EP4226107A1 - Installation et procédé de réfrigération et/ou de liquefaction d'un fluide - Google Patents

Installation et procédé de réfrigération et/ou de liquefaction d'un fluide

Info

Publication number
EP4226107A1
EP4226107A1 EP21783505.7A EP21783505A EP4226107A1 EP 4226107 A1 EP4226107 A1 EP 4226107A1 EP 21783505 A EP21783505 A EP 21783505A EP 4226107 A1 EP4226107 A1 EP 4226107A1
Authority
EP
European Patent Office
Prior art keywords
gas
braking
circuit
fluid
installation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
EP21783505.7A
Other languages
German (de)
English (en)
Inventor
Pierre BARJHOUX
Franck Delcayre
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Air Liquide SA
LAir Liquide SA pour lEtude et lExploitation des Procedes Georges Claude
Original Assignee
Air Liquide SA
LAir Liquide SA pour lEtude et lExploitation des Procedes Georges Claude
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Air Liquide SA, LAir Liquide SA pour lEtude et lExploitation des Procedes Georges Claude filed Critical Air Liquide SA
Publication of EP4226107A1 publication Critical patent/EP4226107A1/fr
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/0002Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the fluid to be liquefied
    • F25J1/0005Light or noble gases
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/003Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production
    • F25J1/0047Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using an "external" refrigerant stream in a closed vapor compression cycle
    • F25J1/005Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using an "external" refrigerant stream in a closed vapor compression cycle by expansion of a gaseous refrigerant stream with extraction of work
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C32/00Bearings not otherwise provided for
    • F16C32/06Bearings not otherwise provided for with moving member supported by a fluid cushion formed, at least to a large extent, otherwise than by movement of the shaft, e.g. hydrostatic air-cushion bearings
    • F16C32/0603Bearings not otherwise provided for with moving member supported by a fluid cushion formed, at least to a large extent, otherwise than by movement of the shaft, e.g. hydrostatic air-cushion bearings supported by a gas cushion, e.g. an air cushion
    • F16C32/0614Bearings not otherwise provided for with moving member supported by a fluid cushion formed, at least to a large extent, otherwise than by movement of the shaft, e.g. hydrostatic air-cushion bearings supported by a gas cushion, e.g. an air cushion the gas being supplied under pressure, e.g. aerostatic bearings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/0002Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the fluid to be liquefied
    • F25J1/0005Light or noble gases
    • F25J1/0007Helium
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/0002Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the fluid to be liquefied
    • F25J1/0005Light or noble gases
    • F25J1/001Hydrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/006Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the refrigerant fluid used
    • F25J1/0062Light or noble gases, mixtures thereof
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/006Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the refrigerant fluid used
    • F25J1/0062Light or noble gases, mixtures thereof
    • F25J1/0065Helium
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/006Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the refrigerant fluid used
    • F25J1/0062Light or noble gases, mixtures thereof
    • F25J1/0067Hydrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0243Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
    • F25J1/0257Construction and layout of liquefaction equipments, e.g. valves, machines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D15/00Adaptations of machines or engines for special use; Combinations of engines with devices driven thereby
    • F01D15/005Adaptations for refrigeration plants
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2362/00Apparatus for lighting or heating
    • F16C2362/52Compressors of refrigerators, e.g. air-conditioners
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2240/00Processes or apparatus involving steps for expanding of process streams
    • F25J2240/02Expansion of a process fluid in a work-extracting turbine (i.e. isentropic expansion), e.g. of the feed stream
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2270/00Refrigeration techniques used
    • F25J2270/14External refrigeration with work-producing gas expansion loop
    • F25J2270/16External refrigeration with work-producing gas expansion loop with mutliple gas expansion loops of the same refrigerant

