lubricating oil composition exhibiting an excellent fuel-saving performance and maintaining favorable piston detergency and shear stability has been demanded.
- Patent Literatures 1 to 4 cannot maintain favorable piston detergency and shear stability although exhibiting an excellent fuel-saving performance.
- An object of the invention is to provide a lubricating oil composition exhibiting an excellent fuel-saving performance and capable of maintaining favorable piston detergency and shear stability.
- the invention provides a lubricating oil composition as follows.
- a lubricating oil composition according to the above aspect of the invention contains: a lubricating base oil; a component (A) that is a polymethacrylate having a mass average molecular weight in a range from 30,000 to 600,000; and a component (B) that is an olefin copolymer having a 95% weight-loss temperature of 500 degrees C or less as calculated by differential thermal analysis and having 40 or less of SSI (Shear Stability Index).
- SSI Shear Stability Index
- a manufacturing method of a lubricating oil composition according to the above another aspect of the invention includes blending: a lubricating base oil; a component (A) that is a polymethacrylate having a mass average molecular weight in a range from 30,000 to 600,000; and a component (B) that is an olefin copolymer having a 95% weight-loss temperature of 500 degrees C or less as calculated by differential thermal analysis and having 40 or less of SSI (Shear Stability Index).
- SSI Shear Stability Index
- a lubricating oil composition exhibiting an excellent fuel-saving performance and maintaining favorable piston detergency and shear stability can be provided.
- a lubricating oil composition in an exemplary embodiment of the invention (hereinafter, occasionally simply referred to as “the present composition”) is provided by blending: a lubricating base oil; a component (A) that is a polymethacrylate having a mass average molecular weight in a range from 30,000 to 600,000; and a component (B) that is an olefin copolymer having a 95% weight-loss temperature of 500 degrees C or less as calculated by differential thermal analysis and having 40 or less of SSI (Shear Stability Index).
- SSI Shear Stability Index
- the lubricating base oil used in the present composition may be a mineral lubricating base oil or a synthetic lubricating base oil.
- the kind of the lubricating base oil is not particularly limited but may be suitably selected from any mineral oil and synthetic oil that have been conventionally used as a lubricating base oil for an internal combustion engine.
- a viscosity index of the lubricating oil composition is preferably 120 or more in terms temperature-viscosity characteristics and shear stability.
- Examples of the mineral lubricating base oil include a paraffinic mineral oil, an intermediate mineral oil and a naphthenic mineral oil.
- Examples of the synthetic lubricating base oil include polybutene, polyolefin, polyol ester, diacid ester, phosphate, polyphenyl ether, polyglycol, alkylbenzene and alkylnaphthalene.
- Examples of polyolefin include an ⁇ -olefin homopolymer and an ⁇ -olefin copolymer.
- One of the above base oils may be used alone or a combination of two or more thereof may be used.
- the component (A) of the present composition is a polymethacrylate (PMA) having a mass average molecular weight in a range from 30,000 to 600,000.
- PMA polymethacrylate
- the mass average molecular weight of the component (A) is more preferably in a range from 200,000 to 600,000, further preferably in a range from 350,0000 to 450,000, particularly preferably in a range from 380,0000 to 420,000.
- the polymethacrylate may be a non-dispersed polymethacrylate or a dispersed polymethacrylate.
- a content of the component (A) is preferably in a range from 1 mass% to 20 mass% of a total amount of the composition, more preferably in a range from 2 mass% to 15 mass%.
- a viscosity index-improving effect tends to be insufficient.
- the content exceeds the above upper limit, the shear stability and piston detergency of the lubricating oil composition tend to be lowered.
- the component (B) of the present composition is an olefin copolymer (OCP) having a 95% weight-loss temperature of 500 degrees C or less as calculated by differential thermal analysis and having 40 or less of SSI.
- OCP olefin copolymer
- the SSI of the component (B) is more preferably 30 or less, further preferably in a range from 2 to 30, particularly preferably in a range from 2 to 20, most preferably in a range from 6 to 19.
- the 95% weight-loss temperature of the component (B) is more preferably 480 degrees C or less, particularly preferably in a range from 461 degrees C to 476 degrees C.
