WO2022096262A1 - Installation et procédé de production d'hydrogène à température cryogénique - Google Patents

Installation et procédé de production d'hydrogène à température cryogénique Download PDF

Info

Publication number
WO2022096262A1
WO2022096262A1 PCT/EP2021/079034 EP2021079034W WO2022096262A1 WO 2022096262 A1 WO2022096262 A1 WO 2022096262A1 EP 2021079034 W EP2021079034 W EP 2021079034W WO 2022096262 A1 WO2022096262 A1 WO 2022096262A1
Authority
WO
WIPO (PCT)
Prior art keywords
hydrogen
flow
oxygen
circuit
expansion
Prior art date
Application number
PCT/EP2021/079034
Other languages
English (en)
Inventor
Pierre Crespi
Pierre BARJHOUX
Original Assignee
L'air Liquide Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by L'air Liquide Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude filed Critical L'air Liquide Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude
Priority to US18/036,127 priority Critical patent/US20230408189A1/en
Priority to JP2023521353A priority patent/JP2023548753A/ja
Priority to EP21798334.5A priority patent/EP4241028A1/fr
Priority to KR1020237017377A priority patent/KR20230104898A/ko
Publication of WO2022096262A1 publication Critical patent/WO2022096262A1/fr

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/0002Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the fluid to be liquefied
    • F25J1/0005Light or noble gases
    • F25J1/001Hydrogen
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/02Hydrogen or oxygen
    • C25B1/04Hydrogen or oxygen by electrolysis of water
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/0002Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the fluid to be liquefied
    • F25J1/0012Primary atmospheric gases, e.g. air
    • F25J1/0017Oxygen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/003Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production
    • F25J1/0032Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using the feed stream itself or separated fractions from it, i.e. "internal refrigeration"
    • F25J1/0035Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using the feed stream itself or separated fractions from it, i.e. "internal refrigeration" by gas expansion with extraction of work
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/003Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production
    • F25J1/0047Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using an "external" refrigerant stream in a closed vapor compression cycle
    • F25J1/005Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using an "external" refrigerant stream in a closed vapor compression cycle by expansion of a gaseous refrigerant stream with extraction of work
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/003Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production
    • F25J1/0047Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using an "external" refrigerant stream in a closed vapor compression cycle
    • F25J1/0052Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using an "external" refrigerant stream in a closed vapor compression cycle by vaporising a liquid refrigerant stream
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/006Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the refrigerant fluid used
    • F25J1/0062Light or noble gases, mixtures thereof
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/006Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the refrigerant fluid used
    • F25J1/0062Light or noble gases, mixtures thereof
    • F25J1/0065Helium
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/006Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the refrigerant fluid used
    • F25J1/0062Light or noble gases, mixtures thereof
    • F25J1/0067Hydrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/006Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the refrigerant fluid used
    • F25J1/007Primary atmospheric gases, mixtures thereof
    • F25J1/0072Nitrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0203Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using a single-component refrigerant [SCR] fluid in a closed vapor compression cycle
    • F25J1/0204Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using a single-component refrigerant [SCR] fluid in a closed vapor compression cycle as a single flow SCR cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0203Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using a single-component refrigerant [SCR] fluid in a closed vapor compression cycle
    • F25J1/0205Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using a single-component refrigerant [SCR] fluid in a closed vapor compression cycle as a dual level SCR refrigeration cascade
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0211Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using a multi-component refrigerant [MCR] fluid in a closed vapor compression cycle
    • F25J1/0212Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using a multi-component refrigerant [MCR] fluid in a closed vapor compression cycle as a single flow MCR cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0211Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using a multi-component refrigerant [MCR] fluid in a closed vapor compression cycle
    • F25J1/0214Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using a multi-component refrigerant [MCR] fluid in a closed vapor compression cycle as a dual level refrigeration cascade with at least one MCR cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0211Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using a multi-component refrigerant [MCR] fluid in a closed vapor compression cycle
    • F25J1/0214Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using a multi-component refrigerant [MCR] fluid in a closed vapor compression cycle as a dual level refrigeration cascade with at least one MCR cycle
    • F25J1/0215Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using a multi-component refrigerant [MCR] fluid in a closed vapor compression cycle as a dual level refrigeration cascade with at least one MCR cycle with one SCR cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0221Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using the cold stored in an external cryogenic component in an open refrigeration loop
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0221Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using the cold stored in an external cryogenic component in an open refrigeration loop
    • F25J1/0222Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using the cold stored in an external cryogenic component in an open refrigeration loop in combination with an intermediate heat exchange fluid between the cryogenic component and the fluid to be liquefied
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0228Coupling of the liquefaction unit to other units or processes, so-called integrated processes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0228Coupling of the liquefaction unit to other units or processes, so-called integrated processes
    • F25J1/0235Heat exchange integration
    • F25J1/0236Heat exchange integration providing refrigeration for different processes treating not the same feed stream
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0243Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
    • F25J1/0279Compression of refrigerant or internal recycle fluid, e.g. kind of compressor, accumulator, suction drum etc.
    • F25J1/0292Refrigerant compression by cold or cryogenic suction of the refrigerant gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2205/00Processes or apparatus using other separation and/or other processing means
    • F25J2205/86Processes or apparatus using other separation and/or other processing means using electrical phenomena, e.g. Corona discharge, electrolysis or magnetic field
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2210/00Processes characterised by the type or other details of the feed stream
    • F25J2210/42Nitrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2210/00Processes characterised by the type or other details of the feed stream
    • F25J2210/50Oxygen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2210/00Processes characterised by the type or other details of the feed stream
    • F25J2210/62Liquefied natural gas [LNG]; Natural gas liquids [NGL]; Liquefied petroleum gas [LPG]
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2230/00Processes or apparatus involving steps for increasing the pressure of gaseous process streams
    • F25J2230/08Cold compressor, i.e. suction of the gas at cryogenic temperature and generally without afterstage-cooler
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2230/00Processes or apparatus involving steps for increasing the pressure of gaseous process streams
    • F25J2230/20Integrated compressor and process expander; Gear box arrangement; Multiple compressors on a common shaft
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2230/00Processes or apparatus involving steps for increasing the pressure of gaseous process streams
    • F25J2230/30Compression of the feed stream
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2270/00Refrigeration techniques used
    • F25J2270/14External refrigeration with work-producing gas expansion loop
    • F25J2270/16External refrigeration with work-producing gas expansion loop with mutliple gas expansion loops of the same refrigerant
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Definitions

