EP2936006B1 - Dispositif de réfrigération et/ou de liquéfaction et procédé correspondant - Google Patents

Dispositif de réfrigération et/ou de liquéfaction et procédé correspondant Download PDF

Info

Publication number
EP2936006B1
EP2936006B1 EP13803115.8A EP13803115A EP2936006B1 EP 2936006 B1 EP2936006 B1 EP 2936006B1 EP 13803115 A EP13803115 A EP 13803115A EP 2936006 B1 EP2936006 B1 EP 2936006B1
Authority
EP
European Patent Office
Prior art keywords
heat exchanger
working gas
auxiliary fluid
cooling
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP13803115.8A
Other languages
German (de)
English (en)
Other versions
EP2936006A1 (fr
Inventor
Jean-Marc Bernhardt
Fabien Durand
Vincent Heloin
Pierre BARJHOUX
Gilles FLAVIEN
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
LAir Liquide SA pour lEtude et lExploitation des Procedes Georges Claude
Original Assignee
LAir Liquide SA pour lEtude et lExploitation des Procedes Georges Claude
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by LAir Liquide SA pour lEtude et lExploitation des Procedes Georges Claude filed Critical LAir Liquide SA pour lEtude et lExploitation des Procedes Georges Claude
Publication of EP2936006A1 publication Critical patent/EP2936006A1/fr
Application granted granted Critical
Publication of EP2936006B1 publication Critical patent/EP2936006B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/0002Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the fluid to be liquefied
    • F25J1/0005Light or noble gases
    • F25J1/0007Helium
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0243Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
    • F25J1/0257Construction and layout of liquefaction equipments, e.g. valves, machines
    • F25J1/0275Construction and layout of liquefaction equipments, e.g. valves, machines adapted for special use of the liquefaction unit, e.g. portable or transportable devices
    • F25J1/0276Laboratory or other miniature devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/002Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/006Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the refrigerant fluid used
    • F25J1/0062Light or noble gases, mixtures thereof
    • F25J1/0065Helium
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0243Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
    • F25J1/0257Construction and layout of liquefaction equipments, e.g. valves, machines
    • F25J1/0262Details of the cold heat exchange system
    • F25J1/0264Arrangement of heat exchanger cores in parallel with different functions, e.g. different cooling streams
    • F25J1/0265Arrangement of heat exchanger cores in parallel with different functions, e.g. different cooling streams comprising cores associated exclusively with the cooling of a refrigerant stream, e.g. for auto-refrigeration or economizer
    • F25J1/0268Arrangement of heat exchanger cores in parallel with different functions, e.g. different cooling streams comprising cores associated exclusively with the cooling of a refrigerant stream, e.g. for auto-refrigeration or economizer using a dedicated refrigeration means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2339/00Details of evaporators; Details of condensers
    • F25B2339/02Details of evaporators
    • F25B2339/024Evaporators with refrigerant in a vessel in which is situated a heat exchanger
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2339/00Details of evaporators; Details of condensers
    • F25B2339/04Details of condensers
    • F25B2339/046Condensers with refrigerant heat exchange tubes positioned inside or around a vessel containing water or pcm to cool the refrigerant gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B40/00Subcoolers, desuperheaters or superheaters
    • F25B40/02Subcoolers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/10Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point with several cooling stages
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2210/00Processes characterised by the type or other details of the feed stream
    • F25J2210/42Nitrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2250/00Details related to the use of reboiler-condensers
    • F25J2250/02Bath type boiler-condenser using thermo-siphon effect, e.g. with natural or forced circulation or pool boiling, i.e. core-in-kettle heat exchanger
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2270/00Refrigeration techniques used
    • F25J2270/90External refrigeration, e.g. conventional closed-loop mechanical refrigeration unit using Freon or NH3, unspecified external refrigeration
    • F25J2270/904External refrigeration, e.g. conventional closed-loop mechanical refrigeration unit using Freon or NH3, unspecified external refrigeration by liquid or gaseous cryogen in an open loop
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2270/00Refrigeration techniques used
    • F25J2270/90External refrigeration, e.g. conventional closed-loop mechanical refrigeration unit using Freon or NH3, unspecified external refrigeration
    • F25J2270/912Liquefaction cycle of a low-boiling (feed) gas in a cryocooler, i.e. in a closed-loop refrigerator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2290/00Other details not covered by groups F25J2200/00 - F25J2280/00
    • F25J2290/44Particular materials used, e.g. copper, steel or alloys thereof or surface treatments used, e.g. enhanced surface