Definitions

  • the invention relates to an installation and a method for refrigerating and/or liquefying a fluid.
  • the invention relates more particularly to a fluid refrigeration and/or liquefaction installation comprising a fluid circuit to be cooled comprising an upstream end intended to be connected to a source of fluid to be cooled and a downstream end intended to be connected to a member for collecting the cooled and/or liquefied fluid, the installation comprising a set of heat exchanger(s) in heat exchange with the fluid circuit to be cooled, the installation comprising a cooling device in heat exchange with the heat exchanger(s) assembly, said cooling device comprising a cycle refrigerator for refrigerating a cycle gas in a working circuit, the working circuit of the refrigerator comprising a mechanism for compressing the cooling gas cycle , a cycle gas cooling system , a cycle gas expansion mechanism and a cycle gas heating system , the cycle gas extension comprising several turbines integral with shafts mounted rotatably on bearings of the aerostatic type, the installation comprising turbine braking mechanisms, said braking mechanisms each comprising a braking compressor integral with a turbine shaft and a brake gas circuit incorporating the brake
  • a portion of the cycle gas flow of the process is compressed at ambient temperature and is not expanded within the process to cool the main fluid but is injected at the bearings of each turbine of the process to provide lift.
  • part of the compressed cycle gas is not used to extract energy from the application to be cooled.
  • An object of the present invention is to overcome all or part of the drawbacks of the prior art noted above.
  • the installation according to the invention is essentially characterized in that the source of compressed lift gas comprises at least one of the braking circuits .
  • inventions of the invention may comprise one or more of the following characteristics: several brake gas circuits are fluidly connected in a common circuit in which the brake compressors are arranged in series and in that the source of compressed lift gas comprises one end of the common circuit downstream of the braking compressors in series, the compressed lift gas circuit comprises respective supply lines each comprising an upstream end connected to the common circuit downstream of the compressors in series and a downstream end connected to an inlet of a bearing, the compressed lift gas circuit comprises respective return pipes each comprising an upstream end connected to an outlet of a bearing and a downstream end connected to the common circuit, in upstream of the compressors in series.
  • the invention also relates to a method for refrigerating and/or liquefying a fluid using an installation according to any one of the characteristics above or below, and comprising a step for withdrawing at least part of the flow of braking gas from at least one of the braking circuits downstream of the braking compressor, a step of injecting said gas taken from at least one bearing to support the turbine shaft, a step of recovering the braking gas having circulated in the bearing and a step for returning said recovered gas to the at least one braking circuit.
  • the method comprises a step of injecting a flow of lift gas from a source of pressurized braking gas separate from the braking circuits at least during a start-up phase and/or stoppage of the installation, the flow of braking gas injected into the bearing(s) has a pressure of between five and sixty bar, the braking gas comprises at least one of: He, H2, Ne, N2, 02, Ar, Co, CO2, CH4 or other air compounds.
  • the invention may also relate to any alternative device or method comprising any combination of the characteristics above or below within the scope of the claims.
  • FIG. 1 represents a schematic and partial view illustrating an example of structure and operation of a refrigeration and/or liquefaction installation according to the invention.
  • the installation 1 represented by way of example is a refrigerator and/or a cryogenic liquefier of a fluid.
  • This installation 1 comprises a circuit 2 of fluid to be cooled/liquefied comprising an upstream end 21 intended to be connected to a source of fluid to be cooled and a downstream end 22 intended to be connected to a member for collecting the cooled fluid and/or or liquefied.
  • the fluid to be cooled may include, for example: hydrogen, helium, neon or any other air gas or other mixture.
  • the installation 1 comprising for this purpose a set of heat exchangers 3, 4 in series in heat exchange with the circuit 2 of the fluid to be cooled.
  • the installation 1 comprises a cooling device in heat exchange with the set of heat exchangers 3, 4.
  • the cooling device comprises a refrigerator 5 with a gas refrigeration cycle in a working circuit.
  • this cycle gas comprises at least one of: hydrogen, helium, neon, etc.
  • the working circuit of the refrigerator 5 (preferably a closed loop circuit) comprises a cycle gas compression mechanism 6 (one or more compressors), a cycle gas cooling system 3, 4 (one or more exchangers, for example recuperation against the current as shown), a mechanism 7 for expanding the cycle gas and a system 4, 3 for heating the cycle gas (for example all or part of the aforementioned heat exchangers).
  • the cycle gas expansion mechanism 7 comprises several turbines 7 (in series in this example but some of which could be mounted in parallel to expand distinct fractions of the cycle gas flow).
  • each turbine 7 is mounted at one end of a rotatable shaft mounted on a bearing 17 of the aerostatic type.
  • the installation 1 comprises separate braking mechanisms for each of the turbines 7 .
  • Each braking mechanism comprises a braking compressor 27 secured to another end of the shaft carrying the turbine 7 and a braking gas circuit 9 integrating the braking compressor 27 .
  • the braking circuit of each turbine 7 forms a loop comprising in series a braking gas cooling system 10 downstream of the braking compressor 27 (for example a braking gas exchanger with a coolant such as water or air) and a mechanism 11 for expanding the braking gas downstream (expanding valve or calibrated orifice, for example).
  • each braking circuit can form a loop of braking gas which is compressed in a brake wheel forming a compressor then cooled then expanded etc. . .
  • the installation 1 is provided with a circuit of compressed gas for lifting the axis of the turbines 7 .
  • this gas under lift pressure is supplied to the bearing(s) 17 by the brake gas circuit(s) 9 (instead of or in addition to the cycle gas).
  • the brake gas circuit(s) 9 instead of or in addition to the cycle gas.
  • several brake gas circuits 9 are fluidly connected in a common circuit in which the brake compressors 27 are arranged in series with intermediate cooling.
  • the series brake compressors 27 may be located in a common loop.
  • the braking gas leaving the last braking compressor 27 (downstream) can be expanded in the regulator 11 of the first compressor (upstream).
  • each of the braking compressors 27 may comprise bypass lines each provided with valve(s) and/or pressure reducer 11 (and/or calibrated orifice(s), respectively connecting the common circuit to the inlet of each of the brake compressors 27 intermediate between the first brake compressor 27 (upstream) and the last brake compressor 27 (downstream).
  • all or part of the flow(s) could be returned to the suction of the first compressor.
  • This configuration makes it possible, if necessary, to adjust the flow of compressed braking gas in each stage of braking compressor 7 .
  • This braking flow can be adapted to the needs of each rotating shaft subjected to axial and radial forces.
  • the source of compressed lift gas can be located at one end of the common circuit, downstream of the last of the braking compressors 27 in series. This makes it possible to have a flow of pressurized gas sufficient to ensure the lift of all or part of the axes of the turbines 7. Indeed, the common braking circuit adds the braking gas of the various braking circuits.
  • the compressed gas lift circuit may comprise several conduits 12 for respective supply of pressurized gas each comprising an upstream end connected to the common circuit downstream of the compressors 17 in series and a downstream end connected to an inlet of a respective bearing 17. That is to say that the common circuit supplies the bearings 17 with lifting gas, via respective parallel lines.
  • the compressed gas lift circuit may comprise respective return pipes 13 each comprising an upstream end connected to an outlet of a bearing 17 and a downstream end connected to the common circuit, upstream of the first compressor 17 for braking in series. That is to say that the pressurized gas flows used to support the bearings 17 are then returned to the common braking circuit (see ref. A, B and C which symbolize the return of the gas flows from lift towards the braking circuit to facilitate understanding of the flows) .
  • This pooling of the braking circuits makes it possible to achieve higher working gas flow rates and pressures compared to the use of separate braking gases from distinct and independent braking circuits.
  • the common braking circuit has a high overall compression ratio, thus making it possible to supply sufficient potential pressure energy in order to sustain all the rotating shafts.
  • this arrangement makes it possible to supply a flow of gas under lift pressure at a flow rate of between 10 and 50 grams per second and at a pressure of between 15 and 50 bar ⁇
  • the invention has many advantages: a high available compression ratio makes it possible to sustain the rotating shafts while making it possible to eliminate cycle gas consumption for this purpose. This improves the efficiency and the cost of the installation 1 (for example of the order of 2 to 10%).
  • the working circuit of the refrigerator 5 may include, at the output of the compression mechanism 6, a buffer tank 120 for storing pressurized cycle gas which can be used as lifting gas in the bearings 17 if necessary (transient phases and in particular start-up and shutdown of the installation) for example via a bypass pipe downstream of the buffer storage 120 provided with a valve 28.
  • This gas supplied by the buffer tank 120 can be used in particular in certain transient phases and/or during an adjustment phase when starting up the turbines 7.
  • a pipe can be provided (provided with a valve 29) to discharge braking gas towards the suction of the compressor 6 of the cycle (in the transitional phase, for example, without impacting the performance of the refrigerator).
  • a system 8 for cooling the compressed cycle gas can be provided between the compression mechanism 6 and the buffer reservoir 12 .
  • the invention is not limited to this embodiment.
  • the separate cooling exchangers 10 of the braking circuits could be combined within a single piece of equipment.
  • the four coolant circuits for cooling the braking gas could be cooled by a common coolant circuit (water or glycol water for example). These circuits could be housed within the same equipment.
  • the circuit of the refrigerator 5 could include one or more intermediate working pressures (for example, an intermediate pressure stage on which the first two upstream turbines could be installed in series and whose exhaust from the second turbine would be connected at this intermediate pressure level.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Separation By Low-Temperature Treatments (AREA)