  • the invention relates to an installation and a method for producing hydrogen at cryogenic temperature.
  • the invention relates more particularly to an installation for producing hydrogen at cryogenic temperature, in particular liquefied hydrogen, comprising an electrolyser provided with an oxygen outlet and a hydrogen outlet, a hydrogen circuit to be cooled comprising an upstream end connected to the hydrogen outlet and a downstream end intended to be connected to a unit for collecting cooled and/or liquefied hydrogen, the installation comprising a set of heat exchanger(s) in exchange heat with the hydrogen circuit to be cooled, the installation comprising at least one cooling device in heat exchange with at least a part of the heat exchanger assembly (s), the hydrogen circuit to be cooled comprising a hydrogen flow expansion system and at least one hydrogen compressor upstream of the hydrogen flow expansion system, the hydrogen flow expansion system comprising at least one expansion turbine.
  • an installation for producing hydrogen at cryogenic temperature, in particular liquefied hydrogen comprising an electrolyser provided with an oxygen outlet and a hydrogen outlet, a hydrogen circuit to be cooled comprising an upstream end connected to the hydrogen outlet and a downstream end intended to be connected to a unit for
  • the two main means of producing hydrogen are: 1 electrolysis and chemical production by vapo-reforming of methane (SMR).
  • Electrolysis In the case of electrolysis, the water molecule is split, this produces hydrogen on the one hand and oxygen (02) on the other. Electrolysis technologies are made up of three main families: “DEM” (Proton Exchange Membrane), “Alkaline” and “Solid Oxide”.
  • PEM technology allows operation at significant pressures without significantly impacting performance energy of 1 electrolysis.
  • electrolyzers of several megawatts of power can produce hydrogen and oxygen at 30 bar abs at room temperature in the state of the art.
  • An object of the present invention is to overcome all or part of the drawbacks of the prior art noted above.
  • the installation according to the invention is essentially characterized in that said at least one expansion turbine and said at least one compressor are coupled to the same rotating shaft to transfer the work of expanding the flow of pressurized hydrogen to the compressor to compress the flow of hydrogen upstream of the turbine.
  • Such an installation makes it possible to effectively enhance the pressure of the hydrogen (in particular at high pressure) produced by an electrolyser to pre-cool or cool a flow of hydrogen to a cryogenic temperature.
  • This solution makes it possible to reduce the investment expenditure of such an installation, in particular by eliminating or reducing the cooling down to 80 to 130K of the hydrogen to be liquefied. This makes it possible, for example, to reduce or dispense with a liquid nitrogen pre-cooling system with a nitrogen compression station such as in the prior art.
  • embodiments of the invention may comprise one or more of the following characteristics: the assembly comprising the expansion turbine and the compressor coupled to the same rotary shaft is a passive mechanical system, i.e. - say that it does not include a rotary shaft drive motor other than the hydrogen flow or an active mechanical system, i.e.
  • the hydrogen circuit comprises several hydrogen compressors arranged in series and/or in parallel upstream of the hydrogen flow expansion system, the hydrogen flow expansion system comprising a plurality of expansion turbines arranged in series and/or in parallel and in that each of the compressors is coupled to a rotating shaft to which is also coupled at least one turbine, the hydrogen circuit to be cooled comprises several compressors arranged in series upstream of the flow expansion system of hydrogen, the hydrogen flow expansion system comprising a plurality of expansion turbines arranged in series and in that the compressors and turbines are coupled in pairs on respective rotating shafts, the turbines are arranged in series in the circuit of hydrogen to be cooled, the hydrogen circuit to be cooled comprising separate respective heat exchange portions between at least a part of the heat exchanger assembly (s) and the flow of hydrogen at the outlet of each turbine, heat exchanger assembly (s) comprises several heat exchangers arranged in series and in heat exchange with the hydrogen circuit to be cooled between the upstream and downstream ends of the hydrogen circuit to be cooled, the installation comprises
  • the invention also relates to a method for producing hydrogen at cryogenic temperature, in particular liquefied hydrogen, using an installation according to any one of the preceding characteristics, the method comprising a step of supplying, by the electrolyser, a flow of hydrogen at the upstream end of the hydrogen circuit, for example at a pressure of between 15 and 150 bar, a step of supplying, by one electrolyser, a flow of oxygen to the upstream end of the oxygen circuit, for example at a pressure of between 15 and 150 bar, the method comprising a step of compressing then expanding the flow of hydrogen in which the expansion is carried out by at least one turbine coupled to a shaft, the shaft also being coupled to at least one compressor ensuring the compression of the hydrogen flow before its expansion;
  • the invention may also relate to any alternative device or method comprising any combination of the characteristics above or below within the scope of the claims.
  • FIG. 1 represents a schematic and partial view illustrating a first embodiment of the structure and operation of an installation according to the invention
  • FIG. 2 represents a schematic and partial view illustrating a second embodiment of the structure and operation of an installation according to the invention
  • FIG. 3 represents a schematic and partial view illustrating a third embodiment of the structure and operation of an installation according to the invention
  • FIG. 4 represents a schematic and partial view illustrating a fourth embodiment of structure and operation of an installation according to the invention.
  • the hydrogen production installation 1 represented is a device for producing hydrogen at cryogenic temperature, in particular liquefied hydrogen.
  • This installation 1 comprises an electrolyser 2, preferably of the “PEM” (proton exchange membrane) type operating at high pressure, that is to say producing gaseous hydrogen and oxygen at pressures between 15 and 150 bar, for example equal to 30 bar.
  • PEM proto exchange membrane
  • the electrolyser 2 has an oxygen outlet and a hydrogen outlet.
  • the installation 1 comprises a circuit 3 (or pipe(s)) of hydrogen to be cooled having an upstream end connected to the hydrogen outlet of the electrolyser 2 and a downstream end intended to be connected to a member 23 for collecting cooled and/or liquefied hydrogen (storage and/or user application for example).
  • a circuit 3 or pipe(s) of hydrogen to be cooled having an upstream end connected to the hydrogen outlet of the electrolyser 2 and a downstream end intended to be connected to a member 23 for collecting cooled and/or liquefied hydrogen (storage and/or user application for example).
  • the installation 1 comprises a set of heat exchanger(s) 4, 5, 6, 7, 8 in heat exchange with the hydrogen circuit 3 to be cooled, with the aim of reaching a temperature favorable to the liquefaction of hydrogen.
  • At least one separate heat exchanger 25 may be provided at the outlet of one electrolyser 2 to cool the flow of hydrogen (for example by heat exchange with a coolant such as water or air for example ) to bring it back to a temperature close to room temperature.
  • a coolant such as water or air for example
  • the electrochemical reaction for the production of hydrogen by electrolysis generally leads to a temperature rise of a few tens of degrees.
  • the installation 1 further comprises at least one device 9, 10 for cooling in heat exchange with at least part of the heat exchanger assembly(s) 4, 5, 6, 7, 8.
  • the installation 1 may include an oxygen circuit 190 (at least one pipe) comprising an upstream end connected to the oxygen outlet of one electrolyzer 2 and a downstream end.
  • the downstream end can be connected for example to a device 27 for collecting and/or using oxygen.
  • This collection device may include, for example: an oxygen liquefaction system, an oxygen (pre)cooling system, an oxygen compression and conditioning system in cylinders or pressurized storage , a combustion system, a venting system, etc.
  • the hydrogen circuit 3 to be cooled comprises a hydrogen flow expansion system 18 and at least one hydrogen compressor 19 upstream of the hydrogen flow expansion system 18.
  • all (the entirety) of the hydrogen stream to be cooled/liquefied is expanded in the turbine expansion system(s) 18. That is to say, the entire stream to be cooled/liquefied is expanded in the turbine or turbines 18 and this expanded flow is cooled by the cooling device in the exchanger assembly (s) to be liquefied, for example.
  • the hydrogen flow expansion system 18 comprises at least one hydrogen flow expansion turbine 18 and said expansion turbine 18 and said compressor 19 are coupled to the same rotary shaft 20 to transfer hydrogen flow expansion work. pressurized hydrogen to the compressor 19 to compress the flow of hydrogen upstream of the turbine 18.
  • the expansion turbine 18 and compressor 19 assembly coupled to the same rotating shaft 20 is a preferably passive mechanical system, that is to say that is, it does not include a motor driving the rotary shaft 20 other than the flow of hydrogen.
  • the hydrogen circuit 3 preferably comprises several hydrogen compressors 19 arranged in series upstream of the system 18 for expanding the flow of hydrogen.
  • the hydrogen flow expansion system preferably comprises as many expansion turbines 18 arranged in series, each of the compressors 19 being coupled to a rotating shaft 20 to which is also coupled at least one turbine 18.
  • the compressors 19 and turbines are associated in pairs on distinct respective rotary shafts 20 (for example first compressor 19 upstream coupled with first turbine 20 upstream, etc.).
  • the expanded hydrogen flow may optionally pass through separate heat exchangers respectively from upstream to downstream of the first group of heat exchanger(s) 4, 5, 6, 7, to ensure pre-cooling of the hydrogen.
  • expansion stages 18 make it possible to enhance the pressure of the hydrogen flow (with cooling (s) intermediate (s) or not). This makes it possible to replace or supplement the pre-cooling described above.
  • This cold provided without energy consumption makes it possible to reduce the work required to cool the hydrogen down to its target temperature (for example via a second cooling device 10 as described in more detail below).
  • this mode of expansion and recovery of the pressure of the hydrogen flow is not limited to this example.
  • the expansion of hydrogen from ambient temperature to a determined pre-cooling temperature could be carried out in several radial expansion stages or else in a single expansion stage, for example via a volumetric expansion valve, in particular to reduce the costs.
  • This pre-cooling of the hydrogen can be completed downstream of the circuit 3 by a second cooling device 10 in heat exchange with the circuit 3 of hydrogen to be cooled.
  • the aforementioned first cooling device 9 expansion of the hydrogen with precompression
  • the second cooling device 10 can itself be placed in heat exchange with a second group of heat exchangers 8 downstream (symbolized here by a single heat exchanger but several heat exchangers in series and/or in parallel can be considered).
  • the second cooling device 10 After this pre-cooling of the hydrogen circuit 3 to a temperature of 80 to 100K for example, the second cooling device 10 provides additional cooling of the hydrogen, for example to a temperature of the order of 20K for example, in order to liquefy it.
  • the second cooling device 10 may comprise a refrigerator with a refrigeration cycle of a cycle gas (comprising for example hydrogen or helium, or neon or an optimized combination of the latter three) for improve the efficiency of the device 10 for the final cooling of the hydrogen.
  • this refrigerator of the second cooling device 10 may comprise, arranged in series in a cycle circuit: a mechanism 15 for compressing the second cycle gas (one or more compressors, a member 24 for cooling the second cycle gas (exchanger (s) for example), a mechanism 16 for expanding the second cycle gas (turbine(s) and/or expansion valve(s)) and a member 8 for heating the second expanded cycle gas (heat exchangers and especially heat exchanger(s) in exchange with the hydrogen flow to be cooled) .
  • the installation 1 may comprise a third device 17 for cooling in heat exchange at least part of the heat exchangers 4, 5, 6, 7.
  • This third cooling device 17 (optional) may comprise a fluid loop of cooling (liquid nitrogen, liquefied natural gas, oxygen or other for example) circulating against the current) which supplies cold to the heat exchanger(s) 4, 5, 6, 7 to also ensure part of the pre- hydrogen cooling.
  • the pre-cooling carried out via the expansion of hydrogen as described above can in particular make it possible to reduce (in particular halve) the consumption of such a cooling fluid (liquid nitrogen type or with a gas mixing cycle for example ) .
  • the oxygen circuit 190 may also optionally comprise a system 13 for expanding the oxygen flow and at least one heat exchange between the expanded oxygen flow (and therefore cooled by the expansion) and the circuit 3 hydrogen to be cooled.
  • This heat exchange can in particular be used to pre-cool the hydrogen in its refrigeration and/or liquefaction process.
  • the oxygen circuit 190 may comprise at least one oxygen compressor 12 arranged upstream of the system 13 for expanding the oxygen flow.
  • the oxygen flow expansion system 13 comprises at least one expansion turbine 13 .
  • Said oxygen expansion turbine 13 and said oxygen upstream compressor 12 are coupled to the same rotary shaft 14 to transfer the work of expanding the oxygen flow under pressure to the compressor 12 to compress the oxygen flow by upstream of the expansion turbine 13.
  • the assembly comprising the expansion turbine 13 and the compressor 12 coupled to the same rotary shaft 14 is preferably a passive mechanical system, that is to say it does not include a shaft drive motor. 14 rotary other than oxygen flow.
  • the expansion turbine 13 is mechanically braked by the compressor 12 coupled to the same shaft 14.
  • this is not limiting, it could thus be envisaged to provide a system with a motor whose shaft and coupled to the turbine (s) and compressor (s) (to improve the efficiency of the installation if appropriate).
  • this transfer of work from the flow of oxygen achieves a "supercharging" ("turbo boosting”) which therefore consists in integrating one or more cryogenic expansion turbines 13 for which the working fluid is oxygen previously produced by one electrolyser 2.
  • the braking system of these turbines is one or more compressors 12 coupled on the same shaft 14. This makes it possible to inject the work of expansion of this gas flow as a flow booster upstream at ambient temperature .
  • the integration of the expanded oxygen flow in the battery of heat exchangers 4, 5, 6, 7 of the refrigeration/hydrogen liquefaction system makes it possible in particular to reduce its volume. Costs are also reduced by pooling the heat exchange lines in a single piece of equipment.
  • a typically inert intermediate coolant, helium, nitrogen, argon for example, so as not to risk bringing hydrogen and oxygen into contact in the same equipment.
  • the hydrogen is cooled down to a target temperature of around 20K for example.
  • the hydrogen flow can be pre-cooled between the temperature at the outlet of one electrolyser to a temperature between 220 and 90K and for example of the order of 100K.
  • the oxygen Before expansion (downstream of the compressors 12) the oxygen can for example be brought to a pressure of between 15 and 150 and to a temperature close to ambient temperature, thanks to inter-stage compression (then terminal) cooling exchangers which have a cold source of the industrial water type. All or part of this pre-cooling can be carried out via expanded oxygen as described above.
  • the inventors have determined in particular that this enhancement of the pressure of oxygen and/or hydrogen with overpressure makes it possible to save approximately 45% of the consumption of liquid nitrogen (saving of electrical energy consumed to produce liquid nitrogen ) for an installation producing 25 tons of hydrogen per day to be cooled from 300K to 85K.
  • the oxygen circuit 190 may comprise several oxygen compressors 12 arranged in series upstream of the system 13 for expanding the oxygen flow.
  • the oxygen flow expansion system comprises a plurality of expansion turbines 13 and each of the compressors 12 is coupled to a rotating shaft 14 to which at least one turbine 13 is also coupled.
  • all or part of these elements could be integrated into a (for example single) turbomachine having n turbines and n compressors mounted on either side of the same shaft.
  • the oxygen circuit 190 comprises as many compressors 12 arranged in series upstream as expansion turbines 13 arranged in series downstream, the compressors and turbines 13 are coupled in pairs on rotating shafts 14 respective.
  • the first turbine (upstream) is coupled with the first compressor (upstream), the second turbine with the second compressor etc...
  • the invention is not limited to this configuration comprising only “turboboosters”, it is possible to provide “turboboosters” of this type and, in addition, one or more conventional turbines (idem for the system of compression/expansion of the aforementioned hydrogen flow).
  • an oxygen cooling system 21 is provided at the outlet of at least part of the compressors 12.
  • a cooler cooling exchanger in exchange with a fluid such as air or water
  • a fluid such as air or water
  • the set of heat exchanger(s) 4, 5, 6, 7, 8 thus preferably comprises several heat exchangers arranged in series and in heat exchange with the circuit 3 of hydrogen to be cooled between the ends upstream and downstream of the hydrogen circuit 3 to be cooled.
  • the oxygen flow passes through the heat exchangers 4, 5, 6, 7 respectively in series from upstream to downstream.
  • This passage through the exchangers thus forms a cooling or heating of the oxygen flow after each expansion stage (cooling or heating according to the pressure conditions of the oxygen flow and the temperature of the exchanger 4, 5, 6, 7 concerned).
  • the [Fig. 2] represents another possible embodiment which differs from that of [Fig. 1] essentially in that it additionally comprises a system for enhancing the pressure of the oxygen flow.
  • the same elements are not described again and are designated by the same reference numerals (idem for the following embodiments).
  • the compressors 19 of the hydrogen flow are located upstream of the first group of pre-cooling exchangers 4, 5, 6, 7 (for example at ambient temperature) and the turbines 18 in the pre-cooling part (Heat exchange at the outlet of the turbines 18 with these heat exchangers 4, 5, 6, 7 for precooling).
  • This arrangement is not limiting.
  • the embodiment of [FIG. 3] differs from that of [Fig. 2] essentially in that the compressors 19 of the hydrogen flow are located downstream of the first group of pre-cooling exchangers 4, 5, 6 and upstream of the second group of cooling exchangers 8 (in the part of the circuit 3 where the hydrogen is already pre-ref stiffened). That is to say, the compression of the hydrogen stream is carried out after precooling and before final cooling. this allows to obtain a higher compression rate on a very light H2 molecule (molar mass of approximately 2 g/mol).
  • the expansion turbines 18 are interposed in the cooling part (exchange of heat at the outlet of the turbines 18 with these heat exchangers 8 of the second group).
  • FIG. 3 illustrates the optional possibility (and which can be applied to other embodiments) of providing a cooling 26 of the flow of oxygen leaving the electrolyser 2 upstream of the first compressor 12.
  • the compressors 19 of the hydrogen flow are located upstream of the first group of pre-cooling exchangers 4, 5, 6, 7 and the turbines in the pre-cooling part (heat exchange at the outlet of the turbines 18 with these heat exchangers 4, 5, 6,
  • the compression of the hydrogen stream is carried out after pre-cooling and before cooling.
  • the expansion turbines 18 are interposed in the cooling part (exchange of heat at the outlet of the turbines 18 with these heat exchangers
  • FIG. 4 differs from that of [Fig. 3] essentially in that the compressors 19 of the hydrogen flow are located upstream of the first group of exchangers 4, 5, 6 for pre-cooling. That is to say that the compression of the hydrogen stream is carried out before precooling (at room temperature for example) while the expansion is carried out in the cold cooling part (after pre-cooling).
  • the second refrigeration device 10 may comprise one or more turbines 16 in series and/or in parallel.
  • the flows upstream and downstream of the compressor(s) 15 can exchange heat against the current in the same heat exchanger 150.
  • the flow(s) leaving the turbine(s) can optionally exchange in the exchanger(s) 8 of heat of the second group (representation in dotted lines).
  • the turbines are preferably of the radial and centripetal technology type. This allows pooling of expansion technologies throughout the liquefaction installation.
  • the compressors are preferably of the centrifugal type.
  • the oxygen circuit 190 produces liquefied oxygen downstream which is recovered.
  • all or part of the flow of oxygen can pass through heat exchangers separate from the exchangers 4, 5, 6, 7, 8 in exchange with the flow of hydrogen.
  • compressors or turbines may not be coupled to a shaft on which is also coupled another wheel of a turbine (or respectively of a compressor). That is to say that all turbines (or compressors) are not necessarily coupled to the same shaft as a compressor and vice versa. Similarly, more than two wheels (compressors and/or turbines) can be coupled to the same shaft.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Emergency Medicine (AREA)
  • Health & Medical Sciences (AREA)
  • Separation By Low-Temperature Treatments (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)