Definitions

  • the present invention relates to a refrigeration and / or liquefaction device and a corresponding method.
  • the invention particularly relates to helium refrigerators / liquefiers generating very low temperatures (for example 4.5K in the case of helium) in order to continuously cool users such as superconducting cables or devices of a device of plasma generation ("TOKAMAK").
  • refrigeration / liquefaction device is meant in particular refrigeration devices and / or liquefaction devices at very low temperatures (cryogenic temperatures) cooling and liquefying where appropriate a low molecular weight gas such as helium.
  • WO2011110768 A1 and WO2011117499 A1 describe methods for refrigeration in pulsed charge of an organ of a "Tokamak" in which the increase of the refrigeration power produced by the refrigeration device is automatically triggered in response to a signal produced during a start-up step of a plasma in the Tokamak.
  • the refrigeration / liquefaction device is generally unsuitable for such cooling.
  • the device comprises an auxiliary pre-cooling system which provides frigories during this cold setting.
  • the pre-cooling system generally comprises a liquid nitrogen capacity (at constant temperature, eg 80K) which supplies working gas frigories via at least one heat exchanger.
  • fluid mixtures are required between 80K helium and warmer helium (at room temperature or at the return temperature of the user to be cooled).
  • the Heat exchangers suitable for this normal operation include plate-type aluminum exchangers and brazed fins. This type of exchanger can not typically accept temperature differences between countercurrent fluids of more than 50 K.
  • An object of the present invention is to overcome all or part of the disadvantages of the prior art noted above.
  • the device comprises the pre-assembly system. cooler comprising a third heat exchanger, the first heat exchanger being of the aluminum plate and fin type, the second heat exchanger being of the tube type or of the welded plate type, this second heat exchanger being immersed in an auxiliary cooling fluid bath and in that the second and third heat exchangers are connected both in series and in parallel to the working circuit downstream of the first heat exchanger, i.e. that the working gas cooled in the first heat exchanger can be selectively admitted into the second and / or the third heat exchanger, and in that the second heat exchanger is immersed in a first liquefied auxiliary gas capacity.
  • the invention also relates to a cooling method according to claim 10 of a user using a refrigerating and / or liquefying device for a working gas according to any one of claims 1-9, wherein, user is cooled via the heat exchange system.
  • the method comprises a step of pre-cooling the user having an initial temperature of between 250 K and 400 K in which the working gas leaving the compression station is cooled by heat exchange in the first heat exchanger. then is subdivided into two streams of which a first stream is cooled in the second heat exchanger and then in the third heat exchanger and a second stream is cooled directly in the third heat exchanger, the auxiliary fluid vaporized in the first capacity being discharged without give away frigories to the first heat exchanger.
  • the method comprises a step of pre-cooling the user having an initial temperature of between 250 K and 150 K in which the working gas leaving the compression station is cooled by heat exchange in the first heat exchanger. heat then in the second heat exchanger and is split into two streams, a first flow is cooled in the third heat exchanger and a second flow avoids the third heat exchanger, the third heat exchanger being supplied with auxiliary fluid to transfer frigories of the auxiliary fluid to the working gas in the third exchanger, the auxiliary fluid vaporized in the first capacity and / or in contact with the third exchanger being discharged without yielding frigories to the first heat exchanger.
  • the method comprises a step of pre-cooling the user having an initial temperature of between 150K and 95K in which the working gas leaving the compression station is cooled by heat exchange in the first heat exchanger. heat then in the second heat exchanger and then in the third heat exchanger, at least a portion of the auxiliary fluid vaporized in the first capacity and / or in contact with the third heat exchanger being removed by yielding frigories to the first heat exchanger.
  • the method comprises a step of pre-cooling the user having an initial temperature of between 95 K and 80 K in which the working gas leaving the compression station is cooled by heat exchange in the first heat exchanger.
  • the device cools the user according to a so-called nominal operation in which the working gas leaving the compression station is cooled by heat exchange in the first heat exchanger then only in the third heat exchanger, the third exchanger being supplied with auxiliary fluid to transfer frigories of the auxiliary fluid to the working gas in the third exchanger and in that the auxiliary fluid vaporized in contact with the third exchanger is evacuated by yielding frigories at the first heat exchanger.
  • the installation 100 may comprise, conventionally, a refrigeration / liquefaction device comprising a working circuit submitting helium to a work cycle to produce cold.
  • the working circuit of the refrigeration device 2 comprises a compression station 1 provided with at least one compressor 5 and preferably several compressors which provide a compression of the helium.
  • the helium enters a box 2 of cold for the cooling of the helium.
  • the cold box 2 comprises a plurality of heat exchangers which heat exchange with helium to cool the latter.
  • the cold box 2 comprises one or more turbines 7 to relax the compressed helium.
  • the cold box 2 operates according to a Brayton type thermodynamic cycle or any other appropriate cycle.
  • At least a portion of the helium is liquefied at the outlet of the cold box 2 and enters a heat exchange system 14 provided to ensure a selective heat exchange between the liquid helium and a user 10 to cool.
  • the user 10 comprises for example a magnetic field generator obtained using a superconducting magnet and / or one or more cryo-condensation pumping units or any other member requiring cooling at a very low temperature.
  • the device further comprises, in a manner known per se, an additional pre-cooling system of the working gas at the outlet of the compression station 2.
  • the pre-cooling system comprises a capacity 3 of auxiliary cryogenic fluid such as liquid nitrogen.
  • the capacitor 3 is connected to the working circuit via at least one heat exchanger for selectively transferring frigories of the auxiliary fluid to the working gas.
  • the capacitor 3 may be supplied with auxiliary fluid via a supply line 113 connected to an auxiliary fluid source (not shown) and provided with a valve 23 (cf. figure 3 ).
  • the compression station 1 comprises two compressors 11, 12 in series defining for example three pressure levels for helium.
  • the compression station 2 may also include helium purification organs 8.
  • the helium is admitted to a cold box 2 in which this helium is cooled by heat exchange with several exchangers 5 and is in which it is expanded in turbines 7.
  • the liquefied helium in the cold box 2 can be stored in a reserve 14 provided with an exchanger 144 for heat exchange with the user 10 to cool (for example via a circuit provided with a pump).
  • This heat exchange system 14 between the helium and the user 10 may comprise any other appropriate structure.
  • the low-pressure helium that has passed through the heat exchange system 14 is sent back to the compression station 1 via a return line 9 in order to restart a work cycle.
  • the relatively cold helium transfers heat to the heat exchangers and in this way cools the relatively hot helium which circulates in the opposite direction in the cold box 2 before reaching the user 10.
  • the working circuit may comprise a return line 19 returning to the station 1 for compressing the helium of the cold box 2 that has not passed through the heat exchange system 14.
  • the device comprises a pre-cooling system comprising a capacity 3 of auxiliary cryogenic fluid such as liquid nitrogen at a temperature of 80K for example.
  • auxiliary cryogenic fluid such as liquid nitrogen at a temperature of 80K for example.
  • the cold box 2 comprises a first helium cooling stage which receives the helium as soon as it leaves the compression station 1.
  • This first cooling stage comprises a first heat exchanger, a second heat exchanger and a third heat exchanger.
  • the first heat exchanger is preferably of the plate type aluminum and brazed fins.
