EP2932102B1 - Spalttopf fuer magnetgekuppelte pumpen sowie herstellungsverfahren - Google Patents
Spalttopf fuer magnetgekuppelte pumpen sowie herstellungsverfahren Download PDFInfo
- Publication number
- EP2932102B1 EP2932102B1 EP13820745.1A EP13820745A EP2932102B1 EP 2932102 B1 EP2932102 B1 EP 2932102B1 EP 13820745 A EP13820745 A EP 13820745A EP 2932102 B1 EP2932102 B1 EP 2932102B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- percent
- weight
- nickel
- side wall
- chromium
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Revoked
Links
- 238000004519 manufacturing process Methods 0.000 title claims description 8
- 239000000463 material Substances 0.000 claims description 55
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims description 43
- 239000010955 niobium Substances 0.000 claims description 28
- 229910052758 niobium Inorganic materials 0.000 claims description 25
- GUCVJGMIXFAOAE-UHFFFAOYSA-N niobium atom Chemical compound [Nb] GUCVJGMIXFAOAE-UHFFFAOYSA-N 0.000 claims description 22
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims description 20
- 229910052759 nickel Inorganic materials 0.000 claims description 18
- 229910052782 aluminium Inorganic materials 0.000 claims description 17
- 239000010936 titanium Substances 0.000 claims description 14
- 229910052719 titanium Inorganic materials 0.000 claims description 14
- 238000010438 heat treatment Methods 0.000 claims description 13
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 claims description 12
- 229910052799 carbon Inorganic materials 0.000 claims description 12
- 239000011651 chromium Substances 0.000 claims description 12
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 11
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 claims description 10
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 claims description 10
- 238000000137 annealing Methods 0.000 claims description 10
- 229910052804 chromium Inorganic materials 0.000 claims description 10
- 238000000034 method Methods 0.000 claims description 10
- 229910052742 iron Inorganic materials 0.000 claims description 9
- 229910052750 molybdenum Inorganic materials 0.000 claims description 9
- 239000011733 molybdenum Substances 0.000 claims description 8
- 229910000640 Fe alloy Inorganic materials 0.000 claims description 7
- BIJOYKCOMBZXAE-UHFFFAOYSA-N chromium iron nickel Chemical compound [Cr].[Fe].[Ni] BIJOYKCOMBZXAE-UHFFFAOYSA-N 0.000 claims description 7
- 239000000470 constituent Substances 0.000 claims description 6
- 229910001182 Mo alloy Inorganic materials 0.000 claims description 5
- OGSYQYXYGXIQFH-UHFFFAOYSA-N chromium molybdenum nickel Chemical compound [Cr].[Ni].[Mo] OGSYQYXYGXIQFH-UHFFFAOYSA-N 0.000 claims description 5
- 229910000623 nickel–chromium alloy Inorganic materials 0.000 claims description 5
- 238000004881 precipitation hardening Methods 0.000 claims description 2
- 238000003466 welding Methods 0.000 claims 1
- 235000019589 hardness Nutrition 0.000 description 21
- 229910045601 alloy Inorganic materials 0.000 description 16
- 239000000956 alloy Substances 0.000 description 16
- 230000007797 corrosion Effects 0.000 description 10
- 238000005260 corrosion Methods 0.000 description 10
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 7
- GUVRBAGPIYLISA-UHFFFAOYSA-N tantalum atom Chemical compound [Ta] GUVRBAGPIYLISA-UHFFFAOYSA-N 0.000 description 7
- 229910052715 tantalum Inorganic materials 0.000 description 6
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 4
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 4
- RKTYLMNFRDHKIL-UHFFFAOYSA-N copper;5,10,15,20-tetraphenylporphyrin-22,24-diide Chemical compound [Cu+2].C1=CC(C(=C2C=CC([N-]2)=C(C=2C=CC=CC=2)C=2C=CC(N=2)=C(C=2C=CC=CC=2)C2=CC=C3[N-]2)C=2C=CC=CC=2)=NC1=C3C1=CC=CC=C1 RKTYLMNFRDHKIL-UHFFFAOYSA-N 0.000 description 4
- 238000010586 diagram Methods 0.000 description 4
- 239000011572 manganese Substances 0.000 description 4
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 3
- 238000005275 alloying Methods 0.000 description 3
- 229910052796 boron Inorganic materials 0.000 description 3
- 239000010941 cobalt Substances 0.000 description 3
- 229910017052 cobalt Inorganic materials 0.000 description 3
- 238000001816 cooling Methods 0.000 description 3
- 229910052739 hydrogen Inorganic materials 0.000 description 3
- 239000001257 hydrogen Substances 0.000 description 3
- 238000005192 partition Methods 0.000 description 3
- 230000035882 stress Effects 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 3
- PWHULOQIROXLJO-UHFFFAOYSA-N Manganese Chemical compound [Mn] PWHULOQIROXLJO-UHFFFAOYSA-N 0.000 description 2
- 229910000990 Ni alloy Inorganic materials 0.000 description 2
- 229910001005 Ni3Al Inorganic materials 0.000 description 2
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 2
- 230000032683 aging Effects 0.000 description 2
- 239000004411 aluminium Substances 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 239000010949 copper Substances 0.000 description 2
- 238000005336 cracking Methods 0.000 description 2
- 238000013461 design Methods 0.000 description 2
- 239000012530 fluid Substances 0.000 description 2
- 239000003921 oil Substances 0.000 description 2
- 238000010791 quenching Methods 0.000 description 2
- 230000000171 quenching effect Effects 0.000 description 2
- 229910052710 silicon Inorganic materials 0.000 description 2
- 229910052721 tungsten Inorganic materials 0.000 description 2
- 239000010937 tungsten Substances 0.000 description 2
- 101100298222 Caenorhabditis elegans pot-1 gene Proteins 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- RWSOTUBLDIXVET-UHFFFAOYSA-N Dihydrogen sulfide Chemical compound S RWSOTUBLDIXVET-UHFFFAOYSA-N 0.000 description 1
- 229910001069 Ti alloy Inorganic materials 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 238000003483 aging Methods 0.000 description 1
- 229910002091 carbon monoxide Inorganic materials 0.000 description 1
- 239000000356 contaminant Substances 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000018109 developmental process Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000004519 grease Substances 0.000 description 1
- 238000000227 grinding Methods 0.000 description 1
- 238000007542 hardness measurement Methods 0.000 description 1
- 229910000856 hastalloy Inorganic materials 0.000 description 1
- 238000009863 impact test Methods 0.000 description 1
- 230000006698 induction Effects 0.000 description 1
- 239000004615 ingredient Substances 0.000 description 1
- 239000000314 lubricant Substances 0.000 description 1
- 229910052748 manganese Inorganic materials 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 150000001247 metal acetylides Chemical class 0.000 description 1
- 238000010327 methods by industry Methods 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 239000003208 petroleum Substances 0.000 description 1
- 238000012805 post-processing Methods 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 238000005096 rolling process Methods 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- 238000005482 strain hardening Methods 0.000 description 1
- 239000011573 trace mineral Substances 0.000 description 1
- 235000013619 trace mineral Nutrition 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04D—NON-POSITIVE-DISPLACEMENT PUMPS
- F04D13/00—Pumping installations or systems
- F04D13/02—Units comprising pumps and their driving means
- F04D13/021—Units comprising pumps and their driving means containing a coupling
- F04D13/024—Units comprising pumps and their driving means containing a coupling a magnetic coupling
- F04D13/025—Details of the can separating the pump and drive area
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C19/00—Alloys based on nickel or cobalt
- C22C19/03—Alloys based on nickel or cobalt based on nickel
- C22C19/05—Alloys based on nickel or cobalt based on nickel with chromium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C19/00—Alloys based on nickel or cobalt
- C22C19/03—Alloys based on nickel or cobalt based on nickel
- C22C19/05—Alloys based on nickel or cobalt based on nickel with chromium
- C22C19/051—Alloys based on nickel or cobalt based on nickel with chromium and Mo or W
- C22C19/055—Alloys based on nickel or cobalt based on nickel with chromium and Mo or W with the maximum Cr content being at least 20% but less than 30%
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22F—CHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
- C22F1/00—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
- C22F1/10—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of nickel or cobalt or alloys based thereon
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04D—NON-POSITIVE-DISPLACEMENT PUMPS
- F04D13/00—Pumping installations or systems
- F04D13/02—Units comprising pumps and their driving means
- F04D13/06—Units comprising pumps and their driving means the pump being electrically driven
- F04D13/0606—Canned motor pumps
- F04D13/0626—Details of the can
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04D—NON-POSITIVE-DISPLACEMENT PUMPS
- F04D29/00—Details, component parts, or accessories
- F04D29/02—Selection of particular materials
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04D—NON-POSITIVE-DISPLACEMENT PUMPS
- F04D29/00—Details, component parts, or accessories
- F04D29/02—Selection of particular materials
- F04D29/026—Selection of particular materials especially adapted for liquid pumps
Definitions
- the invention relates to a containment shell for arrangement in a gap between a driver and a rotor of a magnetically coupled pump, and to a method for producing the containment shell.
- Magnetically coupled pumps can be statically sealed by placing a stationary containment shell between a drive side driver and a magnetically driven output side rotor and surrounding the rotor.
- the containment shell is arranged in the magnetic field between the driver and the rotor, and the magnetic forces are transmitted through the containment shell.
- a pump impeller can be coupled.
- Drivers and rotors are provided with permanent magnets and arranged as close to each other as possible in order to provide an efficient drive.
- the wall thickness of the side wall of the containment shell specifies how large the gap or gap between driver and runner must be at least.
- a narrow gap or a very brief interpretation of the wall thickness of the split pot with respect to a minimum width the gap provides advantages in efficiency, in particular with regard to minimizing drive losses, but at the same time reduces a safety factor and possibly also the service life of the can, depending on which fluids are to be conveyed.
- the corrosion resistance is just in terms of the lowest possible wall thickness of the side wall of importance.
- the containment shell is also to be reworked, in particular cold-formed, in order to be able to adjust the geometry of the side wall by forming processes.
- Nickel-based alloys have proven to be suitable material for containment pots.
- the rotor is constructed of a rotor core, which is interspersed with copper short-circuiting rods, wherein the rotor runs in a can and the can of ferritic stainless steel.
- the DE 10 2009 049 904 A1 relates to a partition wall for an electric motor comprising a stator and a rotor unit rotatably mounted on a sliding body, wherein the partition wall sealingly between the stator and the rotor unit can be arranged and wherein a retaining element with a closed surface is formed integrally with the partition of a stainless thermoformable material ,
- the object is to provide a containment shell in which, in addition to good structural material properties, a high corrosion resistance can be ensured. It is also an object to design the containment shell so that it can be easily brought into a desired geometry. Last but not least, it is the task to design a containment shell in such a way that it can easily be given a high material hardness.