Abstract

Installation (1) de réfrigération et/ou de liquéfaction d'un fluide comprenant un circuit (2) de fluide à refroidir comprenant une extrémité amont (21) destinée à être reliée à une source de fluide à refroidir et une extrémité aval (22) destinée à être reliée à un organe de collecte du fluide refroidi et/ou liquéfié, l'installation (1) comprenant un ensemble d'échangeur(s) (3, 4) de chaleur en échange thermique avec le circuit (2) de fluide à refroidir, l'installation (1) comprenant un dispositif de refroidissement en échange thermique avec l'ensemble d'échangeur (s) (3, 4) de chaleur, ledit dispositif de refroidissement comprenant un réfrigérateur (5) à cycle de réfrigération d'un gaz de cycle dans un circuit de travail, le circuit de travail du réfrigérateur (5) comprenant un mécanisme (6) de compression du gaz de cycle, un système (3, 4) de refroidissement du gaz de cycle, un mécanisme (7) de détente du gaz de cycle et un système (4, 3) de réchauffage du gaz de cycle, le mécanisme (7) de détente du gaz de cycle comprenant plusieurs turbines (7) solidaires d'arbres montées rotatifs sur des paliers (17) de type aérostatiques, l'installation (1) comprenant des mécanismes de freinage des turbines (17), lesdits mécanismes de freinage comprenant chacun un compresseur (27) de freinage solidaires d'un axe de turbine (7) et un circuit (9) de gaz de freinage intégrant le compresseur (27) de freinage, les circuits (9) de gaz de freinage comprenant un système de refroidissement du gaz de freinage en aval du compresseur (27) de freinage et un mécanisme (11) de détente du gaz de freinage, l'installation (1) étant munie d'un circuit de gaz comprimé de sustentation comprenant une extrémité reliée à une source de gaz comprimé de sustentation et une extrémité aval reliée aux paliers (17), caractérisée en ce que la source de gaz comprimé de sustentation comprend au moins un des circuits (9) de freinage.