- the 95% weight-loss temperature can be measured using a known differential thermal analyzer. Test conditions are, for instance, in nitrogen, a flow rate of 200 mL/min, a temperature-increasing rate of 10 degrees C/min, use of a platinum pan, and a sample amount of 6 mg.
- SSI can be calculated by: measuring a kinematic viscosity at 100 degrees C of an unused oil, a kinematic viscosity at 100 degrees C of the oil after a shear stability test (ASTM D6278) and a kinematic viscosity at 100 degrees C of the base oil; and applying the obtained measurement values to a formula: (kinematic viscosity of an unused oil - kinematic viscosity of the oil after the shear stability test) / (kinematic viscosity of the unused oil - kinematic viscosity of the base oil) X 100.
- olefin copolymer examples include an ethylene-propylene copolymer, an ethylene-butylene copolymer, a styrene-isoprene copolymer and a styrene-butadiene copolymer.
- a content of the component (B) is preferably in a range from 1 mass% to 15 mass% of the total amount of the composition, more preferably in a range from 2 mass% to 10 mass%.
- the present composition may be added with various additives described below as long as the advantages of the invention are not hampered.
- a detergent dispersant, antioxidant, antiwear agent or extreme pressure agent, pour point depressant, friction reducing agent, metal deactivator, rust inhibitor, surfactant or demulsifier, antifoaming agent, anticorrosive agent, friction modifier, oiliness agent and acid scavenger can be suitably blended in use.
- an ashless dispersant and a metal detergent are usable.
- the ashless dispersant include a succinimide compound, a boron imide compound, a Mannich dispersant and an acid amide compound.
- polybutenyl succinimide and polybutenyl succinimide borate are preferable.
- One of the above ashless dispersants may be used alone or a combination of two or more thereof may be used.
- a content of the ashless dispersant is not particularly limited, but is preferably in a range from 0.1 mass% to 10 mass% of the total amount of the composition.
- the metal detergent examples include alkali metal sulfonate, alkali metal phenate, alkali metal salicylate, alkali metal naphthenate, alkaline earth metal sulfonate, alkaline earth metal phenate, alkaline earth metal salicylate, and alkaline earth metal naphthenate.
- alkaline earth metal salicylate is preferable.
- calcium and magnesium are preferable.
- One of the above metal detergents may be used alone or a combination of two or more thereof may be used.
- a content of the metal detergent is not particularly limited, but is preferably in a range from 0.05 mass% to 0.3 mass% of the total amount of the composition in terms of metals.
- antioxidants examples include an amine antioxidant, a phenolic antioxidant and a sulfur antioxidant.
- One of the above antioxidants may be used alone or a combination of two or more thereof may be used.
- a content of the antioxidant is not particularly limited, but is preferably in a range from 0.05 mass% to 7 mass% of the total amount of the composition.
- Examples of the antiwear agent or extreme pressure agent include phosphorus extreme pressure agent and sulfur extreme pressure agent.
- Examples of the phosphorus extreme pressure agent include phosphites, phosphates, thiophosphates and an amine salt or a metal salt thereof.
- Examples of the sulfur extreme pressure agent include an olefin sulfide, a sulfurized fat and oil, an ester sulfide, thiocarbonates, dithiocarbamates and polysulfides.
- One of the above antiwear agent or extreme pressure agent may be used alone or a combination of two or more thereof may be used.
- a content of the antiwear agent or extreme pressure agent is not particularly limited, but is preferably in a range from 0.1 mass% to 10 mass% of the total amount of the composition.
- the present composition usually contains the blended components per se.
- the present composition includes a composition of the blended components, at least a part of which may be reacted to become a compound different from the blended components.
- a manufacturing method of a lubricating oil composition in the exemplary embodiment includes blending the lubricating base oil, the component (A) and the component (B).
- various additives described above may be further added to the lubricating base oil as needed.
- the present composition prepared based on the above blend composition is not particularly limited, but preferably satisfies the following conditions.
- the present composition preferably has a kinematic viscosity at 100 degrees C in a range from 2 mm 2 /s to 20 mm 2 /s, more preferably in a range from 5.6 mm 2 /s to less than 12.5 mm 2 /s.