- the material is a nickel-chromium alloy which has at least 50 percent by weight nickel and 17 to 21 percent by weight chromium. In this way, a particularly resistant containment can be provided.
- the side wall is made uniformly from the material, in particular when the side wall is designed with a view to a minimum material thickness.
- the entire containment shell made of the material although in particular for the flange and deviating, especially less expensive materials can be selected.
- the material has cobalt (Co), and the cobalt content is at most 1 percent by weight. More preferably, the material boron (B), and the boron content is at most 0.006 weight percent.
- a bottom of the split pot is preferably a section to understand, which closes the gap pot pot-shaped at one end and thereby merges into the side wall.
- a flange part of the containment shell is preferably a section which is designed to arrange and to fix the containment pot in a defined position and orientation in the pump.
- the material is a nickel-chromium-iron alloy, in particular a nickel alloy called Alloy 718 (Nicofer 5219 Nb), wherein the nickel content is at most 55 weight percent and the iron content is between 10 and 25 weight percent.
- the invention relates to the use of a suitable nickel-chromium-iron alloy for a split pot, which is designed to be arranged in a gap between a driver and a rotor of a magnetically coupled pump.
- a suitable nickel-chromium-iron alloy for a split pot, which is designed to be arranged in a gap between a driver and a rotor of a magnetically coupled pump.
- Such a material may be a nickel-chromium-iron alloy, which has high strength and is therefore particularly useful for splitters used in pumps operating at high pressures.
- a hardness measurement is preferably carried out before and after the heat treatment.
- the containment shell be kept free of grease, oils, lubricants or other contaminants before it is heat treated.
- the material has a greater hardness compared to titanium. Furthermore, the material provides the advantage of high temperature resistance, in particular up to 600 ° C.
- Such an alloy provides high strength with good residual strain, so also sufficient ductility to allow post-processing. In this case, a very good deformability can be ensured.
- the split pot according to the invention preferably obtains its desired geometry by spin forming the side wall as a special type of cold deformation.
- the cup portion can be provided with a relatively thin sidewall, e.g. in the range of 1 mm, wherein the wall thickness of the side wall can also lie in a narrow tolerance range, in particular with deviations smaller 1/10.
- the thin wall thickness, but also the narrow tolerance range offer the advantage of high drive efficiency in a magnetically coupled pump, because driver and rotor of the pump can be arranged very close together.
- the manufacturing costs can be kept low because rework on the side wall of the split pot are not required.
- the sidewall can be made with such high accuracy and tolerance that a face turning or grinding or any other molding process is no longer required.
- flow-forming processes are preferably understood to mean a cold-forming process in which the side wall of the containment shell is brought to a defined thickness and receives a defined orientation, in particular a cylindrical geometry with a high dimensional stability, ie. a slight deviation from the cylindrical shape in the radial direction (accuracy better 1/10).
- a desired geometry is to be understood as a geometry which the containment shell is to assume at the end of the production process, in particular in the region of the side wall and the bottom.
- the desired geometry is preferably defined by the respective wall thickness of the side wall and the bottom, an outer diameter and tolerance ranges for the respective dimensions.
- the modulus of elasticity may be, for example, in the range of 205 kN per mm 2 for room temperature and, for example, in the range of 199 kN per mm 2 for 100 ° C.
- the material of the can of the invention can have (by suitable heat treatment) an elongation at break of ⁇ 14% and a front impact test ⁇ 20 Joule, preferably ⁇ 27 Joule.
- the can according to the invention meets the requirements of the Pressure Equipment Directive (Directive 97/23 / EC on pressure equipment). This makes the containment shell suitable for use in pumps that operate with an internal overpressure of more than 0.5 bar.
- the remainder of iron is preferably in a range of 11 to 24.6 weight percent (12 to 24.13 weight percent).
- the alloy may have other trace elements, in particular up to 0.08 percent (0.045 percent) C, and / or up to 0.35 percent Mn, and / or up to 0.35 percent Si, and / or up to 0.3 Percent (0.23 percent) Cu, and / or up to 1.0 percent Co, and / or up to 0.05 percent Ta, and / or up to 0.006 percent B, and / or up to 0.015 percent (0, 01 percent) P, and / or up to 0.0015 percent (0.01 percent) S, and / or up to 5 ppm (10 ppm) Pb, and / or up to 3 ppm (5 ppm) S, and / or up to 0.3 ppm (0.5 ppm) Bi.
- trace elements in particular up to 0.08 percent (0.045 percent) C, and / or up to 0.35 percent Mn, and / or up to 0.35 percent Si, and / or up to 0.3 Percent (0.23 percent) Cu, and / or up to 1.0 percent Co, and
- the carbon content is exactly 0.08 weight percent (0.045 weight percent) or in the range of 75-100 percent of 0.08 weight percent (0.045 weight percent), that is between 0.06 and 0.08 weight percent (0.03375 and 0.045 weight percent).
- the niobium content is exactly 5.5 weight percent (5.2 weight percent niobium and tantalum together) or in a range of 5.25 to 5.5 weight percent (5.1 to 5.2 weight percent niobium and tantalum together).
- the carbon content is 0.00 wt% (0.00 wt%) or in the range 0-25% of 0.08 wt% (0.045 wt%), ie between 0.00 and 0.02 wt% (0 , 00 and 0.011 weight percent).
- the niobium content is exactly 4.75 weight percent (4.87 weight percent) or in the range of 4.75 to 5.0 weight percent (4.87 to 4.98 weight percent niobium and tantalum together).
- Such an alloy provides the advantage of high temperature resistance up to 700 ° C with good strength even in the high temperature range. Furthermore, these alloys have a high fatigue strength, a good creep strength up to 700 ° C and a good oxidation resistance up to 1000 ° C. They also provide good low temperature mechanical properties, good corrosion resistance at high and low temperatures, and good resistance to stress corrosion cracking and pitting. The corrosion resistance, especially against stress cracks, can be ensured in particular by the chromium content. The alloy can therefore also be used in media that are used in petroleum production and oil processing, in H 2 S-containing sour gas environments or in the field of marine technology.
- the density of the alloy is for example in the range of 8 g / cm 3 , in particular it is 8.2 g / cm 3 .
- the structure of the alloy is austenitic with several phases, in particular the phases carbides, laves ([Fe, Cr] 2Nb), ⁇ (Ni3Nb) orthorhombic, ⁇ "(Ni3Nb, Al, Ti) tetragonal body centered, and / or ⁇ '(Ni3Al
- the phase ⁇ "(Ni 3 Nb, Al, Ti) is preferably tetragonally centered in space, which can be adjusted by precipitation hardening.
- the phase ⁇ "(Ni 3 Nb, Al, Ti) tetragonal body centered provides good resistance to aging deformation cracking.
- the preparation of the alloy can be carried out by melting in the vacuum induction furnace and subsequent electroslag remelting.
- the remelting can also be done by a vacuum arc process.
- the material has molybdenum, wherein the molybdenum content is between 2.8 and 3.3 percent by weight. In this way, a good corrosion resistance can be achieved, in particular independently of the temperature range in which the containment shell is used.
- the material comprises niobium, wherein the niobium content is 4.75 to 5.5 percent by weight, or the material comprises niobium and tantalum, the proportion of niobium and tantalum together being 4.87 to 5.2 percent by weight.
- a good temperature resistance can be set.
- the niobium content thereby ensures the formation of at least one of the following phases of an austenitic microstructure, whereby the advantageous strength values of the material can be adjusted: phase ⁇ (Ni 3 Nb) orthorhombic, phase ⁇ "(Ni 3 Nb, Al, Ti) tetragonal body-centered, and / or phase ⁇ '(Ni3Al, Nb) face centered cubic.
- the material comprises aluminum and titanium, wherein the aluminum content is between 0.2 and 0.8, preferably 0.4 and 0.6 percent by weight and / or the titanium content between 0.65 and 1.15, preferably 0 , 8 and 1.15 weight percent.
- the aluminum content is between 0.2 and 0.8, preferably 0.4 and 0.6 percent by weight and / or the titanium content between 0.65 and 1.15, preferably 0 , 8 and 1.15 weight percent.
- the material is a nickel-chromium-molybdenum alloy, in particular the nickel alloy Hastelloy C-22HS or one of the variants of this alloy, wherein the chromium content is 21 percent by weight and the nickel content is at least 56 percent by weight, especially 56.6 percent by weight, and Molybdenum content is 17 percent by weight.
- the invention relates to the use of a suitable nickel-chromium-molybdenum alloy for a split pot, for example for arrangement in a gap between a driver and a Rotor of a magnetically coupled or for a canned motor pump.
- a material is a nickel-chromium-molybdenum alloy, which has a high corrosion resistance and a high ductility with high rigidity and thus also dimensional stability in relation to a generated desired geometry.
- Such a material can be cured in a simple manner after a preliminary forming. It is highly hardening by age hardening after cold working, especially without intermediate solution heat treatment.
- the achievable hardness is a function of the degree of deformation.
- This provides the advantage that, for example, a spin forming of the side wall of the split pot can be done to set a defined wall thickness, and that after the spin forming hardening of the side wall takes place.
- Cold forming, in particular spin forming preferably takes place after solution heat treatment.
- the material is also of high acid resistance, which makes its use for pumps in the chemical industry (chemical pumps) particularly interesting.
- the material has tungsten, which distinguishes it from the nickel-chromium-iron alloy described above.
- the strength of the material can be adjusted by a heat treatment in which Ni 2 (Mo, Cr) particles are formed, and the heat treatment is preferably carried out in a temperature range of 605 to 705 ° C.
- the good corrosion resistance of the alloy can also already be achieved by annealing alone.
- the density is preferably in the range of 8.6 g / cm 3 in the solution-annealed condition or 8.64 g / cm 3 in the cured state.
- the achievable hardnesses are in the following ranges, depending on the duration of a solution annealing before curing, the hardness values were determined according to Rockwell, either scale B (hardness values in the unit Rb) or C (hardness values in the unit Rc) , material form Hardness [Rb] or [Rc] annealed Hardened plate 92 Rb 30 Rc thin-walled sheet metal 90 Rb 30 Rc Bars / rod 88 Rb 30 Rc
- the following hardness values of the side wall can be set by aging-hardening: Hardness [Rc] by degree of deformation [%] Duration of curing [h] 0% 10% 20% 30% 40% 50% 0 ⁇ 20 29 35 37 40 45 1 ⁇ 20 27 33 38 41 47 4 ⁇ 20 26 33 39 41 48 10 ⁇ 20 35 40 41 45 51 24 ⁇ 20 40 43 44 48 52
- the achievable hardness depends on the degree of deformation. The higher the degree of deformation, the higher the achievable hardness.