  • Such an exchanger is, for example, in accordance with the recommendations of ALPEMA (Association of Manufacturers of Brazed Aluminum Plate and Wave Exchangers).
  • the first heat exchanger is for example of the heat exchange type between different streams of helium at different respective temperatures.
  • the first heat exchanger may comprise a first feedthrough 6 of hot and high pressure working gas coming directly from the compression station 1, a second countercurrent passage of the first passage and supplied by the gas return pipe 9. working said cold and low pressure and a third passage against the current of the first passage and fed medium pressure working gas via a return line 19.
  • the first exchanger 5 further comprises a passage section for auxiliary fluid.
  • the second 15 and third 25 heat exchangers are connected both in series and in parallel on the working circuit downstream of the first exchanger heat, that is, the working gas cooled in the first heat exchanger can be selectively admitted to the second and / or third heat exchanger.
  • the second and third heat exchangers can be connected both in series and in parallel with the first heat exchanger via a network of lines 6, 16, 26, 250 and valves 116, 126, 326 forming a parallel connection and a series link between the two heat exchangers 15, 25 and a bypass line 250 (bypass) of the second heat exchanger.
  • the second heat exchanger is preferably of the tube type (for example stainless steel, copper or other alloy compatible with cryogenic temperatures) immersed in a bath of auxiliary cooling fluid such as liquid nitrogen at 80K. More specifically, the second heat exchanger 15 is immersed in a first liquid nitrogen capacity 3. As previously described, the first capacitor 3 can be supplied with auxiliary fluid via a supply duct 113 connected to an auxiliary fluid source (not shown) and provided with a valve 23.
  • auxiliary fluid such as liquid nitrogen at 80K.
  • this second submerged heat exchanger may be a heat exchanger made of stainless steel or other welded plate metal or alloy, that is to say an exchanger whose technology is known in English under the name "Plate and Shell ".
  • These types of heat exchangers constituting the second heat exchanger are designed to withstand, without disadvantage, relatively large temperature differences between the different use configurations (immersed / non-submerged), for example temperature differences between 60 K and 250K.
  • the device comprises a first vaporized auxiliary fluid discharge conduit 30 connecting an upper end of the first capacitor to a remote auxiliary fluid recovery system via a passage in the first heat exchanger.
  • This first vaporized auxiliary fluid discharge conduit 30 also includes a selective bypass branch 130 of the first heat exchanger via a valve system 230, 430.
  • the third heat exchanger is preferably a plate-and-fin type aluminum exchanger.
  • the third exchanger 25 is of the type with selective heat exchange between helium and nitrogen.
  • the device may comprise a feed pipe 13 provided with at least one valve (not shown) connecting (for example in a loop) the first capacitor 3 to the third heat exchanger, for selectively transferring frigories of the auxiliary fluid to the working gas in the third heat exchanger.
  • the figure 3 illustrates an alternative embodiment of the first cooling stage of the device.
  • the embodiment of the figure 3 differs from that of the figure 2 only in that the third heat exchanger 25 is this time immersed in a second capacity 33 of auxiliary fluid (instead of being supplied with auxiliary fluid from the first capacity 3 or from a source).
  • this second fluid capacity 33 may be a cryogenic tank selectively supplied with auxiliary fluid by a source of auxiliary fluid.
  • the third heat exchanger is immersed in said second capacitor 33 to allow, if appropriate, an exchange of frigories between the working gas and the auxiliary fluid of the second capacitor 33.
  • the second auxiliary capacity 33 also includes a second vaporized auxiliary fluid discharge conduit 330 connecting an upper end of the second capacity to a remote auxiliary fluid recovery system via a passage in the first heat exchanger.
  • the second discharge pipe 330 connects to the first auxiliary fluid discharge pipe 30, upstream of the first heat exchanger 5. That is to say that the auxiliary fluid vaporized in the second capacitor 33 can be distributed between a passage in the first exchanger 5 and / or line 130 bypass avoiding this first 5 heat exchanger.
  • the Figures 4 to 7 respectively illustrate four distinct configurations that can be used during a succession of an example of possible operation of the device.
  • a first phase of cooling a user 10 illustrated in the figure 4 the helium leaving the compression station 1 is cooled by heat exchange in the first heat exchanger and the cooled helium is divided into two streams (valves 116 and 126 open). A first of these two streams is cooled in the second heat exchanger and then passes into the third heat exchanger without heat exchange (valve 233 closed). The second stream does not pass into the second heat exchanger and is mixed with the first outflow of the second heat exchanger 15 before passing into the third heat exchanger.
  • the first capacity 3 is supplied with auxiliary fluid (nitrogen) and the vaporized nitrogen is evacuated via the evacuation pipe 30 and the bypass branch 130 without yielding frigories to the first heat exchanger 5 ( valve 230 open in branch branch 130 and valve 430 closed for passage through the first exchanger 5).
  • auxiliary fluid nitrogen
  • a second phase of cooling a user 10 illustrated in FIG. figure 5 the helium leaving the compression station 1 can be cooled by heat exchange in the first heat exchanger and then in the second heat exchanger (valve 116 open and valve 126 closed).
  • the helium is then split into two streams of which a first stream is cooled in the third heat exchanger and a second stream which passes through the bypass line 250 (opening of the valve 326 in the bypass line 250 ).
  • the first 3 and the second capacitor 33 are supplied with auxiliary fluid via respective supply lines 113, 133 (corresponding open valves 213 and 233).
  • Auxiliary fluids vaporized in the capacitors 3, 33 can be evacuated without passing through the first heat exchanger 5, that is to say via the branch 130 of bypass (valve 430 closed and valve 230 open).
  • a third cooling phase of a user 10 illustrated in FIG. figure 6 the working gas leaving the compression station 1 can be cooled in series by heat exchange in the first heat exchanger and then in the second heat exchanger and then in the third heat exchanger (valve 116 open, valve 126 closed).
  • the auxiliary fluid vaporized in the first 3 and second 33 capacities can be discharged partly via the first heat exchanger and partly via the branch 130 bypass (valve 230 and 430 open).
  • a fourth cooling phase of a user 10 illustrated in FIG. figure 7 the working gas exiting the compression station 1 can be cooled in series by heat exchange in the first heat exchanger and then in the third heat exchanger (without passing through the second heat exchanger: valve 116 closed and valve 126 open). Only the second capacitor 33 may be supplied with auxiliary fluid (valve 213 closed and valve 233 open). The auxiliary fluid vaporized in the second capacity 33 can be discharged partly via the first heat exchanger and partly via the branch 130 bypass (valve 230 and 430 open).
  • the device can ensure continuous cooling (keeping cold at the determined temperature) with the same device.
  • the device can also function according to the configuration of the figure 7 . That is, the working gas exiting the compression station 1 can be cooled in series by heat exchange in the first heat exchanger and then in the third heat exchanger (without passing through the second heat exchanger 15). of heat) and only the second capacitor 33 can be supplied with auxiliary fluid.
  • the auxiliary fluid vaporized in the second capacity can be discharged via the first heat exchanger (valve 230 closed and valve 430 open).
  • the architectures described above thus make it possible to cool a massive component of a relatively hot temperature (for example 400K at a relatively low temperature (for example 80K) with a reduced number of equipment.
  • first and third heat exchangers two plate and fin type aluminum exchangers
  • second exchanger 15 a tube type heat exchanger
  • Another advantage provided by the device is to limit the heat input to the working gas in normal operation by isolating the circuits and equipment used only for cooling. This equipment can be installed outside the cold box and it also reduces the size and cost of the enclosure of the cold box.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Clinical Laboratory Science (AREA)
  • Separation By Low-Temperature Treatments (AREA)