- the kinematic viscosity can be measured by a method of JIS K 2283.
- the kinematic viscosity at 100 degrees C is in a range from 9.3 mm 2 /s to less than 12.5 mm 2 /s
- the kinematic viscosity at 100 degrees C after the shear stability test is preferably 9.3 mm 2 /s or more, more preferably in a range from 9.3 mm 2 /s to 10 mm 2 /s.
- the kinematic viscosity at 100 degrees C is in a range from 5.6 mm 2 /s to less than 9.3 mm 2 /s
- the kinematic viscosity at 100 degrees C after the shear stability test is preferably 5.6 mm 2 /s or more.
- the shear stability test can be conducted by a test method defined in ASTM D6278.
- the viscosity index is preferably 150 or more, more preferably 170 or more. When the viscosity index is less than the lower limit, temperature dependency of the viscosity is adversely increased.
- the viscosity index can be measured by a method of JIS K 2283.
- a phosphorus content of the present composition is preferably 0.12 mass% or less of the total amount of the composition in order to decrease a phosphorus content in the present composition.
- lubricating oil compositions (hereinafter, also referred to as sample oils) shown in Table 1 were prepared using the following base oils and additives. Note that the viscosity grade of each of the sample oils was adjusted to 5W-30 in performing experiments.
- Measurement was conducted by a method defined in ASTM D4683 using a TBS (Tapered Bearing Simulator) high temperature viscometer.
- a shear stability test (30 cycles) was conducted by a test method defined in ASTM D6278. After the test, a kinematic viscosity at 100 degrees C was measured in accordance with "Test Method of Kinematic Viscosity of Petroleum Products" defined in JIS K 2283.
- a test device below was filled with each of the sample oils.
- a motoring torque test was conducted to measure a motoring torque. Test conditions are shown below. Note that lower motoring torque indicates more favorable fuel-saving performance.
- Test Device an engine motoring-driving torque measurement machine
- Sample Engine an in-line four-cylinder gasoline engine (2 liter displacement, a roller type valve train system)
- Test Conditions an oil temperature of 60 degrees C and 100 degrees C; and revolution rate of 1500 rpm
- Evaluation Item torque (unit: N ⁇ m) when the engine was driven.
- Test device panel coking (panecon) test machine
- Test Conditions panel temperature of 300 degrees C; an oil temperature of 100 degrees C; and a duration time of three hours (operation of splashing for 15 seconds and halting for 45 seconds)
- Evaluation Item an amount of the deposit on the panel after the test
- the lubricating oil composition of the invention maintained the kinematic viscosity after the shear stability test at a stay-in-grade kinematic viscosity of 9.3 mm 2 /s or more (i.e., favorable shear stability), provided less amount of the deposit in the panel coking test (i.e., favorable piston detergency), and exhibited a low motoring torque (i.e., favorable fuel-saving performance).
- the sample oils of Comparatives I and 2 it was found that the motoring torque was low but the shear stability and the piston detergency were deteriorated since only the polymethacrylate was contained.