- the material comprises iron, wherein the iron content is at most 2 percent by weight.
- the side wall is a side wall brought into a desired geometry by a forming step, which has a degree of deformation of more than 10 percent, preferably between 20 and 50 percent, more preferably between 30 and 40 percent, in particular 35 percent.
- a forming step which has a degree of deformation of more than 10 percent, preferably between 20 and 50 percent, more preferably between 30 and 40 percent, in particular 35 percent.
- the material selected is a nickel-chromium alloy in a solution-annealed state, which has at least 50 percent nickel by weight and 17 to 21 percent chromium by weight, hardening being effected by heat treatment after forming.
- the curing can be done either directly or after an intermediate solution annealing.
- the curing is preferably carried out by a heat treatment in the temperature range of 605 to 728 ° C, in particular over a period of 18 to 48 hours, wherein the heat treatment is in any case two-stage with respect to the selected temperature and a respective stage is maintained for at least 8 hours.
- the forming is a cold forming, wherein after the cold forming a paging hardening takes place, in particular in a temperature range of 605 to 728 ° C and without intermediate solution annealing after the cold forming.
- the cold forming is preferably a spin forming.
- Paging hardening can be done either directly after cold forming or after an intermediate step for solution annealing.
- aging is preferably carried out without solution annealing intermediate step.
- increasing hardness can be achieved with increasing hardening times, wherein the hardening times are e.g. be selected in the range of 1, 4, 10, 24 or 32 hours, preferably 32 hours at 605 ° C, since the longer duration, the hardness Rc to Rockwell scale C can be increased by over 10 percent.
- Fig. 1 are typical short-term properties of a nickel-chromium-iron alloy in a solution annealed and cured state as a function of temperature in ° C shown. It can be seen from the diagram that quite constant mechanical properties are present in a temperature range from room temperature to 600 ° C., which applies in particular to the breaking elongation (A5) and the constriction (Z), which provides advantages with regard to good dimensional accuracy of the containment shell.
- Fig. 2 For example, typical creep ruptures of the nickel-chromium-iron alloy in a solution-annealed and cured state are shown as a function of time in hours, with time plotted logarithmically, and with creep ruptures on the y-axis in N / mm 2 . It can be seen from the diagram that even over a period of 10 5 hours corresponding to a good 11 years at temperatures below 500 ° C., a loss of mechanical strength is hardly noticeable.
- a split pot 1 is shown, which is formed symmetrically with respect to a symmetry axis S and a bottom 2, a side wall 3 and a flange 4 has.
- the containment shell 1 has a nickel-chromium alloy, so it is partially or completely made of a material which can be formed from nickel and chromium and other alloying constituents.
- a partial embodiment of the split pot in the material may, for example, relate only to the side wall 3.
- at least the side wall 3 is formed entirely of the material.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Crystallography & Structural Chemistry (AREA)
- Thermal Sciences (AREA)
- Physics & Mathematics (AREA)
- Structures Of Non-Positive Displacement Pumps (AREA)
- Pressure Vessels And Lids Thereof (AREA)
- Heat Treatment Of Articles (AREA)
Description
- Die Erfindung betrifft einen Spalttopf zur Anordnung in einem Spalt zwischen einem Treiber und einem Läufer einer magnetgekuppelten Pumpe, sowie ein Verfahren zum Herstellen des Spalttopfes.
- Bei der Förderung von Fluiden, insbesondere im Chemiebereich, müssen meist hohe Anforderungen an die Dichtigkeit von Förderleitungen und Pumpen gestellt werden. Gleichzeitig muss ein guter Wirkungsgrad der Pumpen sichergestellt sein. Pumpen mit ausschließlich statischen Dichtungen, also ohne Wellendichtungen, können besonders fluiddicht ausgeführt sein. Magnetgekuppelte Pumpen können statisch abgedichtet werden, indem ein feststehender Spalttopf zwischen einem antriebsseitigen Treiber und einem magnetisch angetriebenen, abtriebsseitigen Läufer angeordnet ist und den Läufer umgibt. Der Spalttopf ist im Magnetfeld zwischen Treiber und Läufer angeordnet, und die magnetischen Kräfte werden durch den Spalttopf hindurch übertragen. An den Läufer kann ein Pumpenlaufrad gekoppelt sein. Treiber und Läufer sind mit Permanentmagneten versehen und möglichst nahe aneinander angeordnet, um einen effizienten Antrieb bereitstellen zu können. Die Wandstärke der Seitenwandung des Spalttopfs gibt dabei vor, wie groß der Abstand bzw. Spalt zwischen Treiber und Läufer mindestens sein muss.
- Häufig beträgt der Abstand und damit die Breite des zwischen Treiber und Läufer gebildeten Luftspalts z.B. nur etwa 4 mm, und der Spalttopf hat dann eine Wandstärke von z.B. 2 mm. Ein enger Spalt bzw. eine sehr knappe Auslegung der Wandstärke des Spalttopfes im Hinblick auf eine minimale Breite des Spalts liefert Vorteile beim Wirkungsgrad, insbesondere hinsichtlich einer Minimierung von Antriebsverlusten, reduziert aber gleichzeitig einen Sicherheitsfaktor und möglicherweise auch die Lebensdauer des Spalttopfes, je nachdem welche Fluide zu fördern sind. Um dennoch einen möglichst engen Spalt realisieren zu können, ist es von Interesse, den Spalttopf aus einem qualitativ besonders hochwertigen Werkstoff herzustellen, welcher neben einer hohen Festigkeit, insbesondere einer hohen Härte, auch eine gute Korrosionsbeständigkeit aufweist. Die Korrosionsbeständigkeit ist dabei gerade im Hinblick auf eine möglichst geringe Wandstärke der Seitenwandung von Bedeutung. Gleichzeitig soll der Spalttopf aber auch nachbearbeitet, insbesondere kaltumgeformt, werden können, um durch Umformverfahren die Geometrie der Seitenwandung einstellen zu können. Nickelbasislegierungen haben sich bisher als taugliches Material für Spalttöpfe erwiesen.
- Aus der
EP 1 398 510 A1 ist ein Nasslaufkreiselpumpenaggregat mit einem Asynchronmotor bekannt, dessen Rotor aus einem Rotorblechpaket aufgebaut ist, das mit aus Kupfer bestehenden Kurzschlussstäben durchsetzt ist, wobei der Rotor in einem Spaltrohr läuft und das Spaltrohr aus ferritischem, rostfreiem Stahl besteht. - Die
DE 10 2009 049 904 A1 betrifft eine Trennwand für einen Elektromotor, umfassend einen Stator und eine an einem Gleitkörper drehbar gelagerte Läufereinheit, wobei die Trennwand abdichtend zwischen dem Stator und der Läufereinheit anordbar ist und wobei ein Halteelement mit einer geschlossenen Oberfläche integral mit der Trennwand aus einem nichtrostenden tiefziehfähigen Material ausgebildet ist. - Aufgabe ist, einen Spalttopf bereitzustellen, bei welchem neben guten strukturellen Werkstoffeigenschaften auch eine hohe Korrosionsbeständigkeit sichergestellt werden kann. Auch eine Aufgabe ist, den Spalttopf so auszuführen, dass er auf einfache Weise in eine Sollgeometrie gebracht werden kann. Nicht zuletzt ist es Aufgabe, einen Spalttopf so auszuführen, dass ihm auf einfache Weise eine hohe Werkstoffhärte verliehen werden kann.
- Zumindest eine dieser Aufgaben wird durch einen Spalttopf gemäß Anspruch 1 sowie durch ein Verfahren gemäß Anspruch 9 gelöst. Vorteilhafte Weiterbildungen der Erfindung sind Gegenstand der Unteransprüche.
- Ein erfindungsgemäßer Spalttopf, der z.B. zur Anordnung in einem Spalt zwischen einem Treiber und einem Läufer einer magnetgekuppelten Pumpe oder auch in einer Spaltrohrmotorpumpe verwendet werden kann, weist auf:
- ein Flanschteil, z.B. zum Verbinden des Spalttopfes mit der Pumpe oder dem Motor;
- einen Boden;
- eine in montiertem Zustand des Spalttopfes in dem Spalt anordenbare Seitenwandung, die zumindest teilweise aus einem Werkstoff mit einem Nickelbestandteil besteht.
- Erfindungsgemäß wird vorgeschlagen, dass der Werkstoff eine Nickel-Chrom-Legierung ist, welche mindestens 50 Gewichtsprozent Nickel und 17 bis 21 Gewichtsprozent Chrom aufweist. Hierdurch kann ein besonders beständiger Spalttopf bereitgestellt werden.
- Bevorzugt besteht nicht nur ein Teil der Seitenwandung aus dem Werkstoff, sondern die Seitenwandung einheitlich aus dem Werkstoff, insbesondere dann wenn die Seitenwandung im Hinblick auf eine minimale Materialstärke ausgelegt ist. Wahlweise kann der gesamte Spalttopf aus dem Werkstoff bestehen, obgleich insbesondere für das Flanschteil auch abweichende, insbesondere kostengünstigere Werkstoffe gewählt werden können.
- Bevorzugt weist der Werkstoff Kobalt (Co) auf, und der Kobalt-Anteil ist maximal 1 Gewichtsprozent. Weiter bevorzugt weist der Werkstoff Bor (B) auf, und der Bor-Anteil ist maximal 0,006 Gewichtsprozent.
- Als ein Boden des Spalttopfes ist dabei bevorzugt ein Abschnitt zu verstehen, welcher den Spalttopf an einem Ende topfförmig abschließt und dabei in die Seitenwandung übergeht.
- Als ein Flanschteil des Spalttopfes ist dabei bevorzugt ein Abschnitt zu verstehen, welcher dazu ausgebildet ist, den Spalttopf in einer definierten Lage und Ausrichtung in der Pumpe anzuordnen und zu fixieren.
- Gemäß einem Ausführungsbeispiel ist der Werkstoff eine Nickel-Chrom-Eisenlegierung, insbesondere eine Nickellegierung mit der Bezeichnung Alloy 718 (Nicofer 5219 Nb), wobei der Nickelanteil maximal 55 Gewichtsprozent ist und der Eisenanteil zwischen 10 und 25 Gewichtsprozent beträgt. Mit anderen Worten betrifft die Erfindung die Verwendung einer geeigneten Nickel-Chrom-Eisenlegierung für einen Spalttopf, der zur Anordnung in einem Spalt zwischen einem Treiber und einem Läufer einer magnetgekuppelten Pumpe ausgebildet ist. Ein solcher Werkstoff kann eine Nickel-Chrom-Eisenlegierung sein, die eine hohe Festigkeit aufweist und daher besonders für Spalttöpfe zweckdienlich ist, die in bei hohen Drücken arbeitenden Pumpen eingesetzt werden. Gleichzeitig ist er in bestimmten Zuständen gut umformbar, insbesondere in einem lösungsgeglühten Zustand, und kann daher auf einfache Weise nachbearbeitet werden, beispielsweise durch Drückwalzen. Vorteilhaft ist ferner, dass eine Wasserstoffversprödung bei diesem Werkstoff nicht auftritt, so dass mit einer Pumpe mit einem derartigen Spalttopf auch wasserstoffhaltige Medien gefördert werden können.