Abstract

Installation de production d'hydrogène à température cryogénique, notamment d'hydrogène liquéfié, comprenant un électrolyseur (2) muni d'une sortie d'oxygène et d'une sortie d'hydrogène, un circuit (3) d'hydrogène à refroidir comprenant une extrémité amont reliée à la sortie d'hydrogène et une extrémité aval destinée à être reliée à un organe (23) de collecte de l'hydrogène refroidi et/ou liquéfié, l'installation (1) comprenant un ensemble d'échangeur(s) (4, 5, 6, 7, 8) de chaleur en échange thermique avec le circuit (3) d'hydrogène à refroidir, l'installation (1) comprenant au moins un dispositif (9, 10) de refroidissement en échange thermique avec au moins une partie de l'ensemble d'échangeur(s) (4, 5, 6, 7, 8) de chaleur, le circuit (3) d'hydrogène à refroidir comprenant un système (18) de détente du flux d'hydrogène et au moins un compresseur (19) de l'hydrogène en amont du système (18) de détente du flux d'hydrogène, le système (18) de détente du flux d'hydrogène comprenant au moins une turbine (18) de détente, caractérisé en ce que ladite au moins une turbine (18) de détente et ledit au moins un compresseur (19) sont accouplés à un même arbre (20) rotatif pour transférer du travail de détente du flux d'hydrogène sous pression au compresseur (19) pour comprimer le flux d'hydrogène en amont de la turbine.