Description

  • La présente invention concerne un dispositif de réfrigération et/ou de liquéfaction ainsi qu'un procédé correspondant.
  • L'invention concerne un dispositif de réfrigération et/ou liquéfaction d'un gaz de travail comprenant de l'hélium ou constitué d'hélium pur, le dispositif comprenant un circuit de travail en boucle pour le gaz de travail comportant, en série :
    • une station de compression du gaz de travail munie d'au moins un compresseur,
    • une boîte froide pour refroidir le gaz de travail comprenant une pluralité d'échangeurs de chaleur disposés en série et au moins un organe de détente du gaz de travail,
    • un système d'échange thermique entre le gaz de travail refroidi et un utilisateur,
    au moins une conduite de retour dans la station de compression pour le gaz de travail ayant transité dans le système d'échange thermique, la conduite de retour comprenant au moins un échangeur de réchauffage du gaz de travail, le dispositif comprenant en outre un système de pré-refroidissement additionnel du gaz de travail en sortie de la station de compression, le système de pré-refroidissement comprenant au moins une capacité de fluide cryogénique auxiliaire tel que de l'azote liquide, la capacité étant reliée au circuit de travail via au moins un échangeur de chaleur pour transférer sélectivement des frigories du fluide auxiliaire vers le gaz de travail, la boîte froide comprenant un premier étage de refroidissement du gaz de travail comportant un premier échangeur disposé à la sortie de la station de compression ainsi qu'un second échangeur de chaleur.
  • L'invention concerne notamment les réfrigérateurs/liquéfacteurs à hélium générant des températures très basses (par exemple 4,5K pour le cas de l'hélium) en vue de refroidir en continu des utilisateurs tels que des câbles supraconducteurs ou des organes d'un dispositif de génération de plasma (« TOKAMAK »). Par dispositif de réfrigération/liquéfaction, on désigne notamment les dispositifs de réfrigération et/ou les dispositifs de liquéfaction à très basse température (températures cryogéniques) refroidissant et liquéfiant le cas échéant un gaz à faible masse molaire tel que de l'hélium.
  • Les documents WO2011110768 A1 et WO2011117499 A1 décrivent des procédés de réfrigération en charge pulsée d'un organe d'un « Tokamak » dans lequel l'augmentation de la puissance de réfrigération produite par le dispositif de réfrigération est déclenchée automatiquement en réponse à un signal produit lors d'une étape de démarrage d'un plasma dans le Tokamak.
  • Le document US2009094992 A1 décrit un refroidisseur cryogénique pour liquéfier du gaz dans le col d'un cryostat.
  • Lors de la mise en froid de l'utilisateur, c'est-à-dire lorsque l'utilisateur doit être amené d'une température de départ relativement élevée (par exemple 300K ou au-dessus) jusqu'à une température basse déterminée de fonctionnement nominal (par exemple autour de 80K). Le dispositif de réfrigération/liquéfaction est généralement peu adapté à une telle mise en froid.
  • En effet, lors de la mise en froid de composants lourds (comme des aimants surpra-conducteurs par exemple) de la température ambiante jusqu'à 80K sur une grande période (pendant quelques dizaines de jours), des flux d'hélium relativement chaud et froid (alimentation en direction de l'utilisateur et retour de l'utilisateur) transitent à contre-courant dans des échangeurs communs. Pour le bon fonctionnement du dispositif, il est cependant nécessaire de limiter l'écart de température entre ces flux d'hélium (par exemple entre 40K et 50K d'écart au maximum).
  • A cet effet le dispositif comporte un système de pré-refroidissement auxiliaire qui fournit des frigories pendant cette mise en froid.
  • Comme illustré notamment dans l'article (« Solutions for liquid nitrogen pre-cooling in helium refrigeration cycles » de U. Wagner du CERN - 2000), le système de pré-refroidissement comprend généralement une capacité d'azote liquide (à température constante, par exemple 80K) qui fournit des frigories au gaz de travail via au moins un échangeur de chaleur.
  • Ces systèmes connus de pré-refroidissement présentent cependant des contraintes ou inconvénients.
  • Ainsi, des mélanges de fluides sont nécessaires entre de l'hélium à 80K et de l'hélium plus chaud (à la température ambiante ou à la température de retour de l'utilisateur à refroidir).
  • Pour limiter la consommation d'azote liquide il est par ailleurs nécessaire de récupérer les frigories de l'hélium qui revient de l'utilisateur à refroidir au fur et à mesure de son refroidissement. Ces contraintes d'écart de température et de performance nécessitent des technologies d'échangeurs de chaleur différentes en fonction des différentes configurations de fonctionnement (mise en froid, fonctionnement normal).
  • Ainsi, pendant l'opération normale (hors de la phase de mise en froid), les échangeurs doivent être très performants, c'est-à-dire avoir de faibles pertes de charge et ne doivent pas être confrontés à des écarts de température importants. Les échangeurs de chaleurs adaptés pour ce fonctionnement normal comprennent des échangeurs de type en aluminium à plaque et ailettes brasées. Ce type d'échangeur ne peut typiquement accepter des écarts de température entre fluides à contre courant de plus 50 K.
  • Pendant la mise en froid d'utilisateurs massifs, la performance de l'échange thermique requis dans les échangeurs est moins importante mais reste élevée. En revanche, les écarts de température (du fait de l'azote liquide à température constante) deviennent relativement importants (supérieurs à 50K).
  • Lorsque les températures de l'hélium sont encore élevées dans les circuits et échangeurs, la perte de charge est bien supérieure à celle requise en fonctionnement normal.
  • Des solutions existantes pour résoudre ces problèmes nécessitent un échangeur principal à l'entrée de la boîte froide qui assure un échange thermique entre l'hélium et l'azote. D'autres solutions prévoient de scinder cet échangeur principal en plusieurs sections indépendantes réalisées dans des technologies d'échangeurs différentes selon la nature du fluide (hélium ou azote).
  • Ces solutions ne résolvent pas de façon satisfaisante les problèmes car le dispositif est soit mal adapté au fonctionnement normal, soit mal adapté à la phase de mise en froid.
  • Le document FR 2919713 A1 , considéré l'art antérieur le plus proche, décrit un dispositif conforme au préambule de la revendication 1.
  • Un but de la présente invention est de pallier tout ou partie des inconvénients de l'art antérieur relevés ci-dessus.
  • A cette fin, le dispositif selon l'invention, par ailleurs conforme à la définition générique qu'en donne le préambule ci-dessus, est défini par la revendication 1. C'est-à-dire que le dispositif comporte le système de pré-refroidissement comprenant un troisième échangeur de chaleur, le premier échangeur de chaleur étant du type en aluminium à plaque et ailettes, le second échangeur de chaleur étant du type à tube(s) ou du type à plaques soudées, ce second échangeur de chaleur étant immergé dans un bain de fluide auxiliaire de refroidissement et en ce que les second et troisième échangeurs de chaleur sont raccordés à la fois en série et en parallèle sur le circuit de travail en aval du premier échangeur de chaleur, c'est-à-dire que le gaz de travail refroidi dans le premier échangeur de chaleur peut être admis sélectivement dans le second et/ou dans le troisième échangeur de chaleur, et en ce que le second échangeur de chaleur est immergé dans une première capacité de gaz auxiliaire liquéfié.
  • Par ailleurs, des modes de réalisation de l'invention peuvent comporter l'une ou plusieurs des caractéristiques suivantes :
    • le second échangeur de chaleur est l'un parmi : un échangeur de chaleur de type à tubes en inox ou aluminium, un échangeur de chaleur de type à tube à ailettes en inox ou aluminium, un échangeur à plaques soudées en inox,
    • le circuit comprend une branche de by-pass sélectif du troisième échangeur de chaleur permettant sélectivement au gaz de travail issu du premier et/ou du second échangeur de chaleur d'éviter le troisième échangeur de chaleur dans le circuit de travail,
    • le dispositif comporte une première conduite d'évacuation de fluide auxiliaire vaporisé reliant une extrémité supérieure de la première capacité à un système de récupération de fluide auxiliaire déporté via un passage dans le premier échangeur de chaleur,
    • la première conduite d'évacuation de fluide auxiliaire vaporisé comprend une branche de by-pass sélectif du premier échangeur de chaleur,
    • le troisième échangeur est du type à échange de chaleur sélectif entre le gaz de travail et le fluide auxiliaire, le dispositif comprenant une conduite d'alimentation sélectif reliant la première capacité au troisième échangeur de chaleur, pour transférer des frigories du fluide auxiliaire vers le gaz de travail dans le troisième échangeur de chaleur,
    • le dispositif comporte une seconde capacité de fluide sélectivement alimentée en fluide auxiliaire par une source de fluide auxiliaire et en ce que le troisième échangeur de chaleur est immergé dans ladite seconde capacité pour permettre un échange de frigories entre le gaz de travail et le fluide auxiliaire de la seconde capacité,
    • le dispositif comporte une seconde conduite d'évacuation de fluide auxiliaire vaporisé reliant une extrémité supérieure de la seconde capacité à un système de récupération de fluide auxiliaire déporté via un passage dans le premier échangeur de chaleur,
    • la seconde conduite d'évacuation de fluide auxiliaire vaporisé comprend une branche de by-pass sélectif du premier échangeur de chaleur,
    • le second et le troisième échangeurs de chaleur sont raccordés via un réseau de conduites et de vannes formant la liaison en parallèle et la liaison en série entre les deux échangeurs de chaleur ainsi qu'une ligne de by-pass (c'est-à-dire de dérivation) du second échangeur de chaleur,
    • la première capacité est sélectivement alimentée en fluide auxiliaire via une conduite d'amenée reliée à une source de fluide auxiliaire et munie d'une vanne,
    • le premier échangeur de chaleur est du type à échange de chaleur entre des flux différents de gaz de travail à des températures respectives différentes et comprend un premier passage alimentée en gaz de travail dit chaud et à haute pression sortant de la station de compression, un second passage à contre-courant du premier passage et alimenté par la conduite de retour en gaz de travail dit froid et à basse pression et un troisième passage à contre-courant du premier passage et alimenté en gaz de travail dit à moyenne pression via une conduite de renvoi du circuit de travail renvoyant du gaz de travail à partir de la boîte froide n'ayant pas transité dans le système d'échange thermique,