- Ein solcher Werkstoff liefert ferner den Vorteil, dass er härtbar ist, ohne dass Verformungen auftreten. Hierdurch kann auf einfache Weise ein hochfester Spalttopf bereitgestellt werden, welcher eine hohe Maßgenauigkeit aufweist, so dass ein Luftspalt in der Pumpe besonders eng ausgeführt werden kann. Das Härten kann dadurch erfolgen, dass eine Wärmebehandlung über einen vordefinierten Zeitraum und bei einer vordefinierten Temperatur auf zumindest einem vordefinierten Temperaturniveau erfolgt. Zur Vermeidung von Spannungsrissen ist ein vorausgehendes Lösungsglühen zweckdienlich. Das Lösungsglühen kann bevorzugt bei den folgenden Parametern erfolgen:
- ▪ in einem Ofen eine Temperatur im Bereich von 960 °C, insbesondere 960 °C ± 15 °C, bevorzugt genau 960 °C erzeugen;
- ▪ den Spalttopf in dem Ofen mindestens 60 Minuten lösungsglühen, wobei in Abhängigkeit von der Wandstärke der Spalttopf die Haltezeit mindestens 3 Minuten pro Millimeter Wandstärke beträgt;
- ▪ nach dem Lösungsglühen Abschrecken, insbesondere im Wasserbad.
- Zwar sind mit dem Werkstoff auch eine Reihe anderer Lösungsglühvorgange möglich, insbesondere in einem Temperaturbereich von 940 bis 1080 °C, und das Abschrecken kann auch in Luft erfolgen, jedoch hat sich gezeigt, dass insbesondere für die Seitenwandung der zuvor beschriebene Lösungsglühvorgang zu bevorzugen ist.
- Eine Härtemessung erfolgt dabei bevorzugt vor und nach der Wärmebehandlung.
- Es ist zu empfehlen, den Spalttopf frei von Fetten, Ölen Schmierstoffen oder anderen Verunreinigungen zu halten, bevor er wärmebehandelt wird.
- Das Einstellen der Härte des Werkstoffs kann bevorzugt bei den folgenden Parametern erfolgen:
- ▪ in einem Ofen eine Temperatur im Bereich von 720 °C, insbesondere 720 °C ± 8 °C, bevorzugt genau 720 °C erzeugen, wobei der Schritt ein Kühlen des Ofens von der Temperatur fürs Lösungsglühen auf die Härtetemperatur umfassen kann;
- ▪ den Spalttopf in dem Ofen für eine erste Haltezeit von etwa 8 Stunden, bevorzugt genau 8 Stunden bei der Temperatur wärmebehandeln;
- ▪ die Temperatur in dem Ofen auf etwa 620 °C, insbesondere 620 °C ± 8 °C, bevorzugt genau 620 °C absenken, insbesondere innerhalb einer Zeit von 2 Stunden und in geschlossenem Zustand des Ofens, wobei der Spalttopf in dem Ofen verbleibt;
- ▪ den Spalttopf in dem Ofen für eine zweite Haltezeit von etwa 8 Stunden, bevorzugt genau 8 Stunden bei der niedrigeren Temperatur wärmebehandeln, wobei die zweite Haltezeit wahlweise ausgedehnt werden kann auf bis zu 12 Stunden, insbesondere aus prozesstechnischen Gründen; und
- ▪ Abkühlen an ruhender Luft.
- Dabei kann es von Bedeutung sein, den Ofen für das Lösungsglühen bereits auf die Solltemperatur zu bringen, bevor das Werkstück in den Ofen verbracht wird.
- Gegenüber bisher häufig bei hohen Drücken eingesetzten Titanlegierungen, die der Wasserstoffversprödung unterliegen, ergibt sich somit ein breiteres Einsatzgebiet. Abgesehen davon weist der Werkstoff eine gegenüber Titan größere Härte auf. Ferner liefert der Werkstoff den Vorteil einer hohen Temperaturbeständigkeit, insbesondere bis 600 °C.
- Eine solche Legierung liefert eine hohe Festigkeit bei guter Restdehnung, also auch eine ausreichende Duktilität, um eine Nachbearbeitung zu ermöglichen. Dabei kann eine sehr gute Verformbarkeit sichergestellt werden.
- Der erfindungsgemäße Spalttopf erhält bevorzugt seine Sollgeometrie durch Drückwalzen der Seitenwandung als spezielle Art der Kaltverformung. Durch das Drückwalzen kann das Topfteil mit einer verhältnismäßig dünnen Seitenwandung bereitgestellt werden, z.B. im Bereich von 1 mm, wobei die Wandstärke der Seitenwandung auch in einem engen Toleranzbereich liegen kann, insbesondere mit Abweichungen kleiner 1/10. Die dünne Wandstärke, aber auch der enge Toleranzbereich, bieten den Vorteil einer hohen Antriebseffizienz bei einer magnetgekuppelten Pumpe, denn Treiber und Läufer der Pumpe können besonders nahe beieinander angeordnet werden. Gleichzeitig können die Herstellungskosten niedrig gehalten werden, da Nacharbeiten an der Seitenwandung des Spalttopfes nicht erforderlich sind. Die Seitenwandung kann mit einer derart hohen Genauigkeit und einem derart engen Toleranzbereich hergestellt werden, dass ein Plandrehen oder Schleifen oder irgendein weiteres Formgebungsverfahren nicht mehr erforderlich ist. Unter Drückwalzen ist dabei bevorzugt ein Kaltverformungsverfahren zu verstehen, bei welchem die Seitenwandung des Spalttopfes auf eine definierte Stärke gebracht wird und eine definierte Ausrichtung erhält, insbesondere eine zylindrische Geometrie mit einer hohen Maßhaltigkeit, d.h. einer geringen Abweichung von der zylindrischen Form in radialer Richtung (Genauigkeit besser 1/10). Dabei kann das Drückwalzen zu einer Verlängerung der zylindrischen Seitenwandung in axialer Richtung führen, ohne dass sich der Durchmesser des Spalttopfes ändert. Als eine Sollgeometrie ist dabei eine Geometrie zu verstehen, welche der Spalttopf am Ende des Herstellungsverfahrens annehmen soll, insbesondere im Bereich der Seitenwandung und des Bodens. Die Sollgeometrie ist bevorzugt durch die jeweilige Wandstärke der Seitenwandung und des Bodens, einen Außendurchmesser und Toleranzbereiche für die jeweiligen Maße definiert. Ein besonderer Vorteil bei der beschriebenen Art der Herstellung ist, dass der Spalttopf in den drucktragenden Bereichen vollständig ohne Schweißnähte auskommt oder, anders ausgedrückt, keine drucktragenden Schweißnähte aufweist.
- Die mechanischen Eigenschaften des warm- oder kaltgeformten Werkstoffs des erfindungsgemäßen Spalttopfes bei Raumtemperatur in lösungsgeglühtem Zustand und nach dem Aushärten lassen sich über die Zugfestigkeit (Rm) in N/mm2, die Dehngrenze (Rp0.2) in N/mm2, die Bruchdehnung (A5) und Einschnürung (Z) in Prozent, die Brinellhärte in HB und die Korngröße in µm definieren:
- ▪ Zugfestigkeit in N/mm2: 1240 bis 1275;
- ▪ Dehngrenze in N/mm2: etwa 1035, bevorzugt genau 1035;
- ▪ Bruchdehnung in Prozent: 6, 10, 12 oder ≥ 14;
- ▪ Brinellhärte in HB: ≥ 331, insbesondere ≥ 341;
- ▪ Korngröße in µm: bevorzugt ≤ 127.
- Das Elastizitätsmodul kann dabei für Raumtemperatur z.B. im Bereich von 205 kN pro mm2 und für 100 °C z.B. im Bereich von 199 kN pro mm2 liegen.
- Besonders vorteilhaft kann der Werkstoff des erfindungsgemäßen Spalttopfes (durch geeignete Wärmebehandlung) eine Bruchdehnung vorn ≥ 14% und eine Kerbschlagarbeit vorn ≥ 20 Joule, vorzugsweise ≥ 27 Joule aufweisen. Damit erfüllt der erfindungsgemäße Spalttopf die Vorgaben der Druckgeräterichtlinie (Richtlinie 97/23/EG über Druckgeräte). Dies macht den Spalttopf geeignet für den Einsatz in Pumpen, die mit einem inneren Überdruck von mehr als 0,5 bar arbeiten.
- Bevorzugt enthält die Legierung einen wesentlichen Gehalt an Niob und Molybdän sowie einen niedrigen Gehalt an Aluminium und Titan. Die prozentualen Anteile in Bezug auf das Gewicht liegen bevorzugt in den folgenden Bereichen, wobei die in Klammern angegebenen Werte sich auf eine Variante der Legierung beziehen, die in korrosiven Medien eingesetzt werden kann, insbesondere Medien, welche H2S, CO2 oder Cl aufweisen. Die Änderung der Zusammensetzung betrifft dabei insbesondere die Legierungsbestandteile Kohlenstoff und Niob, aber auch Aluminium und Titan, wobei höhere Kohlenstoff- und Niobanteile Vorteile bei Hochtemperaturanwendungen liefern und niedrigere Kohlenstoff- und Niobanteile bei Anwendungen in korrosiven Medien zu bevorzugen sind:
- ▪ Nickel zwischen 50 und 55 Prozent;
- ▪ Chrom zwischen 17 und 21 Prozent;
- ▪ Molybdän zwischen 2,8 und 3,3 Prozent;
- ▪ Niob zwischen 4,75 und 5,5 Prozent (Niob und Tantal zusammen zwischen 4,87 und 5,2 Prozent);
- ▪ Aluminium zwischen 0,2 und 0,8 Prozent (0,4 und 0,6 Prozent);
- ▪ Titan zwischen 0,65 und 1,15 Prozent (0,8 und 1,15 Prozent);
- ▪ einen Rest Eisen.
- Der Rest Eisen liegt dabei bevorzugt in einem Bereich von 11 bis 24,6 Gewichtsprozent (12 bis 24,13 Gewichtsprozent).