Description

Installation et procédé de production d'hydrogène à température cryogénique
L' invention concerne une installation et un procédé de production d'hydrogène à température cryogénique.
L' invention concerne plus particulièrement une installation de production d'hydrogène à température cryogénique, notamment d'hydrogène liquéfié, comprenant un électrolyseur muni d'une sortie d'oxygène et d'une sortie d'hydrogène, un circuit d'hydrogène à refroidir comprenant une extrémité amont reliée à la sortie d'hydrogène et une extrémité aval destinée à être reliée à un organe de collecte de l'hydrogène refroidi et/ou liquéfié, l'installation comprenant un ensemble d' échangeur ( s ) de chaleur en échange thermique avec le circuit d'hydrogène à refroidir, l'installation comprenant au moins un dispositif de refroidissement en échange thermique avec au moins une partie de l'ensemble d' échangeur ( s ) de chaleur, le circuit d'hydrogène à refroidir comprenant un système de détente du flux d'hydrogène et au moins un compresseur de l'hydrogène en amont du système de détente du flux d'hydrogène, le système de détente du flux d'hydrogène comprenant au moins une turbine de détente.
Les deux moyens principaux de production d'hydrogène (molécule de dihydrogène H2 ) sont : 1 ' électrolyse et la production chimique par vapo-ref ormage de méthane (SMR) .
Dans le cas de l' électrolyse, la molécule d'eau est scindée, cela produit de l'hydrogène d'une part et de l'oxygène (02) d'autre part. Les technologies d ' électrolyse sont composées de trois grandes familles : « DEM » (Proton Exchange Membrane) , « Alcalin » et « Oxyde Solide » (« Solid Oxide ») .
Ces technologies fonctionnent de manière optimisée à une pression proche de la pression atmosphérique pour des raisons de performance énergétique et d'efficacité de la réaction chimique de craquage de la molécule d'eau.
La technologie PEM permet de fonctionner à des pressions importantes sans impacter significativement la performance énergétique de 1 ' électrolyse . Par exemple, des électrolyseurs de plusieurs mégawatts de puissance peuvent produire de l'hydrogène et de l'oxygène à 30 bar abs à température ambiante dans l'état de l'art.
Bien que décrite par exemple dans les documents US4530744 ou US10351962, la valorisation de l'oxygène produit sous haute pression n'est généralement pas réalisée industriellement.
Ces solutions connues sont cependant peu intéressantes industriellement dans des processus de liquéfaction d'hydrogène car peu efficaces énergétiquement.
Un but de la présente invention est de pallier tout ou partie des inconvénients de l'art antérieur relevés ci-dessus.
A cette fin, l'installation selon l'invention, par ailleurs conforme à la définition générique qu'en donne le préambule ci- dessus, est essentiellement caractérisée en ce que ladite au moins une turbine de détente et ledit au moins un compresseur sont accouplés à un même arbre rotatif pour transférer du travail de détente du flux d'hydrogène sous pression au compresseur pour comprimer le flux d'hydrogène en amont de la turbine.
Une telle installation permet de valoriser de façon efficace la pression de l'hydrogène (notamment à haute pression) produit par un électrolyseur pour pré-ref roidir ou refroidir un flux d'hydrogène jusqu'à une température cryogénique.
Cette solution permet de diminuer les dépenses d' investissement d'une telle installation, notamment en supprimant ou réduisant le refroidissement jusqu'à 80 à 130K de l'hydrogène à liquéfier. Ceci permet par exemple de réduire ou de s'affranchir d'un système de pré-refroidissement à azote liquide avec station de compression azote tel que dans l'art antérieur.
La solution permet de diminuer significativement les dépenses d'exploitation correspondantes d'une telle installation (par exemple moins 30% sur l'énergie spécifique, par exemple les kWh/kg de H2 liquéfié) . Par ailleurs, des modes de réalisation de l'invention peuvent comporter l'une ou plusieurs des caractéristiques suivantes : l'ensemble comprenant la turbine de détente et le compresseur accouplés à un même arbre rotatif est un système mécanique passif, c'est-à-dire qu'il ne comporte pas de moteur d'entraînement de l'arbre rotatif autre que le flux d'hydrogène ou un système mécanique actif, c'est-à-dire comportant un moteur d'entraînement de l'arbre rotatif, le circuit d'hydrogène comprend plusieurs compresseurs de l'hydrogène disposés en série et/ou en parallèle en amont du système de détente du flux d'hydrogène, le système de détente du flux d'hydrogène comprenant une pluralité de turbines de détente disposées en série et/ou en parallèle et en ce que chacun des compresseurs est accouplé à un arbre rotatif sur lequel est accouplé également au moins une turbine, le circuit d'hydrogène à refroidir comprend plusieurs compresseurs disposés en série en amont du système de détente du flux d'hydrogène, le système de détente du flux d'hydrogène comprenant une pluralité de turbines de détente disposées en série et en ce que les compresseurs et turbines sont accouplés par paires sur des arbres rotatifs respectifs, les turbines sont disposées en série dans le circuit d'hydrogène à refroidir, le circuit d'hydrogène à refroidir comprenant des portions d' échange thermiques respectives distinctes entre au moins une partie de l'ensemble d' échangeur ( s ) de chaleur et le flux d'hydrogène en sortie de chaque turbine, l'ensemble d' échangeur ( s ) de chaleur comprend plusieurs échangeurs de chaleurs disposés en série et en échange thermique avec le circuit d'hydrogène à refroidir entre les extrémités amont et aval du circuit d'hydrogène à refroidir, l'installation comporte un premier dispositif de refroidissement et un second dispositif de refroidissement en échange thermique avec le circuit d'hydrogène à refroidir, le premier dispositi f de refroidissement étant en échange de chaleur avec un premier groupe d' échangeur ( s ) de chaleur de l ' ensemble d' échangeur ( s ) de chaleur, le second dispos iti f de refroidissement étant en échange de chaleur avec un second groupe d' échangeurs de chaleur, le premier groupe d' échangeur ( s ) de chaleur étant situé en amont du second groupe d' échangeurs de chaleur dans le circuit d' hydrogène à refroidir, et en ce que le premier dispositi f de refroidissement comprend le système de détente du flux d' hydrogène pour assurer un pré-refroidis sement du circuit d' hydrogène avant le refroidissement supplémentaire réalisé par le second dispositi f de refroidissement , le second dispositi f de refroidissement comprend un réfrigérateur à cycle de réfrigération d' un gaz de cycle , dans lequel le réfrigérateur du second dispositi f de refroidissement comprend, disposés en série dans un circuit de cycle : un mécanisme de compression du second gaz de cycle , un organe de refroidissement du second gaz de cycle , un mécanisme de détente du second gaz de cycle et un organe de réchauf fage du second gaz de cycle détendu, le système de détente du flux d' hydrogène est situé sur une portion du circuit d' hydrogène à refroidir en échange thermique avec le premier groupe d' échangeur ( s ) de chaleur, le système de détente du flux d' hydrogène est situé sur une portion du circuit d' hydrogène à refroidir en échange thermique avec le second groupe d' échangeur ( s ) de chaleur, l ' installation comporte un système de refroidissement de l ' hydrogène en sortie d' au moins une partie des compresseurs , l ' installation comporte un circuit d' oxygène comprenant une extrémité amont reliée à la sortie d' oxygène et une extrémité aval reliée à un système de récupération, le circuit d' oxygène comprend un système de détente du flux d' oxygène et au moins un échange de chaleur entre le flux d' oxygène détendu et le circuit d' hydrogène à refroidir, le circuit d' oxygène comprenant au moins un compresseur de l'oxygène disposé en amont du système de détente du flux d'oxygène, le système de détente du flux d'oxygène comprenant une turbine de détente, ladite turbine de détente et ledit compresseur étant accouplés à un même arbre rotatif pour transférer du travail de détente du flux d'oxygène sous pression au compresseur pour comprimer le flux d'oxygène en amont de la turbine, l'ensemble turbine de détente et compresseur accouplés à un même arbre rotatif est un système mécanique passif, c'est-à-dire qu'il ne comporte pas de moteur d'entraînement de l'arbre rotatif autre que le flux d'oxygène ou un système mécanique actif, c'est- à-dire comportant un moteur d'entraînement de l'arbre rotatif, le circuit d'oxygène comprend plusieurs compresseurs de l'oxygène disposés en série et/ou en parallèle en amont du système de détente du flux d'oxygène, le système de détente du flux d'oxygène comprenant une pluralité de turbines de détente, chacun des compresseurs étant accouplé à un arbre rotatif sur lequel est accouplé également au moins une turbine, le circuit d'oxygène comprend plusieurs compresseurs disposés en série en amont du système de détente du flux d'oxygène, le système de détente du flux d'oxygène comprenant une pluralité de turbines de détente, les compresseurs et turbines étant accouplés par paires sur des arbres rotatifs respectifs les turbines sont disposées en série dans le circuit d'oxygène, le circuit d'oxygène comprenant des portions d'échange thermiques respectives distinctes entre l'ensemble d' échangeur ( s ) de chaleur et le flux d'oxygène en sortie de chaque turbine, l'installation comporte un système de refroidissement de l'oxygène en sortie d'au moins une partie des compresseurs, l'installation comprend un troisième dispositif de refroidissement en échange thermique avec au moins une partie du premier groupe d' échangeur ( s ) de chaleur. L' invention concerne également un procédé de production d'hydrogène à température cryogénique, notamment d'hydrogène liquéfié, utilisant une installation selon l'une quelconque des caractéristiques précédentes, le procédé comprenant une étape de fourniture, par 1 ' électrolyseur , d'un flux d'hydrogène à l'extrémité amont du circuit d'hydrogène, par exemple à une pression comprise entre 15 et 150 bar, une étape de fourniture, par 1 ' électrolyseur , d'un flux d'oxygène à l'extrémité amont du circuit d'oxygène, par exemple à une pression comprise entre 15 et 150 bar, le procédé comprenant une étape de compression puis de détente du flux d'hydrogène dans lequel la détente est réalisée par au moins une turbine accouplée à un arbre, l'arbre étant également accouplé à au moins un compresseur assurant la compression du flux d'hydrogène avant sa détente ;