Description

Installation et procédé de réfrigération et/ou de liquéfaction d' un fluide
L' invention concerne une installation et un procédé de réfrigération et/ou de liquéfaction d' un fluide .
L' invention concerne plus particulièrement une installation de réfrigération et/ou de liquéfaction d' un fluide comprenant un circuit de fluide à refroidir comprenant une extrémité amont destinée à être reliée à une source de fluide à refroidir et une extrémité aval destinée à être reliée à un organe de collecte du fluide refroidi et/ou liquéfié , l ' installation comprenant un ensemble d' échangeur ( s ) de chaleur en échange thermique avec le circuit de fluide à refroidir, l ' installation comprenant un dispositi f de refroidissement en échange thermique avec l ' ensemble d' échangeur ( s ) de chaleur, ledit dispositi f de refroidissement comprenant un réfrigérateur à cycle de réfrigération d' un gaz de cycle dans un circuit de travail , le circuit de travail du réfrigérateur comprenant un mécanisme de compression du gaz de cycle , un système de refroidissement du gaz de cycle , un mécanisme de détente du gaz de cycle et un système de réchauf fage du gaz de cycle , le mécanisme de détente du gaz de cycle comprenant plusieurs turbines solidaires d' arbres montées rotati fs sur des paliers de type aérostatiques , l ' installation comprenant des mécanismes de freinage des turbines , lesdits mécanismes de freinage comprenant chacun un compresseur de freinage solidaires d' un axe de turbine et un circuit de gaz de freinage intégrant le compresseur de freinage , les circuits de gaz de freinage comprenant un système de refroidissement du gaz de freinage en aval du compresseur de freinage et un mécanisme de détente du gaz de freinage , l ' installation étant munie d' un circuit de gaz comprimé de sustentation comprenant une extrémité reliée à une source de gaz comprimé de sustentation et une extrémité aval reliée aux paliers . De nombreux réfrigérateurs ou liquéf acteurs cryogéniques utilisent des turbines de détente du gaz de cycle à palier de type appelé « statique » ou « aérostatique ».
Ces turbines à gaz sur paliers statiques nécessitent une alimentation continuelle de gaz sous pression des paliers pour réaliser la sustentation de l'arbre en rotation.
Classiquement, une portion du débit du gaz de cycle du procédé est comprimée à température ambiante et n' est pas détendu au sein du procédé pour refroidir le fluide principal mais est injecté aux niveaux des paliers de chaque turbine du procédé pour réaliser la sustentation. Ainsi, une partie du gaz de cycle comprimé n'est pas utilisé pour extraire de l'énergie de l'application à refroidir.
Une autre solution consiste à utiliser des paliers à gaz dits « dynamiques », où aucune injection de gaz n'est réalisée pour sustenter l'arbre en rotation mais cette technologie est peu robuste lors des démarrages et arrêts et nécessite une architecture de type coin d'air, induisant une certaine sensibilité aux variations de charge (liées aux jeux réduits nécessaire, notamment lors de l'emploi de fluides de travail de type gaz légers tels que l'hélium ou l'hydrogène) .
Un but de la présente invention est de pallier tout ou partie des inconvénients de l'art antérieur relevés ci-dessus.
A cette fin, l'installation selon l'invention, par ailleurs conforme à la définition générique qu'en donne le préambule ci- dessus, est essentiellement caractérisée en ce que la source de gaz comprimé de sustentation comprend au moins un des circuits de freinage.
Ceci permet de supprimer ou diminuer la consommation de gaz de cycle comprimé par le compresseur principal.
Le gaz de freinage est ainsi capable de fournir suffisamment d'énergie potentielle de pression afin de sustenter tout ou partie des arbres en rotation. Par ailleurs, des modes de réalisation de l'invention peuvent comporter l'une ou plusieurs des caractéristiques suivantes : plusieurs circuits de gaz de freinage sont reliés f luidiquement dans un circuit commun dans lequel les compresseurs de freinage sont disposés en série et en ce que la source de gaz comprimé de sustentation comprend une extrémité du circuit commun en aval des compresseurs de freinage en série, le circuit de gaz comprimé de sustentation comprend des conduites d' amenée respectives comprenant chacune une extrémité amont reliée au circuit commun en aval des compresseurs en série et une extrémité aval reliée à une entrée d'un palier, le circuit de gaz comprimé de sustentation comprend des conduites de retour respectives comprenant chacune une extrémité amont reliée à une sortie d'un palier et une extrémité aval reliée au circuit commun, en amont des compresseurs en série. L' invention concerne également un procédé de de réfrigération et/ou de liquéfaction d'un fluide utilisant une installation selon l'une quelconque des caractéristiques ci-dessus ou ci- dessous, et comprenant une étape de prélèvement d'au moins une partie