- Die Legierung kann weitere Spurenelemente aufweisen, insbesondere bis zu 0,08 Prozent (0,045 Prozent) C, und/oder bis zu 0,35 Prozent Mn, und/oder bis zu 0,35 Prozent Si, und/oder bis zu 0,3 Prozent (0,23 Prozent) Cu, und/oder bis zu 1,0 Prozent Co, und/oder bis zu 0,05 Prozent Ta, und/oder bis zu 0,006 Prozent B, und/oder bis zu 0,015 Prozent (0,01 Prozent) P, und/oder bis zu 0,0015 Prozent (0,01 Prozent) S, und/oder bis zu 5 ppm (10 ppm) Pb, und/oder bis zu 3 ppm (5 ppm) Se, und/oder bis zu 0,3 ppm (0,5 ppm) Bi.
- Bevorzugt liegt der Kohlenstoff-Anteil genau bei 0,08 Gewichtsprozent (0,045 Gewichtsprozent) oder in einem Bereich von 75-100 % von 0,08 Gewichtsprozent (0,045 Gewichtsprozent), also zwischen 0,06 und 0,08 Gewichtsprozent (0,03375 und 0,045 Gewichtsprozent). Hierdurch kann eine gute Temperaturbeständigkeit erzielt werden. Wahlweise liegt alternativ oder zusätzlich der Niob-Anteil genau bei 5,5 Gewichtsprozent (5,2 Gewichtsprozent Niob und Tantal zusammen) oder in einem Bereich von 5,25 bis 5,5 Gewichtsprozent (5,1 bis 5,2 Gewichtsprozent Niob und Tantal zusammen). Gemäß einer Variante liegt der Kohlenstoff-Anteil bei 0,00 Gewichtsprozent (0,00 Gewichtsprozent) oder in einem Bereich von 0-25 % von 0,08 Gewichtsprozent (0,045 Gewichtsprozent), also zwischen 0,00 und 0,02 Gewichtsprozent (0,00 und 0,011 Gewichtsprozent). Hierdurch kann eine gute Korrosionsbeständigkeit erzielt werden. Wahlweise liegt alternativ oder zusätzlich der Niob-Anteil genau bei 4,75 Gewichtsprozent (4,87 Gewichtsprozent) oder in einem Bereich von 4,75 bis 5,0 Gewichtsprozent (4,87 bis 4,98 Gewichtsprozent Niob und Tantal zusammen).
- Eine solche Legierung liefert den Vorteil einer hohen Temperaturbeständigkeit bis 700 °C bei guter Festigkeit auch im hohen Temperaturbereich. Ferner weisen diese Legierungen eine hohe Ermüdungsfestigkeit, eine gute Zeitstandfestigkeit bis 700 °C und eine gute Oxidationsbeständigkeit bis 1000 °C auf. Auch liefern sie gute mechanische Eigenschaften bei tiefen Temperaturen und eine gute Korrosionsbeständigkeit bei hohen und tiefen Temperaturen sowie eine gute Beständigkeit gegenüber Spannungsrisskorrosion und Lochfraß auf. Die Korrosionsbeständigkeit, speziell gegenüber Spannungsrissen, kann insbesondere durch den Chrom-Anteil sichergestellt werden. Die Legierung kann daher auch in Medien eingesetzt werden, die in der Erdölförderung und Erdölverarbeitung, in H2S-haltigen Sauergasumgebungen oder im Bereich der Meerestechnik vorliegen.
- Dabei liegt die Dichte der Legierung z.B. im Bereich von 8 g/cm3, insbesondere beträgt sie 8,2 g/cm3.
- Das Gefüge der Legierung ist austenitisch mit mehreren Phasen, insbesondere den Phasen Karbiden, Laves ([Fe, Cr]2Nb), δ (Ni3Nb) orthorhombisch, γ" (Ni3Nb, Al, Ti) tetragonal raumzentriert, und/oder γ' (Ni3Al, Nb) kubisch-flächenzentriert. Bevorzugt liegt jedenfalls die Phase γ" (Ni3Nb, Al, Ti) tetragonal raumzentriert vor, die durch Ausscheidungshärten eingestellt werden kann. Die Phase γ" (Ni3Nb, Al, Ti) tetragonal raumzentriert liefert eine gute Beständigkeit gegenüber Alterungsdeformationsrissbildung.
- Die Herstellung der Legierung kann durch Erschmelzen im Vakuuminduktionsofen und darauffolgendes Elektroschlacke-Umschmelzen erfolgen. Das Umschmelzen kann auch durch ein Vakuum-Lichtbogen-Verfahren erfolgen.
- Gemäß einem Ausführungsbeispiel weist der Werkstoff Molybdän auf, wobei der Molybdänanteil zwischen 2,8 und 3,3 Gewichtsprozent beträgt. Hierdurch kann eine gute Korrosionsbeständigkeit erzielt werden, insbesondere unabhängig von dem Temperaturbereich, in welchem der Spalttopf eingesetzt wird.
- Gemäß einem weiteren Ausführungsbeispiel weist der Werkstoff Niob auf, wobei der Niobanteil 4,75 bis 5,5 Gewichtsprozent beträgt, oder der Werkstoff weist Niob und Tantal auf, wobei der Anteil von Niob und Tantal zusammen 4,87 bis 5,2 Gewichtsprozent beträgt. Hierdurch kann eine gute Temperaturbeständigkeit eingestellt werden. Der Niobanteil stellt dabei das Ausbilden zumindest einer der folgenden Phasen eines austenitischen Gefüges sicher, wodurch die vorteilhaften Festigkeitswerte des Werkstoffs eingestellt werden können: Phase δ (Ni3Nb) orthorhombisch, Phase γ" (Ni3Nb, Al, Ti) tetragonal raumzentriert, und/oder Phase γ' (Ni3Al, Nb) kubisch-flächenzentriert.
- Gemäß einem weiteren Ausführungsbeispiel weist der Werkstoff Aluminium und Titan auf, wobei der Aluminiumanteil zwischen 0,2 und 0,8, bevorzugt 0,4 und 0,6 Gewichtsprozent beträgt und/oder der Titananteil zwischen 0,65 und 1,15, bevorzugt 0,8 und 1,15 Gewichtsprozent beträgt. Hierdurch können besonders gute mechanische Eigenschaften erzielt werden, insbesondere weil Aluminium und Titan das Ausbilden zumindest einer der folgenden Phasen eines austenitischen Gefüges sicherstellen können: Phase γ" (Ni3Nb, Al, Ti) tetragonal raumzentriert, und/oder Phase γ' (Ni3Al, Nb) kubisch-flächenzentriert.
- Gemäß einem weiteren Ausführungsbeispiel ist der Werkstoff eine Nickel-Chrom-Molybdänlegierung, insbesondere die Nickellegierung Hastelloy C-22HS oder eine der Varianten dieser Legierung, wobei der Chromanteil 21 Gewichtsprozent beträgt und der Nickelanteil mindestens 56 Gewichtsprozent, insbesondere 56,6 Gewichtsprozent, ist und der Molybdänanteil 17 Gewichtsprozent beträgt. Mit anderen Worten betrifft die Erfindung die Verwendung einer geeigneten Nickel-Chrom-Molybdänlegierung für einen Spalttopf, z.B. zur Anordnung in einem Spalt zwischen einem Treiber und einem Läufer einer magnetgekuppelten oder für eine Spaltrohrmotorpumpe. Ein solcher Werkstoff ist eine Nickel-Chrom-Molybdänlegierung, die eine hohe Korrosionsbeständigkeit und eine hohe Duktilität bei gleichzeitig hoher Steifigkeit und damit auch Formstabilität bzw. Maßhaltigkeit in Bezug auf eine erzeugte Sollgeometrie aufweist.
- Die Legierungsbestandteile liegen bevorzugt bei den folgenden Werten in Gewichtsprozent:
- Nickel als Hauptbestandteil in einem Prozentanteil abhängig von den Prozentanteilen der weiteren Bestandteile, mindestens jedoch 56,6 Prozent;
- Chrom (Cr): 21 Prozent;
- Molybdän (Mo): 17 Prozent;
- Eisen (Fe): maximal 2 Prozent;
- Kobalt (Co): maximal 1 Prozent;
- Wolfram (W): maximal 1 Prozent;
- Mangan (Mn): maximal 0,8 Prozent;
- Aluminium (Al): maximal 0,5 Prozent;
- Silizium (Si): maximal 0,08 Prozent;
- Kohlenstoff (C): maximal 0,01 Prozent;
- Bor (B): maximal 0,006 Prozent.
- Ein solcher Werkstoff kann auf einfache Weise nach einer vorausgehenden Umformung gehärtet werden. Er ist hochverfestigend durch Auslagerungshärtung nach Kaltumformung, insbesondere ohne zwischenzeitliches Lösungsglühen. Die erreichbare Härte ist eine Funktion des Umformungsgrades. Dies liefert den Vorteil, dass z.B. ein Drückwalzen der Seitenwandung des Spalttopfes erfolgen kann, um eine definierte Wandstärke einzustellen, und dass nach dem Drückwalzen ein Härten der Seitenwandung erfolgt. Ein Kaltumformen, insbesondere Drückwalzen erfolgt dabei bevorzugt nach einem Lösungsglühen. Dabei können die Vorteile einer hohen Maßgenauigkeit mit den Vorteilen einer hohen Festigkeit auf einfache Weise miteinander kombiniert werden. Der Werkstoff ist ferner von hoher Säurebeständigkeit, was dessen Verwendung für Pumpen in der chemischen Industrie (Chemiepumpen) besonders interessant macht.
- Bevorzugt weist der Werkstoff Wolfram auf, was ihn von der zuvor beschriebenen Nickel-Chrom-Eisenlegierung unterscheidet.
- Die Festigkeit des Werkstoffs kann durch eine Wärmebehandlung eingestellt werden, bei welcher Ni2(Mo, Cr)-Partikel gebildet werden, wobei die Wärmebehandlung bevorzugt in einem Temperaturbereich von 605 bis 705 °C vorgenommen wird. Die gute Korrosionsbeständig der Legierung kann jedoch auch bereits allein durch ein Lösungsglühen (annealing) erzielt werden.
- Bevorzugt wird das Wärmebehandeln zum Einstellen einer höheren Härte bei den folgenden Parametern durchgeführt:
- Wärmebehandeln in einem Ofen bei 705 °C, insbesondere über eine Dauer von 16 Stunden;
- Abkühlen des Ofens auf 605 °C;
- Wärmebehandeln in dem Ofen bei 605 °C, insbesondere über eine Dauer von 32 Stunden; und
- Abkühlen an Luft.
- Die Dichte liegt bevorzugt im Bereich von 8,6 g/cm3 im lösungsgeglühten Zustand oder 8,64 g/cm3 im gehärteten Zustand.