L'invention peut concerner également tout dispositif ou procédé alternatif comprenant toute combinaison des caractéristiques ci- dessus ou ci-dessous dans le cadre des revendications.
D' autres particularités et avantages apparaîtront à la lecture de la description ci-après, faite en référence aux figures dans lesquelles :
[Fig. 1] représente une vue schématique et partielle illustrant un premier exemple de réalisation de structure et de fonctionnement d'une installation selon l'invention,
[Fig. 2] représente une vue schématique et partielle illustrant un deuxième exemple de réalisation de structure et de fonctionnement d'une installation selon l'invention,
[Fig. 3] représente une vue schématique et partielle illustrant un troisième exemple de réalisation de structure et de fonctionnement d'une installation selon l'invention,
[Fig. 4] représente une vue schématique et partielle illustrant un quatrième exemple de réalisation de structure et de fonctionnement d'une installation selon l'invention. L'installation 1 de production d'hydrogène représentée est un dispositif pour produire de l'hydrogène à température cryogénique, notamment de l'hydrogène liquéfié.
Cette installation 1 comprend un électrolyseur 2, de préférence de type « PEM » (à membrane échangeuse de proton) fonctionnant à haute pression, c'est-à-dire produisant de l'hydrogène et de l'oxygène gazeux à des pressions comprises entre 15 et 150 bar, par exemple égales à 30bar.
L' électrolyseur 2 possède une sortie de d'oxygène et une sortie d' hydrogène .
L'installation 1 comprend un circuit 3 (ou conduite (s) ) d'hydrogène à refroidir ayant une extrémité amont reliée à la sortie d'hydrogène de 1 ' électrolyseur 2 et une extrémité aval destinée à être reliée à un organe 23 de collecte de l'hydrogène refroidi et/ou liquéfié (stockage et/ou application utilisatrice par exemple) .
L'installation 1 comprend un ensemble d' échangeur ( s ) 4, 5, 6, 7, 8 de chaleur en échange thermique avec le circuit 3 d'hydrogène à refroidir, dans le but d'atteindre une température propice à la liquéfaction de l'hydrogène.
Comme illustré, au moins un échangeur de chaleur 25 distinct peut être prévu en sortie de 1 ' électrolyseur 2 pour refroidir le flux d'hydrogène (par exemple par échange thermique avec un caloporteur tel que de l'eau ou de l'air par exemple) pour ramener ce dernier à une température proche de la température ambiante. La réaction électrochimique de production de l'hydrogène par électrolyse conduit généralement à une élévation de température de quelques dizaines de degrés.
L'installation 1 comporte en outre au moins un dispositif 9, 10 de refroidissement en échange thermique avec au moins une partie de l'ensemble d' échangeur ( s ) 4, 5, 6, 7, 8 de chaleur. De plus, l'installation 1 peut comprendre un circuit 190 d'oxygène (au moins une conduite) comprenant une extrémité amont reliée à la sortie d'oxygène de 1 ' électrolyseur 2 et une extrémité aval. L'extrémité aval peut être reliée par exemple à un dispositif 27 de collecte et/ou d'utilisation de l'oxygène. Ce dispositif de collecte peut comprendre par exemple : un système de liquéfaction de l'oxygène, un système de (pré)- ref roidissement de l'oxygène, un système de compression de l'oxygène et de conditionnement dans des bouteille ou stockages sous pression, un système de combustion, un système de mise à 1 ' atmosphère...
Comme illustré, le circuit 3 d'hydrogène à refroidir comprend un système 18 de détente du flux d'hydrogène et au moins un compresseur 19 de l'hydrogène en amont du système 18 de détente du flux d'hydrogène. De préférence, l'ensemble (l'intégralité) du flux d'hydrogène à refroidir /liquéfié est détendu dans le système de détente à turbine (s) 18. C'est-à-dire que tout le flux à refroidir /liquéfié est détendu dans la ou les turbines 18 et ce flux détendu est refroidi par le dispositif de refroidissement dans l'ensemble d' échangeur ( s ) pour être par exemple liquéfié. Le système 18 de détente du flux d'hydrogène comprend au moins une turbine 18 de détente du flux d'hydrogène et ladite turbine 18 de détente et ledit compresseur 19 sont accouplés à un même arbre 20 rotatif pour transférer du travail de détente du flux d'hydrogène sous pression au compresseur 19 pour comprimer le flux d'hydrogène en amont de la turbine 18. L'ensemble turbine 18 de détente et compresseur 19 accouplés à un même arbre 20 rotatif est un système mécanique de préférence passif, c'est-à-dire qu'il ne comporte pas de moteur d'entraînement de l'arbre 20 rotatif autre que le flux d' hydrogène . Comme illustré, le circuit 3 d'hydrogène comprend de préférence plusieurs compresseurs 19 de l'hydrogène disposés en série en amont du système 18 de détente du flux d'hydrogène.
Le système de détente du flux d'hydrogène comprend de préférence autant de turbines 18 de détente disposées en série, chacun des compresseurs 19 étant accouplé à un arbre 20 rotatif sur lequel est accouplé également au moins une turbine 18. Par exemple, les compresseurs 19 et turbines sont associés par paires sur des arbres 20 rotatifs respectifs distincts (par exemple premier compresseur 19 amont accouplé avec la première turbine 20 amont etc...) .
Comme illustré, en sortie de chaque turbine 18, le flux d'hydrogène détendu peut éventuellement passer dans respectivement des échangeurs de chaleur distincts d'amont en aval du premier groupe d' échangeur ( s ) de chaleur 4, 5, 6, 7, pour assurer un pré-refroidissement de l'hydrogène.
Ces étages de détente 18 permettent de valoriser la pression du flux d'hydrogène (avec refroidissement ( s ) intermédiaire ( s ) ou non) . Ceci permet de remplacer ou suppléer le prérefroidissement décrit ci-dessus.
Ce froid apporté sans consommation énergétique permet de réduire le travail à fournir pour refroidir l'hydrogène jusqu'à sa température cible (par exemple via un second dispositif 10 de refroidissement comme décrit plus en détail ci-après) .
Bien entendu, ce mode de détente et de valorisation de la pression du flux d'hydrogène n'est pas limité à cet exemple. Ainsi, la détente de l'hydrogène depuis la température ambiante jusqu'à une température déterminée de pré-refroidissement pourrait être réalisée en plusieurs étages de détente radiaux ou bien en un seul étage de détente, par exemple via un détendeur volumétrique, notamment pour réduire les coûts. Ce pré-refroidissement de l'hydrogène peut être complété en aval du circuit 3 par un second dispositif 10 de refroidissement en échange thermique avec le circuit 3 d'hydrogène à refroidir.
Comme illustré, par exemple, le premier dispositif 9 de refroidissement précité (détente de l'hydrogène avec précompression) est mis en échange de chaleur avec un premier groupe d' échangeur ( s ) de chaleur 4, 5, 6, 7 en amont de l'ensemble d' échangeur ( s ) 4, 5, 6, 7, 8 de chaleur.
Le second dispositif 10 de refroidissement peut quant à lui être mis en échange de chaleur avec un second groupe d'échangeurs de chaleur 8 en aval (symbolisé ici par un seul échangeur de chaleur mais plusieurs échangeurs de chaleur en série et/ou en parallèle peuvent être envisagés) .
Après ce pré-refroidissement du circuit 3 d'hydrogène à une température de 80 à 100K par exemple, le second dispositif 10 de refroidissement assure un refroidissement supplémentaire de l'hydrogène, par exemple à une température de l'ordre de 20K par exemple, en vue de le liquéfier.
Comme schématisé, le second dispositif 10 de refroidissement peut comprendre un réfrigérateur à cycle de réfrigération d'un gaz de cycle (comprenant par exemple de l'hydrogène ou de l'hélium, ou du néon ou une combinaison optimisée de ces trois derniers) pour améliorer le rendement du dispositif 10 de refroidissement final de l'hydrogène. Classiquement, ce réfrigérateur du second dispositif 10 de refroidissement peut comprendre, disposés en série dans un circuit de cycle : un mécanisme 15 de compression du second gaz de cycle (un ou plusieurs compresseurs, un organe 24 de refroidissement du second gaz de cycle ( échangeur ( s ) de chaleur par exemple) , un mécanisme 16 de détente du second gaz de cycle (turbine (s) et/ou vanne (s) de détente) et un organe 8 de réchauffage du second gaz de cycle détendu (échangeurs de chaleur et notamment échangeur (s) de chaleur en échange avec le flux d'hydrogène à refroidir) .
Comme illustré à la [Fig. 1] , l'installation 1 peut comprendre un troisième dispositif 17 de refroidissement en échange thermique au moins une partie des échangeurs de chaleur 4, 5, 6, 7. Ce troisième dispositif 17 de refroidissement (facultatif) peut comprendre une boucle de fluide de refroidissement (azote liquide, gaz naturel liquéfié, oxygène ou autre par exemple) circulant à contre-courant) qui fournit du froid au(x) échangeur (s) 4, 5, 6, 7 de chaleur pour assurer également une partie du pré-refroidissement de l'hydrogène.
Le pré-refroidissement réalisé via la détente de l'hydrogène comme décrit ci-dessus peut notamment permettre de réduire (notamment diviser par deux) la consommation d'un tel fluide de refroidissement (type azote liquide ou à cycle de mélange de gaz par exemple) .
Comme illustré à la [Fig. 2] , le circuit 190 d'oxygène peut comprendre facultativement lui aussi un système 13 de détente du flux d'oxygène et au moins un échange de chaleur entre le flux d'oxygène détendu (et donc refroidi par la détente) et le circuit 3 d'hydrogène à refroidir. Cet échange de chaleur peut notamment être utilisé pour pré-ref roidir l'hydrogène dans son processus de réfrigération et/ou liquéfaction.
Comme précédemment, le circuit 190 d'oxygène peut comprendre un moins un compresseur 12 de l'oxygène disposé en amont du système 13 de détente du flux d'oxygène. Le système 13 de détente du flux d'oxygène comprend au moins une turbine 13 de détente. Ladite turbine 13 de détente de l'oxygène et ledit compresseur 12 amont de l'oxygène sont accouplés à un même arbre 14 rotatif pour transférer du travail de détente du flux d'oxygène sous pression au compresseur 12 pour comprimer le flux d'oxygène en amont de la turbine 13 de détente. L'ensemble comprenant la turbine 13 de détente et le compresseur 12 accouplés à un même arbre 14 rotatif est de préférence un système mécanique passif, c'est-à-dire qu'il ne comporte pas de moteur d'entraînement de l'arbre 14 rotatif autre que le flux d'oxygène. Ainsi, la turbine 13 de détente est freinée mécaniquement par le compresseur 12 accouplé sur le même arbre 14. Bien entendu, ceci n'est pas limitatif, il pourrait ainsi être envisagé de prévoir un système avec moteur dont l'arbre et accouplé aux turbine (s) et compresseur ( s ) (pour améliorer le rendement de l'installation si c'est approprié) .