  • L'invention concerne également un procédé de refroidissement selon la revendication 10 d'un utilisateur utilisant un dispositif de réfrigération et/ou de liquéfaction d'un gaz de travail conforme à l'une quelconque des revendications 1-9, dans lequel, l'utilisateur est refroidi via le système d'échange thermique. Dans un mode de développement le procédé comporte une étape de pré-refroidissement de l'utilisateur ayant une température initiale comprise entre 250K et 400K dans laquelle le gaz de travail sortant de la station de compression est refroidi par échange thermique dans le premier échangeur de chaleur puis est subdivisé en deux flux dont un premier flux est refroidi dans le second échangeur de chaleur puis dans le troisième échangeur de chaleur et un deuxième flux est refroidi directement dans le troisième échangeur de chaleur, le fluide auxiliaire vaporisé dans la première capacité étant évacué sans céder des frigories au premier échangeur de chaleur. Dans un autre mode de développement le procédé comporte une étape de pré-refroidissement de l'utilisateur ayant une température initiale comprise entre 250K et 150K dans laquelle le gaz de travail sortant de la station de compression est refroidi par échange thermique dans le premier échangeur de chaleur puis dans le second échangeur de chaleur puis est scindé en deux flux dont un premier flux est refroidi dans le troisième échangeur de chaleur et un second flux évite le troisième échangeur, le troisième échangeur étant alimenté en fluide auxiliaire pour transférer des frigories du fluide auxiliaire au gaz de travail dans le troisième échangeur, le fluide auxiliaire vaporisé dans la première capacité et/ou au contact du troisième échangeur étant évacué sans céder des frigories au premier échangeur de chaleur. Dans un autre mode de développement le procédé comporte une étape de pré-refroidissement de l'utilisateur ayant une température initiale comprise entre 150K et 95K dans laquelle le gaz de travail sortant de la station de compression est refroidi par échange thermique dans le premier échangeur de chaleur puis dans le second échangeur de chaleur puis dans le troisième échangeur de chaleur, au moins une partie du fluide auxiliaire vaporisé dans la première capacité et/ou au contact du troisième échangeur étant évacué en cédant des frigories au premier échangeur de chaleur. Dans un autre mode de développement le procédé comporte une étape de pré-refroidissement de l'utilisateur ayant une température initiale comprise entre 95K et 80K dans laquelle le gaz de travail sortant de la station de compression est refroidi par échange thermique dans le premier échangeur de chaleur puis uniquement dans le troisième échangeur de chaleur, le fluide auxiliaire vaporisé au contact du troisième échangeur étant évacué en cédant des frigories au premier échangeur de chaleur. Dans un autre mode de développement, après une phase de pré-refroidissement éventuel, le dispositif refroidit l'utilisateur selon un fonctionnement dit nominal dans lequel le gaz de travail sortant de la station de compression est refroidi par échange thermique dans le premier échangeur de chaleur puis uniquement dans le troisième échangeur de chaleur, le troisième échangeur étant alimenté en fluide auxiliaire pour transférer des frigories du fluide auxiliaire au gaz de travail dans le troisième échangeur et en ce le fluide auxiliaire vaporisé au contact du troisième échangeur est évacué en cédant des frigories au premier échangeur de chaleur.
  • D'autres particularités et avantages apparaîtront à la lecture de la description ci-après, faite en référence aux figures dans lesquelles :
    • la figure 1 représente une vue simplifiée, schématique et partielle, illustrant la structure d'un dispositif de liquéfaction/réfrigération utilisé pour refroidir un organe utilisateur,
    • la figure 2 représente de façon schématique et partielle, un premier exemple de structure et de fonctionnement d'un dispositif de liquéfaction/réfrigération utilisé pour refroidir un organe utilisateur,
    • la figure 3 représente de façon schématique et partielle un détail de la boîte froide d'un dispositif de liquéfaction/réfrigération selon un second exemple de réalisation,
    • les figures 4 à 7 représentent le détail de la figure 3 selon respectivement différentes configurations de fonctionnement distinctes.
  • Comme représenté à la figure 1, l'installation 100 peut comprendre, classiquement, un dispositif de réfrigération/liquéfaction comprenant un circuit de travail soumettant de l'hélium à un cycle de travail pour produire du froid. Le circuit de travail du dispositif de réfrigération 2 comprend une station 1 de compression munie d'au moins un compresseur 5 et de préférence plusieurs compresseurs qui assurent une compression de l'hélium.
  • En sortie de la station de la station 1 de compression, l'hélium entre dans une boite 2 de froide pour le refroidissement de l'hélium. La boîte 2 froide comprend plusieurs échangeurs 5 de chaleur qui échangent thermiquement avec l'hélium pour refroidir ce dernier. De plus, la boîte 2 froide comprend une ou plusieurs turbines 7 pour détendre l'hélium compressé. De préférence, la boite 2 froide fonctionne selon un cycle thermodynamique de type Brayton ou tout autre cycle approprié. Au moins une partie de l'hélium est liquéfié à la sortie de la boîte 2 froide et entre dans un système 14 d'échange thermique prévu pour assurer un échange thermique sélectif entre l'hélium liquide et un utilisateur 10 à refroidir. L'utilisateur 10 comprend par exemple un générateur de champ magnétique obtenu à l'aide d'un aimant supraconducteur et/ou une ou des unités de pompage par cryo-condensation ou tout autre organe nécessitant un refroidissement à très basse température.
  • Comme schématisé à la figure 1, le dispositif comprend en outre, de façon connue en soit, un système de pré-refroidissement additionnel du gaz de travail en sortie de la station 2 de compression. Le système de pré-refroidissement comprend une capacité 3 de fluide cryogénique auxiliaire tel que de l'azote liquide. La capacité 3 est reliée au circuit de travail via au moins un échangeur de chaleur pour transférer sélectivement des frigories du fluide auxiliaire vers le gaz de travail.
  • Par exemple, la capacité 3 peut être alimentée en fluide auxiliaire via une conduite 113 d'amenée reliée à une source de fluide auxiliaire (non représentée) et munie d'une vanne 23 (cf. figure 3).
  • Dans l'exemple plus détaillé de la figure 2, la station 1 de compression comporte deux compresseurs 11, 12 en série définissant par exemple trois niveaux de pression pour l'hélium. Comme schématisé, la station 2 de compression peut comporter également des organes 8 de purification de l'hélium.
  • A la sortie de la station 1 de compression, l'hélium est admis dans une boîte 2 froide dans laquelle cet hélium est refroidi par échange thermique avec plusieurs échangeurs 5 et est dans laquelle il est détendu dans des turbines 7.
  • L'hélium liquéfié dans la boite 2 froide peut être stocké dans une réserve 14 munie d'un échangeur 144 destiné à échanger thermiquement avec l'utilisateur 10 à refroidir (par exemple via un circuit muni d'une pompe). Ce système 14 d'échange thermique entre l'hélium et l'utilisateur 10 peut comporter toute autre structure appropriée.
  • L'hélium à basse pression ayant transité dans le système 14 d'échange thermique est renvoyé vers la station 1 de compression via une conduite 9 de retour en vue de recommencer un cycle de travail. Lors de ce retour, l'hélium relativement froid cède des frigories aux échangeurs 5 de chaleur et de cette façon assure le refroidissement de l'hélium relativement chaud qui circule en sens inverse dans la boîte 2 froide avant d'atteindre l'utilisateur 10.
  • Comme illustré, le circuit de travail peut comporter une conduite 19 de renvoi renvoyant vers la station 1 de compression de l'hélium de la boîte froide 2 n'ayant pas transité dans le système 14 d'échange thermique.
  • Comme visible à la figure 2, le dispositif comprend un système de pré-refroidissement comprenant une capacité 3 de fluide cryogénique auxiliaire tel que de l'azote liquide à une température de 80K par exemple.
  • La boîte 2 froide comprend un premier étage de refroidissement de l'hélium qui reçoit l'hélium dès sa sortie de la station 1 de compression.
  • Ce premier étage de refroidissement comporte un premier 5 échangeur de chaleur, un second 15 échangeur de chaleur ainsi qu'un troisième 25 échangeur de chaleur.
  • Le premier 5 échangeur de chaleur est de préférence du type en aluminium à plaque et ailettes brasées. Un tel échangeur est par exemple conforme aux recommandations de l'ALPEMA (Association des Fabricants d'Echangeurs à Plaques et Ondes en Aluminium brasées).
  • Le premier 5 échangeur de chaleur est par exemple du type à échange de chaleur entre des flux différents d'hélium à des températures respectives différentes. Le premier 5 échangeur peut comporter un premier passage alimentée 6 en gaz de travail dit chaud et à haute pression sortant directement de la station 1 de compression, un second passage à contre-courant du premier passage et alimenté par la conduite 9 de retour en gaz de travail dit froid et à basse pression et un troisième passage à contre-courant du premier passage et alimenté en gaz de travail dit à moyenne pression via une conduite 19 de renvoi. Comme décrit ci-après, le premier échangeur 5 comporte en outre une section de passage pour du fluide auxiliaire.
  • Les second 15 et troisième 25 échangeurs de chaleur sont raccordés à la fois en série et en parallèle sur le circuit de travail en aval du premier 5 échangeur de chaleur, c'est-à-dire que le gaz de travail refroidi dans le premier 5 échangeur de chaleur pet être admis sélectivement dans le second 15 et/ou dans le troisième 25 échangeur de chaleur.
  • Comme représenté plus en détail à la figure 3, le second 15 et le troisième 25 échangeurs de chaleur peuvent être raccordés à la fois en série et en parallèle au premier 5 échangeur de chaleur via un réseau de conduites 6, 16, 26, 250 et de vannes 116, 126, 326 formant une liaison en parallèle et une liaison en série entre les deux échangeurs 15, 25 de chaleur ainsi qu'une ligne 250 de by-pass (dérivation) du second 15 échangeur de chaleur.
  • Comme visible à la figure 1, le second échangeur 15 de chaleur est de préférence du type à tube (par exemple en inox, en cuivre ou autre alliage compatible avec les températures cryogéniques) immergé dans un bain de fluide auxiliaire de refroidissement tel que de l'azote liquide à 80K. Plus précisément, le second échangeur de chaleur 15 est immergé dans une première capacité 3 d'azote liquide. Comme décrit précédemment, la première capacité 3 peut être alimentée en fluide auxiliaire via une conduite 113 d'amenée reliée à une source de fluide auxiliaire (non représentée) et munie d'une vanne 23.