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Organic Chemistry (AREA)
- Lubricants (AREA)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013041714 | 2013-03-04 | ||
PCT/JP2014/054815 WO2014136643A1 (fr) | 2013-03-04 | 2014-02-27 | Composition d'huile lubrifiante |
Publications (2)
Publication Number | Publication Date |
---|---|
EP2966154A1 true EP2966154A1 (fr) | 2016-01-13 |
EP2966154A4 EP2966154A4 (fr) | 2016-12-07 |
Family
ID=51491162
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP14760010.0A Withdrawn EP2966154A4 (fr) | 2013-03-04 | 2014-02-27 | Composition d'huile lubrifiante |
Country Status (5)
Country | Link |
---|---|
US (1) | US20160002563A1 (fr) |
EP (1) | EP2966154A4 (fr) |
JP (1) | JP6293115B2 (fr) |
CN (1) | CN105121613A (fr) |
WO (1) | WO2014136643A1 (fr) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3395931A4 (fr) * | 2015-12-25 | 2019-08-14 | Idemitsu Kosan Co.,Ltd. | Huile de base minérale, composition de lubrifiant, moteur à combustion interne, procédé de lubrification d'un moteur à combustion interne |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6420964B2 (ja) * | 2014-03-31 | 2018-11-07 | 出光興産株式会社 | 内燃機関用潤滑油組成物 |
JP6927488B2 (ja) * | 2017-03-30 | 2021-09-01 | 出光興産株式会社 | 二輪車用潤滑油組成物、該潤滑油組成物を用いた二輪車の燃費向上方法、及び該潤滑油組成物の製造方法 |
JP2021515070A (ja) | 2018-03-02 | 2021-06-17 | シェブロン・オロナイト・テクノロジー・ビー.ブイ. | 低粘度で摩耗防止を提供する潤滑油組成物 |
US20190270946A1 (en) | 2018-03-02 | 2019-09-05 | Chevron Oronite Technology B.V. | Lubricating oil composition providing wear protection at low viscosity |
JP6744047B2 (ja) * | 2018-03-30 | 2020-08-19 | 出光興産株式会社 | 潤滑油組成物、及び潤滑油組成物の使用方法 |
US20230287293A1 (en) * | 2020-08-21 | 2023-09-14 | Idemitsu Kosan Co.,Ltd. | Lubricating oil composition, shock absorber, and method for using lubricating oil composition |
Family Cites Families (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE2905954C2 (de) * | 1979-02-16 | 1982-10-28 | Röhm GmbH, 6100 Darmstadt | Konzentrierte Polymerisatemulsionen als Viskositätsindexverbesserer für Mineralöle |
JPS63210198A (ja) * | 1987-02-27 | 1988-08-31 | Idemitsu Kosan Co Ltd | マルチグレ−ドエンジン油組成物 |
FR2642435B1 (fr) * | 1989-01-27 | 1994-02-11 | Organo Synthese Ste Fse | Additif de viscosite pour huiles lubrifiantes, son procede de preparation et compositions lubrifiantes a base dudit additif |
US5789355A (en) * | 1995-06-06 | 1998-08-04 | Exxon Chemical Limited | Low volatility lubricating compositions |
JP4076634B2 (ja) * | 1998-09-09 | 2008-04-16 | 新日本石油株式会社 | 二輪車用4サイクルエンジン油組成物 |
JP2000322777A (ja) * | 1999-05-10 | 2000-11-24 | Mitsubishi Chemicals Corp | 記録媒体用基板の製造方法および記録媒体用基板並びに記録媒体 |
JP2002003874A (ja) * | 2000-06-21 | 2002-01-09 | Sanyo Chem Ind Ltd | 粘度指数向上剤および潤滑油組成物 |
US7875576B2 (en) * | 2004-07-29 | 2011-01-25 | Chevron Oronite Company Llc | Lubricating oil composition for internal combustion engines |
EP2380952A1 (fr) * | 2006-10-24 | 2011-10-26 | Total Raffinage Marketing | Fluide lubrifiant multifonctionnel |
JP5565999B2 (ja) | 2007-01-31 | 2014-08-06 | Jx日鉱日石エネルギー株式会社 | 潤滑油組成物 |
JP5512072B2 (ja) | 2007-03-30 | 2014-06-04 | Jx日鉱日石エネルギー株式会社 | 潤滑油組成物 |
JP5330716B2 (ja) * | 2008-03-17 | 2013-10-30 | 出光興産株式会社 | 潤滑油組成物 |
EP2154230A1 (fr) * | 2008-08-08 | 2010-02-17 | Afton Chemical Corporation | Compositions d'additif lubrifiant disposant de propriétés améliorées augmentant l'indice de viscosité |