du flux de gaz de freinage d'au moins un des circuits de freinage en aval du compresseur de freinage, une étape d'injection dudit gaz prélevé dans au moins un palier pour sustenter l'axe de turbine, une étape de récupération du gaz de freinage ayant circulé dans le palier et une étape de renvoi dudit gaz récupéré dans le au moins un circuits de freinage. Selon d'autres caractéristiques possibles : le procédé comprend une étape d'injection d'un débit de gaz de sustentation à partir d'une source de gaz de freinage sous pression distincte des circuits de freinage au moins pendant une phase de démarrage et/ou d'arrêt de l'installation, le flux de gaz de freinage injecté dans le (s) palier (s) a une pression comprise entre cinq et soixante bar, le gaz de freinage comprend au moins l'un parmi : He, H2, Ne, N2, 02, Ar, Co, CO2, CH4 ou autres composés de l'air. L'invention peut concerner également tout dispositif ou procédé alternatif comprenant toute combinaison des caractéristiques ci- dessus ou ci-dessous dans le cadre des revendications.
D' autres particularités et avantages apparaîtront à la lecture de la description ci-après, faite en référence aux figures dans lesquelles :
[Fig. 1] représente une vue schématique et partielle illustrant un exemple de structure et de fonctionnement d'une installation de réfrigération et/ou de liquéfaction selon l'invention.
L'installation 1 représentée à titre d'exemple est un réfrigérateur et/ou un liquéfacteur cryogénique d'un fluide.
Cette installation 1 comprend un circuit 2 de fluide à ref roidir/liquéf ier comprenant une extrémité amont 21 destinée à être reliée à une source de fluide à refroidir et une extrémité aval 22 destinée à être reliée à un organe de collecte du fluide refroidi et/ou liquéfié.
Le fluide à refroidir peut comprendre par exemple : de l'hydrogène, de l'hélium, du néon ou tout autre gaz de l'air ou autre mélange.
L'installation 1 comprenant à cet effet un ensemble d'échangeurs 3, 4 de chaleur en série en échange thermique avec le circuit 2 de fluide à refroidir.
L'installation 1 comprend un dispositif de refroidissement en échange thermique avec l'ensemble d'échangeurs 3, 4 de chaleur. Le dispositif de refroidissement comprend un réfrigérateur 5 à cycle de réfrigération d'un gaz dans un circuit de travail. Par exemple ce gaz de cycle comprend l'un au moins parmi : hydrogène, hélium, néon ...
Le circuit de travail du réfrigérateur 5 (de préférence un circuit fermé en boucle) comprend un mécanisme 6 de compression du gaz de cycle (un ou plusieurs compresseurs) , un système 3, 4 de refroidissement du gaz de cycle (un ou plusieurs échangeurs, par exemple récupérati f à contre-courant comme représenté ) , un mécanisme 7 de détente du gaz de cycle et un système 4 , 3 de réchauf fage du gaz de cycle (par exemple tout ou partie des échangeurs de chaleur précités ) .
Le mécanisme 7 de détente du gaz de cycle comprend plusieurs turbines 7 ( en série dans cet exemple mais qui pourraient pour certaines être montées en parallèle pour détendre des fractions distinctes du flux de gaz de cycle ) .
Dans l ' exemple représenté chaque turbine 7 est montée à une extrémité d' un arbre rotati f monté sur palier 17 de type aérostatique .
L' installation 1 comprend des mécanismes de freinage distincts pour chacune des turbines 7 .
Chaque mécanisme de freinage comprend un compresseur 27 de freinage solidaire d' une autre extrémité de l ' axe portant la turbine 7 et un circuit 9 de gaz de freinage intégrant le compresseur 27 de freinage . Le circuit de freinage de chaque turbine 7 forme une boucle comprenant en série un système 10 de refroidissement du gaz de freinage en aval du compresseur 27 de freinage (par exemple un échangeur gaz de freinage avec un caloporteur tel que de l ' eau ou de l ' air ) et un mécanisme 11 de détente du gaz de freinage en aval (vanne de détente ou ori fice calibré par exemple ) . Ainsi chaque circuit de freinage peut former une boucle de gaz de freinage qui est comprimé dans une roue de frein formant un compresseur puis refroidi puis détendu etc . . .
L' installation 1 est munie d' un circuit de gaz comprimé de sustentation de l ' axe des turbines 7 .
Selon une particularité avantageuse , ce gaz sous pression de sustentation est fourni au (x ) palier ( s ) 17 par le ou les circuits 9 de gaz de freinage ( au lieu ou en plus du gaz du cycle ) . De préférence, plusieurs circuits 9 de gaz de freinage (par exemple tous) sont reliés f luidiquement dans un circuit commun dans lequel les compresseurs 27 de freinage sont disposés en série avec refroidissements intermédiaires.
C'est-à-dire que les compresseurs 27 de freinage en série peuvent être situés dans une boucle commune. Le gaz de freinage sortant du dernier compresseur 27 de freinage (en aval) peut être détendu dans le détendeur 11 du premier compresseur (en amont) .