- Das Elastizitätsmodul liegt dabei für Raumtemperatur z.B. im Bereich von 223 GPa (bzw. kN/mm2) und für 100 °C z.B. im Bereich von 218 GPa (bzw. kN/mm2). Die mechanischen Eigenschaften des umgeformten Werkstoffs bei Raumtemperatur in lösungsgeglühtem Zustand lassen sich über die Zugfestigkeit (Rm) in N/mm2, die Dehngrenze (Rp0.2) in N/mm2, die Bruchdehnung (A5) und Einschnürung (Z) in Prozent, die Brinellhärte in HB und die Korngröße in µm definieren, wobei die ersten Werte sich auf kaltgeformte Bauteile beziehen und die zweiten Werte in Klammern auf warmgeformte Bauteile:
- ▪ Zugfestigkeit in Mpa bzw. N/mm2: etwa 837 (806);
- ▪ Dehngrenze in Mpa bzw. N/mm2: etwa 439 (376);.
- Durch das Aushärten können die Werte wie folgt eingestellt werden:
- ▪ Zugfestigkeit in Mpa bzw. N/mm2: etwa 1230 (1202);
- ▪ Dehngrenze in Mpa bzw. N/mm2: etwa 759 (690);
- Die erzielbaren Härten liegen dabei in den folgenden Bereichen, in Abhängigkeit der Dauer von einem vor dem Härten durchgeführten Lösungsglühen, wobei die Härtewerte nach Rockwell bestimmt wurden, entweder nach Skala B (Härtewerte in der Einheit Rb) oder C (Härtewerte in der Einheit Rc).
Materialform Härte [Rb] oder [Rc] geglüht Ausgehärtet Platte 92 Rb 30 Rc dünnwandiges Blech 90 Rb 30 Rc Barren/Stange 88 Rb 30 Rc - Für Raumtemperatur bei einer kaltumgeformten Seitenwandung des Spalttopfes in Abhängigkeit vom Umformgrad (in Prozent) können durch ein Auslagerungshärten folgende Härtewerte der Seitenwandung eingestellt werden:
Härte [Rc] nach Umformgrad [%] Dauer des Aushärtens [h] 0% 10% 20% 30% 40% 50% 0 < 20 29 35 37 40 45 1 < 20 27 33 38 41 47 4 < 20 26 33 39 41 48 10 < 20 35 40 41 45 51 24 < 20 40 43 44 48 52 - Wie aus der obenstehenden Tabelle hervorgeht, hängt die erreichbare Härte von dem Umformungsgrad ab. Je höher der Umformungsgrad ist, desto höher ist die erreichbare Härte.
- Gemäß einem weiteren Ausführungsbeispiel weist der Werkstoff Eisen auf, wobei der Eisenanteil maximal 2 Gewichtsprozent beträgt.
- Gemäß einem weiteren Ausführungsbeispiel ist die Seitenwandung eine durch einen Umformschritt in eine Sollgeometrie gebrachte Seitenwandung, die einen Umformungsgrad über 10 Prozent aufweist, bevorzugt zwischen 20 und 50 Prozent, weiter bevorzugt zwischen 30 und 40 Prozent, insbesondere 35 Prozent. Durch das Umformen kann durch ein darauffolgendes Härten eine besonders hohe Härte erzielt werden.
- Die Erfindung betrifft auch ein Verfahren zum Herstellen eines Spalttopfes zur Anordnung in einem Spalt zwischen einem Treiber und einem Läufer einer magnetgekuppelten Pumpe, mit den Schritten:
- Ausbilden eines Flanschteils der Spalttopf zum Verbinden des Spalttopfes mit der Pumpe;
- Ausbilden eines Bodens des Spalttopfes;
- Ausbilden einer in montiertem Zustand des Spalttopfes in dem Spalt anordenbaren Seitenwandung zumindest teilweise aus einem Werkstoff mit einem Nickelbestandteil, wobei die Seitenwandung durch einen Umformschritt, insbesondere durch Drückwalzen, in eine Sollgeometrie gebracht wird.
- Dabei wird erfindungsgemäß als Werkstoff eine Nickel-Chrom-Legierung in einem lösungsgeglühten Zustand gewählt, welche mindestens 50 Gewichtsprozent Nickel und 17 bis 21 Gewichtsprozent Chrom aufweist, wobei nach dem Umformen ein Härten durch eine Wärmebehandlung erfolgt.
- Das Härten kann dabei wahlweise direkt oder nach einem zwischenzeitlichen Lösungsglühen erfolgen. Das Härten erfolgt bevorzugt durch eine Wärmebehandlung im Temperaturbereich von 605 bis 728 °C, insbesondere über eine Dauer von 18 bis 48 Stunden, wobei die Wärmebehandlung jedenfalls zweistufig in Bezug auf die gewählte Temperatur ist und eine jeweilige Stufe für mindestens 8 Stunden eingehalten wird.
- Gemäß einem Ausführungsbeispiel ist das Umformen ein Kaltumformen, wobei nach dem Kaltumformen ein Auslagerungshärten erfolgt, insbesondere in einem Temperaturbereich von 605 bis 728 °C und ohne zwischenzeitliches Lösungsglühen nach der Kaltumformung. Das Kaltumformen ist bevorzugt ein Drückwalzen. Das Auslagerungshärten kann wahlweise direkt nach dem Kaltumformen oder nach einem Zwischenschritt zum Lösungsglühen erfolgen. Für die beschriebene Nickel-Chrom-Molybdänlegierung erfolgt das Auslagerungshärten bevorzugt ohne Lösungsglüh-Zwischenschritt. Dabei kann bei steigenden Härtezeiten ein steigende Härte erzielt werden, wobei die Härtezeiten z.B. im Bereich von 1, 4, 10, 24 oder 32 Stunden gewählt werden, bevorzugt 32 Stunden bei 605 °C, da durch die längere Dauer die Härte Rc nach Rockwell-Skala C um über 10 Prozent gesteigert werden kann.
- Ausführungsbeispiele der Erfindung werden im Folgenden anhand der Zeichnungen beschrieben. Es zeigen:
- Figur 1:
- ein Diagramm zu typischen Kurzzeiteigenschaften einer Legierung gemäß einem ersten Ausführungsbeispiel der Erfindung;
- Figur 2:
- ein Diagramm zu typischen Zeitstandfestigkeiten der Legierung gemäß dem ersten Ausführungsbeispiel der Erfindung; und
- Figur 3:
- in einer schematischen Darstellung einen Spalttopf mit einem Werkstoff gemäß dem ersten oder zweiten Ausführungsbeispiel der Erfindung.
- In der
Fig. 1 sind typische Kurzzeiteigenschaften einer Nickel-Chrom-Eisenlegierung in einem lösungsgeglühten und ausgehärteten Zustand als Funktion der Temperatur in °C gezeigt. Dem Diagramm kann entnommen werden, dass in einem Temperaturbereich von Raumtemperatur bis 600 °C recht konstante mechanische Eigenschaften vorliegen, was insbesondere für die Bruchdehnung (A5) und die Einschnürung (Z) gilt, was Vorteile im Hinblick auf eine gute Maßgenauigkeit der Spalttopf liefert. - In der
Fig. 2 sind typische Zeitstandfestigkeiten der Nickel-Chrom-Eisenlegierung in einem lösungsgeglühten und ausgehärteten Zustand als Funktion der Zeit in Stunden gezeigt, wobei die Zeit logarithmisch aufgetragen ist, und wobei die Zeitstandfestigkeiten auf der y-Achse in N/mm2 angegeben sind. Dem Diagramm kann entnommen werden, dass selbst über eine Zeit von 105 Stunden entsprechend gut 11 Jahren bei Temperaturen unter 500 °C ein Verlust mechanischer Festigkeiten kaum spürbar ist. - In der
Fig. 3 ist eine Spalttopf 1 gezeigt, der symmetrisch in Bezug auf eine Symmetrieachse S ausgebildet ist und einen Boden 2, eine Seitenwandung 3 sowie ein Flanschteil 4 aufweist. Die Spalttopf 1 weist eine Nickel-Chrom-Legierung auf, ist also teilweise oder vollständig aus einem Werkstoff ausgeführt, welcher aus Nickel und Chrom und weiteren Legierungsbestandteilen gebildet werden kann. Eine teilweise Ausführung des Spalttopfes in dem Werkstoff kann z.B. nur die Seitenwandung 3 betreffen. Bevorzugt ist zumindest die Seitenwandung 3 vollständig aus dem Werkstoff gebildet. -
- 1
- Spalttopf
- 2
- Boden
- 3
- Seitenwandung
- 4
- Flanschteil
- S
- Symmetrieachse
Claims (11)
- Spalttopf (1) mit:- einem Flanschteil (4);- einem Boden (2);- einer in montiertem Zustand des Spalttopfes in einem Spalt anordenbaren Seitenwandung (3), die zumindest teilweise aus einem Werkstoff mit einem Nickelbestandteil besteht,dadurch gekennzeichnet, dass der Werkstoff eine Nickel-Chrom-Legierung ist, welche mindestens 50 Gewichtsprozent Nickel und 17 bis 21 Gewichtsprozent Chrom aufweist.
- Spalttopf nach Anspruch 1, dadurch gekennzeichnet, dass der Werkstoff eine Nickel-Chrom-Eisenlegierung ist, wobei der Nickelanteil maximal 55 Gewichtsprozent ist und der Eisenanteil zwischen 10 und 25 Gewichtsprozent beträgt.
- Spalttopf nach Anspruch 2, dadurch gekennzeichnet, dass der Werkstoff Molybdän aufweist, wobei der Molybdänanteil zwischen 2,8 und 3,3 Gewichtsprozent beträgt.
- Spalttopf nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass der Werkstoff Niob aufweist, wobei der Niobanteil 0,5 bis 10, vorzugsweise 3 bis 7, besonders bevorzugt 4,75 bis 5,5 Gewichtsprozent beträgt, oder dass der Werkstoff Niob und Tantal aufweist, wobei der Anteil von Niob und Tantal zusammen 0,5 bis 10, vorzugsweise 3 bis 7, besonders bevorzugt 4,87 bis 5,2 Gewichtsprozent beträgt.
- Spalttopf nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass der Werkstoff Aluminium und Titan aufweist, wobei der Aluminiumanteil zwischen 0,2 und 0,8, bevorzugt 0,4 und 0,6 Gewichtsprozent beträgt und/oder der Titananteil zwischen 0,65 und 1,15, bevorzugt 0,8 und 1,15 Gewichtsprozent beträgt.
- Spalttopf nach einem der Ansprüche 1, dadurch gekennzeichnet, dass der Werkstoff eine Nickel-Chrom-Molybdänlegierung ist, wobei der Chromanteil 21 Gewichtsprozent beträgt und der Nickelanteil mindestens 56 Gewichtsprozent, insbesondere 56,6 Gewichtsprozent, ist und der Molybdänanteil 17 Gewichtsprozent beträgt.