CN102149801A (zh) * | 2008-09-19 | 2011-08-10 | 出光兴产株式会社 | 内燃机用润滑油组合物 |
EP2439258A4 (fr) * | 2009-06-04 | 2013-03-13 | Jx Nippon Oil & Energy Corp | Composition d'huile lubrifiante |
JP2010280817A (ja) | 2009-06-04 | 2010-12-16 | Jx Nippon Oil & Energy Corp | 潤滑油組成物 |
JP5727713B2 (ja) * | 2010-03-19 | 2015-06-03 | 出光興産株式会社 | 内燃機関用潤滑油組成物 |
-
2014
- 2014-02-27 US US14/772,201 patent/US20160002563A1/en not_active Abandoned
- 2014-02-27 EP EP14760010.0A patent/EP2966154A4/fr not_active Withdrawn
- 2014-02-27 WO PCT/JP2014/054815 patent/WO2014136643A1/fr active Application Filing
- 2014-02-27 CN CN201480012065.6A patent/CN105121613A/zh active Pending
- 2014-02-27 JP JP2015504263A patent/JP6293115B2/ja active Active
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3395931A4 (fr) * | 2015-12-25 | 2019-08-14 | Idemitsu Kosan Co.,Ltd. | Huile de base minérale, composition de lubrifiant, moteur à combustion interne, procédé de lubrification d'un moteur à combustion interne |
Also Published As
Publication number | Publication date |
---|---|
US20160002563A1 (en) | 2016-01-07 |
EP2966154A4 (fr) | 2016-12-07 |
JP6293115B2 (ja) | 2018-03-14 |
JPWO2014136643A1 (ja) | 2017-02-09 |
CN105121613A (zh) | 2015-12-02 |
WO2014136643A1 (fr) | 2014-09-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2966154A1 (fr) | Composition d'huile lubrifiante | |
JP5952846B2 (ja) | 潤滑油組成物 | |
US10793803B2 (en) | Gasoline engine lubricant oil composition and manufacturing method therefor | |
JP5649675B2 (ja) | 内燃機関用潤滑油組成物 | |
JP6302458B2 (ja) | 潤滑油組成物 | |
JP6721230B2 (ja) | 潤滑油組成物、潤滑方法、及び変速機 | |
US8785359B2 (en) | Lubricant oil composition | |
SG193720A1 (en) | Lubricating oil composition for automobile engine lubrication | |
US20120309659A1 (en) | Lubricating oil composition | |
WO2019189121A1 (fr) | Composition d'huile lubrifiante et procédé d'utilisation | |
JP6702611B2 (ja) | 潤滑油組成物、潤滑方法、及び変速機 | |
JP6702612B2 (ja) | 潤滑油組成物、潤滑方法、及び変速機 | |
US20200190422A1 (en) | Lubricating oil composition for internal combustion engine | |
JP6754612B2 (ja) | ガスエンジン油組成物 | |
JP7516145B2 (ja) | エンジン油組成物 | |
JP2015218331A (ja) | 内燃機関用潤滑油組成物 | |
RU2802289C2 (ru) | Смазочные композиции | |
JP5698470B2 (ja) | 潤滑油組成物 | |
JP2018188549A (ja) | 潤滑油組成物 | |
WO2023234294A1 (fr) | Composition d'huile lubrifiante | |
JP2023176318A (ja) | 潤滑油組成物 | |
WO2023234295A1 (fr) | Composition d'huile lubrifiante |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20150916 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME |
|
DAX | Request for extension of the european patent (deleted) | ||
A4 | Supplementary search report drawn up and despatched |
Effective date: 20161104 |
|
RIC1 | Information provided on ipc code assigned before grant |
Ipc: C10M 161/00 20060101ALI20161028BHEP Ipc: C10M 133/16 20060101ALI20161028BHEP Ipc: C10M 133/56 20060101ALI20161028BHEP Ipc: C10M 145/14 20060101ALI20161028BHEP Ipc: C10N 20/00 20060101ALI20161028BHEP Ipc: C10N 40/25 20060101ALI20161028BHEP Ipc: C10N 20/02 20060101ALI20161028BHEP Ipc: C10N 30/00 20060101ALI20161028BHEP Ipc: C10M 157/00 20060101AFI20161028BHEP Ipc: C10M 143/00 20060101ALI20161028BHEP Ipc: C10N 20/04 20060101ALI20161028BHEP Ipc: C10N 30/04 20060101ALI20161028BHEP |
|
17Q | First examination report despatched |
Effective date: 20190807 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION HAS BEEN WITHDRAWN |
|
18W | Application withdrawn |
Effective date: 20200213 |