Comme illustré, les circuits de freinage de chacun des compresseurs 27 de freinage peuvent comporter des conduites de dérivation munies chacune de vanne (s) et/ou détendeur 11 (et/ou orifice (s) calibrés) , reliant respectivement le circuit commun à l'entrée d'admission de chacun des compresseurs de freinage 27 intermédiaires entre le premier compresseur 27 de freinage (amont) et le dernier compresseur 27 de freinage (aval) . Dans une variante possible tout ou partie du ou des flux pourrait être renvoyé à l'aspiration du premier compresseur.
Cette configuration permet le cas échéant d'ajuster le débit de gaz de freinage comprimé dans chaque étage de compresseur 7 de freinage. Ce débit de freinage peut être adapté au besoin de chaque arbre en rotation soumis à des efforts axiaux et radiaux.
La source de gaz comprimé de sustentation peut être située à une extrémité du circuit commun, en aval du dernier des compresseurs 27 de freinage en série. Ceci permet de disposer d'un débit de gaz sous pression suffisant pour assurer la sustentation de tout ou partie des axes des turbines 7. En effet, le circuit de freinage commun additionne le gaz de freinage des différents circuits de freinage.
Comme illustré, le circuit de gaz comprimé de sustentation peut comprendre plusieurs conduites 12 d' amenée respectives de gaz sous pression comprenant chacune une extrémité amont reliée au circuit commun en aval des compresseurs 17 en série et une extrémité aval reliée à une entrée d'un palier 17 respectif. C'est-à-dire que le circuit commun fournit en gaz de sustentation les paliers 17, via des lignes parallèles respectives.
De même, le circuit de gaz comprimé de sustentation peut comprendre des conduites 13 de retour respectives comprenant chacune une extrémité amont reliée à une sortie d'un palier 17 et une extrémité aval reliée au circuit commun, en amont du premier compresseur 17 de freinage en série. C'est-à-dire que les flux de gaz sous pression ayant servi à la sustentation des paliers 17 sont ensuite renvoyés vers le circuit de freinage commun (cf. réf. A, B et C qui symbolisent le renvoi des flux de gaz de sustentation vers le circuit de freinage pour faciliter la compréhension des flux) .
Cette mutualisation des circuits de freinage permet d'atteindre des débits et pression de gaz de travail plus importants par rapport à l'utilisation de gaz de freinage séparés de circuits de freinage distincts et indépendants.
En effet, le circuit de freinage commun dispose d'un taux de compression global élevé, permettant ainsi de fournir suffisamment d'énergie potentielle de pression afin de sustenter tous les arbres en rotation. Par exemple, selon les installations, cet agencement permet de fournir un flux de gaz sous pression de sustentation à un débit compris entre 10 et 50 grammes par seconde et à une pression comprise entre 15 et 50 bar^
L' invention présente de nombreux avantages : un taux de compression disponible élevé permet de sustenter les arbres en rotation tout en permettant de supprimer une consommation de gaz de cycle à cet effet. Ceci améliore l'efficacité et le coût de l'installation 1 (par exemple de l'ordre de 2 à 10%) .
Comme illustré, le circuit de travail du réfrigérateur 5 peut comprendre, à la sortie du mécanisme 6 de compression, un réservoir 120 tampon de stockage de gaz de cycle sous pression qui peut être utilisé comme gaz de sustentation dans les paliers 17 si besoin (phases transitoires et notamment démarrage et arrêt de l'installation) par exemple par l'intermédiaire d'une conduite de dérivation en aval du stockage 120 tampon munie d'une vanne 28. Ce gaz fourni par le réservoir 120 tampon peut être utilisé notamment dans certaines phases transitoires et/ou l'ors d'une phase d'ajustement au démarrage des turbines 7. Alternativement ou cumulativement, une conduite peut être prévue (munie d'une vanne 29) pour décharger du gaz de freinage vers l'aspiration du compresseur 6 de cycle (en phase transitoire par exemple sans impacter le rendement du réfrigérateur) .
Comme illustré également un système 8 de refroidissement du gaz de cycle comprimé peut être prévu entre le mécanisme 6 de compression et le réservoir 12 tampon.
Bien entendu l'invention n'est pas limitée à cet exemple de réalisation. Ainsi, les échangeurs 10 de refroidissement distincts des circuits de freinage pourraient être combinées au sein d'un seul équipement. Dans l'exemple représenté les quatre circuits de fluide caloporteur de refroidissement du gaz de freinage pourraient être refroidis par un circuit commun de fluide caloporteur (eau ou eau glycolée par exemple) . Ces circuits pourraient être logés au sein d'un même équipement.
De même, le circuit du réfrigérateur 5 pourrait comporter une ou plusieurs pressions intermédiaires de travail (par exemple, un étage de pression intermédiaire sur lesquelles, les deux premières turbines amont pourraient être installées en série et dont l'échappement de la seconde turbine serait raccordé à ce niveau de pression intermédiaire.