- Spalttopf nach Anspruch 6, dadurch gekennzeichnet, dass der Werkstoff Eisen aufweist, wobei der Eisenanteil maximal 2 Gewichtsprozent beträgt.
- Spalttopf nach Anspruch 6 oder 7, dadurch gekennzeichnet, dass die Seitenwandung (3) eine durch einen Umformschritt in eine Sollgeometrie gebrachte Seitenwandung (3) ist, die einen Umformungsgrad über 10 Prozent aufweist, bevorzugt zwischen 20 und 50 Prozent, weiter bevorzugt zwischen 30 und 40 Prozent, insbesondere 35 Prozent.
- Spalttopf nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, dass er keine drucktragenden Schweißnähte aufweist.
- Verfahren zum Herstellen eines Spalttopfes (1), mit den Schritten:- Ausbilden eines Flanschteils (4) des Spalttopfes (1);- Ausbilden eines Bodens (2) des Spalttopfes;- Ausbilden einer in montiertem Zustand des Spalttopfes in einem Spalt anordenbaren Seitenwandung (3) zumindest teilweise aus einem Werkstoff mit einem Nickelbestandteil, wobei die Seitenwandung (3) durch einen Umformschritt in eine Sollgeometrie gebracht wird,dadurch gekennzeichnet, dass für den Werkstoff eine Nickel-Chrom-Legierung in einem lösungsgeglühten Zustand gewählt wird, welche mindestens 50 Gewichtsprozent Nickel und 17 bis 21 Gewichtsprozent Chrom aufweist, und dass nach dem Umformen ein Härten durch eine Wärmebehandlung erfolgt.
- Verfahren nach Anspruch 10, dadurch gekennzeichnet, dass das Umformen ein Kaltumformen ist und nach dem Kaltumformen ein Auslagerungshärten erfolgt, insbesondere in einem Temperaturbereich von 605 bis 728 °C, und zwar ohne zwischenzeitliches Lösungsglühen nach der Kaltumformung.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102012024130.5A DE102012024130B4 (de) | 2012-12-11 | 2012-12-11 | Spalttopf für magnetgekuppelte Pumpen sowie Herstellungsverfahren |
PCT/EP2013/076195 WO2014090863A2 (de) | 2012-12-11 | 2013-12-11 | Spalttopf fuer magnetgekuppelte pumpen sowie herstellungsverfahren |
Publications (2)
Publication Number | Publication Date |
---|---|
EP2932102A2 EP2932102A2 (de) | 2015-10-21 |
EP2932102B1 true EP2932102B1 (de) | 2017-03-01 |
Family
ID=50777749
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP13820745.1A Revoked EP2932102B1 (de) | 2012-12-11 | 2013-12-11 | Spalttopf fuer magnetgekuppelte pumpen sowie herstellungsverfahren |
Country Status (10)
Country | Link |
---|---|
US (2) | US10167870B2 (de) |
EP (1) | EP2932102B1 (de) |
JP (3) | JP2016509125A (de) |
KR (1) | KR102125592B1 (de) |
CN (1) | CN104937277B (de) |
DE (2) | DE102012024130B4 (de) |
ES (1) | ES2627097T3 (de) |
PL (1) | PL2932102T3 (de) |
RU (1) | RU2640306C2 (de) |
WO (1) | WO2014090863A2 (de) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP4024675A1 (de) | 2020-12-28 | 2022-07-06 | Tomas Pink | Single-use rotor mit kurzschlusskäfig |
Families Citing this family (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102012024130B4 (de) | 2012-12-11 | 2014-09-11 | Klaus Union Gmbh & Co. Kg | Spalttopf für magnetgekuppelte Pumpen sowie Herstellungsverfahren |
DE102013018159A1 (de) * | 2013-12-05 | 2015-06-11 | Klaus Union Gmbh & Co. Kg | Spalttopf und Verfahren zur Herstellung desselben |
US9771938B2 (en) * | 2014-03-11 | 2017-09-26 | Peopleflo Manufacturing, Inc. | Rotary device having a radial magnetic coupling |
WO2016120984A1 (ja) * | 2015-01-27 | 2016-08-04 | 三菱重工コンプレッサ株式会社 | 遠心圧縮機のケーシング、及び、遠心圧縮機 |
US9920764B2 (en) | 2015-09-30 | 2018-03-20 | Peopleflo Manufacturing, Inc. | Pump devices |
CN105526190B (zh) * | 2016-01-21 | 2018-09-28 | 盐城海纳汽车零部件有限公司 | 一种汽车发动机冷却水泵合金结构钢模锻轮毂 |
DE102018130946B4 (de) | 2017-12-14 | 2024-06-20 | Vdm Metals International Gmbh | Verfahren zur herstellung von halbzeugen aus einer nickel-basislegierung |
AR115596A1 (es) * | 2018-06-28 | 2021-02-03 | Toa Forging Co Ltd | Método de fabricación para una válvula de motor hueco |
GB2581339A (en) * | 2019-02-08 | 2020-08-19 | Hmd Seal/Less Pumps Ltd | Containment shell for a magnetic pump |
RU2764491C1 (ru) * | 2021-03-16 | 2022-01-17 | Александр Анатольевич Изюков | Разделительный стакан магнитной муфты |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4850818A (en) | 1986-09-25 | 1989-07-25 | Seikow Chemical Engineering & Machinery, Ltd. | Corrosion-resistant magnet pump |
DE202004013080U1 (de) | 2004-08-20 | 2006-01-05 | Speck-Pumpen Walter Speck Gmbh & Co. Kg | Magnetkupplungspumpe |
Family Cites Families (25)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3473922A (en) * | 1967-07-21 | 1969-10-21 | Carondelet Foundry Co | Corrosion-resistant alloys |
CA1146207A (en) * | 1981-02-06 | 1983-05-10 | Nova Scotia Research Foundation Corporation | Slotted air-cooled magnetic isolation coupling |
DE3413930A1 (de) * | 1984-04-13 | 1985-10-31 | Friedrichsfeld Gmbh, Steinzeug- Und Kunststoffwerke, 6800 Mannheim | Kreiselpumpe |
GB2236113A (en) * | 1989-09-05 | 1991-03-27 | Teledyne Ind | Well equipment alloys |
JPH03134144A (ja) * | 1989-10-19 | 1991-06-07 | Toshiba Corp | ニッケル基合金部材およびその製造方法 |
DE9100515U1 (de) * | 1991-01-17 | 1991-04-04 | Friatec-Rheinhütte GmbH & Co, 65203 Wiesbaden | Magnetgekuppelte Kreiselpumpe |
CN1151191A (zh) * | 1994-06-24 | 1997-06-04 | 特勒达因工业公司 | 镍基合金及方法 |
DE29716109U1 (de) * | 1997-09-08 | 1999-01-14 | Speck Pumpenfabrik Walter Spec | Spalttopfpumpe |
FR2798169B1 (fr) * | 1999-09-06 | 2001-11-16 | Siebec Sa | Pompe a entrainement magnetique |
US6997994B2 (en) * | 2001-09-18 | 2006-02-14 | Honda Giken Kogyo Kabushiki Kaisha | Ni based alloy, method for producing the same, and forging die |
EP1398510B1 (de) * | 2002-09-06 | 2005-04-27 | Grundfos a/s | Nasslaufkreiselpumpenaggregat |
TW200514914A (en) * | 2003-09-19 | 2005-05-01 | Chrysalis Tech Inc | Threaded sealing flange for use in an external combustion engine and method of sealing a pressure vessel |
US7101158B2 (en) * | 2003-12-30 | 2006-09-05 | Wanner Engineering, Inc. | Hydraulic balancing magnetically driven centrifugal pump |
RU2290540C1 (ru) * | 2005-05-13 | 2006-12-27 | Федеральное государственное унитарное предприятие "Научно-производственное объединение прикладной механики им. акад. М.Ф. Решетнева" | Электронасосный агрегат |
US20070103017A1 (en) * | 2005-11-10 | 2007-05-10 | United Technologies Corporation One Financial Plaza | Superconducting generator rotor electromagnetic shield |
CA2588626A1 (en) * | 2007-05-15 | 2008-11-15 | Benoit Julien | A process for producing static components for a gas turbine engine |
CN101372730B (zh) * | 2007-08-22 | 2011-01-26 | 中国科学院金属研究所 | 一种γ”强化的高性能铸造镍基高温合金 |
US7789288B1 (en) * | 2009-07-31 | 2010-09-07 | General Electric Company | Brazing process and material for repairing a component |
DE202009017996U1 (de) * | 2009-10-12 | 2010-10-28 | Deutsche Vortex Gmbh & Co. Kg | Trennwand für einen Elektromotor und Pumpe mit Elektromotor |
JP2011157566A (ja) * | 2010-01-29 | 2011-08-18 | Global Nuclear Fuel-Japan Co Ltd | Ni基合金の製造方法および原子燃料集合体の製造方法 |
CN102463273A (zh) * | 2010-11-08 | 2012-05-23 | 北京有色金属研究总院 | 一种大口径镍基合金薄壁管材的制备方法 |
CN201934335U (zh) * | 2010-12-29 | 2011-08-17 | 四川红华实业有限公司 | 无级变频气体增压机 |
DE202012006480U1 (de) * | 2012-07-06 | 2012-08-06 | Ruhrpumpen Gmbh | Doppelwandiger Spalttopf einer Magnetkupplung, insbesondere einer Magnetkupplungspumpe |
DE102012024130B4 (de) | 2012-12-11 | 2014-09-11 | Klaus Union Gmbh & Co. Kg | Spalttopf für magnetgekuppelte Pumpen sowie Herstellungsverfahren |
JP6857428B1 (ja) * | 2020-02-12 | 2021-04-14 | 株式会社アースクリエイト | 積層体及び食品用容器包装 |
-
2012
- 2012-12-11 DE DE102012024130.5A patent/DE102012024130B4/de not_active Withdrawn - After Issue
-
2013
- 2013-12-11 KR KR1020157018663A patent/KR102125592B1/ko active IP Right Grant
- 2013-12-11 EP EP13820745.1A patent/EP2932102B1/de not_active Revoked
- 2013-12-11 ES ES13820745.1T patent/ES2627097T3/es active Active
- 2013-12-11 CN CN201380071200.XA patent/CN104937277B/zh active Active
- 2013-12-11 RU RU2015128080A patent/RU2640306C2/ru active
- 2013-12-11 DE DE202013012787.2U patent/DE202013012787U1/de not_active Expired - Lifetime
- 2013-12-11 US US14/650,823 patent/US10167870B2/en active Active
- 2013-12-11 WO PCT/EP2013/076195 patent/WO2014090863A2/de active Application Filing
- 2013-12-11 JP JP2015546996A patent/JP2016509125A/ja active Pending
- 2013-12-11 PL PL13820745T patent/PL2932102T3/pl unknown
-
2018
- 2018-07-06 US US16/029,018 patent/US10253776B2/en active Active
-
2019
- 2019-02-12 JP JP2019022806A patent/JP7185551B2/ja active Active
-
2021
- 2021-08-02 JP JP2021126789A patent/JP2021191896A/ja not_active Withdrawn
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4850818A (en) | 1986-09-25 | 1989-07-25 | Seikow Chemical Engineering & Machinery, Ltd. | Corrosion-resistant magnet pump |
DE202004013080U1 (de) | 2004-08-20 | 2006-01-05 | Speck-Pumpen Walter Speck Gmbh & Co. Kg | Magnetkupplungspumpe |
Non-Patent Citations (4)
Title |
---|
"Inconel® alloy 718", SPECIAL METALS - PROSPEKT, September 2007 (2007-09-01), pages 1 - 28, XP055407858 |
"Nicofer® 5219 Nb - alloy 718 Werkstoffdatenblatt Nr. 4127", WERKSTOFFDATENBLATT, September 2004 (2004-09-01), XP055407822 |
ANONYM: "Entdecken Sie die Vielfalt", SLM SOLUTIONS, April 2011 (2011-04-01), pages 1 - 12, XP055407820 |
ANONYM: "Inconel", WIKIPEDIA, 30 July 2012 (2012-07-30), pages 1 - 3, XP055407810 |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP4024675A1 (de) | 2020-12-28 | 2022-07-06 | Tomas Pink | Single-use rotor mit kurzschlusskäfig |
Also Published As
Publication number | Publication date |
---|---|
ES2627097T3 (es) | 2017-07-26 |
JP2021191896A (ja) | 2021-12-16 |
WO2014090863A3 (de) | 2015-02-26 |
KR20150094754A (ko) | 2015-08-19 |
PL2932102T3 (pl) | 2017-09-29 |
RU2640306C2 (ru) | 2017-12-27 |
JP7185551B2 (ja) | 2022-12-07 |
EP2932102A2 (de) | 2015-10-21 |
US10167870B2 (en) | 2019-01-01 |