Comme pour l'hydrogène, ce transfert de travail du flux d'oxygène réalise une « suralimentation » (« turbo boosting ») qui consiste donc à intégrer une ou plusieurs turbines 13 de détente cryogénique pour lesquelles le fluide de travail est l'oxygène précédemment produit par 1 ' électrolyseur 2. Le système de freinage de ces turbines est un ou plusieurs compresseurs 12 accouplés sur le même arbre 14. Ceci permet d'injecter le travail de détente de ce flux de gaz comme surpresseur du flux en amont à température ambiante.
Comme illustré, pour transférer ces frigories produites au flux d'hydrogène, il est possible d'intégrer dans le ou les échangeurs 4, 5, 6, 7 des passages spécifiques, indépendants du flux principal d'hydrogène, pour permettre à l'oxygène refroidi d'échanger des f rigories/calories avec l'hydrogène à refroidir.
L'intégration du flux d'oxygène détendu dans la batterie d'échangeurs de chaleur 4, 5, 6, 7 du système de réfrigération/liquéf action de l'hydrogène permet notamment de réduire son volume. Les coûts sont également réduits en mutualisant les lignes d'échange thermique dans un seul et même équipement. De plus, il est possible d'utiliser un caloporteur intermédiaire typiquement inerte, hélium, azote argon par exemple afin de ne pas risquer de mettre en contact dans un même équipement de l'hydrogène et de l'oxygène. Par exemple, l'hydrogène est refroidi jusqu'à une température cible comprise autour de 20K par exemple. Pour cela, le flux d'hydrogène peut être pré-refroidi entre la température en sortie de 1 ' électrolyseur jusqu'à une température comprise entre 220 et 90K et par exemple de l'ordre de 100K.
Avant détente (en aval des compresseurs 12) l'oxygène peut par exemple être amené à une pression comprise entre 15 et 150 et à une température proche de la température ambiante, grâce des échangeurs de refroidissement inter-étage de compression (puis terminal) qui disposent d'une source froide de type eau industrielle. Tout ou partie de ce pré-refroidissement peut être réalisé via l'oxygène détendu comme décrit précédemment.
Les inventeurs ont déterminé notamment que cette valorisation de la pression d'oxygène et/ou d'hydrogène avec surpression permet d'économiser environ 45% de la consommation d'azote liquide (économie d'énergie électrique consommée pour produire de l'azote liquide) pour une installation produisant 25 tonnes d'hydrogène par jour devant être refroidi de 300K à 85K.
Bien entendu cet avantage subsiste en cas d'utilisation d'un autre dispositif de pré-refroidissement ( ref roidisseur à cycle d'azote par exemple) .
Dans le cas où la pression du flux d'oxygène à la sortie d' électrolyseur 2 est de l'ordre de 70 bar, on peut atteindre une économie sur les dépenses d'exploitation de l'ordre de 50 à 70% de la fonction pré-refroidissement du flux d'hydrogène.
Comme illustré, le circuit 190 d'oxygène peut comprendre plusieurs compresseurs 12 d'oxygène disposés en série en amont du système 13 de détente du flux d'oxygène. Le système de détente du flux d'oxygène comprend quant à lui une pluralité de turbines 13 de détente et chacun des compresseurs 12 est accouplé à un arbre 14 rotatif sur lequel est accouplée également au moins une turbine 13. Par exemple tout ou partie de ces éléments pourrait être intégrés dans une (par exemple unique) turbomachine possédant n turbines et n compresseurs montés de part et d'autre d'un même arbre.
Dans l'exemple non limitatif illustré, le circuit 190 d'oxygène comprend autant de compresseurs 12 disposés en série en amont que de turbines 13 de détente disposées en série en aval, les compresseurs et turbines 13 sont accouplés par paires sur des arbres 14 rotatifs respectifs. Par exemple la première turbine (amont) est accouplée avec le premier compresseur (en amont) , la seconde turbine avec le second compresseur etc...
Bien entendu, l'invention n'est pas limitée à cette configuration ne comprenant que des "turboboosters", il est possible de prévoir des « turboboosters » de ce type et, en plus, une ou des turbines classiques (idem pour le système de compression/détente du flux d'hydrogène précité) .
De préférence, un système 21 de refroidissement de l'oxygène est prévu en sortie d'au moins une partie des compresseurs 12. Par exemple, un ref roidisseur (échangeur de refroidissement en échange avec un fluide tel que l'air ou l'eau) peut être interposé à la sortie de chaque compresseur afin d'améliorer le rendement isotherme de chaque étage de compression.
Comme pour le mode de réalisation la [Fig. 1] , l'ensemble d' échangeur ( s ) 4, 5, 6, 7, 8 de chaleur comprend ainsi de préférence plusieurs échangeurs de chaleur disposés en série et en échange thermique avec le circuit 3 d'hydrogène à refroidir entre les extrémités amont et aval du circuit 3 d'hydrogène à refroidir .
De plus, de préférence, après la sortie des turbines 13 en série, le flux d'oxygène passe dans respectivement les échangeurs 4, 5, 6, 7 de chaleur en série d'amont vers l'aval. Ce passage dans les échangeurs forme ainsi, un refroidissement ou un réchauffage du flux d'oxygène après chaque étage de détente (refroidissement ou réchauffage selon les conditions de pression du flux d'oxygène et de la température de l'échangeur 4, 5, 6, 7 concerné) . En effet, lorsque la chute de la pression du flux d'oxygène aux bornes de la turbine est relativement importante, l'échange thermique avec l'échangeur thermique 4, 5, 6, 7 situé en sortie va avoir tendance à réchauffer le flux (dans un but d'optimisation thermodynamique du cycle de réfrigération du flux d'hydrogène) tandis que, au contraire, en cas de chute de pression relativement plus basse, le passage dans l'échangeur thermique 4, 5, 6, 7 situé en sortie va avoir tendance à refroidir le flux (comme représenté sur la figure 2) .
Ainsi, la [Fig. 2] représente un autre mode de réalisation possible qui se distingue de celui de la [Fig. 1] essentiellement en ce qu' il comporte en plus un système de valorisation de la pression du flux d'oxygène. Par souci de concision, les mêmes éléments ne sont pas décrits à nouveau et sont désignés par les mêmes références numériques (idem pour les modes de réalisation suivants) .
Dans les modes de réalisation des [Fig. 1] et [Fig. 2] , les compresseurs 19 du flux d'hydrogène sont situés en amont du premier groupe d'échangeurs 4, 5, 6, 7 de pré-refroidissement (par exemple à température ambiante) et les turbines 18 dans la partie de pré-refroidissement (échange de chaleur en sortie des turbines 18 avec ces échangeurs de chaleur 4, 5, 6, 7 de prérefroidissement) . Cet agencement n'est pas limitatif.
Ainsi, le mode de réalisation de la [Fig. 3] se distingue de celui de la [Fig. 2] essentiellement en ce que les compresseurs 19 du flux d'hydrogène sont situés en aval du premier groupe d'échangeurs 4, 5, 6 de pré-refroidissement et en amont du second groupe d'échangeurs 8 de refroidissement (dans la partie du circuit 3 où l'hydrogène est déjà pré-ref roidi ) . C'est-à-dire que la compression du flux d'hydrogène est réalisée après prérefroidissement et avant refroidissement final. Ceci permet d'obtenir un taux de compression plus conséquent sur une molécule H2 très légère (masse molaire d'environ 2 g/mol) . De plus, les turbines 18 de détente sont intercalées dans la partie de refroidissement (échange de chaleur en sortie des turbines 18 avec ces échangeurs de chaleur 8 du deuxième groupe) .
A noter également que le mode de réalisation de la [Fig. 3] illustre la possibilité facultative (et pouvant s'appliquer aux autres modes de réalisation) de prévoir un refroidissement 26 du flux d'oxygène sortant de 1 ' électrolyseur 2 en amont du premier compresseur 12.
Dans le mode de réalisation de la [Fig. 2] les compresseurs 19 du flux d'hydrogène sont situés en amont du premier groupe d'échangeurs 4, 5, 6, 7 de pré-refroidissement et les turbines dans la partie de pré-refroidissement (échange de chaleur en sortie des turbines 18 avec ces échangeurs de chaleur 4, 5, 6,
7 de pré-refroidissement) .
Ainsi, dans le mode de réalisation de la [Fig. 3] la compression du flux d'hydrogène est réalisée après pré-refroidissement et avant refroidissement. De plus, les turbines 18 de détente sont intercalées dans la partie de refroidissement (échange de chaleur en sortie des turbines 18 avec ces échangeurs de chaleur
8 du deuxième groupe) .
Le mode de réalisation de la [Fig. 4] se distingue de celui de la [Fig. 3] essentiellement en ce que les compresseurs 19 du flux d'hydrogène sont situés en amont du premier groupe d'échangeurs 4, 5, 6 de pré-refroidissement. C'est-à-dire que la compression du flux d'hydrogène est réalisée avant prérefroidissement (à température ambiante par exemple) tandis que la détente est réalisée en partie froide de refroidissement (après pré-refroidissement) .
Comme schématisé à la [Fig. 4] , (ceci peut s'appliquer aux autres modes de réalisation) , le second dispositif 10 de réfrigération peut comporter une ou plusieurs turbines 16 en série et/ou en parallèle. De plus, les flux en amont et en aval du ou des compresseurs 15 peuvent échanger thermiquement à contre-courant dans un même échangeur de chaleur 150. Le ou les flux en sortie de la ou des turbines peuvent éventuellement échanger dans le ou les échangeurs 8 de chaleur du second groupe (représentation en pointillés ) .
Bien entendu, bien que représenté aux [Fig. 3] et Fig. 4] , le système de compression et de détente du flux d'oxygène pourrait être omis.
Les turbines sont de préférence du type de technologie radiale et centripète. Ceci permet une mutualisation des technologies de détente sur l'ensemble de l'installation de liquéfaction.
Les compresseurs sont de préférence du type centrifuge.
Dans une variante non représentée en détail, le circuit 190 d'oxygène produit en aval de l'oxygène liquéfié qui est récupéré. A cet effet, tout ou partie du flux d' oxgène peut transiter dans des échangeurs de chaleurs distincts des échangeurs 4, 5, 6, 7, 8 en échange avec le flux d'hydrogène.
Bien entendu, certains compresseurs ou turbines peuvent ne pas être accouplé (es) à un arbre sur lequel est accouplé également une autre roue d'une turbine (ou respectivement d'un compresseur) . C'est-à-dire que toutes les turbines (ou compresseurs) ne sont pas forcément accouplé (e) s au même arbre qu'un compresseur et inversement. De même, plus de deux roues (compresseurs et/ou turbines) peuvent être accouplées à un même arbre .