  • Bien entendu l'invention n'est pas limitée à cet exemple de réalisation. Ainsi, par exemple, ce second échangeur 15 de chaleur immergé peut être un échangeur de chaleur en inox ou autre métal ou alliage à plaque soudées, c'est-à-dire un échangeur dont la technologie est connue en anglais sous la dénomination « Plate and Shell ». Ces types d'échangeurs de chaleur constituant le second échangeur 15 de chaleur sont conformés pour supporter sans inconvénient des écarts de températures relativement importants entre les différentes configurations d'utilisation (immergée/non immergée), par exemple des écarts de températures compris entre 60K et 250K.
  • Le dispositif comporte une première conduite 30 d'évacuation de fluide auxiliaire vaporisé reliant une extrémité supérieure de la première 3 capacité à un système de récupération de fluide auxiliaire déporté via un passage dans le premier 5 échangeur de chaleur. Cette première conduite 30 d'évacuation de fluide auxiliaire vaporisé comprend également une branche 130 de dérivation (by-pass) sélectif du premier 5 échangeur de chaleur via un système de vannes 230, 430.
  • Le troisième échangeur 25 de chaleur est de préférence un échangeur en aluminium du type à plaque et ailettes. Le troisième échangeur 25 est du type à échange de chaleur sélectif entre l'hélium et l'azote. A cet effet, et comme visible à la figure 2, le dispositif peut comporter une conduite 13 d'alimentation munie d'au moins une vanne (non représentée) reliant (par exemple en boucle) la première capacité 3 au troisième échangeur 25 de chaleur, pour transférer sélectivement des frigories du fluide auxiliaire vers le gaz de travail dans le troisième 25 échangeur de chaleur.
  • La figure 3 illustre une variante de réalisation du premier étage de refroidissement du dispositif. La forme de réalisation de la figure 3 se distingue de celle de la figure 2 uniquement en ce que le troisième échangeur de chaleur 25 est cette fois immergé dans une seconde capacité 33 de fluide auxiliaire (au lieu d'être alimenté en fluide auxiliaire à partir de la première capacité 3 ou à partir d'une source). Comme illustré à la figure 3, cette seconde capacité 33 de fluide peut être un réservoir cryogénique sélectivement alimenté en fluide auxiliaire par une source de fluide auxiliaire. Le troisième échangeur 25 de chaleur est immergé dans ladite seconde capacité 33 pour permettre le cas échéant un échange de frigories entre le gaz de travail et le fluide auxiliaire de la seconde capacité 33.
  • La seconde capacité 33 auxiliaire comporte également une seconde conduite 330 d'évacuation de fluide auxiliaire vaporisé reliant une extrémité supérieure de la seconde 30 capacité à un système de récupération de fluide auxiliaire déporté via un passage dans le premier 5 échangeur de chaleur. Par exemple, la seconde conduite 330 d'évacuation se raccorde à la première conduite 30 d'évacuation de fluide auxiliaire, en amont du premier échangeur 5. C'est-à-dire que le fluide auxiliaire vaporisé dans la seconde capacité 33 peut être réparti entre un passage dans le premier échangeur 5 et/ou la ligne 130 de by-pass évitant ce premier 5 échangeur de chaleur.
  • Les figures 4 à 7 illustrent respectivement quatre configurations distinctes pouvant être utilisées lors d'une succession d'un exemple de fonctionnement possible du dispositif.
  • Dans une première phase de mise en froid d'un utilisateur 10 illustrée à la figure 4, l'hélium sortant de la station 1 de compression est refroidi par échange thermique dans le premier 5 échangeur de chaleur puis l'hélium refroidi est subdivisé en deux flux (vannes 116 et 126 ouvertes). Un premier de ces deux flux est refroidi dans le second 15 échangeur de chaleur puis passe dans le troisième 25 échangeur de chaleur sans échange thermique (vanne 233 fermée). Le deuxième flux ne passe pas dans le second 15 échangeur de chaleur et est mélangé avec le premier flux sortant du second échangeur de chaleur 15 avant de passer dans le troisième 25 échangeur de chaleur.
  • Dans cette première phase, la première capacité 3 est alimentée en fluide auxiliaire (azote) et l'azote vaporisé est évacué par la conduite 30 d'évacuation et la branche 130 de by-pass sans céder des frigories au premier échangeur 5 de chaleur (vanne 230 ouverte dans la branche de dérivation 130 et vanne 430 fermée pour le passage dans le premier échangeur 5).
  • Ceci peut correspondre au début d'une opération de mise en froid d'un utilisateur initialement à une température comprise entre 400K et 250K. Durant cette première phase, la température de l'hélium peut être :
    • environ égale à 300K à la sortie du premier 5 échangeur de chaleur,
    • environ égale à 250K à la sortie du troisième 25 échangeur de chaleur.
  • Dans une second phase de mise en froid d'un utilisateur 10 illustrée à la figure 5, l'hélium sortant de la station 1 de compression peut être refroidi par échange thermique dans le premier 5 échangeur de chaleur puis dans le second 15 échangeur de chaleur (vanne 116 ouverte et vanne 126 fermée). L'hélium est ensuite scindé en deux flux dont un premier flux est refroidi dans le troisième 25 échangeur de chaleur et un second flux qui transite par la ligne 250 de by-pass (ouverture de la vanne 326 dans la ligne 250 de by-pass).
  • La première 3 et la seconde capacité 33 sont alimentées en fluide auxiliaire via des conduites 113, 133 d'amenée respectives (vannes 213 et 233 correspondantes ouvertes). Les fluides auxiliaires vaporisés dans les capacités 3, 33 peuvent être évacuées sans passer par le premier échangeur 5 de chaleur, c'est-à-dire via la branche 130 de by-pass (vanne 430 fermée et vanne 230 ouverte).
  • Ceci peut correspondre à une opération de mise en froid d'un utilisateur initialement à une température comprise entre 250K et 150K. Durant cette seconde phase, la température de l'hélium peut être :
    • environ égale à 145K à la sortie du premier 5 échangeur de chaleur,
    • environ égale à 120K à la sortie du deuxième 15 échangeur de chaleur.
    • environ égale à 80K à la sortie du troisième 25 échangeur de chaleur,
    • environ égale à 120K dans la branche 130 de by-pass et
    • environ égale à 95K après la jonction aval de la branche 130 de by-pass.
  • Dans une troisième phase de mise en froid d'un utilisateur 10 illustrée à la figure 6, le gaz de travail sortant de la station 1 de compression peut être refroidi en série par échange thermique dans le premier 5 échangeur de chaleur puis dans le second 15 échangeur de chaleur puis dans le troisième 25 échangeur de chaleur (vanne 116 ouverte, vanne 126 fermée). Le fluide auxiliaire vaporisé dans les première 3 et seconde 33 capacités peut être évacué pour partie via le premier 5 échangeur de chaleur et pour partie via la branche 130 de by-pass (vanne 230 et 430 ouvertes).
  • Ceci peut correspondre à une opération de mise en froid d'un utilisateur initialement à une température comprise entre 150K et 95K. Durant cette seconde phase, la température de l'hélium peut être :
    • environ égale à 130K à la sortie du premier 5 échangeur de chaleur,
    • environ égale à 100K à la sortie du deuxième 15 échangeur de chaleur.
    • environ égale à 80K à la sortie du troisième 25 échangeur de chaleur.
  • Dans une quatrième phase de mise en froid d'un utilisateur 10 illustrée à la figure 7, le gaz de travail sortant de la station 1 de compression peut être refroidi en série par échange thermique dans le premier 5 échangeur de chaleur puis dans le troisième échangeur 25 de chaleur (sans passer par le second échangeur 15 de chaleur: vanne 116 fermée et vanne 126 ouverte). Seule la seconde capacité 33 peut être alimentée en fluide auxiliaire (vanne 213 fermée et vanne 233 ouverte). Le fluide auxiliaire vaporisé dans la seconde 33 capacité peut être évacué pour partie via le premier 5 échangeur de chaleur et pour partie via la branche 130 de by-pass (vanne 230 et 430 ouvertes).
  • Ceci peut correspondre à une opération de mise en froid d'un utilisateur initialement à une température comprise entre 95K et 80K. Durant cette seconde phase, la température de l'hélium peut être :
    • environ égale à 95K à la sortie du premier 5 échangeur de chaleur,
    • environ égale à 80K à la sortie du troisième 25 échangeur de chaleur.
  • Enfin, lorsque l'utilisateur 10 a atteint la température basse déterminée de fonctionnement dit normal, le dispositif peut assurer un refroidissement continu (maintien en froid à la température déterminée) avec le même dispositif.
  • Durant ce refroidissement continu, le dispositif peut fonctionner également selon la configuration de la figure 7. C'est-à-dire que le gaz de travail sortant de la station 1 de compression peut être refroidi en série par échange thermique dans le premier 5 échangeur de chaleur puis dans le troisième échangeur 25 de chaleur (sans passer par le second échangeur 15 de chaleur) et seule la seconde capacité 33 peut être alimentée en fluide auxiliaire. Le fluide auxiliaire vaporisé dans la seconde 33 capacité peut être évacué via le premier 5 échangeur de chaleur (vanne 230 fermée et vanne 430 ouvertes).
  • Durant ce mode de fonctionnement, la température de l'hélium peut être :
    • environ égale à 90K à la sortie du premier 5 échangeur de chaleur,
    • environ égale à 80K à la sortie du troisième 25 échangeur de chaleur.
  • Les architectures décrites ci-dessus permettent ainsi de mettre en froid un composant massif d'une température relativement chaude (par exemple 400K à une température relativement basse (par exemple 80K) avec un nombre d'équipements réduit.
  • L'utilisation de deux échangeurs de type en aluminium à plaque et ailettes (premier 5 et troisième 25 échangeur de chaleur) et d'un échangeur de chaleur du type à tube (second échangeur 15) permet d'optimiser le fonctionnement du dispositif pour les phases de fonctionnement différentes que sont le pré-refroidissement et le fonctionnement dit normal (après pré-refroidissement).
  • Ces configurations permettent notamment de disposer le second échangeur de chaleur 15 en dehors de la boîte froide 2 et donc également la première capacité 3.
  • Un autre avantage procuré par le dispositif est de limiter les entrées de chaleur sur le gaz de travail en opération normal par isolation des circuits et équipements utilisés uniquement pour la mise en froid. Ces équipements peuvent être installés en dehors de la boite froide et cela réduit également la taille et le coût de l'enceinte de la boite froide.