CN104937277B (zh) | 2018-07-13 |
KR102125592B1 (ko) | 2020-07-08 |
DE202013012787U1 (de) | 2019-08-26 |
JP2016509125A (ja) | 2016-03-24 |
DE102012024130B4 (de) | 2014-09-11 |
CN104937277A (zh) | 2015-09-23 |
RU2015128080A (ru) | 2017-01-18 |
JP2019116686A (ja) | 2019-07-18 |
DE102012024130A1 (de) | 2014-06-12 |
US10253776B2 (en) | 2019-04-09 |
WO2014090863A2 (de) | 2014-06-19 |
US20180313353A1 (en) | 2018-11-01 |
US20150337844A1 (en) | 2015-11-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2932102B1 (de) | Spalttopf fuer magnetgekuppelte pumpen sowie herstellungsverfahren | |
DE69529829T2 (de) | Ferritische wärmebeständige Stähle | |
EP3728675B1 (de) | Verfahren zum additiven fertigen eines gegenstandes aus einem maraging-stahlpulver | |
EP2956562B1 (de) | Nickel-kobalt-legierung | |
EP1882752B1 (de) | Legierung auf titanbasis | |
DE3789776T2 (de) | Hitzebeständiger Stahl und daraus hergestellte Gasturbinenteile. | |
EP1340825B1 (de) | Nickelbasislegierung, heissbeständige Feder aus dieser Legierung und Verfahren zur Herstellung dieser Feder | |
JP7545442B2 (ja) | ターボ機械部品の製造方法、それによって得られる部品およびそれを備えたターボ機械 | |
DE19712020A1 (de) | Vollmartensitische Stahllegierung | |
DE2621297A1 (de) | Hochleistungs-turbomaschinenlaufrad | |
EP3105358B1 (de) | Verfahren zur herstellung einer titanfreien legierung | |
EP2432905A1 (de) | Ferritisch martensitische eisenbasislegierung, ein bauteil und ein verfahren | |
EP1420077B1 (de) | Reaktionsträger Werkstoff mit erhöhter Härte für thermisch beanspruchte Bauteile | |
DE3522115A1 (de) | Hitzebestaendiger 12-cr-stahl und daraus gefertigte turbinenteile | |
EP3335820A2 (de) | Verbundkörper und verfahren zu seiner herstellung | |
DE19531260C5 (de) | Verfahren zur Herstellung eines Warmarbeitsstahls | |
EP2221393A1 (de) | Schweisszusatzwerkstoff und Stahl 0.05-0.14 %C; 8-13 %Cr; 1-2.6 %Ni; 0.5-1.9 %Mo; 0.5-1.5 %Mn; 0.15-00.5 %Si; 0.2-0.4 %V; 0-0.04 %B, 2.1-4 %Re; 0-0.07 %Ta, 0-60 ppm | |
EP1481109B1 (de) | Verwendung eines chrom-stahls als werkstoff für korrosionsbeständige federelemente und dessen herstellung | |
EP0296439B1 (de) | Austenitischer Stahl für Gaswechselventile von Verbrennungsmotoren | |
EP2806047A1 (de) | Ausscheidungsgehärtete Fe-Ni-Legierung | |
DE112017006053T5 (de) | Hochfestes und hochzähes rohr für eine perforier-pistole und herstellungsverfahren dafür | |
DE102017215222A1 (de) | Einsatzhärtbare Edelstahllegierung | |
EP3458623B1 (de) | Verfahren zum herstellen eines stahlwerkstoffs und stahlwerksstoff | |
EP1215366B1 (de) | Turbinenschaufel | |
AT414341B (de) | Stahl für chemie - anlagen - komponenten |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20150826 |
|
AK | Designated contracting states |
Kind code of ref document: A2 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME |
|
DAX | Request for extension of the european patent (deleted) | ||
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R079 Ref document number: 502013006563 Country of ref document: DE Free format text: PREVIOUS MAIN CLASS: F04D0013020000 Ipc: C22F0001100000 |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
RIC1 | Information provided on ipc code assigned before grant |
Ipc: F04D 13/02 20060101ALI20160824BHEP Ipc: F04D 29/02 20060101ALI20160824BHEP Ipc: C22F 1/10 20060101AFI20160824BHEP Ipc: C22C 19/05 20060101ALI20160824BHEP |
|
INTG | Intention to grant announced |
Effective date: 20160908 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: GRANT OF PATENT IS INTENDED |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE PATENT HAS BEEN GRANTED |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: REF Ref document number: 871440 Country of ref document: AT Kind code of ref document: T Effective date: 20170315 Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: GERMAN |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 502013006563 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: FP |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG4D |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R026 Ref document number: 502013006563 Country of ref document: DE Ref country code: ES Ref legal event code: FG2A Ref document number: 2627097 Country of ref document: ES Kind code of ref document: T3 Effective date: 20170726 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170602 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170301 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170301 Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170601 Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170301 |
|
PLBI | Opposition filed |
Free format text: ORIGINAL CODE: 0009260 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170601 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170301 Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170301 Ref country code: RS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170301 |
|
26 | Opposition filed |
Opponent name: KSB AKTIENGESELLSCHAFT Effective date: 20170726 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170301 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170301 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170301 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170301 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170701 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170703 Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170301 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 5 |
|
PLAX | Notice of opposition and request to file observation + time limit sent |
Free format text: ORIGINAL CODE: EPIDOSNOBS2 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170301 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170301 |
|
PLBB | Reply of patent proprietor to notice(s) of opposition received |
Free format text: ORIGINAL CODE: EPIDOSNOBS3 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: MM4A |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20171211 Ref country code: MT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170301 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20171211 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO Effective date: 20131211 Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170301 |
|
APBM | Appeal reference recorded |
Free format text: ORIGINAL CODE: EPIDOSNREFNO |
|
APBP | Date of receipt of notice of appeal recorded |
Free format text: ORIGINAL CODE: EPIDOSNNOA2O |
|
APAH | Appeal reference modified |
Free format text: ORIGINAL CODE: EPIDOSCREFNO |
|
APBM | Appeal reference recorded |
Free format text: ORIGINAL CODE: EPIDOSNREFNO |
|
APBP | Date of receipt of notice of appeal recorded |
Free format text: ORIGINAL CODE: EPIDOSNNOA2O |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170301 |
|
APBQ | Date of receipt of statement of grounds of appeal recorded |
Free format text: ORIGINAL CODE: EPIDOSNNOA3O |
|
APBQ | Date of receipt of statement of grounds of appeal recorded |
Free format text: ORIGINAL CODE: EPIDOSNNOA3O |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170301 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: NL Payment date: 20191219 Year of fee payment: 7 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: PL Payment date: 20191129 Year of fee payment: 7 Ref country code: BE Payment date: 20191219 Year of fee payment: 7 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: AT Payment date: 20191220 Year of fee payment: 7 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170301 |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: MM Effective date: 20210101 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MM01 Ref document number: 871440 Country of ref document: AT Kind code of ref document: T Effective date: 20201211 |
|
REG | Reference to a national code |
Ref country code: BE Ref legal event code: MM Effective date: 20201231 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20210101 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20201211 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: TR Payment date: 20211209 Year of fee payment: 9 Ref country code: GB Payment date: 20211222 Year of fee payment: 9 Ref country code: FR Payment date: 20211224 Year of fee payment: 9 Ref country code: DE Payment date: 20211210 Year of fee payment: 9 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: CH Payment date: 20211221 Year of fee payment: 9 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: IT Payment date: 20211224 Year of fee payment: 9 Ref country code: ES Payment date: 20220222 Year of fee payment: 9 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20201231 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R103 Ref document number: 502013006563 Country of ref document: DE Ref country code: DE Ref legal event code: R064 Ref document number: 502013006563 Country of ref document: DE |
|
APBU | Appeal procedure closed |
Free format text: ORIGINAL CODE: EPIDOSNNOA9O |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PL Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20201211 |
|
RDAF | Communication despatched that patent is revoked |
Free format text: ORIGINAL CODE: EPIDOSNREV1 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: PATENT REVOKED |
|
RDAG | Patent revoked |
Free format text: ORIGINAL CODE: 0009271 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
27W | Patent revoked |
Effective date: 20221125 |
|
GBPR | Gb: patent revoked under art. 102 of the ep convention designating the uk as contracting state |
Effective date: 20221125 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MA03 Ref document number: 871440 Country of ref document: AT Kind code of ref document: T Effective date: 20221125 |