Claims

REVENDICATIONS
1. Installation de production d'hydrogène à température cryogénique, notamment d'hydrogène liquéfié, comprenant un électrolyseur (2) muni d'une sortie d'oxygène et d'une sortie d'hydrogène, un circuit (3) d'hydrogène à refroidir comprenant une extrémité amont reliée à la sortie d'hydrogène et une extrémité aval destinée à être reliée à un organe (23) de collecte de l'hydrogène refroidi et/ou liquéfié, l'installation (1) comprenant un ensemble d' échangeur ( s ) (4, 5, 6, 7, 8) de chaleur en échange thermique avec le circuit (3) d'hydrogène à refroidir, l'installation (1) comprenant au moins un dispositif (9, 10) de refroidissement en échange thermique avec au moins une partie de l'ensemble d' échangeur ( s ) (4, 5, 6, 7, 8) de chaleur, le circuit (3) d'hydrogène à refroidir comprenant un système (18) de détente du flux d'hydrogène et au moins un compresseur (19) de l'hydrogène en amont du système (18) de détente du flux d'hydrogène, le système (18) de détente du flux d'hydrogène comprenant au moins une turbine (18) de détente, caractérisé en ce que ladite au moins une turbine (18) de détente et ledit au moins un compresseur (19) sont accouplés à un même arbre (20) rotatif pour transférer du travail de détente du flux d'hydrogène sous pression au compresseur (19) pour comprimer le flux d'hydrogène en amont de la turbine (18) .
2. Installation selon la revendication 1, caractérisée en ce que l'ensemble comprenant la turbine (18) de détente et le compresseur (19) accouplés à un même arbre (20) rotatif est un système mécanique passif, c'est-à-dire qu'il ne comporte pas de moteur d'entraînement de l'arbre (20) rotatif autre que le flux d'hydrogène ou un système mécanique actif, c'est-à-dire comportant un moteur d'entraînement de l'arbre (20) rotatif.
3. Installation selon la revendication 1 ou 2, caractérisée en ce que le circuit (3) d'hydrogène comprend plusieurs compresseurs (19) de l'hydrogène disposés en série et/ou en parallèle en amont du système (18) de détente du flux d'hydrogène, le système de détente du flux d'hydrogène comprenant une pluralité de turbines (18) de détente disposées en série et/ou en parallèle et en ce que chacun des compresseurs (19) est accouplé à un arbre (20) rotatif sur lequel est accouplé également au moins une turbine (18) .
4. Installation selon l'une quelconque des revendications 1 à 3, caractérisée en ce que le circuit (3) d'hydrogène à refroidir comprend plusieurs compresseurs (19) disposés en série en amont du système (18) de détente du flux d'hydrogène, le système de détente du flux d'hydrogène comprenant une pluralité de turbines (18) de détente disposées en série et en ce que les compresseurs et turbines (18) sont accouplés par paires sur des arbres (20) rotatifs respectifs.
5. Installation selon l'une quelconque des revendications 3 ou 4, caractérisée en ce que les turbines (18) sont disposées en série dans le circuit (3) d'hydrogène à refroidir, le circuit (3) d'hydrogène à refroidir comprenant des portions d'échange thermiques respectives distinctes entre au moins une partie de l'ensemble d' échangeur ( s ) (4, 5, 6, 7) de chaleur et le flux d'hydrogène en sortie de chaque turbine (18) .
6. Installation selon l'une quelconque des revendications 1 à 5, caractérisée en ce que l'ensemble d' échangeur ( s ) (4, 5, 6, 7, 8) de chaleur comprend plusieurs échangeurs de chaleurs disposés en série et en échange thermique avec le circuit (3) d'hydrogène à refroidir entre les extrémités amont et aval du circuit (3) d'hydrogène à refroidir.
7. Installation selon l'une quelconque des revendications 1 à
6, caractérisée en ce qu'elle comporte un premier dispositif (9) de refroidissement et un second dispositif (10) de refroidissement en échange thermique avec le circuit (3) d'hydrogène à refroidir, le premier dispositif (9) de refroidissement étant en échange de chaleur avec un premier groupe d' échangeur ( s ) de chaleur (4, 5, 6, 7) de l'ensemble d' échangeur ( s ) (4, 5, 6, 7, 8) de chaleur, le second dispositif (10) de refroidissement étant en échange de chaleur avec un second groupe d'échangeurs de chaleur (8) , le premier groupe d' échangeur ( s ) de chaleur (4, 5, 6, 7) étant situé en amont du second groupe d'échangeurs de chaleur (8) dans le circuit (3) d'hydrogène à refroidir, et en ce que le premier dispositif (9) de refroidissement comprend le système de détente du flux d'hydrogène pour assurer un pré-refroidissement du circuit (3) d'hydrogène avant le refroidissement supplémentaire réalisé par le second dispositif (10) de refroidissement.
8. Installation selon la revendications 7, caractérisée en ce que le second dispositif (10) de refroidissement comprend un réfrigérateur à cycle de réfrigération d'un gaz de cycle, dans lequel le réfrigérateur du second dispositif (10) de refroidissement comprend, disposés en série dans un circuit de cycle : un mécanisme (15) de compression du second gaz de cycle, un organe (8) de refroidissement du second gaz de cycle, un mécanisme (16) de détente du second gaz de cycle et un organe (8) de réchauffage du second gaz de cycle détendu.
9. Installation selon l'une quelconque des revendications 7 ou 8, caractérisée en ce que le système (18) de détente du flux d'hydrogène est situé sur une portion du circuit (3) d'hydrogène à refroidir en échange thermique avec le premier groupe d' échangeur ( s ) de chaleur (4, 5, 6, 7) .
10. Installation selon l'une quelconque des revendications 7 à 9, caractérisée en ce que le système (18) de détente du flux d'hydrogène est situé sur une portion du circuit (3) d'hydrogène 21 à refroidir en échange thermique avec le second groupe d' échangeur ( s ) de chaleur (8) .
11. Installation selon l'une quelconque des revendications 1 à 10, caractérisée en ce qu'elle comporte un système (22) de refroidissement de l'hydrogène en sortie d'au moins une partie des compresseurs (21) .
12. Installation selon l'une quelconque des revendications 1 à 11, caractérisée en ce qu'elle comporte un circuit (190) d'oxygène comprenant une extrémité amont reliée à la sortie d'oxygène et une extrémité aval (11) reliée à un système de récupération .
13. Installation selon la revendication 12, caractérisée en ce que le circuit (190) d'oxygène comprend un système (13) de détente du flux d'oxygène et au moins un échange de chaleur entre le flux d'oxygène détendu et le circuit (3) d'hydrogène à refroidir, le circuit (190) d'oxygène comprenant au moins un compresseur (12) de l'oxygène disposé en amont du système (13) de détente du flux d'oxygène, le système (13) de détente du flux d'oxygène comprenant une turbine (13) de détente et en ce que ladite turbine (13) de détente et ledit compresseur (12) sont accouplés à un même arbre (14) rotatif pour transférer du travail de détente du flux d'oxygène sous pression au compresseur (12) pour comprimer le flux d'oxygène en amont de la turbine (13) .
14. Installation selon la revendication 13, caractérisée en ce que l'ensemble turbine (13) de détente et compresseur (12) accouplés à un même arbre (14) rotatif est un système mécanique passif, c'est-à-dire qu'il ne comporte pas de moteur d'entraînement de l'arbre (14) rotatif autre que le flux d'oxygène ou un système mécanique actif, c'est-à-dire comportant un moteur d'entraînement de l'arbre (14) rotatif.
15. Installation selon la revendication 13 ou 14, caractérisée en ce que le circuit (9) d'oxygène comprend plusieurs compresseurs (12) de l'oxygène disposés en série et/ou en parallèle en amont du système (13) de détente du flux d'oxygène, le système de détente du flux d'oxygène comprenant une pluralité de turbines (13) de détente et en ce que chacun des compresseurs (12) est accouplé à un arbre (14) rotatif sur lequel est accouplé également au moins une turbine (13) .
16. Installation selon la revendication 14 ou 15, caractérisée en ce que le circuit (9) d'oxygène comprend plusieurs compresseurs (12) disposés en série en amont du système (13) de détente du flux d'oxygène, le système (13) de détente du flux d'oxygène comprenant une pluralité de turbines (13) de détente et en ce que les compresseurs et turbines (13) sont accouplés par paires sur des arbres (14) rotatifs respectifs.
17. Installation selon la revendication 15 ou 16, caractérisée en ce que les turbines (14) sont disposées en série dans le circuit (9) d'oxygène, le circuit (9) d'oxygène comprenant des portions d'échange thermiques respectives distinctes entre l'ensemble d' échangeur ( s ) (4, 5, 6, 7, 8) de chaleur et le flux d'oxygène en sortie de chaque turbine (13) .
18. Installation selon l'une quelconque des revendications 15 à 17, caractérisée en ce qu'elle comporte un système (21) de refroidissement de l'oxygène en sortie d'au moins une partie des compresseurs (12) .
19. Installation selon l'une quelconque des revendications 7 à 10, caractérisée en ce qu'elle comprend un troisième dispositif (17) de refroidissement en échange thermique au moins une partie du premier groupe d' échangeur ( s ) de chaleur (4, 5, 6, 7) .
20. Procédé de production d'hydrogène à température cryogénique, notamment d'hydrogène liquéfié, utilisant une installation (1) selon l'une quelconque des revendications précédentes, le procédé comprenant une étape de fourniture, par 1 ' électrolyseur (2) , d'un flux d'hydrogène à l'extrémité amont du circuit (3) d'hydrogène, par exemple à une pression comprise entre 15 et 150 bar, une étape de fourniture, par 1 ' électrolyseur (2) , d'un flux d'oxygène à l'extrémité amont du circuit (190) d'oxygène, par exemple à une pression comprise entre 15 et 150 bar, le procédé comprenant une étape de compression puis de détente du flux d'hydrogène dans lequel la détente est réalisée par au moins une turbine (18) accouplée à un arbre (20) , l'arbre (20) étant également accouplé à au moins un compresseur (19) assurant la compression du flux d'hydrogène avant sa détente.
PCT/EP2021/079034 2020-11-09 2021-10-20 Installation et procédé de production d'hydrogène à température cryogénique WO2022096262A1 (fr)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US18/036,127 US20230408189A1 (en) 2020-11-09 2021-10-20 Plant and method for producing hydrogen at cryogenic temperature
JP2023521353A JP2023548753A (ja) 2020-11-09 2021-10-20 極低温で水素を製造するためのプラント及び方法
EP21798334.5A EP4241028A1 (fr) 2020-11-09 2021-10-20 Installation et procédé de production d'hydrogène à température cryogénique
KR1020237017377A KR20230104898A (ko) 2020-11-09 2021-10-20 극저온에서 수소를 생성하기 위한 설비 및 방법