Claims

REVENDICATIONS
1. Installation (1) de réfrigération et/ou de liquéfaction d'un fluide comprenant un circuit (2) de fluide à refroidir comprenant une extrémité amont (21) destinée à être reliée à une source de fluide à refroidir et une extrémité aval (22) destinée à être reliée à un organe de collecte du fluide refroidi et/ou liquéfié, l'installation (1) comprenant un ensemble d' échangeur ( s ) (3, 4) de chaleur en échange thermique avec le circuit (2) de fluide à refroidir, l'installation (1) comprenant un dispositif de refroidissement en échange thermique avec l'ensemble d' échangeur ( s ) (3, 4) de chaleur, ledit dispositif de refroidissement comprenant un réfrigérateur (5) à cycle de réfrigération d'un gaz de cycle dans un circuit de travail, le circuit de travail du réfrigérateur (5) comprenant un mécanisme (6) de compression du gaz de cycle, un système (3, 4) de refroidissement du gaz de cycle, un mécanisme (7) de détente du gaz de cycle et un système (4, 3) de réchauffage du gaz de cycle, le mécanisme (7) de détente du gaz de cycle comprenant plusieurs turbines (7) solidaires d'arbres montées rotatifs sur des paliers (17) de type aérostatiques, l'installation (1) comprenant des mécanismes de freinage des turbines (17) , lesdits mécanismes de freinage comprenant chacun un compresseur (27) de freinage solidaires d'un axe de turbine (7) et un circuit (9) de gaz de freinage intégrant le compresseur (27) de freinage, les circuits (9) de gaz de freinage comprenant un système de refroidissement du gaz de freinage en aval du compresseur (27) de freinage et un mécanisme (11) de détente du gaz de freinage, l'installation (1) étant munie d'un circuit de gaz comprimé de sustentation comprenant une extrémité reliée à une source de gaz comprimé de sustentation et une extrémité aval reliée aux paliers (17) , la source de gaz comprimé de sustentation comprenant au moins un des circuits (9) de freinage, caractérisée en ce que plusieurs circuits (9) de gaz de freinage sont reliés f luidiquement dans un circuit commun dans lequel les compresseurs (27) de freinage sont disposés en série et en ce que la source de gaz comprimé de sustentation comprend une extrémité du circuit commun en aval des compresseurs (27) de freinage en série.
2. Installation (1) selon la revendication 1, caractérisée en ce que le circuit de gaz comprimé de sustentation comprend des conduites (12) d' amenée respectives comprenant chacune une extrémité amont reliée au circuit commun en aval des compresseurs (17) en série et une extrémité aval reliée à une entrée d'un palier ( 17 ) .
3. Installation (1) selon la revendication 1 ou 2, caractérisée en ce que le circuit de gaz comprimé de sustentation comprend des conduites (13) de retour respectives comprenant chacune une extrémité amont reliée à une sortie d'un palier (17) et une extrémité aval reliée au circuit commun, en amont des compresseurs (17) en série.
4. Procédé de de réfrigération et/ou de liquéfaction d'un fluide utilisant une installation (1) selon l'une quelconque des revendications 1 à 3, caractérisé en ce qu'il comprend une étape de prélèvement d'au moins une partie du flux de gaz de freinage d'au moins un des circuits (9) de freinage en aval du compresseur (27) de freinage, une étape d'injection dudit gaz prélevé dans au moins un palier (17) pour sustenter l'axe de turbine, une étape de récupération du gaz de freinage ayant circulé dans le palier (17) et une étape de renvoi dudit gaz récupéré dans le au moins un circuits (9) de freinage.
5. Procédé selon la revendication 4, caractérisé en ce qu'il comprend une étape d'injection d'un débit de gaz de sustentation à partir d'une source (12) de gaz de freinage sous pression distincte des circuits (9) de freinage au moins pendant une phase de démarrage et/ou d'arrêt de l'installation.
6. Procédé selon la revendication 4 ou 5, caractérisé en ce que le flux de gaz de freinage injecté dans le (s) palier (s) a une pression comprise entre cinq et soixante bar.
7. Procédé selon l'une quelconque des revendications 4 à 6, caractérisé en ce que le gaz de freinage comprend au moins l'un parmi : He, H2, Ne, N2, 02, Ar, Co, C02, CH4 ou autres composés de l'air.
EP21783505.7A 2020-10-05 2021-09-28 Installation et procédé de réfrigération et/ou de liquefaction d'un fluide Pending EP4226107A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR2010132A FR3114870B1 (fr) 2020-10-05 2020-10-05 Installation et procédé de réfrigération et/ou de liquéfaction d’un fluide
PCT/EP2021/076593 WO2022073799A1 (fr) 2020-10-05 2021-09-28 Installation et procédé de réfrigération et/ou de liquefaction d'un fluide