Claims (15)

  1. Dispositif de réfrigération et/ou liquéfaction d'un gaz de travail comprenant de l'hélium ou constitué d'hélium pur, le dispositif comprenant un circuit de travail en boucle pour le gaz de travail comportant, en série :
    - une station (1) de compression du gaz de travail munie d'au moins un compresseur (11, 12),
    - une boîte froide (2) pour refroidir le gaz de travail comprenant une pluralité d'échangeurs (5) de chaleur disposés en série et au moins un organe (7) de détente du gaz de travail,
    - un système (14) d'échange thermique entre le gaz de travail refroidi et un utilisateur (10),
    - au moins une conduite de retour (9) dans la station de compression (1) pour le gaz de travail ayant transité dans le système (14) d'échange thermique, la conduite (9) de retour comprenant au moins un échangeur (5) de réchauffage du gaz de travail, le dispositif comprenant en outre un système de pré-refroidissement additionnel du gaz de travail en sortie de la station (1) de compression, le système de pré-refroidissement comprenant au moins une capacité (3) de fluide cryogénique auxiliaire tel que de l'azote liquide, la capacité (3) étant reliée au circuit de travail via au moins un échangeur de chaleur pour transférer sélectivement des frigories du fluide auxiliaire vers le gaz de travail, la boîte froide (2) comprenant un premier étage de refroidissement du gaz de travail comportant un premier (5) échangeur disposé à la sortie de la station (1) de compression ainsi qu'un second (15) échangeur de chaleur caractérisé en ce que le système de pré-refroidissement comprend un troisième (25) échangeur de chaleur, le premier (5) échangeur de chaleur étant du type en aluminium à plaque et ailettes, le second échangeur (15) de chaleur étant du type à tube(s) ou du type à plaques soudées, ce second échangeur (15) de chaleur étant immergé dans un bain de fluide auxiliaire de refroidissement, les second (15) et troisième (25) échangeurs de chaleur étant raccordés à la fois en série et en parallèle sur le circuit de travail en aval du premier (5) échangeur de chaleur, c'est-à-dire que le gaz de travail refroidi dans le premier (5) échangeur de chaleur peut être admis sélectivement dans le second (15) et/ou dans le troisième (25) échangeur de chaleur, et en ce que le second (15) échangeur de chaleur est immergé dans la première capacité (3) de gaz auxiliaire liquéfié.
  2. Dispositif selon la revendication 1, caractérisé en ce que le second échangeur (15) de chaleur est l'un parmi : un échangeur de chaleur de type à tubes en inox ou aluminium, un échangeur de chaleur de type à tube à ailettes en inox ou aluminium, un échangeur à plaques soudées en inox.
  3. Dispositif selon la revendication 1 ou 2, caractérisé en ce que le circuit comprend une branche (250) de by-pass sélectif du troisième (25) échangeur de chaleur permettant sélectivement au gaz de travail issu du premier (5) et/ou du second (15) échangeur de chaleur d'éviter le troisième (25) échangeur de chaleur dans le circuit de travail.
  4. Dispositif selon l'une quelconque des revendications 1 à 3, caractérisé en ce qu'il comporte une première conduite (30) d'évacuation de fluide auxiliaire vaporisé reliant une extrémité supérieure de la première (3) capacité à un système de récupération de fluide auxiliaire déporté via un passage dans le premier (5) échangeur de chaleur.
  5. Dispositif selon la revendication 4, caractérisé en ce que la première conduite (30) d'évacuation de fluide auxiliaire vaporisé comprend une branche (130) de by-pass sélectif du premier (5) échangeur de chaleur.
  6. Dispositif selon l'une quelconque des revendications 1 à 5, caractérisé en ce que le troisième échangeur (25) est du type à échange de chaleur sélectif entre le gaz de travail et le fluide auxiliaire, le dispositif comprenant une conduite (13) d'alimentation sélectif reliant la première capacité (3) au troisième échangeur de chaleur, pour transférer des frigories du fluide auxiliaire vers le gaz de travail dans le troisième (25) échangeur de chaleur.
  7. Dispositif selon l'une quelconque des revendications 1 à 6, caractérisé en ce qu'il comporte une seconde capacité (33) de fluide sélectivement alimentée en fluide auxiliaire par une source de fluide auxiliaire et en ce que le troisième échangeur (25) de chaleur est immergé dans ladite seconde capacité (33) pour permettre un échange de frigories entre le gaz de travail et le fluide auxiliaire de la seconde capacité (33).
  8. Dispositif selon l'une quelconque des revendications 1 à 7, caractérisé en ce qu'il comporte une seconde conduite (330) d'évacuation de fluide auxiliaire vaporisé reliant une extrémité supérieure de la seconde (30) capacité à un système de récupération de fluide auxiliaire déporté via un passage dans le premier (5) échangeur de chaleur.
  9. Dispositif selon la revendication 8, caractérisé en ce que la seconde conduite (330) d'évacuation de fluide auxiliaire vaporisé comprend une branche (130) de by-pass sélectif du premier (5) échangeur de chaleur.
  10. Procédé de refroidissement d'un utilisateur (10) utilisant un dispositif de réfrigération et/ou de liquéfaction d'un gaz de travail conforme à l'une quelconque des revendications 1 à 9, dans lequel, l'utilisateur (10) est refroidi via le système (14) d'échange thermique dudit dispositif.
  11. Procédé de refroidissement selon la revendication 10, caractérisé en ce que le procédé comporte une étape de pré-refroidissement de l'utilisateur (10) ayant une température initiale comprise entre 250K et 400K dans laquelle le gaz de travail sortant de la station (1) de compression est refroidi par échange thermique dans le premier (5) échangeur de chaleur puis est subdivisé en deux flux dont un premier flux est refroidi dans le second (15) échangeur de chaleur puis dans le troisième (25) échangeur de chaleur et un deuxième flux est refroidi directement dans le troisième (25) échangeur de chaleur et en ce que le fluide auxiliaire vaporisé dans la première capacité (3) est évacué sans céder des frigories au premier (5) échangeur de chaleur.
  12. Procédé de refroidissement selon l'une quelconque des revendications 10 ou 11, caractérisé en ce que le procédé comporte une étape de pré-refroidissement de l'utilisateur (10) ayant une température initiale comprise entre 250K et 150K dans laquelle le gaz de travail sortant de la station (1) de compression est refroidi par échange thermique dans le premier (5) échangeur de chaleur puis dans le second (15) échangeur de chaleur puis est scindé en deux flux dont un premier flux est refroidi dans le troisième (25) échangeur de chaleur et un second flux évite le troisième échangeur (25) et en ce que le troisième échangeur (25) est alimenté en fluide auxiliaire pour transférer des frigories du fluide auxiliaire au gaz de travail dans le troisième échangeur (25) et en ce le fluide auxiliaire vaporisé dans la première capacité (3) et/ou au contact du troisième échangeur (25) est évacué sans céder des frigories au premier (5) échangeur de chaleur.
  13. Procédé selon la revendication 10 caractérisé en ce que le procédé comporte une étape de pré-refroidissement de l'utilisateur (10) ayant une température initiale comprise entre 150K et 95K dans laquelle le gaz de travail sortant de la station (1) de compression est refroidi par échange thermique dans le premier (5) échangeur de chaleur puis dans le second (15) échangeur de chaleur puis dans le troisième (25) échangeur de chaleur et en ce qu'au moins une partie du fluide auxiliaire vaporisé dans la première capacité (3) et/ou au contact du troisième échangeur (25) est évacué en cédant des frigories au premier (5) échangeur de chaleur.
  14. Procédé selon l'une quelconque des revendications 10 ou 13 caractérisé en ce que le procédé comporte une étape de pré-refroidissement de l'utilisateur (10) ayant une température initiale comprise entre 95K et 80K dans laquelle le gaz de travail sortant de la station (1) de compression est refroidi par échange thermique dans le premier (5) échangeur de chaleur puis uniquement dans le troisième (25) échangeur de chaleur et en ce que le fluide auxiliaire vaporisé au contact du troisième échangeur (25) est évacué en cédant des frigories au premier (5) échangeur de chaleur.
  15. Procédé selon l'une quelconque des revendications 10 ou 13 à 14 caractérisé en ce qu'après une phase de pré-refroidissement éventuel, le dispositif refroidit l'utilisateur selon un fonctionnement dit nominal dans lequel le gaz de travail sortant de la station (1) de compression est refroidi par échange thermique dans le premier (5) échangeur de chaleur puis uniquement dans le troisième (25) échangeur de chaleur et en ce que le troisième échangeur (25) est alimenté en fluide auxiliaire pour transférer des frigories du fluide auxiliaire au gaz de travail dans le troisième échangeur (25) et en ce le fluide auxiliaire vaporisé au contact du troisième échangeur (25) est évacué en cédant des frigories au premier (5) échangeur de chaleur.
EP13803115.8A 2012-12-18 2013-11-08 Dispositif de réfrigération et/ou de liquéfaction et procédé correspondant Active EP2936006B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1262186A FR2999693B1 (fr) 2012-12-18 2012-12-18 Dispositif de refrigeration et/ou de liquefaction et procede correspondant
PCT/FR2013/052683 WO2014096585A1 (fr) 2012-12-18 2013-11-08 Dispositif de réfrigération et/ou de liquéfaction et procédé correspondant

Publications (2)