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FRFR2011491 2020-11-09
FR2011491A FR3116107B1 (fr) 2020-11-09 2020-11-09 Installation et procédé de production d’hydrogène à température cryogénique

Publications (1)

Publication Number Publication Date
WO2022096262A1 true WO2022096262A1 (fr) 2022-05-12

Family

ID=73793533

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2021/079034 WO2022096262A1 (fr) 2020-11-09 2021-10-20 Installation et procédé de production d'hydrogène à température cryogénique

Country Status (6)

Country Link
US (1) US20230408189A1 (fr)
EP (1) EP4241028A1 (fr)
JP (1) JP2023548753A (fr)
KR (1) KR20230104898A (fr)
FR (1) FR3116107B1 (fr)
WO (1) WO2022096262A1 (fr)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220205714A1 (en) * 2020-12-28 2022-06-30 L'Air Liquide, Société Anonyme pour l'Etude et l'Exploitation des Procédés Georges Claude Method for efficient cold recovery in o2-h2 combustion turbine power generation system

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4530744A (en) 1983-03-10 1985-07-23 Smith Eric M Method and apparatus for the producing of liquid hydrogen
US6138473A (en) * 1998-03-02 2000-10-31 L'air Liquide, Societe Anonyme Pour I'etude Et I'exploitation Des Procedes Georges Claude Station and process for dispensing a reduced-pressure gas
JP2004210597A (ja) * 2003-01-06 2004-07-29 Toshiba Corp 排熱利用水素・酸素システムおよび液体水素の製造方法
JP2007205667A (ja) * 2006-02-03 2007-08-16 Mitsubishi Heavy Ind Ltd 液化水素製造装置
US20170145570A1 (en) * 2014-07-01 2017-05-25 Siemens Aktiengesellschaft Method For Operating An Electrolytic System And Electrolytic System
CN107014151A (zh) * 2017-06-01 2017-08-04 成都深冷液化设备股份有限公司 一种氢气液化的装置及方法
US20180313604A1 (en) * 2015-10-27 2018-11-01 Linde Aktiengesellschaft Hydrogen-neon mixture refrigeration cycle for large-scale hydrogen cooling and liquefaction

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4530744A (en) 1983-03-10 1985-07-23 Smith Eric M Method and apparatus for the producing of liquid hydrogen
US6138473A (en) * 1998-03-02 2000-10-31 L'air Liquide, Societe Anonyme Pour I'etude Et I'exploitation Des Procedes Georges Claude Station and process for dispensing a reduced-pressure gas
JP2004210597A (ja) * 2003-01-06 2004-07-29 Toshiba Corp 排熱利用水素・酸素システムおよび液体水素の製造方法
JP2007205667A (ja) * 2006-02-03 2007-08-16 Mitsubishi Heavy Ind Ltd 液化水素製造装置
US20170145570A1 (en) * 2014-07-01 2017-05-25 Siemens Aktiengesellschaft Method For Operating An Electrolytic System And Electrolytic System
US10351962B2 (en) 2014-07-01 2019-07-16 Siemens Aktiengesellschaft Method for operating an electrolytic system and electrolytic system
US20180313604A1 (en) * 2015-10-27 2018-11-01 Linde Aktiengesellschaft Hydrogen-neon mixture refrigeration cycle for large-scale hydrogen cooling and liquefaction
CN107014151A (zh) * 2017-06-01 2017-08-04 成都深冷液化设备股份有限公司 一种氢气液化的装置及方法

Also Published As

Publication number Publication date
FR3116107B1 (fr) 2022-12-16
FR3116107A1 (fr) 2022-05-13
EP4241028A1 (fr) 2023-09-13
JP2023548753A (ja) 2023-11-21
KR20230104898A (ko) 2023-07-11
US20230408189A1 (en) 2023-12-21

Similar Documents

Publication Publication Date Title
US20120255312A1 (en) Method and System to Produce Electric Power
EP2510292B1 (fr) Procédé et dispositif de refroidissement/liquéfaction à basse température
EP3732743B1 (fr) Ensemble de production d'énergie couplant une pile à combustible et un système thermodynamique réversible
EP4241028A1 (fr) Installation et procédé de production d'hydrogène à température cryogénique
WO2022096217A1 (fr) Installation et procédé de production d'hydrogène a temperature cryogenique
FR2787560A1 (fr) Procede de separation cryogenique des gaz de l'air
CN112177882A (zh) 一种与lng系统耦合的液态压缩空气储能系统及方法
EP3368844A1 (fr) Nouveau procédé en cascade destiné à refroidir et à liquéfier de l'hydrogène à grande échelle
FR3108390A1 (fr) Installation et procédé de réfrigération d’hydrogène
WO2022073799A1 (fr) Installation et procédé de réfrigération et/ou de liquefaction d'un fluide
FR3134619A3 (fr) Installation et procédé de production d’oxygène à température cryogénique
EP3990846B1 (fr) Installation et procédé de liquéfaction de gaz
CA3224441A1 (fr) Installation et procede de liquefaction d'hydrogene.
BE903196A (fr) Procede de production d'energie
JP2004150685A (ja) 窒素製造設備及びタービン発電設備
WO2005103583A1 (fr) Procede de liquefaction d’un gaz integrant un appareillage de refroidissement thermo-acoustique
FR3119669A1 (fr) Dispositif et procédé de liquéfaction d’un fluide tel que l’hydrogène et/ou de l’hélium
FR3035195B1 (fr) Installation et procede de production d'helium liquide
EP4348138A1 (fr) Procede et installation de liquefaction de l'hydrogene
KR102248672B1 (ko) 고효율 수소 압축 냉각 시스템
WO2024008434A1 (fr) Dispositif et procédé de liquéfaction d'un fluide
EP4355985A1 (fr) Systeme de recuperation d'energie de compression d'un gaz, liquefacteur comprenant un tel systeme et procede de recuperation d'energie de compression d'un gaz
FR3137164A1 (fr) Système et procédé de compression de dioxyde de carbone avec compression polyphasique et pompe supercritique
EP4330611A1 (fr) Dispositif et procédé de refroidissement d'un flux d'un fluide cible comportant majoritairement du dihydrogène et utilisation associée
FR3017009A1 (fr) Methode permettant le stockage, le transport et la restitution d'energie electrique

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21798334

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023521353

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 20237017377

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2021798334

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021798334

Country of ref document: EP

Effective date: 20230609