Publications (1)

Publication Number Publication Date
EP4226107A1 true EP4226107A1 (fr) 2023-08-16

Family

ID=73643114

Family Applications (1)

Application Number Title Priority Date Filing Date
EP21783505.7A Pending EP4226107A1 (fr) 2020-10-05 2021-09-28 Installation et procédé de réfrigération et/ou de liquefaction d'un fluide

Country Status (7)

Country Link
US (1) US20230375259A1 (fr)
EP (1) EP4226107A1 (fr)
JP (1) JP2023543397A (fr)
KR (1) KR20230079372A (fr)
CN (1) CN116075678A (fr)
FR (1) FR3114870B1 (fr)
WO (1) WO2022073799A1 (fr)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3099818B1 (fr) * 2019-08-05 2022-11-04 Air Liquide Dispositif de réfrigération et installation et procédé de refroidissement et/ou de liquéfaction

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3105631A (en) * 1961-08-15 1963-10-01 Sulzer Ag Expansion turbine having a gas bearing
CH393382A (de) * 1962-05-04 1965-06-15 Sulzer Ag Kühlanlage
DE1938830A1 (de) * 1969-07-30 1971-02-11 Linde Ag Leistungsregelung fuer eine Vorrichtung zur Kaelteerzeugung bei tiefer Temperatur mit mindestens einer einen Verdichter antreibenden Entspannungsturbine
JP6526492B2 (ja) * 2015-06-19 2019-06-05 川崎重工業株式会社 膨張タービン装置
JP6985886B2 (ja) * 2017-10-27 2021-12-22 川崎重工業株式会社 ガス膨張システム

Also Published As

Publication number Publication date
FR3114870B1 (fr) 2022-12-16
WO2022073799A1 (fr) 2022-04-14
FR3114870A1 (fr) 2022-04-08
KR20230079372A (ko) 2023-06-07
US20230375259A1 (en) 2023-11-23
CN116075678A (zh) 2023-05-05
JP2023543397A (ja) 2023-10-16

Similar Documents

Publication Publication Date Title
EP3414498B1 (fr) Dispositif de réfrigération cryogénique
EP2831490B1 (fr) Dispositif et procédé de remplissage de réservoir
EP4226107A1 (fr) Installation et procédé de réfrigération et/ou de liquefaction d'un fluide
EP2936006B1 (fr) Dispositif de réfrigération et/ou de liquéfaction et procédé correspondant
EP2758725B1 (fr) Procede et installation de refrigeration
WO2021023456A1 (fr) Dispositif et installation de réfrigération
WO2021023459A1 (fr) Dispositif et installation de réfrigération
EP3990846B1 (fr) Installation et procédé de liquéfaction de gaz
CH693187A5 (fr) Procédé et installation de production frigorifique à partir d'un cycle thermique d'un fluide à bas point d'ébullition.
WO2022096262A1 (fr) Installation et procédé de production d'hydrogène à température cryogénique
EP4241027A1 (fr) Installation et procédé de production d'hydrogène a temperature cryogenique
FR3035195B1 (fr) Installation et procede de production d'helium liquide
WO2022171392A1 (fr) Dispositif et procédé de liquéfaction d'un fluide tel que l'hydrogène et/ou de l'hélium
FR3133404A1 (fr) Système de suralimentation en air pour système de conditionnement de carburant et procédé d’utilisation
FR3134619A3 (fr) Installation et procédé de production d’oxygène à température cryogénique
EP4343246A1 (fr) Installation et procédé de production d'un fluide cryogénique
WO2024008434A1 (fr) Dispositif et procédé de liquéfaction d'un fluide

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20230508

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)