Publication Number Publication Date
EP2936006A1 EP2936006A1 (fr) 2015-10-28
EP2936006B1 true EP2936006B1 (fr) 2017-11-08

Family

ID=47882251

Family Applications (1)

Application Number Title Priority Date Filing Date
EP13803115.8A Active EP2936006B1 (fr) 2012-12-18 2013-11-08 Dispositif de réfrigération et/ou de liquéfaction et procédé correspondant

Country Status (7)

Country Link
US (2) US10465981B2 (fr)
EP (1) EP2936006B1 (fr)
JP (1) JP6495177B2 (fr)
KR (1) KR102119918B1 (fr)
CN (1) CN104854413B (fr)
FR (1) FR2999693B1 (fr)
WO (1) WO2014096585A1 (fr)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6845675B2 (ja) * 2016-12-08 2021-03-24 川崎重工業株式会社 原料ガス液化装置及びその制御方法
CN106949655B (zh) * 2017-03-16 2019-03-05 中国科学院理化技术研究所 一种氦低温系统
FR3098574B1 (fr) * 2019-07-10 2021-06-25 Air Liquide Dispositif de réfrigération et/ou de liquéfaction
CN114111415A (zh) * 2021-08-31 2022-03-01 江苏科技大学 超低温、高压模块化集成式紧凑高效换热器及检测方法

Family Cites Families (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2932173A (en) * 1957-12-13 1960-04-12 Beech Aircraft Corp Method of liquefying helium
US4267701A (en) * 1979-11-09 1981-05-19 Helix Technology Corporation Helium liquefaction plant
US4346563A (en) * 1981-05-15 1982-08-31 Cvi Incorporated Super critical helium refrigeration process and apparatus
JPS60165597A (ja) * 1984-02-09 1985-08-28 株式会社東芝 原子力発電所の暖房システム
JPS62102812A (ja) * 1985-10-30 1987-05-13 Hitachi Ltd 吸着器切替え方法
JPS6332258A (ja) * 1986-07-25 1988-02-10 株式会社日立製作所 極低温冷凍装置
JPS6338863A (ja) * 1986-08-04 1988-02-19 株式会社神戸製鋼所 低温液化ガス液化・冷凍装置
JPS63194163A (ja) * 1987-02-06 1988-08-11 株式会社日立製作所 極低温冷凍装置
JPH07117309B2 (ja) * 1987-11-13 1995-12-18 日本原子力研究所 極低温液化冷凍装置の補助寒冷源制御方法
JPH01244254A (ja) * 1988-03-25 1989-09-28 Japan Atom Energy Res Inst 極低温冷凍装置の補助寒冷源制御方法
US5095709A (en) * 1989-10-16 1992-03-17 Billiot Henry M Liquid nitrogen to gas system
JPH0436552A (ja) * 1990-06-01 1992-02-06 Hitachi Ltd 低温吸着筒を有する冷凍機
JPH04273953A (ja) * 1991-02-28 1992-09-30 Kobe Steel Ltd 液化冷凍装置
JPH0579715A (ja) * 1991-09-20 1993-03-30 Hitachi Ltd ヘリウム精製装置
JPH06123508A (ja) * 1992-10-07 1994-05-06 Japan Atom Energy Res Inst 冷凍装置
JP3755696B2 (ja) * 1997-10-21 2006-03-15 アイシン精機株式会社 床暖房装置付き空気調和機
FR2775518B1 (fr) * 1998-03-02 2000-05-05 Air Liquide Procede et installation de production frigorifique a partir d'un cycle thermique d'un fluide a bas point d'ebullition
JP3925355B2 (ja) * 2002-08-27 2007-06-06 松下電工株式会社 暖房装置
JP3972783B2 (ja) * 2002-09-26 2007-09-05 アイシン精機株式会社 車両エンジンの冷却装置
US7409834B1 (en) * 2005-03-10 2008-08-12 Jefferson Science Associates Llc Helium process cycle
JP2007051565A (ja) * 2005-08-16 2007-03-01 Toshiba Corp 温水過熱温度制御装置および熱併給発電プラント
FR2919713B1 (fr) * 2007-08-03 2013-12-06 Air Liquide Procede de refrigeration d'un fluide, par exemple d'helium, destine a alimenter un consommateur de fluide, ainsi qu'a une installation correspondante
US8671698B2 (en) * 2007-10-10 2014-03-18 Cryomech, Inc. Gas liquifier
JP2010053602A (ja) 2008-08-28 2010-03-11 Kobe Steel Ltd 金属製の透過型砂防堰堤および土石流監視システム
FR2957406A1 (fr) * 2010-03-12 2011-09-16 Air Liquide Procede et installation de refrigeration en charge pulsee
FR2958025A1 (fr) * 2010-03-23 2011-09-30 Air Liquide Procede et installation de refrigeration en charge pulsee

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
WO2014096585A1 (fr) 2014-06-26
KR102119918B1 (ko) 2020-06-05
US10465981B2 (en) 2019-11-05
JP2016503876A (ja) 2016-02-08
CN104854413A (zh) 2015-08-19
EP2936006A1 (fr) 2015-10-28
FR2999693B1 (fr) 2015-06-19
US20200041201A1 (en) 2020-02-06
JP6495177B2 (ja) 2019-04-03
FR2999693A1 (fr) 2014-06-20
CN104854413B (zh) 2017-02-01
KR20150099523A (ko) 2015-08-31
US20150316315A1 (en) 2015-11-05

Similar Documents

Publication Publication Date Title
EP2941602B1 (fr) Dispositif de réfrigération et/ou de liquéfaction et procédé correspondant
EP2185873B1 (fr) Procédé de réfrigération cryogénique d'un fluide, par exemple d'hélium, destiné à alimenter un consommateur de fluide, ainsi qu'à une installation correspondante
EP2936006B1 (fr) Dispositif de réfrigération et/ou de liquéfaction et procédé correspondant
EP2758725B1 (fr) Procede et installation de refrigeration
CH693187A5 (fr) Procédé et installation de production frigorifique à partir d'un cycle thermique d'un fluide à bas point d'ébullition.
FR2775846A1 (fr) Procede pour le maintien a basse temperature d'une cryoliaison supraconductrice
EP3077736B1 (fr) Procédé de réfrigération, boîte froide et installation cryogénique correspondantes
WO2021023456A1 (fr) Dispositif et installation de réfrigération
WO2022022920A1 (fr) Installation et procédé de réfrigération d'un fluide
EP4226107A1 (fr) Installation et procédé de réfrigération et/ou de liquefaction d'un fluide
WO2023088607A1 (fr) Système de pompage cryogénique et intégration innovante pour la cryogénie sub kelvin inférieure à 1,5k
WO2024017549A1 (fr) Installation et procédé de liquéfaction d'hydrogène
WO2023161594A1 (fr) Systeme de refroidissement cryogenique
EP4343246A1 (fr) Installation et procédé de production d'un fluide cryogénique
FR3057941A1 (fr) Dispositif et procede de refrigeration et/ou de liquefaction d'un fluide cryogenique

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20150720

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20170222

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAJ Information related to disapproval of communication of intention to grant by the applicant or resumption of examination proceedings by the epo deleted

Free format text: ORIGINAL CODE: EPIDOSDIGR1

RIC1 Information provided on ipc code assigned before grant

Ipc: F25B 9/10 20060101ALI20170619BHEP

Ipc: F25J 1/00 20060101ALI20170619BHEP

Ipc: F25B 40/02 20060101ALI20170619BHEP

Ipc: F25J 1/02 20060101ALI20170619BHEP

Ipc: F25B 9/00 20060101AFI20170619BHEP

INTG Intention to grant announced

Effective date: 20170710

INTC Intention to grant announced (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

INTG Intention to grant announced

Effective date: 20170907

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: AT

Ref legal event code: REF

Ref document number: 944514

Country of ref document: AT

Kind code of ref document: T

Effective date: 20171115

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602013029205

Country of ref document: DE

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20171108

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 944514

Country of ref document: AT

Kind code of ref document: T

Effective date: 20171108

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180208

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171108

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171108

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171108

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171108

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180308

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180208

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180209

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171108

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171108

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171108

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171108

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171108

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171108

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171130

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171108

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171108

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171108

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171130

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602013029205

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171108

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171108

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171108

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171108

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171108

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20171130

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171108

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20180910

26N No opposition filed

Effective date: 20180809

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180108

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171108

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171108

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171108

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20131108

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171108

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171108

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171108

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171108

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20231123

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20231120

Year of fee payment: 11

Ref country code: DE

Payment date: 20231121

Year of fee payment: 11